

TSU LT 1202.060L2

**USER MANUAL** 



901 Explorer Boulevard P.O. Box 140000 Huntsville, AL 35814-4000 Phone: (205) 963-8000

© 1997 ADTRAN, Inc. All rights reserved. Printed in USA. FCC regulations require that the following information be provided to the customer in this manual.

- 1. This equipment complies with Part 68 of the FCC rules. The required label is attached to the bottom of the chassis.
- If your TSU LT causes harm to the telephone network, the Telephone Company may discontinue your service temporarily. If possible, they will notify you in advance. If advance notice is not practical, you will be notified as soon as possible. You will be advised of your right to file a complaint with the FCC.
- 3. Your telephone company may make changes in its facilities, equipment, operations, or procedures that could affect the proper operation of your equipment. If they do, you will be given advance notice so as to give you an opportunity to maintain uninterrupted service.
- 4. If you experience trouble with the equipment TSU LT, please contact ADTRAN at (205) 963-8000 for repair/ warranty information. The telephone company may ask you to disconnect this equipment from the network until the problem has been corrected, or until you are sure the equipment is not malfunctioning.
- 5. This unit contains no user serviceable parts.
- 6. An FCC compliant telephone cord and modular plug is provided with this equipment. This equipment is designed to be connected to the telephone network or premises wiring using a compatible modular jack which is Part 68 compliant. See installation instructions for details.
- 7. The following information may be required when applying to your local telephone company for leased line facilities.

| Service Type             | REN/SOC | FIC       | USOC  |
|--------------------------|---------|-----------|-------|
| 1.544 Mbps - SF          | 6.0F    | 04DU9-BN  | RJ48C |
| 1.544 Mbps - SF and B8ZS | 6.0F    | 04DU9-DN  | RJ48C |
| 1.544 Mbps - ESF         | 6.0F    | 04DU9-1KN | RJ48C |
| 1.544 Mbps - ESF         | 6.0F    | 04DU9-1SN | RJ48C |

# FEDERAL COMMUNICATIONS COMMISSION RADIO FREQUENCY INTERFERENCE STATEMENT:

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio frequencies. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Shielded cables must be used with this unit to ensure compliance with Class A FCC limits.



Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

#### CANADIAN EQUIPMENT LIMITATIONS



The Industry Canada Certification label identifies certified equipment. This certification means that the equipment meets certain telecommunications network protective, operational, and safety requirements. The Department does not guarantee the equipment will operate to the user's satisfaction.

Before installing this equipment, users should ensure that it is permissible to be connected to the facilities of the local telecommunications company. The equipment must also be installed using an acceptable method of connection. In some cases, the company's inside wiring associated with a single line individual service may be extended by means of a certified connector assembly (telephone extension cord). The customer should be aware that compliance with the above conditions may not prevent degradation of service in some situations.

Repairs to certified equipment should be made by an authorized Canadian maintenance facility designated by the supplier. Any repairs or alterations made by the user to this equipment, or equipment malfunctions, may give the telecommunications company cause to request the user to disconnect the equipment.

Users should ensure for their own protection that the electrical ground connections of the power utility, telephone lines and internal metallic waterpipe system, if present, are connected together. This precaution may be particularly important in rural areas.



Users should not attempt to make such connections themselves, but should contact the appropriate electric inspection authority, or an electrician, as appropriate.

The Load Number (LN) assigned to each terminal device denotes the percentage of the total load to be connected to a telephone loop which is used by the device, to prevent overloading. The termination on a loop may consist of any combination of devices subject only to the equipment that the total of the LNs of all devices does not exceed 100.

The ringer equivalence number (REN) assigned to each terminal adapter is used to determine the total number of devices that may be connected to each circuit. The sum of the RENs from all devices in the circuit should not exceed a total of 5.0.

# **Table of Contents**

| Chapter 1: Introduction                 | 1  |
|-----------------------------------------|----|
| T1/FT1 Overview                         | 1  |
| T1 Service Offerings                    | 1  |
| Fractional T1                           |    |
| TSU LT Overview                         |    |
| Functional Description                  | 2  |
| Features                                | 5  |
| Interfaces                              | 5  |
| TSU LT Interfaces                       | 6  |
| Network Interface (NI)                  | 6  |
| Nx56/64 Serial Interface                | 6  |
| Control Port Input                      | 6  |
| Chain Port Output                       | 7  |
| Chain Port OutputTWO Methods of Control | 7  |
| Front Panel                             |    |
| T-Watch Pro Management Software Program | 7  |
| TSU LT Clock Sources                    | 8  |
| Network Timing                          | 8  |
| DTE Timing                              |    |
| Internal Timing                         | ģ  |
| TSU LT Testing                          |    |
| Self Test                               | 10 |
| Loopback Tests                          | 11 |
| Network Loopbacks                       | 11 |
| Line Loopback                           | 11 |
| Payload Loopback                        | 11 |
| Data Loopback                           | 11 |
| DTE Interface Loopbacks                 | 12 |
| DTE Loopback                            | 12 |
| DTE LoopbackPattern Generation          | 13 |
| 511                                     | 13 |
| 1:8                                     |    |
| All Zeros                               | 13 |
| All Ones                                | 13 |
| Application                             | 13 |
| Warranty and Customer Service           | 14 |
| ,                                       |    |
| Chapter 2: Installation                 | 15 |
| Unneck Increet                          | 16 |
| Unpack, Inspect                         | 10 |
| Shipped by ADTRAN                       | 10 |
| Provided by Customer Power Connection   | 10 |
| Miring                                  | 10 |
| Wiring                                  | 10 |

| Network                                     | 16       |
|---------------------------------------------|----------|
| Control-In/Chain-In                         |          |
| Chain-Out                                   | 18       |
| Nx56K/64K DTE (V.35)                        | 19       |
| Power Up Testing and Initialization         | 20       |
| Self Test                                   | 20       |
|                                             |          |
| Chapter 3: Operation                        | 21       |
| Operation                                   | 21       |
| Front Panel                                 | 21       |
| IDENTIFICATION OF NUMBERS                   | 22       |
| General Menu Operation                      | 23       |
| Menu Features                               | 23       |
| Data Field                                  | 23       |
| Display Field                               | 23       |
| Arrows                                      | 23       |
| Example Menu Operation                      | 23       |
| To Set the Data Field                       | 24       |
| To View Display Only Data Fields            | 25       |
| To Exit Any Menu Field Operation or Display | 25       |
| Menu Structure                              | 25       |
| Menu Structure                              | 26       |
| 1)STATUS                                    | 26       |
| 1)NI PERF REPORTS                           | 26       |
| 2)CURR ERR/ALM                              | 27       |
| 3)ERR/ALM HIST                              | 27       |
| 2)CÓNFIG                                    | 27       |
| 1)NETWORK (NI)                              | 27       |
| 2)UNIT                                      | 27       |
| 3)PORT                                      |          |
| 3)UTIL                                      |          |
| 1)TIME/DATE                                 | 27       |
| 2)SOFTWARE REV                              | 27       |
| 3)REINIT UNIT                               | 21       |
| 4)ADDRESS                                   | 27       |
| 5)SET PASSCODE                              | 28       |
| 5)FACT RESTORE                              | 28       |
| 4)TEST                                      | 28       |
| 1)NETWORK TESTS2)RUN SELF TEST              | 28       |
| 2)DODT TECTS                                | 20       |
| 3)PORT TESTS                                | 28       |
| 1)Status                                    |          |
| Purpose                                     |          |
| 1) NI PERF RPTS, Submenu of 1) Status       | 27       |
| 2)CURR ERR/ALM, Submenu of 1)Status         | აU<br>ეე |
| 2)Config                                    | ა2<br>ვე |
| Purpose                                     | აZ<br>ვე |
| r ui ρυვε                                   | JΖ       |

| 1)Network (NI), Submenu of 2)Config     | 33  |
|-----------------------------------------|-----|
| 1)FORMAT                                | 34  |
| 2)CODE                                  | 34  |
| 3)YEL ALRM                              | 34  |
| 4)XMIT ALRM                             | 34  |
| 5)CLOCK SOURCE                          | 35  |
| 6)BIT STUFFING                          | 35  |
| 7)SET LBO                               | 35  |
| 8) RX SENSITIVITY                       | 35  |
| 2)Unit, Submenu of 2)Config             | 35  |
| Operation                               | 35  |
| 1)CNTRL PORT                            | 36  |
| 2)ALARMS                                |     |
| 3)Port, Submenu of 2)Config             | 37  |
| 1)RATE 56/64                            | 38  |
| 2)CHANNELS                              | 38  |
| 3)DTE TX CLK                            | 38  |
| 4)START CHAN                            | 38  |
| 5)# OF CHAN                             |     |
| 6)DATA                                  |     |
| 7)CTS                                   | 39  |
| 8)DCD                                   |     |
| 9)DSR                                   | 39  |
| 10)INBAND                               |     |
| 3)UTIL                                  | 40  |
| Purpose                                 | 40  |
| 1)Time/Date, Submenu of 3)Util          | 41  |
| Keystroke Summary for Editing Time/Date | 41  |
| 2)Software Rev, Submenu of 3)Util       | 42  |
| 3)Reinit Unit, Submenu of 3)Util        | 42  |
| 4)Address, Submenu of 3)Util            | 42  |
| 5)Set Passcode, Submenu of 3)Util       | 42  |
| 6)Fact Restore, Submenu of 3)Útil       | 42  |
| 4)Test                                  |     |
| Purpose                                 | 43  |
| 1)Network Tests, Submenu of 4)Test      | 44  |
| 1)LOCAL LOOPBCK                         | 44  |
| 2)REMOTE LOOPBK                         | 44  |
| 3)TEST PATTERN                          |     |
| 4)CLR ERRORS                            | 45  |
| 5)INSERT 511 ERRORS                     | 46  |
| 2)Run Selftest, Submenu of 4)Test       | 46  |
| 3)Port Tests, Submenu of 4)Test         | 4 / |
|                                         |     |
| Chapter 4: Example Operations           | 49  |
| Testing Example                         | 49  |
| Far End Looped Back Test                | 49  |
|                                         | 49  |

# Table of Contents

| Appendix A: TSU LT Menu Tree    | 53 |
|---------------------------------|----|
| Appendix B: DTE Data Rate Chart | 55 |

# List of Figures

| Figure 1-1:  | TSU LT Unit - Front View                         | . 2  |
|--------------|--------------------------------------------------|------|
| Figure 1-2:  | TSU LT Rear Panel                                | . 4  |
| Figure 1-3:  | TSU LT Interfaces                                | . 5  |
| Figure 1-4:  | Network Timed Clock Source                       | . 8  |
| Figure 1-5:  | DTE Clock Source                                 | . 9  |
| Figure 1-6:  | Internal Clock Source                            | . 10 |
| Figure 1-7:  | Network Loopback Tests                           | . 12 |
| Figure 1-8:  | DTE Interface Loopback                           | . 12 |
| Figure 1-9:  | Simple Bridge Application on a T1 or FT1 Circuit | . 13 |
| Figure 3-1:  | Front Panel Layout                               |      |
| Figure 3-2:  | Cursor on Menu Item                              | . 23 |
| Figure 3-3:  | Sub-Menu Fields                                  | . 24 |
| Figure 3-4:  | TSU LT Main Menu Screen                          | . 25 |
| Figure 3-5:  | TSU LT Main Menus                                | . 26 |
| Figure 3-6:  | Status Menu                                      | . 29 |
| Figure 3-7:  | Severely Errored Seconds Screen                  | . 30 |
| Figure 3-8:  | Loss of Signal (Current Errors/Alarms) Screens   | . 31 |
| Figure 3-9:  | Clear History Screen                             |      |
| Figure 3-10: | Configuration Menu                               | . 33 |
| Figure 3-11: | Network Submenu                                  | . 34 |
| Figure 3-12: | Configuration Submenu                            | . 36 |
| Figure 3-13: | Inband Remote Configuration                      | . 40 |
| Figure 3-14: | Utility Menu                                     | . 41 |
| Figure 3-15: | Time/Date Screen                                 | . 41 |
| Figure 3-16: | Address Screen                                   | . 42 |
| Figure 3-17: | Complete Test Menu                               | . 43 |
| Figure 3-18: | Local Loopback Screen                            | . 44 |
| Figure 3-19: | Clear Errors Screen                              | . 45 |
| Figure 3-20: | Self Test Results Screen                         | . 46 |
| Figure 3-21: | Loopback Setting Screen                          | . 47 |
| Figure 4-1:  | Main Menu 4)TEST Selected                        | . 49 |
| Figure 4-2:  | Test Menu with NETWORK TESTS Selected            | . 50 |
| Figure 4-3:  | Local Loopback Test Menu                         | . 50 |
| Figure 4-4:  | Remote Loopback Test Menu                        | . 51 |
| Figure 4-5:  | Test Pattern Screen                              | . 51 |

# List of Figures

| Figure 4-6: | Clear Errors Screen | 52 |
|-------------|---------------------|----|
| Figure A-1: | TSU LT Menu Tree    | 54 |

# **List of Tables**

| Table 2-A: | Network Pin Assignments             | 16 |
|------------|-------------------------------------|----|
| Table 2-B: | Control-In/Chain-In Pin Assignments | 17 |
| Table 2-C: | Chain-Out Pin Assignments           | 18 |
| Table 2-D: | Primary V.35 Pin Assignment         | 19 |
| Table 3-A  | Normal Mode Operation               | 39 |
| Table B-A  | DTE Data Rate vs. DS0s              | 55 |

# Chapter 1 Introduction

#### T1/FT1 OVERVIEW

T1 digital communication links have been used by the telephone companies (telcos) for voice transmission since the early sixties. The D4 channel bank is an example of a T1 digital carrier system that was introduced in the mid-seventies and is still widely used by the telcos. Communication demands of businesses continued to grow to the point that the telcos began offering T1 service directly to the public. D4 channel banks began to be used for T1 in corporate network topographies for voice. The technological advances in computer development also created a demand for T1 data communication which now is a large part of the T1 traffic.

# **T1 Service Offerings**

T1 is a digital service that is delivered to the user over two pairs of wires from the service provider. The signal operates at 1.544 mega bits per second (Mbps) and is usually extended by repeaters that are installed about every mile after the first 6000 feet. The T1 signal is divided into 24 time slots or digital signal level zeros (DS0s) which operate at 64 kilo bits per seconds (kbps). Each time slot is occupied by digitized voice or by data.

The T1 signal originally used a type of framing known as D4 Superframe which identifies how the T1 is multiplexed. Extended Superframe (ESF) is an enhancement of that framing format. ESF provides a non-disruptive means of full time monitoring on the digital facility. It was originally used by the service provider to monitor the performance of their service offering. Since the introduction of ESF, equipment that is installed in private networks can also provide the same performance information to the user.

#### Fractional T1

Fractional T1 (FT1) lets the buyer purchase less than a full T1 circuit between two points. Most carriers offer fractional T1 in increments of 56 or 64 kbps. Connection is made to the same network elements. The network allows multiple users to share the same interoffice T1 bandwidth.

FT1 remains almost exclusively an inter-exchange carrier (IXC) service. Local exchange carriers (LECs) typically do not offer FT1, so the user's proximity to the IXC's point-of-presence (POP) is key in the savings that fractional T1 offers.

FT1 local access is available in two forms, 56 kbps or a full T1 line. In 56 kbps the required number of digital data service (DDS) lines is extended from the IXC POP and the bandwidth is combined at the office on an outbound T1 circuit. The user pays for the individual 56K lines and the amount of the interoffice T1 utilized. In T1 access, the user pays for a full T1 to the IXC POP and then only for the bandwidth utilized.

#### TSU LT OVERVIEW

This section provides a functional description of the TSU LT, describes its features, and illustrates its four interfaces.

# **Functional Description**

The ADTRAN TSU LT is one of several T1 multiplexers that offer complete flexibility for connection of various data sources to T1 or FT1 facilities. This family of TSU multiplexers includes the following:

- TSU and TSU LT T1 CSU/DSUs with a single Nx56K/64K serial port.
- TSU 100 Same as the TSU with the added feature of a slot in the rear panel to house an option module. Each module offers up to four additional data ports.
- TSU 600 Same as the TSU with the added feature of six slots in the rear panel to house up to six option modules. Each module offers up to four additional data ports for a total of 24 possible data ports.

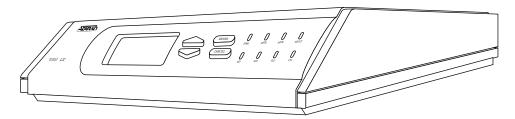



Figure 1-1 TSU LT Unit - Front View

The TSU LT serves as the link between user data sources such as local area network (LAN) bridges and routers, computers, CAD systems, and teleconferencing equipment. The amount of bandwidth allocated to the port is custom programmable. The data terminal equipment (DTE) data can occupy contiguous or alternate channels in the T1 stream, and the channels may start at any position.

9. Power Cord

# Number Identification

| <u>Item</u>      | <u>Function</u>                        |
|------------------|----------------------------------------|
| 1. Network       | T1-FT1 network interface               |
| 2. In            | Bantam test jack                       |
| 3. Out           | Bantam test jack                       |
| 4. MON (Monitor) | Bantam test jack                       |
| 5. Chain-In      | Interface of chain-in                  |
| 6. Chain-Out     | Connects to chain-in of another TSU LT |
| 7. V.35 Nx56/64  | DTE port                               |
| 8. Power Switch  | Used to turn power on or off           |

Captive 3 prong power cord



Figure 1-2 TSU LT Rear Panel

### **Features**

Features of the TSU LT are the following:

- A DS1 interface and an Nx56/64 DTE serial interface port.
- Easy configuration capabilities using simplistic menus displayed in a liquid crystal display (LCD) window operated by a front panel keypad.
- Timing is selectable from the network, from the Nx56/64 DTE port, or internally.
- All ones, all zeros, 511, and 1:8 test patterns.
- Extensive self test and monitoring provides assurance of proper operation.
- Flexible channel allocation (any starting channel and alternate or contiguous).

# **Interfaces**

The TSU LT is equipped with four interfaces (see Figure 1-3):

- Network DS1 interface per AT&T 62411
- Nx56/64 serial V.35 high speed interface
- Control input (RS-232)/Chain port input
- Chain port output

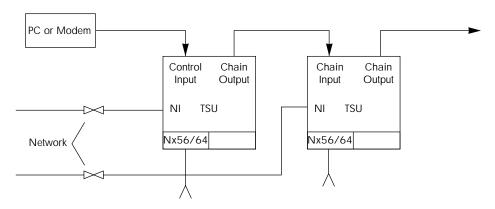



Figure 1-3
TSU LT Interfaces

#### **TSU LT INTERFACES**

# **Network Interface (NI)**

The Network Interface (NI) port complies with the applicable ANSI and AT&T standards:

- Alternate mark inversion (AMI) or binary 8 zero suppression (B8ZS) coding
- · Automatic or manual line build out
- Auto detect or manual settings for D4 or ESF framing
- Network performance monitoring and reporting
- Test loopbacks by local and remote
- Extensive self test

#### Nx56/64 Serial Interface

Features of the Nx56/64 serial interface include:

- Data rates: N\*56K or N\*64K, where N=1 to 24 (DS0s)
- Inverted data (inverted high-level data link control (HDLC))
- A V.35 interface
- Standard V.35 connectors
- Test loopbacks with 511 pattern generation and check
- Extensive self test

# **Control Port Input**

Features of the control port input include:

- RS-232 input from a personal computer (PC) or a modem for control of the TSU LT
- Chain input from another TSU LT
- Up to 9600 baud operation
- Acts as input for PC proxy agent control or as input for a chained connection

# **Chain Port Output**

Features of the chain port output include:

- RS-232 output to chain control to other TSU LTs
- Up to 9600 baud operation
- Automatic setup; no user input required

#### TWO METHODS OF CONTROL

#### Front Panel

The front panel provides complete and easy control of all items that can be configured through menu guided options. The front panel LCD also displays the status of operation and performance reports for the unit. A complete discussion of the operation of the front panel and all the menu options is found in the chapter Operation.

# T-Watch Pro Management Software Program

T-Watch PRO is the ADTRAN management software program that allows the user to control the TSU LT from a PC. It provides complete control over the configuration of the TSU LT using a graphic interface. The T-Watch PRO program displays the same status and performance data as the front panel LCD. This data is displayed in the form of tables and graphs.

The T-Watch PRO program has the following capabilities:

- Interfaces with a modem which permits dialing into a remote TSU LT location to configure the unit or read the unit's status or performance.
- The performance data read from the units can be exported in a file which is compatible with common spread sheet programs.

# **TSU LT CLOCK SOURCES**

The TSU LT is operable from various clock sources permitting it to perform properly in many different applications. The network interface clocking options are set by using the Network Configuration menu options. Three clock source options are available:

- Network timed
- DTE timed
- Internal timing



The clocking option selected always designates the clock source for transmission. Clocking necessary for receiving data is always recovered from incoming data.

# **Network Timing**

The network is the source of timing. The received data clocking is looped back to the network where it is used to determine the transmission timing. This option is also referred to as looped timed as the transmission clock is derived from the received clock. See Figure 1-4.

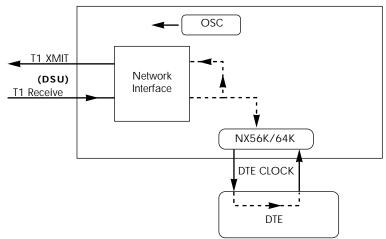



Figure 1-4
Network Timed Clock Source

# **DTE Timing**

The DTE is the source of timing. The TSU LT uses the incoming DTE clock to determine the transmission timing. This is typically used in applications such as limited distance line drivers, where it is necessary to have the DTE as the primary clock source. See Figure 1-5.

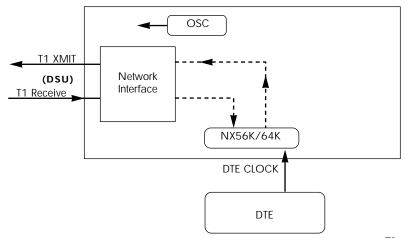



Figure 1-5
DTF Clock Source

# **Internal Timing**

The TSU LT is the source of timing. The TSU LT is configured to use its own internal oscillator as the source of timing. Applications include private line driver circuits where one end is set to network and the other to internal. See Figure 1-6.

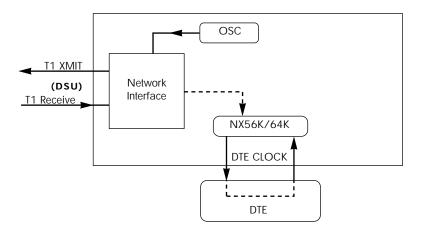



Figure 1-6
Internal Clock Source

# **TSU LT TESTING**

The TSU LT offers three forms of testing:

- Self test
- Loopback tests
- Pattern generation and check

# **Self Test**

The self test checks the integrity of the internal operation of the electronic components by performing memory tests and by sending and verifying data test patterns through all internal interfaces. Although actual user data cannot be passed during these tests, the self test can run with the network and DTE interfaces in place and disturbing any external interface.

The self test automatically executes upon power up. It can also be commanded from a front panel menu or from the control port.

In addition to the specified self tests, background tests are also run on various parts of the internal electronics. These run during normal operation to confirm continued correct functioning. The background tests include:

- Monitoring the phase locked loop for lock
- Standard background network performance monitoring, as required by ANSI T1.403 and AT&T 54016 for which the results are stored

# **Loopback Tests**

A number of different loopbacks can be invoked locally from the front panel, by T-Watch commands, or remotely by using special inband codes (AT&T D4 network loop up/loop down codes and V.54 loop up/loop down codes for the Nx56K/64K serial interface). Additionally the loopbacks can be remotely controlled by out-of-band commands via the T1 ESF facility data link (FDL), or from T-Watch via a modem connection. Network and DTE interface loopbacks are discussed in this section.

# **Network Loopbacks**

There are two types of network loopbacks; see Figure 1-7.

# Line Loopback

Loops all of the received data back toward the network. The transmitted data is the identical line code that was received, including any bipolar violations or framing errors.

# **Payload Loopback**

Similar to line loopback, except that the framing is extracted from the received data and then regenerated for the transmitted data.

# Data Loopback

Loops back all active DS0s and inserts idle code into unoccupied DS0s.

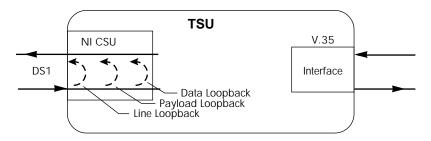



Figure 1-7 Network Loopback Tests

# **DTE Interface Loopbacks**

The Nx56K/64K serial interface offers a DTE loopback. See Figure 1-8.

#### DTE Loopback

Loops all data from the DTE back towards the DTE. This loopback may be initiated by the DTE asserting the local loopback (LL) input on the connector or by using front panel or T-Watch commands. The DTE (or the external test equipment) must provide any test pattern in order to check the DTE interface.

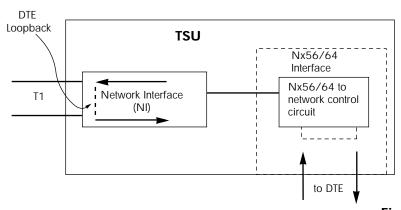



Figure 1-8
DTE Interface Loopback

#### **Pattern Generation**

The TSU LT offers four available test patterns: 511, 1:8, All Ones, and All Zeros.

#### 511

The 511 pattern is generated and checked by the Nx56K/64K serial interface. It only appears in the DS0s assigned to the Nx56K/64K port. When used in conjunction with the payload loopback at the far end as previously described, an end-to-end integrity check can be made on the DTE ports.

#### 1:8

The 1:8 is a stress pattern which places the maximum number of 0s in the transmitted data. This is always done over all DS0s. This pattern is used in conjunction with external test equipment to determine if the T1 line is performing acceptably under a stress condition. Each channel of the T1 has only one bit set.

#### All Zeros

Generates an all zeros pattern in every channel.

#### **All Ones**

Generates an all ones pattern in every channel.

# **APPLICATION**

Utilizing the V.35 DTE interface, a bridge or router can be interfaced to the network. The bandwidth used is programmable at Nx56 or Nx64 data rates for T1 or FT1 service. The bandwidth can be selected as contiguous or alternate. Figure 1-9 shows a simple bridge application.

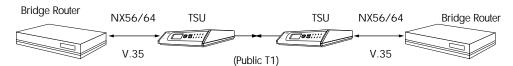



Figure 1-9
Simple Bridge Application on a T1 or FT1 Circuit

#### WARRANTY AND CUSTOMER SERVICE

ADTRAN will replace or repair this product within five (5) years from the date of shipment if it does not meet its published specifications or fails while in service. For detailed warranty, repair and return information refer to the ADT-RAN Equipment Warranty and Repair and Return Policy Procedure.

Return Material Authorization (RMA) is required prior to returning equipment to ADTRAN.

For Service, RMA requests, or more information, contact ADTRAN Technical Support listed at the end of this manual.

# Chapter 2 Installation

# UNPACK, INSPECT

Carefully inspect the TSU LT for any shipping damage. If damage is suspected, file a claim immediately with the carrier and then contact ADTRAN Customer Service. If possible, keep the original shipping container for use in shipping the TSU LT back for repair or for verification of damage during shipment.

# Shipped by ADTRAN

The following items are included in the ADTRAN shipment:

- TSU LT unit
- Line interface cable: an 8-position modular to 8-position modular
- User manual
- Loopback plug

# **Provided by Customer**

The following items must be supplied by the customer:

- DTE cable(s)
- Cable for supervisory port if utilized

# **POWER CONNECTION**

Each TSU LT unit is provided with a captive eight-foot power cord, terminated by a three-prong plug which connects to a grounded power receptacle.

CALITION Power to the TSU LT must be from a grounded 220-230 VAC, 60 Hz power source.

# **WIRING**

# **Network**

On the rear panel, the TSU LT has an eight-position modular jack labeled Network. This connector is used for connecting to the network. See Table 2-A for the network connector pin assignments.

Connector Type (USOC) RJ-48C Product Number AMP# 555164-2

**Table 2-A**Network Pin Assignments

| PIN     | NAME            | DESCRIPTION                   |
|---------|-----------------|-------------------------------|
| 1       | R1 RXDATA-RING  | Receive data from the network |
| 2       | T1 RXDATA-TIP   | _                             |
| 3       | unused —        |                               |
| 4       | r txdata-ring   | Send data towards the network |
| 5       | T TDXDATA-TIP — |                               |
| 6, 7, 8 | UNUSED          | _                             |

# Control-In/Chain-In

Use this as an RS-232 port for connection to a computer or modem (chain-in) or another TSU (chain-out). See Table 2-B for the pin assignment for this connector.

Connector Type RJ-48

Product Number AMP# 555164-2

**Table 2-B** Control-In/Chain-In Pin Assignments

| PIN | NAME   | DESCRIPTION                      |
|-----|--------|----------------------------------|
| 1   | GND    | Ground connected to unit chassis |
| 2   | UNUSED | _                                |
| 3   | RXDATA | Data received by the TSU         |
| 4   | UNUSED | _                                |
| 5   | TXDATA | Data transmitted by the TSU      |
| 6   | UNUSED | _                                |
| 7   | RI     | Ring indicate from modem         |
| 8   | UNUSED | _                                |

# **Chain-Out**

Use this to connect to another TSU LT chain-in connector. The pinout for this connector is shown in Table 2-C.

Connector Type RJ-48

Product Number AMP# 555164-2

**Table 2-C** Chain-Out Pin Assignments

| PIN     | NAME   | DESCRIPTION                                                                                        |
|---------|--------|----------------------------------------------------------------------------------------------------|
| 1       | GND    | Ground-connected to unit chassis. Connect to GND of next unit (pin 1)                              |
| 2       | UNUSED | _                                                                                                  |
| 3       | TXDATA | Data transmitted to chained units by the TSU. Connect to RX DATA of the next unit (chain-in pin 3) |
| 4       | UNUSED | _                                                                                                  |
| 5       | RXDATA | Data received from chained units by the TSU. Connect to TX DATA of the next unit (chain-in pin 3)  |
| 6, 7, 8 | UNUSED | _                                                                                                  |

# Nx56K/64K DTE (V.35)

The pinout for this connector is shown in Table 2-D.

Connector Type V.35

Product Number AMP# 92-4883-3-1

**Table 2-D** Primary V.35 Pin Assignment

| PIN  | CCITT | DESCRIPTION                                |
|------|-------|--------------------------------------------|
| А    | 101   | Protective ground (PG)                     |
| В    | 102   | Signal ground (SG)                         |
| С    | 105   | Request to send (RTS) from DTE             |
| D    | 106   | Clear to send (CTS) to DTE                 |
| Е    | 107   | Data set ready (DSR) to DTE                |
| F    | 109   | Received line signal detector (DCD) to DTE |
| Н    | _     | Data terminal ready (DTR) from DTE         |
| J    | _     | Ring indicator (RI)                        |
| L    | _     | Local loopback (LL)                        |
| N    | _     | Remote loopback (RL)                       |
| R    | 104   | Received data (RD-A) to DTE                |
| T    | 104   | Received data (RD-B) to DTE                |
| V    | 115   | RX clock (RC-A) to DTE                     |
| Х    | 115   | RX clock (RC-B) to DTE                     |
| Р    | 103   | Transmitted data (TD-A) from DTE           |
| S    | 103   | Transmitted data (TD-B) from DTE           |
| Y    | 114   | TX clock (TC-A)                            |
| AA   | 114   | TX clock (TC-B)                            |
| U    | 113   | External TX clock (ETC-A) from DTE         |
| W    | 113   | External TX clock (ETC-B) from DTE         |
| NN&K | _     | Test mode (TM) to DTE                      |

#### POWER UP TESTING AND INITIALIZATION

When shipped from the factory, the TSU LT is set to factory default conditions. At the first application of power, the unit automatically executes self tests followed by an initialization sequence which sets up the unit.

#### **Self Test**

Upon a power-up or commanded self tests, the LCD displays ADTRAN TSU INITIALIZING and the LEDs illuminate sequentially. When the self test is completed with no failures detected, the LCD momentarily displays ALL TESTS PASSED. If a failure is detected, it is displayed in the LCD window. The automatic self test procedure consists of the following steps:

- 1. Board level tests
- a. Random access memory (RAM) tests; erasable programmable read only memory (EPROM) checksum.
- b. On-board data path. Sending a known test pattern through an on-board loop.
- 2. Unit level tests
- a. Front panel LED verification.
- b. Phase lock loop verify.

# Chapter 3 Operation

#### **OPERATION**

The TSU LT can be configured and controlled from either the local front panel or from a PC using the T-Watch Management Software Program.

# **FRONT PANEL**

The TSU LT front panel is shown in Figure 3-1. Unit features are identified by call-outs.

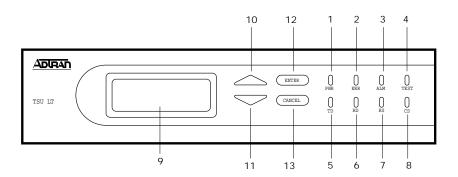



Figure 3-1
Front Panel Layout

# **IDENTIFICATION OF NUMBERS**

| Item             | Function                                                                                                                 |
|------------------|--------------------------------------------------------------------------------------------------------------------------|
| <u>Displays:</u> |                                                                                                                          |
| 1. PWR           | LED ON when power is received by TSU LT.                                                                                 |
| 2. ERR           | LED ON when errored events have happened in the last second.                                                             |
| 3. ALM           | LED ON when an alarm condition exists.                                                                                   |
| 4. TEST          | LED ON when unit is in test mode.                                                                                        |
| 5. TD            | LED ON when DTE data is being received.                                                                                  |
| 6. RD            | LED ON when DTE data is being received.                                                                                  |
| 7. RS            | LED ON when request to send (RTS) active from DTE.                                                                       |
| 8. CS            | LED ON when TSU LT has clear to send (CTS) active toward DTE.                                                            |
| 9. LCD           | A 2X16 LCD window that displays menu items used in configuration and displays information useful in monitoring the unit. |
| Operation Key    | <u>'S:</u>                                                                                                               |

10. Up/Down Arrows used to travel up/down menu trees.

Arrows increase/decrease numeric values and scroll

through selections.

11. Enter Used to choose paths and make selections.

12. Cancel Used to exit selections or menu tree branches.

#### **GENERAL MENU OPERATION**

The TSU LT uses a multilevel menu structure containing both menu items and data fields. All menu operations and data are displayed in the LCD window. The menu items are numbered and can be viewed by using the Up and Down arrows.

#### Menu Features

#### **Data Field**

A menu item followed by a colon (:) identifies an editable data field.

#### **Display Field**

A menu field followed by alarm or error information.

#### **Arrows**

Menus that display small Up or Down arrows in the lower right corner indicate there are more menu items than are viewable on a two-line LCD. The additional menu items are accessed with the Up or Down arrows. (Undisplayed menu items are also available by using the appropriate menu number.)

# **Example Menu Operation**

To select a menu item:

Use:

The Up and Down arrows to place the cursor on the desired menu item (in this example 2) CONFIG). See Figure 3-2.

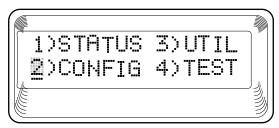



Figure 3-2
Cursor on Menu Item

With the cursor on the number 2:

Press: Enter

Results: The unit responds by displaying the first two available submenu fields. The cursor is on the first field.

able submenu fields. The cursor is on the first field If there are more than two menu fields, a Down ar-

row is visible on the lower right corner. See

Figure 3-3.

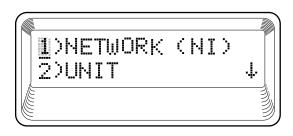



Figure 3-3 Sub-Menu Fields

To select the desired submenu item use the same operation used to select an opening menu item.

Use: The Up and Down keys to place the cursor on the de-

sired menu item. In this example 1) NETWORK (NI).

Results: The unit responds by displaying the first two avail-

able data field items. The cursor is on the number of the first item. When there are more than two data field items for the selected submenu, a Down arrow

is visible on the lower right corner.

# To Set the Data Field

Data fields that are available for editing are preceded by a colon (:).

Press: Enter while the cursor is located on the submenu item

number

Results: The cursor moves to the data field, (to the right of the

submenu item name)

Use: The Up and Down arrows to scan the available value

settings, which display in the data field position one

at a time

When the desired value is in the data field position:

Press: Enter to set the value.

Results: The unit is set for the value shown in the data field

and the cursor moves back to the submenu item position indicating the operation is complete; another submenu field may be selected, or use Cancel to re-

turn to the submenu.



Cancel is available any time during the operation. If used prior to pressing Enter after making a data change, the original data value is restored and the cursor returns to the submenu field.

# To View Display Only Data Fields

An example of a display only data field is found by selecting the following menu choices:

- 1. Select from the Main menu 1)STATUS.
- Select submenu 2)CURR ERR/ALM.
- LOSS OF SIGNAL INACTIVE/ACTIVE is displayed giving the current state of the alarm.

# To Exit Any Menu Field Operation or Display

Press: Cancel as many times as required to return to the de-

sired menu level.

#### **MENU STRUCTURE**

The TSU LT uses hierarchical menus to access its many features. The Main menu level (see Figure 3-4) leads to submenus (see Figure 3-5). All menu operations are displayed in the LCD window. The complete TSU LT menu diagram is shown in the appendix TSU LT Menu Tree.

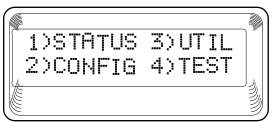



Figure 3-4
TSUTT Main Menu Screen

61202.060L2-1 TSU LT User Manual **25** 



This menu structure diagram is a limited overview. A detailed description of each menu item, presented in menu order, immediately follows. A complete menu diagram is shown in the appendix TSU LT Menu Tree.

|           |           |                  | 1) NI PERF REPORTS |
|-----------|-----------|------------------|--------------------|
|           | 1) STATUS |                  | 2) CURR ERR/ALM    |
|           |           |                  | 3) ERR/ALM HIST    |
|           |           | 1) NETWORK (NI)  |                    |
| MAIN MENU | 2) CONFIG | 2) UNIT          | _                  |
|           |           | 3) PORT          | 1) TIME/DAY        |
|           | 3) UTIL   |                  | 2) SOFTWARE REV    |
|           |           |                  | 3) REINIT UNIT     |
|           |           | 1) NETWORK TESTS | 4) ADDRESS         |
|           | 4) TEST   | 2) RUN SELFTEST  | 5) SET PASSCODE    |
|           |           | 3) PORT TESTS    | 6) FACT RESTORE    |

**Figure 3-5** TSU LT Main Menus

Menu flow is normally depicted from left to right. Arrows on the lower right of the screen indicate the direction of additional menu items. At every level of the menu, pressing Cancel returns the system to the previous menu level. Pressing Cancel repeatedly returns the system to the Main menu.

The opening menu is the access point to all other operations. There are four Main menu items, 1)Status, 2)Configure, 3)Utility, 4)Test. Each Main Menu item has several functions and submenus to identify and access specific parameters. In the discussions that follow, each Main item menu contains a complete menu diagram to identify the location of each operation.

# **Overview: Four Opening Menu Functions**

# 1)STATUS

The Status menu provides the ability to view the status of the TSU LT operation. This menu includes the following items:

#### 1)NI PERF REPORTS

Used to view the user set of data on the Network Interface Performance Reports in compliance with ANSI T1.403 and AT&T document TR54016.

#### 2)CURR ERR/ALM

Used to view current errors/alarms which are being reported by the TSU LT.

#### 3)ERR/ALM HIST

Used to view and clear history errors and alarms.

#### 2)CONFIG

The Configuration menu is used to set the TSU LT operational configuration. This menu includes the following sub-items.

#### 1) NETWORK (NI)

Used to set all of the parameters associated with the network interface.

#### 2)UNIT

Used to control TSU LT control port baud rate and to set up the dial out func-

#### 3)PORT

Used to configure the parameters associated with the V.35 port.

#### 3)UTIL

The Utility menu is used to view and to set system parameters. This menu includes the following sub-items:

#### 1)TIME/DATE

Accesses the display and allows the setting of the current time and date.

#### 2)SOFTWARE REV

Displays the version number of the current software revision level. This information is required when requesting assistance from ADTRAN Customer Service or when updates are needed.

#### 3) REINIT UNIT

Used to re-initialize the unit. This menu item is not used to restore the factory default settings for all parameters.

#### 4)ADDRESS

Used to view and change the current Unit Address used for control port access.

#### 5)SET PASSCODE

Allows a passcode to be set.

#### 5)FACT RESTORE

Restores factory default settings for all unit parameters.

# 4)TEST

The Test menu is used to initiate different types of tests of the unit and to view test results. Test results are displayed in the LCD window. The menu contains three sub-items.



The execution of tests disrupts some normal operations. See individual menu items concerning tests before executing.

#### 1)NETWORK TESTS

Used to control the activation of loopbacks and the initiation of data test patterns.

#### 2)RUN SELF TEST

Used to execute an internal self test.

#### 3)PORT TESTS

Used for the testing of the DTE port.

Each of the four Main menu items is discussed in detail in the following pages.

# 1)STATUS

# **Purpose**

The Status menu branch provides the ability to view the status of the TSU LT operation. See Figure 3-6.

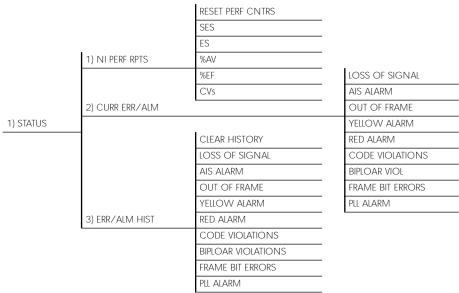
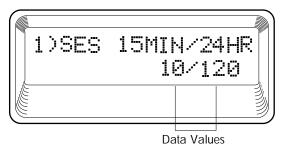




Figure 3-6 Status Menu

# 1)NI PERF RPTS, Submenu of 1)Status

The Network Interface Performance Reports displays the user copy of the performance data. The TSU LT maintains this performance data on the network in compliance with ANSI T1.403 and AT&T document TR54016. The data displayed is data accumulated over the last 15 minutes and over the last 24 hours.

These fields cannot be edited, only cleared as previously discussed. Only the user copy of performance data is cleared. See Figure 3-7.



**Figure 3-7** Severely Errored Seconds Screen

| SES | Number of severely errored seconds |
|-----|------------------------------------|
| ES  | Number of errored seconds          |
| %AV | % of available seconds             |
| %EF | % of error free seconds            |
| CVs | Number of code violations          |

Continue with standard operating procedures to exit the display.



Since only the user's copy of performance data is cleared by the TSU LT, the data displayed here might be different from the data being sent to the network as performance report message (PRM) data.

# 2)CURR ERR/ALM, Submenu of 1)Status

The Current Error/Alarm menu is used for viewing currently Active/Inactive errors and alarms (see Figure 3-8).

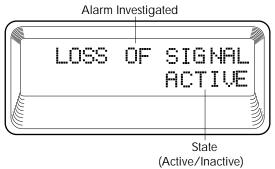



Figure 3-8
Loss of Signal (Current Errors/Alarms) Screens

The Up and Down arrows are used to access the complete display of the errors/alarms that are currently active. The following are alarms and errors which can be seen.

Loss of Signal No pulses received at NI

AIS Alarm Unframed All-Ones received at NI
Out of Frame No framing pattern sync at NI

Yellow Alarm Receiving yellow alarm pattern from NI

Red Alarm Loss of signal/out of frame (LOS/OOF) causing red

alarm at ŇI

Code Violations Cyclic redundancy check (CRC) errors in ESF, or bipo-

lar violations (BPVs) in Superframe Format (SF) were

received at NI

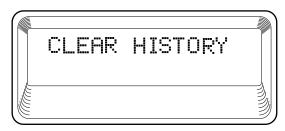
Bipolar Violations BPVs in SF or ESF Bipolar Violations BPV's in SF or ESF

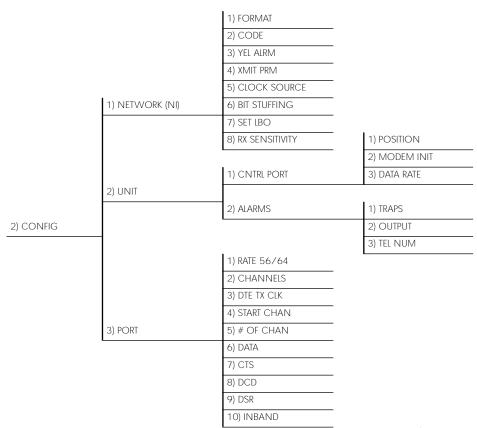
Bit Errors Frame Bits received incorrectly at NI.

PLL Alarm Unable to sync up to selected clock

# 3) ERR/ALM Hist, Submenu of 1) Status

The Error/Alarm History menu is used for viewing history of errors and alarms. If an alarm has occurred since the last CLEAR HISTORY selection, the menu is active. If the condition has not occurred then the menu is inactive (see Figure 3-9).





Figure 3-9 Clear History Screen

These conditions are the same as for the CURR ERR/ALM submenu except that these are history Alarm/Errors instead of current Alarm/Errors.

# 2)CONFIG

# **Purpose**

The Configuration menu is used to set the TSU LT operational configuration, including all of the network interface parameters, and the allocation of the DS0s and the port parameters. See Figure 3-10.



**Figure 3-10** Configuration Menu

# 1)Network (NI), Submenu of 2)Config

This menu is used to access the configuration of parameters associated with the network interface in the TSU LT. There are eight submenu items that include setting the format, the line build out (LBO), the clock source (see Figure 3-11).

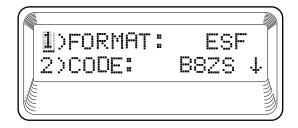



Figure 3-11 Network Submenu

The fields and parameters available are:

#### 1)FORMAT

Sets the frame format for the NI

D4

**ESF** 

**AUTO** 

# NOTE

D4 is equivalent to Superframe Format (SF).

#### 2)CODE

Sets the line code for the NI.

AMI

B8ZS

# 3)YEL ALRM

Enables and disables the transmitting of yellow alarms.

ENA (enable)

DISA (disable)

# 4)XMIT ALRM

Enables and disables the transmitting of performance report messages (PRM) data on the facility data link (FDL). The PRM data continues to be collected even if XMIT PRM is disabled (possible only with ESF Format).

ENA

DISA

#### **5)CLOCK SOURCE**

Selects the clock source for transmission toward the network from the NI.

NFTWORK

DTF

**INTERNAL** 

#### 6)BIT STUFFING

When enabled, Bit Stuffing causes the TSU LT to monitor for ones (1s) density violations and insert a one (1) when needed to maintain ones at 12.5%. This option should be disabled if B8ZS is enabled, if Nx56 is selected, or if alternate channels are being used. All of these other options already ensure pulse density requirements.

**ENA** 

DISA

#### 7)SET LBO

Selects the line build out for the network interface. In AUTO mode, the TSU LT will set the LBO based on the strength of the receive signal.

0dB

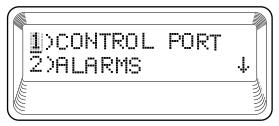
**AUTO** 

-22.5dB

-7.5dB

-15dB

#### 8) RX SENSITIVITY


Selects the desired receiver sensitivity setting. The factory default is NOR-MAL which is adequate for most applications. The extended setting should be used only in applications where the NORMAL setting will not suffice.

# 2)Unit, Submenu of 2)Config

The Unit submenu is used to change control port and alarm options.

# Operation

Follow standard operating procedure to access the Unit menu items (see Figure 3-12).



**Figure 3-12** Configuration Submenu

#### 1)CNTRL PORT

Used to set the unit up as the master or slave on a chain of units, and whether to initialize a modem and the control port data rate.

1)POSITION - Determines if this TSU LT is at the head of a chain of units (directly connected to the modem or PC). The head of the chain is referred to as the master unit. Units down the chain are referred to as slaves or a slave unit.

The setting of the Position selection is necessary only when using a modem, in which case the head unit should be MASTER. For all other cases, select SLAVE. (The master is in charge for control of the modem.)

Choices - MASTER or SLAVE

2)MODEM INIT - The TSU LT is capable of initializing a modem. This menu selection is used to perform this initialization and should be selected only when the TSU LT is serving as the MASTER unit. Prior to modem initialization it should be physically connected to the TSU LT and the power turned on. At this point, an industry-standard AT command string is used to initialize the modem. The string is also used following future power-up sequences.

Choices - ENA DISA

3) DATA RATE - Selects the data rate for the control port. This should be consistent with all units on a chain and with the modem and/or PC/Proxy Agent serial port.

Choices - 1200, 2400, 9600

#### 2)ALARMS

Used to initialize the method by which the control port handles alarm conditions.

1)TRAPS - This setting determines if alarm conditions should automatically send alarm messages (traps) to the controlling PC/Proxy Agent. The setting is for this unit, or for slaves if this unit is a master.

Choices - ENA DISA

For applications where the AUTO Inband selection is not acceptable, Traps should only be enabled with the Inband selection set to On or Off.

2)OUTPUT - Selects whether the alarm traps (if enabled) are sent directly, or if the telephone number stored in the TSU LT should be dialed first (industry-standard AT dial command sent to modem).

Choices - DIRECT or DIAL

3)TEL NUM - This is the telephone number which is dialed to obtain alarm traps. The string can be up to 20 characters in length and is terminated with a semicolon (;) as the last character. A colon (:) character is used to represent a pause in the dial string.

Example: Number 9:5551212; would dial 9, pause momentarily and then send 5551212. This pause could be necessary to access an outside line from a PBX, etc.

When editing a specific character, the arrows are used to scroll from 0 to 9, then colon (:) and semicolon (;). The new telephone number is entered into the TSU LT only upon pressing Enter after typing the semicolon.

Choices - 20 digits (0-9, :, and ;)



The typed digits are accepted only after pressing Enter.

# 3)Port, Submenu of 2)Config

The menu item PORT is used to select and then to configure the parameters associated with the V.35.

61202.060L2-1 TSU LT User Manual **37** 

#### 1)RATE 56/64

This sets the base rate of the interface. The actual data rate depends on the number of DS0s assigned to the Nx port. The DTE data rate vs. the number of DS0s appears in the appendix DTE Data Rate Chart.

Choices - 56K or 64K

#### 2)CHANNELS

This sets the unit to use alternate or contiguous channels in the T1 data stream. If more than 12 channels are used, then contiguous must be used. If not, then alternate channels may be used to meet pulse density requirements (only necessary for Nx 64 without B8ZS). If other than a private network, the carrier must be notified of this choice.

Choices - ALT (alternate) or CONT (continue)

#### 3)DTE TX CLK

Controls the clock used by the TSU LT to accept the transmit (TX) data from the DTE. Most applications will allow for this to be set to INTERNAL. If the interface cable is long (causing a phase shift in the data) the clock can be selected as INT/INV (Internal/Inverted). This switches the phase of the clock which should compensate for a long cable. The factory default setting for this option is AUTO. The AUTO DTE TX CLK setting will allow the TSU LT to automatically detect the delay from the DTE device to the TSU LT and set the proper phase of the clock. This feature will automatically select between the INTERNAL and INT-INV settings. If the DTE provides a clock with TX data, the clock selection is set to EXTERNAL. The TSU LT will depend on an externally supplied clock to accept the TX data.

Choices - INTERNAL, INT-INV, EXTERNAL, or AUTO

# 4)START CHAN

Used to select the channel in which the T1 stream will start. The setting must be consistent with carrier if using a public network.

Choices - 01 through 24

# 5)# OF CHAN

Used to select the number of DS0s (channels) that are to be used. The corresponding DTE rate will be this number times 56K or 64K, depending on Port Option number 1.

Choices - 01 through 24

#### 6)DATA

Used to control the inverting of the DTE data. This inversion can be useful when operating with an HDLC protocol. Often used as a means to ensure ones (1s) density. TSU LTs on both ends must have identical option settings.

Choices - NORMAL or INVERT

#### 7)CTS

Used to control characteristics of CTS.

Choices - NORMAL (see Table 3-A) or FORCE ON

#### 8)DCD

Data Carrier Detect - Indicates to the DTE when a valid signal is being received at the Network Interface.

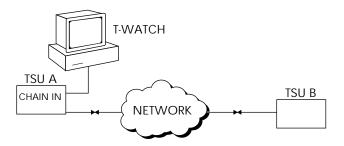
Choices - NORMAL (see Table 3-A) or FORCE ON

#### 9)DSR

Data Set Ready - This signal indicates to the DTE when the DCE is turned ON and ready for operations.

Choices - NORMAL (see Table 3-A) or FORCE ON

| NORMAL MODE OPERATION                                             |         |                 |               |                     |                      |                  |                  |
|-------------------------------------------------------------------|---------|-----------------|---------------|---------------------|----------------------|------------------|------------------|
| Conditions which cause the Port Control Signals to be deactivated |         |                 |               |                     |                      |                  |                  |
| SIGNAL                                                            | RTS     | V.54<br>LOOP BK | 511 TST<br>ON | SELF TEST<br>ACTIVE | NETWK TEST<br>ACTIVE | no dso<br>Mapped | network<br>Alarm |
| CTS                                                               | Follows | OFF             | OFF           | OFF                 | OFF                  | OFF              | OFF              |
| DCD                                                               | _       | _               | _             | OFF                 | _                    | OFF              | OFF              |
| DSR                                                               | _       | OFF             | OFF           | OFF                 | OFF                  | OFF              | _                |
| Where " — " = don't care                                          |         |                 |               |                     |                      |                  |                  |


#### Table 3-A

Normal Mode Operation

#### 10)INBAND

Inband Configuration Channel - Used to enable/disable an 8 kbps remote configuration channel (see Figure 3-5). When this option is set to ON, the first DS0 occupied operates in 56K mode and the DTE clock rate is reduced by 8 kbps. The TSU LT uses this 8 kbps channel to send and receive configuration data across a T1 span. As shown in Figure 3-14, this allows the PC connected to the chain-in port on TSU LT A to monitor/configure both TSU LT A and B. This feature is useful when FDL connectivity is not available across the T1 span.

The 8 kbps channel is only taken out of the first DS0. If two 64K DS0s are mapped, the DTE rate would be 120 kbps instead of 128 kbps. This menu option can also be set to AUTO which activates the Inband Channel only when commands are sent from T-Watch to the remote unit (TSU LT B in Figure 3-13). If no T-Watch activity is detected for 10 minutes, the Inband Channel is deactivated.



**Figure 3-13** Inband Remote Configuration

# 3)UTIL

# **Purpose**

The utility menu is used to view and to set system parameters. See Figure 3-14. This includes setting the time and date and resetting all parameters to factory values or to re-initialize the unit. This menu is also used to view the unit's software revision and the unit ID setting.

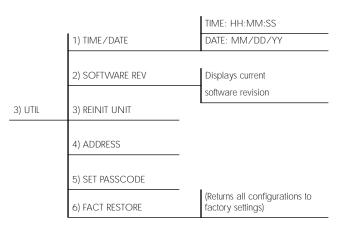



Figure 3-14 Utility Menu

# 1)Time/Date, Submenu of 3)Util

This menu option is used to view or to edit the current time and date. The time and date are maintained during power off conditions (see Figure 3-15).

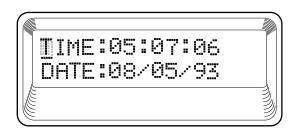



Figure 3-15 Time/Date Screen

# **Keystroke Summary for Editing Time/Date**

Pressing Enter after any numeric change always records the entry and moves to the next editing position. If Enter is pressed at the editing position without making any change, the cursor moves to the next editing position. The Up and Down arrows will also move the cursor to different fields to edit. Pressing Cancel at any time can be used to end the editing process.

# 2)Software Rev, Submenu of 3)Util

Use the Software Revision submenu to access the display of the current software revision level. This information is required when requesting assistance from ADTRAN Customer Service or when updates are needed.

# 3)Reinit Unit, Submenu of 3)Util

Reinit Unit submenu is used to re-initialize the unit. This menu item is not used to restore the factory default settings for all parameters.

# 4)Address, Submenu of 3)Util

This submenu is used to access the current Unit Address setting. Unit identification numbers must be between 000 and 256.

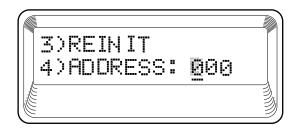



Figure 3-16 Address Screen

# 5)Set Passcode, Submenu of 3)Util

Allows a passcode to be added, changed, or deleted.

# 6)Fact Restore, Submenu of 3)Util

The Factory Restore submenu is used to restore the factory default setting for all unit parameters. This restores all parameters to the factory settings.

# 4)TEST

# **Purpose**

The Test menu is used to initiate different types of tests of the unit and to view test results (see Figure 3-17). Test results are displayed in the LCD window. The menu contains three sub-items.



The execution of tests will disrupt some of the normal operation. See individual menu items concerning tests before executing.

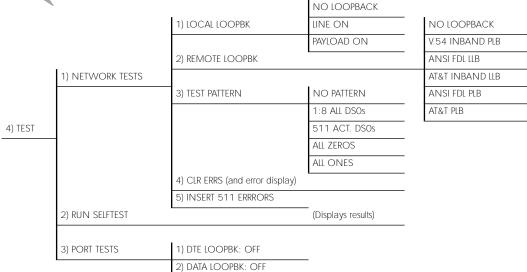



Figure 3-17 Complete Test Menu

# 1)Network Tests, Submenu of 4)Test

Network tests are used to control the activation of loopbacks and the initiation of data test patterns.

The network tests are run on the network interface (NI). Three different test configurations can be selected to determine the type of loopback and the pattern to run. Test results are displayed in the LCD window.

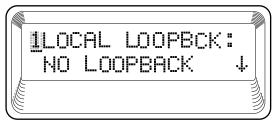



Figure 3-18 Local Loopback Screen

#### 1)LOCAL LOOPBCK

There are three available choices for setting the local loopback:

No Loopback

Line On

Activates the loopback

Payload On

Activates the payload loopback

# 2)REMOTE LOOPBK

Activates the same loopbacks as the LOCAL but at the far end. This uses either the inband loopup code as specified by AT&T 62411 for line loopback (ATT In-Band LLB), or the FDL as specified in ANSI T1.403 for payload and line loopback codes. An FDL (formerly TABS) maintenance message corresponding to AT&T TR54016 can be used for payload loopback as well.

No Loopback Deactivates the loopback

V.54 Inband PLB Indicates inband transmission of V.54 loopup

pattern in channels occupied by DTE data only. This choice should be used for public fractional

network.

| AT&T Inband<br>LLB | Activates the line loopback using inband code.                             |
|--------------------|----------------------------------------------------------------------------|
| AT&T Inband<br>LLB | Activates the line loopback using inband code.                             |
| ANSI FDL LLB       | Initiates the transmission of an FDL line loop-up code toward the far end. |
| AT&T PLB           | Indicates the transmission of the PLB maintenance on the FDL.              |



Only V.54 loopbacks can be used with fractional T1 since the full T1 stream including the FDL is not transported to the far end (unless it is a private network).

#### 3)TEST PATTERN

Sets the pattern for the test and initiates the transmission of the pattern. There are four patterns available. The test is terminated by selecting NO PATTERN.

| 1:8 ALL DS0s    | Generates a 1 in 8 pattern in all DS0s                                              |
|-----------------|-------------------------------------------------------------------------------------|
| 511 Active DS0s | Generates a 511 test pattern and inserts the pattern into currently active channels |
| All Zeros       | Generates an all zero's pattern in every channel                                    |
| All Ones        | Generates an all ones pattern in every channel                                      |

# 4)CLR ERRORS

Accomplishes two functions. First, it clears out the 511 error total when Enter is pressed. Second, it displays a total of the 511 errors. If 511 errors are being received, the display is updated accordingly. See Figure 3-19.

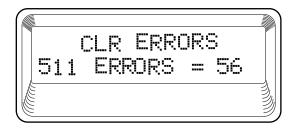



Figure 3-19

Clear Errors Screen

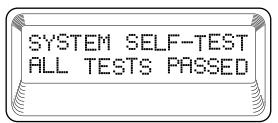
This menu function is very useful for testing end-to-end integrity of the net-

work. First loop up the far end TSU LT. Then send a 511 pattern from the local TSU LT. The CLR ERRORS screen can then be used to determine if the link is functioning properly by verifying that no errors are being counted.

#### 5)INSERT 511 ERRORS

When running a 511 pattern test, press the Enter key to insert an error into the 511 pattern.

# 2)Run Selftest, Submenu of 4)Test


This menu selection is used to execute an internal self test. This is the same self test that is performed automatically at power up. The results of the self tests are displayed in the LCD. Upon invoking the command the LCD displays INITIALIZING and test failures are displayed in the LCD window (see Figure 3-20). To initialize a self test, proceed with the following steps:

- 1. RAM tests; EPROM checksum
- 2. On board data path; sending a known test pattern through an on-board loop
- 3. Front panel LED verification
- 4. Phase lock loop verify

If a failure is detected, note the failure number prior to contacting ADTRAN Technical Support.



The execution of Self Test disrupts normal data flow and prevents remote communication until the self test is completed (approximately five seconds).



**Figure 3-20**Self Test Results Screen

# 3)Port Tests, Submenu of 4)Test

Port Tests are used to control the activation of a DTE loopback. This test loops data received at the V.35 interface back towards the DTE (see Figure 21).

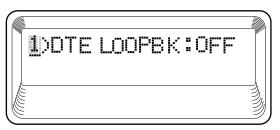



Figure 3-21 Loopback Setting Screen

# Chapter 4 Example Operations

#### **TESTING EXAMPLE**

Prior to actually using the TSU LT to pass data, it is recommended to run tests on the circuit. Testing consists of sending a test pattern from end-to-end and checking for errors in the pattern. There are two types of tests used to accomplish this:

- Send the pattern from one end and loop back the far end.
- Send the pattern from both ends and check at both ends.

#### **FAR END LOOPED BACK TEST**

Two types of tests can be executed with the far end looped. The first is a check of the network and the network interfaces at both ends (511). The second is a check of the DTE port.

#### **Network Interface Test**

The Network Interface Test can be run with any channel setup because the 511 pattern is always sent in the occupied channels. Select Test from the Main menu (see Figure 4-1).

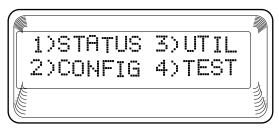



Figure 4-1
Main Menu 4)TEST Selected

Use: the arrows to place the cursor on 4)TEST

Press: ENTER to select

Results: display of the first two Test submenu items (see Fig-

ure 4-2)

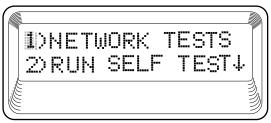



Figure 4-2
Test Menu with NETWORK TESTS Selected

Use: the arrows to place the cursor on 1)NETWORK

TESTS

Press: ENTER to select

Press: ENTER again to enter the Network Test menu beginning display of the submenu items.; each menu

item can be selected with the Up and Down arrows

The Local Loopback test menu is shown in Figure 4-3.

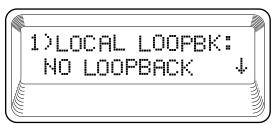



Figure 4-3 Local Loopback Test Menu

The options this menu offers are:

- Line On
- Payload On
- No Loopback

The Remote Loopback test menu is shown in Figure 4-4.

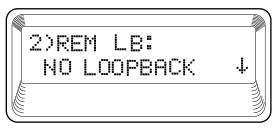
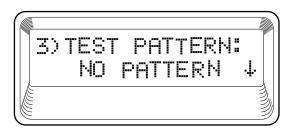




Figure 4-4
Remote Loopback Test Menu

The options the Remote Loopback menu offers are:

- No Loopback
- V.54 Inband PLB
- ANSI FDL LLB
- AT&T Inband LLB
- ANSI FDL PLB
- AT&T FDL PLB

The Test Pattern screen is shown in Figure 4-5.



**Figure 4-5**Test Pattern Screen

The options available for the Test Pattern Screen are:

- No Pattern
- 1:8 all DS0s
- 511 Active DS0s
- All Zeros
- All Ones

Use: the arrows to place the cursor on 2)REMOTE LOOP-

BK

Press: ENTER to select

Use: the Up and Down arrows to set PAYLOAD in data

the field. (Must use V.54 Inband PLB for Fractional

T1 on Public Networks.)

Press: Enter to activate a Remote Payload Loopback

Results: This initiates the transmission of a loopup code to-

ward the far end.

#### When completed

Use: the arrows or the number 3 to select 3)TEST PAT-

**TERN** 

Press: Enter to activate the TEST PATTERN submenu

Use: the arrows to select 511 ACT. DS0s Press: Enter to activate the selection

Results: the TSU LT always checks for 511 errors. The results

of this check are shown under submenu item 4 (see

Figure 4-6).

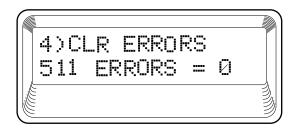



Figure 4-6
Clear Errors Screen

When through viewing the results

Press: Cancel to return to submenu item 3)TEST PATTERN

and select NO PATTERN to terminate the test and the 511 pattern generation. The far end remains in loopback until the network REMOTE LOOPBK is set to NO LOOPBACK under submenu item 2)REMOTE

LOOPBK.

# Appendix A TSU LT Menu Tree

The complete menu tree for the TSU LT is provided in Figure A-1.

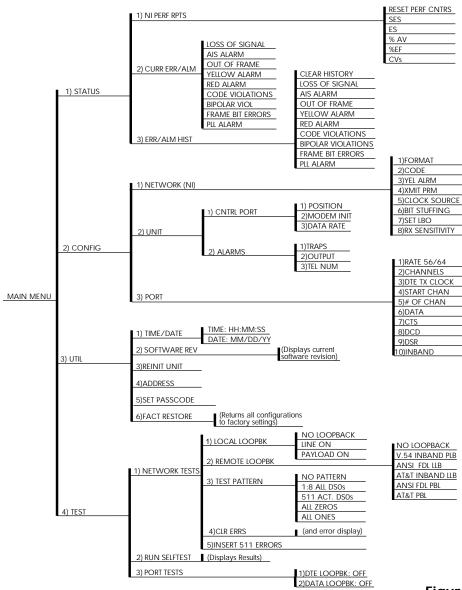



Figure A-1 TSU LT Menu Tree

# Appendix B DTE Data Rate Chart

The DTE data rate chart is shown in Table B-A.

**Table B-A** DTE Data Rate vs. DS0s

| # OF DS0s (N) | DTE RATE=56K | DTE RATE=64K |
|---------------|--------------|--------------|
| N=1           | 56K          | 64K          |
| N=2           | 112K         | 128K         |
| N=3           | 168K         | 192K         |
| N=4           | 224K         | 256K         |
| N=5           | 280K         | 320K         |
| N=6           | 336K         | 384K         |
| N=7           | 392K         | 448K         |
| N=8           | 448K         | 512K         |
| N=9           | 504K         | 576K         |
| N=10          | 560K         | 640K         |
| N=11          | 616K         | 704K         |
| N=12          | 672K         | 768K         |
| N=13          | 728K         | 832K         |
| N=14          | 784K         | 896K         |
| N=15          | 840K         | 960K         |
| N=16          | 896K         | 1024K        |
| N=17          | 952K         | 1088K        |
| N=18          | 1008K        | 1152K        |
| N=19          | 1064K        | 1216K        |

**Table B-A** DTE Data Rate vs. DS0s

| N=20 | 1120K | 1280K |
|------|-------|-------|
| N=21 | 1176K | 1344K |
| N=22 | 1232K | 1408K |
| N=23 | 1288K | 1472K |
| N=24 | 1344K | 1536K |

# Acronyms

| AIS           | Alarm Indication Signal                            |
|---------------|----------------------------------------------------|
|               | Alarm                                              |
|               | Alternate Mark Inversion                           |
|               | American National Standards Institute              |
|               | Available Seconds                                  |
| B8ZS          | Bipolar 8 Zero Suppression                         |
| BPV           | Bipolar 8 Zero SuppressionBipolar ViolationChannel |
| CHAN          | Channel                                            |
| CLK           |                                                    |
|               | Clear                                              |
|               | Control                                            |
|               | Configuration                                      |
| CPC           | Cyclic Redundancy Check                            |
| CS (CTS)      |                                                    |
| CS (C13)      | Clear to Seria                                     |
| CUIDD EDD /AI | .MCurrent Error/Alarm                              |
|               | Code Violations                                    |
|               | Decibels                                           |
| DDC           | Digital Data Carvina                               |
| DD2           | Digital Data Service<br>Disable                    |
| DISA          | Disable                                            |
|               | Data Set Ready                                     |
| DS0           | Digital Signal, level zero                         |
| DS1           | Diğital Siğnal, level one                          |
| DIE           | Data Terminal Equipment                            |
|               | Error Free                                         |
|               | Enable                                             |
|               | <u>E</u> rasable Programmable Read Only Memory     |
| ERR           | Error                                              |
| ERR/ALM HIS   | TError/Alarm History                               |
| ESF           | Extended Superframe Format Errored Seconds         |
| ES            | Errored Seconds                                    |
| FDL           | Facility Data Link                                 |
|               | Fractional T1                                      |
| HDLC          | High-level Data Link Control                       |
| ID            | Identification                                     |
| INT           | Internal                                           |
|               | Internal/Invert                                    |
| IXC           | Inter-exchange Carrier                             |
|               | = = = = = = = = = = = = = = = = = = =              |

| kbps         | . Kilo Bits Per Second                  |
|--------------|-----------------------------------------|
| LA'N         | . Local Area Network                    |
| LBO          |                                         |
| LCD          |                                         |
| LEC          |                                         |
| LLB          | . Line Loopback                         |
| LOS/OOF      | . Loss of Signal/Out of Frame           |
| Mbps         | . Mega Bits Per Second                  |
| NI           | . Network Interface                     |
| NI PERF      | . Network Interface Performance         |
| NI PERF RPTS | . Network Interface Performance Reports |
| OSC          | . Oscilliator                           |
| PC           |                                         |
| PLB          | . Payload Loopback                      |
| PLL          | . Phase Lock Loop                       |
| PRM          | Performance Report Message              |
| POP          | . Point of Presence                     |
| PWR          |                                         |
| RAM          | . Random Access Memory                  |
| REV          | . Revision                              |
| RD           |                                         |
| REINIT       | . Reinitialize                          |
| RMA          |                                         |
| RS (RTS)     | . Request to Send                       |
| RX           | Receiver                                |
| SES          |                                         |
| SF           | . Superframe Format                     |
| TEL NUM      | . Telephone Number                      |
| TD           | .Tranmit Data                           |
| TX (XMIT)    | . Transmit                              |
| UTIL         | . Utilities                             |

| Symbols                                                                                                                                                                                                                    | bit stuffing 35                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| # of chan 38<br>%AV 30                                                                                                                                                                                                     | С                                                                                                                                                                                                                                                           |
| %EF 30                                                                                                                                                                                                                     | cancel 22                                                                                                                                                                                                                                                   |
| Numerics                                                                                                                                                                                                                   | chain port output 7<br>chain-in<br>pin assignments 17                                                                                                                                                                                                       |
| 1-8<br>pattern 13<br>511 pattern 13                                                                                                                                                                                        | chain-out pin assignments 18 channels 38                                                                                                                                                                                                                    |
| Α                                                                                                                                                                                                                          | clear to send 39 clock source 35                                                                                                                                                                                                                            |
| acronyms 57<br>address 27, 42<br>AIS alarm 31<br>alarms 37<br>all ones 13<br>all zeros 13<br>ALM 22<br>AMI 34<br>AMP# 555164-2 16, 18<br>AMP# 92-4883-3-1 19<br>application 13<br>arrows 23<br>ASP# 555164-2 17<br>AUTO 34 | clock sources 8 CLR ERRORS 45 CNTRL PORT 36 code 34 code violations 31 config 27, 32 configuration menu 27, 32 contents of package 15 control 7 control port input 6 control-in     pin assignments 17 CS 22 CURR ERR/ALM 27, 30 customer service 14 CVs 30 |
| _                                                                                                                                                                                                                          | D                                                                                                                                                                                                                                                           |
| B8ZS 34<br>bipolar violations 31<br>bit errors 31                                                                                                                                                                          | D4 34<br>data 39                                                                                                                                                                                                                                            |

| data carrier detect 39      | I                         |
|-----------------------------|---------------------------|
| data field 23               |                           |
| data loopback 11            | inband 39                 |
| data rate chart 55          | initialization            |
| data set ready 39           | power up 20               |
| DCD 39                      | input                     |
| description 2               | control port 6            |
| display field 23            | installing                |
| DSR 39                      | TSU LT 15                 |
| DTF                         | interfaces 5              |
| data rate chart 55          | NI 6                      |
| data rate vs. DS0s 55       | Nx56/64 6                 |
|                             | TSU LT 6                  |
| interface loopback 12       | internal timing 9, 35     |
| loopback 12                 | introduction 1            |
| timing 9, 35                |                           |
| DTE TX CLK 38               | L                         |
| DTS 39                      |                           |
| _                           | LCD 22                    |
| E                           | LED                       |
| . 22                        | ALM 22                    |
| enter 22                    | CS 22                     |
| ERR 22                      | ERR 22                    |
| ERR/ALM HIST 27             | PWR 22                    |
| ERR/ALM history 32          | RD 22                     |
| ES 30                       | RS 22                     |
| ESF 34                      | TD 22                     |
| example operations 49       | TEST 22                   |
| exiting menus 25            | line loopback 11          |
|                             | •                         |
| F                           | liquid crystal display 22 |
|                             | local loopback 44         |
| fact restore 28, 42         | loopback<br>data 11       |
| factory settings            |                           |
| restore 42                  | DTE 12                    |
| far end looped back test 49 | DTE interface 12          |
| features 5                  | line 11                   |
| format 34                   | local 44                  |
| fractional T1 2             | network 11                |
| front panel 7, 21           | payload 11                |
| functional description 2    | remote 44                 |
|                             | tests 11                  |

| loss of signal 31                                                                                                                 | 0                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| M                                                                                                                                 | operation 21                                                                                                        |
| management from PC 7 menu config 27 configuration 32 status 26, 29 test 28, 43                                                    | out of frame 31 output 37 chain port 7 overview T1/FT1 1 TSU LT 2                                                   |
| util $27$ utility $40$                                                                                                            | P                                                                                                                   |
| menu operation 23 example 23 menu structure 25 methods of control 7                                                               | passcode 42<br>set 28<br>password 42<br>set 28<br>pattern                                                           |
| N                                                                                                                                 | 1-8 13<br>511 13                                                                                                    |
| network pin assignments 16 timing 35 Network (NI) 27 network (NI) 33 network interface 6 network interface performance reports 29 | all ones 13 all zeros 13 generation 13 payload loopback 11 PC management 7 pin assignments chain-in 17 chain-out 18 |
| network interface test 49 network jack 16 network loopbacks 11 network tests 28, 44 network timing 8 NI 6                         | control-in 17<br>network 16<br>Nx56/64K DTE 19<br>PLL alarm 31<br>port 37<br>port tests 28, 47                      |
| NI PERF REPORTS 26 NI PERF RPTS 29 normal mode operation 39 Nx56/64 serial interface 6 Nx56/64K DTE pin assignments 19            | power connection 15<br>power up<br>self test 20<br>power-up 20<br>primary V.35 pin assignments 19<br>PWR 22         |

| R                               | test 10                |
|---------------------------------|------------------------|
|                                 | far end loopbacked 49  |
| rate 56/64 38                   | loopback 11            |
| RD 22                           | self 10                |
| red alarm 31                    | test menu 28, 43       |
| reinit unit 27, 42              | test pattern 45        |
| remote loopback 44              | testing                |
| restore factory settings 28, 42 | power up 20            |
| RJ-48 18                        | tests                  |
| RJ-48C 16                       | examples 49            |
| RS 22                           | network 28             |
| RS-232 17                       | network interface 49   |
| run self test 28                | port 28, 47            |
| run selftest 46                 | sefftest 46            |
| RX sensitivity 35               | self test 28           |
| To constitute 55                | time/date 27, 41       |
| S                               | timing                 |
|                                 | DTE 9, 35              |
| self test 10                    | internal 9, 35         |
| power up 20                     | network 8, 35          |
| run 28                          | traps 37               |
| selftest 46                     | TSÙ LT                 |
| SES 30                          | installing 15          |
| set LBO 35                      | interfaces 6           |
| set passcode 28, 42             | main menu 26           |
| setting the data field 24       | overview 2             |
| settings                        | packing list 15        |
| restore 42                      | TSU LT clock sources 8 |
| shipping contents 15            | TSU LT testing 10      |
| software rev 27, 42             | T-Watch Pro 7          |
| start chan 38                   |                        |
| status menu 26, 29              | U                      |
|                                 |                        |
| T                               | unit 27, 35            |
|                                 | up/down arrows 22      |
| T1                              | util 27, 40            |
| overview 1                      | utility menu 27, 40    |
| service offerings 1             |                        |
| TD 22                           |                        |
| tel num 37                      |                        |
| TEST 22                         |                        |

# V

V.35 19 viewing display-only fields 25

# W

warranty 14 wiring 16

# X

XMIT ALRM 34

# Υ

YEL ALRM 34 yellow alarm 31

# **Product Support Information**

Presales Inquiries and Applications Support
Please contact your local distributor, ADTRAN Applications Engineering, or
ADTRAN Sales:

Applications Engineering (800) 615-1176 Sales (800) 827-0807

Post-Sale Support

Please contact your local distributor first. If your local distributor cannot help, please contact ADTRAN Technical Support and have the unit serial number available.

Technical Support (888) 4ADTRAN

Repair and Return

If ADTRAN Technical Support determines that a repair is needed, Technical Support will coordinate with the Return Material Authorization (RMA) department to issue an RMA number. For information regarding equipment currently in house or possible fees associated with repair, contact RMA directly at the following number:

RMA Department (205) 963-8722

Identify the RMA number clearly on the package (below address), and return to the following address:

ADTRAN, Inc. RMA Department 901 Explorer Boulevard Huntsville, Alabama 35806

RMA # \_\_\_\_\_