

Device Management

Copyright Notice

Document 5013. Copyright © 2002-present Aprisma Management Technologies, Inc. All rights reserved worldwide. Use, duplication, or disclosure by the United States government is subject to the restrictions set forth in DFARS 252.227-7013(c)(1)(ii) and FAR 52.227-19.

Liability Disclaimer

Aprisma Management Technologies, Inc. ("Aprisma") reserves the right to make changes in specifications and other information contained in this document without prior notice. In all cases, the reader should contact Aprisma to inquire if any changes have been made.

The hardware, firmware, or software described in this manual is subject to change without notice.

IN NO EVENT SHALL APRISMA, ITS EMPLOYEES, OFFICERS, DIRECTORS, AGENTS, OR AFFILIATES BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR RELATED TO THIS MANUAL OR THE INFORMATION CONTAINED IN IT, EVEN IF APRISMA HAS BEEN ADVISED OF, HAS KNOWN, OR SHOULD HAVE KNOWN, THE POSSIBILITY OF SUCH DAMAGES.

Trademark, Service Mark, and Logo Information

SPECTRUM, IMT, and the SPECTRUM IMT/VNM logo are registered trademarks of Aprisma Management Technologies, Inc., or its affiliates. APRISMA, APRISMA MANAGEMENT TECHNOLOGIES, the APRISMA MANAGEMENT TECHNOLOGIES logo, MANAGE WHAT MATTERS, DCM, VNM, SpectroGRAPH, SpectroSERVER, Inductive Modeling Technology, Device Communications Manager, SPECTRUM Security Manager, and Virtual Network Machine are unregistered trademarks of Aprisma Management Technologies, Inc., or its affiliates. For a complete list of Aprisma trademarks, service marks, and trade names, go to http://www.aprisma.com/manuals/trademark-list.htm.

All referenced trademarks, service marks, and trade names identified in this document, whether registered or unregistered, are the intellectual property of their respective owners. No rights are granted by Aprisma Management Technologies, Inc., to use such marks, whether by implication, estoppel, or otherwise. If you have comments or concerns

about trademark or copyright references, please send an e-mail to spectrum-docs@aprisma.com; we will do our best to help.

Restricted Rights Notice

(Applicable to licenses to the United States government only.) This software and/or user documentation is/are provided with RESTRICTED AND LIMITED RIGHTS. Use, duplication, or disclosure by the government is subject to restrictions as set forth in FAR 52.227-14 (June 1987) Alternate III (g)(3) (June 1987), FAR 52.227-19 (June 1987), or DFARS 52.227-7013 (c)(1)(ii) (June 1988), and/or in similar or successor clauses in the FAR or DFARS, or in the DOD or NASA FAR Supplement, as applicable. Contractor/manufacturer is Aprisma Management Technologies, Inc. In the event the government seeks to obtain the software pursuant to standard commercial practice, this software agreement, instead of the noted regulatory clauses, shall control the terms of the government's license.

Virus Disclaimer

Aprisma makes no representations or warranties to the effect that the licensed software is virus-free.

Aprisma has tested its software with current virus-checking technologies. However, because no anti-virus system is 100 percent effective, we strongly recommend that you write-protect the licensed software and verify (with an anti-virus system in which you have confidence) that the licensed software, prior to installation, is virus-free.

Contact Information

Aprisma Management Technologies, Inc.

273 Corporate Drive

Portsmouth, NH 03801

Phone: 603.334.2100 U.S. toll-free: 877.468.1448

Web site: http://www.aprisma.com

Contents

INTRODUCTION	7	DEVICE TOPOLOGY VIEWS	20
Purpose and Scope	7	Device Topology View	20
Required Reading		Sub-Interfaces Topology View	
Supported Devices	8	DevTop Chassis View	
IQ Series	8		
DSU Series/TSU Series	8	APPLICATION VIEWS	22
T1 Multiplexers	8	Main Application View	22
Total Access System	8	Supported Applications	
DSU/CSU and ISDN Rackmount Solutions	9	Common Applications	
ATLAS Series	9	Device-Specific Applications	
The SPECTRUM Model	9	Adtran Frame Relay Performance Application	
		(AdFRPerformApp)	26
TASKS	12	History Control Information View	
		Current PVC Status Table View	
DEVICE VIEW	14	Interval PVC Status Table View	27
Interface Device View	14	Interval Port Status Table View	29
Interface Icons		Interval Port Error Table View	30
Interface Icon Subviews Menu	16	Interval History Time Table View	31
Secondary Address Panel	17	Daily PVC Status Table View	32
Chassis Device View		Daily Port Status Table View	34
Chassis Module Icons		Daily Port Error Table View	
Module Identification Labels	18	Daily History Time Table View	36
Interface Labels	18	Adtran DS1 Application (AdtranDS1App)	
Chassis Module Icon Subviews Menu	18	Adtran DS1 Alarm Event Table View	
General Option Card Module Detail View	19	Adtran DS1 Threshold Crossing Alert Table View	
Module LED Front Panel Detail View	19	Adtran DS1 Current Threshold Information View	40

Current 15 Minute Threshold Values40	DBU Interval Status Table View	51
Current 15 Minute Coding Violations40	DBU Daily Status Table	53
Adtran DS1 Total Threshold Information View41	Diagnostic Table View	
Total Threshold Values41	Adtran IQ Probe Configuration Application	
Total Coding Violations42	(AdIQProbConApp)	55
Adtran DSU IQ Configuration Application	System Configuration Information View	55
(AdDSUIQConApp)42	General Configuration	55
System Configuration Information View42	Network Configuration	55
General Configuration42	Control Port Configuration	56
Network Configuration43	Trap & Alarm Configuration	56
Control Port Configuration43	Network Alarms	
Configuration Save & Abort43	Trap Manager Table View	56
Trap & Alarm Configuration43	DCE Port Configuration View	56
Network Alarms43	DCE Interface Configuration	56
Trap Manager Table View43	Management DLCI Configuration	57
Network Port Configuration View44	Frame Relay Management Interface Configu	uration
DDS Interface Configuration44	57	
Management DLCI Configuration44	Frame Relay Monitoring Configuration	57
Frame Relay Management Interface Configuration	DTE Port Configuration View	58
44	Physical Layer Configuration	58
Frame Relay Monitoring Configuration45	Frame Relay Layer Configuration	58
DTE Port Configuration View45	DBU Configuration View	59
Physical Layer Configuration45	Adtran IQ Probe Status App (AdIQProbStaApp)	61
Frame Relay Layer Configuration45	Current Status View	61
PVC Configuration Table View46	DBU Interval Status Table View	62
DBU Configuration View47	DBU Daily Status Table View	63
Adtran DSU IQ Status Application (AdDSUIQStatApp) 49	DCE Interval Status Table View	65
Current Status View49	DCE Daily Status Table View	65
DDS Interval Status Table View51	Adtran TSU IQ Configuration Application	
DDS Daily Status Table View51	(AdTSUIQConApp)	66

Network Port Configuration View66	DBU Interval Status Table View	83
T1 Interface Configuration66	DBU Daily Status Table View	84
Management DLCI Configuration67	DSX Interval Status Table View	86
Frame Relay Management Monitoring Configura-	DSX Daily Status Table View	87
tion67	Adtran DSU IV Application (AdDSUIVApp)	88
Frame Relay Monitoring Configuration67	DSU IV Status View	88
DTE Port Configuration View68	DSU IV Status View	89
Physical Layer Configuration68	DTE Signal Status	89
Frame Relay Layer Configuration68	Test Operation View	9 ²
DBU Configuration View69	Dial Operation View	92
Adtran TSU IQ Status Application (AdTSUIQStatApp) .71	Unit Configuration View	92
Current Status View71	Trap Host Address Table	93
T1 Interval Status Table View72	Network Configuration View	93
T1 Daily Status Table73	DBU Configuration View	94
DBU Interval Status Table View74	ISDN Dial Backup Options	96
DBU Daily Status Table76	V.32 bis and V.34 Dial Backup Options	96
Adtran TSU IQ+ Configuration Application	DTE Configuration View	97
(AdTSUIQPConApp)77	Dial Configuration View	98
Network Port Configuration View77	Dial Phone Number Table	98
T1 Interface Configuration77	Test Configuration View	99
Frame Relay Management Interface Configuration	Adtran TSU 600e Application (AdTSU600eApp)	99
78	TSU 600e Configuration View	100
Management DLCI Configuration78	Port Status Table	100
Frame Relay Monitoring Configuration79	LED States View	101
DSX Port Configuration View79	Adtran TSU 120e Application (AdTSU120eApp)	10
Adtran TSU IQ+ Status Application (AdTSUIQPStaApp)	TSU 120e Configuration View	101
80	LED States View	102
Current Status View80	Adtran Smart 16 Application (AdSmart16App)	102
T1 Interval Status Table View81	Smart 16 Controller Provision View	103
T1 Daily Status Table View82	Controller LED Status Table	103

Adtran TSU ESP Application (AdTSUESPApp)103	Adtran ATLAS V35Nx4 Application (AdATLV35Nx4App)
TSU ESP Status View104	117
Test Operation View105	ATLAS V35Nx4 Option Card View 117
Dial Operation View106	The ATLAS V35Nx4 Option Card Interface Table117
Unit Configuration View106	
Trap Host Address Table107	PERFORMANCE VIEWS 119
Network Configuration View107	
DBU Configuration View108	CONFIGURATION VIEWS 120
Dial Backup Configuration108	Device Configuration View
External DCE DBU Options109	DLCI_Port Configuration View
ISDN DBU Configuration View109)
ISDN Service Profile ID (SPID) Table109	ADTRAN PRODUCT VIEW 122
ISDN Local Directory Number (LDN) Table110	Adtran Product View
Port Configuration View110	Product Identification Information 122
Fractional T1110	Adtran Channel Information View 122
Dial Configuration View111	Channel Bank Information Group 122
Test Configuration View111	Channel Unit Information 122
Adtran Administrative Application (AdtranAdminApp).111	
Adtran ATLAS Chassis Application (AdATLChasApp)111	
Atlas 800 Interface Table View112	
Interface Table112	INDEV 40E
Physical Table112	INDEX 125
Adtran ATLAS General Option Card Application	
(AdATLGenOCApp)113	
ATLAS General Option Card View113	
General Option Card Overall Module Status Table.114	
Adtran ATLAS Front Panel Group Application	
(AdATLFrPnIApp)114	
ATLAS Front Panel Information View114	
Module LED Table116	

Introduction

This section introduces the SPECTRUM Device Management documentation for the Adtran series of devices.

This introduction contains the following topics:

- Purpose and Scope
- Required Reading
- Supported Devices (Page 8)
- The SPECTRUM Model (Page 9).

Purpose and Scope

Use this document as a guide for managing the Adtran devices described on Page 8 with SPECTRUM management module SM-ADT1000. This document describes the icons, menus, and views that enable you to remotely monitor, configure, and troubleshoot Adtran devices through software models in your SPECTRUM database.

Information specific to SM-ADT1000 is what is primarily included in this document. For general information about device management using SPECTRUM and explanations of SPECTRUM

functionality and navigation techniques, refer to the topics listed under *Required Reading*.

Required Reading

To use this documentation effectively, you must be familiar with the information covered by the other SPECTRUM online documents listed below.

- Getting Started with SPECTRUM for Operators
- Getting Started with SPECTRUM for Administrators
- How to Manage Your Network with SPECTRUM
- SPECTRUM Views
- SPECTRUM Menus
- SPECTRUM Icons
- SPECTRUM Software Release Notice

Supported Devices

SPECTRUM management module SM-ADT1000 currently allows you to model the Adtran Family of devices which includes Frame Relay Performance Monitoring devices, Multiplexers, and Enterprise Integrated Access devices. The following series of devices are supported:

IQ Series

The IQ Series of performance monitoring devices provide performance statistics of a Frame Relay network.

- **DSU IQ** Supports 56/64k Frame Relay and 100 DLCIs. EIA-232 and V.35 DTE Interfaces.
- **TSU IQ** Supports T1/FT1 Frame Relay access. Single V.35 DTE Interface. 100 DLCIs supported.
- **TSU IQ**+ Supports T1/FT1 Frame Relay access and TDM voice. DSX-1 and V.35 DTE Interfaces. 100 DLCIs supported.
- **IQ Probe** Frame aware monitoring device that fits between router and existing DSU/CSU. Frame Relay utilizing EIA-232, V.35, EIA-530, and X.21 Interfaces.

DSU Series/TSU Series

- **DSU IV ESP** All-rate DSU/CSU with embedded SNMP, EIA-232 and V.35 DTE Interfaces.
- **TSU ESP** Single port T1/FT1 DSU/CSU. Single V.35 DTE interface, automatic or manual Dial Backup. LAN to LAN bridging, Frame Relay circuit termination.

T1 Multiplexers

- **TSU 120e** T1/FT1 multiplexer with synchronous V.35 DTE interface and DSX-1 PBX port. Built-in 10BaseT Ethernet interface.
- **TSU 600e** Channel bank replacement device. Six expansion with 12 to 24 ports per chassis. Integrated 10BaseT port. Supports up to 24 DTE interfaces.

Total Access System

• Total Access 850

Features for voice and data, VoDSL, IP router, management, and a path to ATM. Capability to access ports on or off using inband management, turn features, functions, and access ports.

DSU/CSU and ISDN Rackmount Solutions

• Smart 16/16e Shelf

Rackmount system that holds up to 16 DSU, ISU, and TSU products.

ATLAS Series

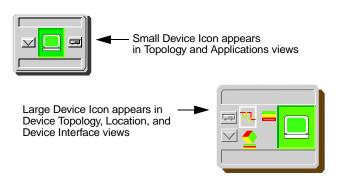
Scalable integrated access systems that support voice, data, and video applications.

- ATLAS 800 A multi-function integrated access device. Eight slot modular platform with two network interfaces configurable for T1, DSX-1 or PRI operation. 10BaseT Ethernet interface. Functions as T1/T3 bandwidth manager, ISDN access switch, remote access concentrator and Digital Access Cross-Connect System (DACS).
- **ATLAS 800PLUS** Has the same functionality as the ATLAS 800 with additional Frame Relay voice, data concentration, switching, and Integral 10BaseT and IP Router. Supports external routers via V.35 or T1.
- **ATLAS 550** Similar functionality to the ATLAS 800 but has six slot modular chassis. Two network interface slots (one T1/PRI module included in chassis). Functions as a multi-T1 IAD, ISDN switch, Frame Relay concentrator/switch.

The SPECTRUM Model

The model type for the Adtran devices is **AdtranDev**. This model represents all of the Adtran devices except for the Atlas Series.

The model type for the Atlas Series is the **AtlasDev**.


Modeling results in the creation of Device icons that represent the devices and Application icons that represent their supported applications.

The Device icons contain double-click zones and provide access to Icon Subviews menus that let you perform device management activities such as those listed in *Tasks* on Page 12.

As Figure 1 shows, the appearance of the Device icons varies slightly depending on the kind of view it appears in.

Introduction The SPECTRUM Model

Figure 1: Device Icons

The device-specific Icon Subviews menu options available from the Device icon are listed in Table 1.

Table 1: Icon Subviews Menu Options

Tuble 1. Teen Subviews Menu Options	
Option	Accesses the
Fault Management	For further information refer to How to Manage Your Network with SPECTRUM .
Device	Device View (Page 14)
DevTop	Device Topology Views (Page 20)
Application	Application Views (Page 22)
Configuration	Configuration Views (Page 120)
Product Information	Adtran Product View (Page 122)
Model Information	Model Information View (Page 124)
Primary Application	Menu options that let you select either Gen Bridge App or MIB-II as the primary application.

The rest of this document covering the Adtran management module is organized as follows.

- Tasks (Page 12)
- Device View (Page 14)
- Device Topology Views (Page 20)
- Application Views (Page 22)
- Performance Views (Page 119)
- Configuration Views (Page 120)
- Adtran Product View (Page 122)
- Model Information View (Page 124)

The Adtran ATLAS devices also contain a *Chassis Device View* (Page 17) and a *DevTop Chassis View* (Page 21).

Tasks

This section contains an alphabetical list of device management tasks, with each task providing one or more links to views that let you perform the task.

Administrative Information (check)

• Model Information View (Page 124)

Alarm Thresholds (set)

• Interface Icon Subviews Menu (Page 16)

Configuration Information (check/change)

- System Configuration Information View (Page 42)
- Network Port Configuration View (Page 44)
- DTE Port Configuration View (Page 45)
- PVC Configuration Table View (Page 46)
- DBU Configuration View (Page 47)
- Unit Configuration View (Page 106)
- Network Configuration View (Page 107)
- DBU Configuration View (Page 108)
- ISDN DBU Configuration View (Page 109)
- Port Configuration View (Page 110)
- Dial Configuration View (Page 111)

• Dial Configuration View (Page 111)

DS1 Alarm Traps for Line Status Event Changes (enable/disable)

• Adtran DS1 Alarm Event Table View (Page 37)

DS1 Alert Traps for Performance Monitor Threshold Crossing Alerts (enable/disable)

• Adtran DS1 Threshold Crossing Alert Table View (Page 38)

DTE Transmit Clock Source (select)

• Port Configuration View (Page 110)

Fractional T1 Channels (select number of)

• Port Configuration View (Page 110)

IP Address (find/change)

- Device View (Page 14)
- Secondary Address Panel (Page 17)

Network Alarm State (check)

• System Configuration Information View (Page 42)

Network Type (check)

• Network Type Label (Page 16)

Performance (check)

- Device View (Page 14)
- Interface Icons (Page 15)
- Performance Views (Page 119)

DS1 Performance Statistics (reset)

• Unit Configuration View (Page 106)

SNMP Traps (enable/disable)

• Unit Configuration View (Page 106)

Start Channel Number (select)

• Port Configuration View (Page 110)

Telnet and Vt100 Terminal Control Password (Set)

• System Configuration Information View (Page 42)

Topology (check)

• Device Topology Views (Page 20)

TSU ESP Data inversion (enable/disable)

• Port Configuration View (Page 110)

TSU ESP forced DTS (enable/disable)

• Port Configuration View (Page 110)

TSU ESP inband Mode (select)

• Port Configuration View (Page 110)

TSU ESP Performance Reports (enable/disable)

• Network Configuration View (Page 107)

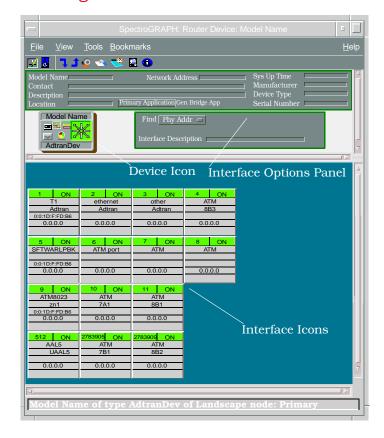
TSU ESP Transmission Line Build Out (set)

• Network Configuration View (Page 107)

TSU ESP Yellow Alarm (enable/disable)

• Network Configuration View (Page 107)

Device View

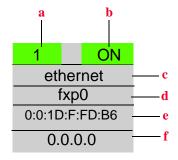

This section describes the Device view and subviews available for models of Adtran devices in SPECTRUM.

Access: From the **Icon Subviews** menu for the Device icon, select **Device**.

Interface Device View

This view (Figure 2) uses icons and labels to represent the device and its components, such as modules, ports, and applications. The view provides dynamic configuration and performance information for each of the device's serial and network I/O ports, which are represented by Interface icons in the bottom panel of the view. The middle panel of the view displays a Device icon, which lets you monitor the device operation and access other device-specific views.

Figure 2: Interface Device View



Device View Interface Icons

Interface Icons

Figure 3 shows a close-up of an Interface icon from the Device view. Most of the informational labels on the icon also provide double-click access to other views, as explained in the following label descriptions.

Figure 3: Interface Icon

- **a** Interface Number Label
- **b** IF Status Label
- **c** Interface Type Label
- d Network Type Label
- e Physical Address Label
- f IP Address Label

Interface Number Label

This label displays the interface (port) number.

IF Status Label

This label displays the current status of the interface for the primary application selected, e.g., Gen Rtr App or MIB-II App. Table 2 lists the possible label color representations. Note that the color of the label also depends on the interface's current Administrative Status, which you set in the Interface Configuration view. This view can be accessed by double-clicking the Interface Type label.

Table 2: Interface Status Label Colors

Color	Operational Status	Administrative Status	Label Text
Green	up	up	ON
Blue	down	down	OFF
Yellow	down	up	OFF
Red	testing	testing	TEST

Interface Type Label

This label identifies the interface type (Ethernet, ATM, etc.). Double-click this label to access the Interface Configuration view, see the **SPECTRUM** *Views* documentation.

Network Type Label

This label identifies the type of network to which the interface is connected. Double-click the label to open the Model Information view for the interface.

Physical Address Label

This label displays the physical (MAC) address of the interface. Double-click this label to open the IF Address Translation Table.

IP Address Label

This label displays the IP address for the interface. Double-click this label to open the *Secondary Address Panel* (Page 17), which lets you change the address and mask for the interface.

Interface Icon Subviews Menu

Table 3 lists the device-specific interface Icon Subviews menu options and the views to which they provide access.

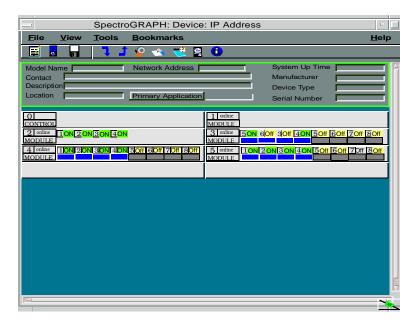
Table 3: Interface Icon Subviews Menu

Option	Accesses the
Detail	Interface Detail view, which displays packet, error, and discard breakdown statistics for the interface.
IF Configuration	Interface Configuration view (see SPECTRUM Views).
Address Translation Table	Address Translation Table (AT) see SPECTRUM Views).
Secondary Address Panel	Secondary Address Panel (Page 17).
Thresholds	Interface Threshold view, which lets you set the on/off alarm thresholds for load, packet rate, error rate, and % discarded for the interface.
Model Information	Model Information View (Page 124).
Trap Configuration	Interface Trap Configuration view (see How to Manage Your Network with SPECTRUM).

Device View Chassis Device View

Secondary Address Panel

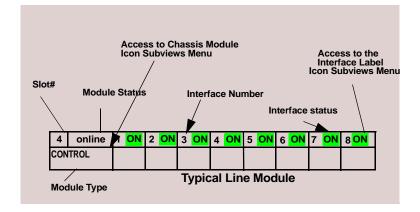
Access: From the Icon Subviews menu for the Interface icon in the Device view, select Secondary Address Panel.


This panel provides a table of IP addresses and masks obtained from the Address Translation table within the device's firmware. You can change the current address displayed in the **IP Address** field by selecting an entry from the table in this panel and clicking the **Update** button.

Chassis Device View

Access: From the Icon Subviews menu for the Atlas Device icon, select **Device > Chassis**.

This view provides information about the status of module and module ports, and allows you to determine the type and status of said modules and module ports installed on the switch.


Figure 4: Chassis Device View

Chassis Module Icons

These icons (Figure 5) represent the physical modules as installed in the chassis.

Figure 5: Chassis Module Icon

Module Identification Labels

These labels display the following information:

Slot Number Label - The location of the module within the chassis.

Module Type Label - The type of network interface module in the chassis slot.

Module Status Label - The LED online status of the module. The status is shown as either online (buff), flashing (green) or offline (blue).

Interface Labels

These labels display the following information:

Interface Number Label - The number and type for this interface.

Interface Status Label - The current status of this interface. See Table 2, *Interface Status Label Colors* (Page 15).

Chassis Module Icon Subviews Menu

The Icon Subviews menu selections specific to the Chassis Module for each device within the Adtran Atlas chassis is:

Module Notes - Opens the Module Notes window, which allows you to write and save notes for the selected module within this Chassis view.

Module Detail - Opens the General Option Card Module Detail View.

Module LED Status - Opens the Module LED Front Panel Detail View.

General Option Card Module Detail View

Access: From the **Icon Subviews** menu for the Module in the Chassis Device view, select **Module Detail.**

Module Index

The index number of the Option Card Module.

Overall Status

Indicates the overall status of the module. Possible values are OK, ONLINE, TESTING, DOWNLOAD, FLASH_DOWNLOAD, ERROR, and ALARM.

Module LED Front Panel Detail View

Access: From the Icon Subviews menu for the Module in the Chassis Device view, select Module LED Status.

Slot Index

The index number of the slot.

Card Status

The status of the Module.

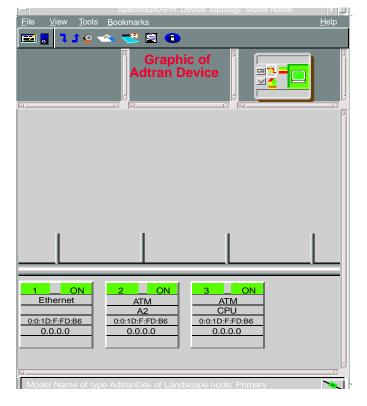
Online Status

Indicates whether the module is online, flash or offline.

Test Status

Indicates whether the module is in test mode or not.

Device Topology Views


This section describes the Device Topology view available for models of the Adtran devices.

Device Topology View

Access: From the **Icon Subviews** menu for the Device icon, select **DevTop**.

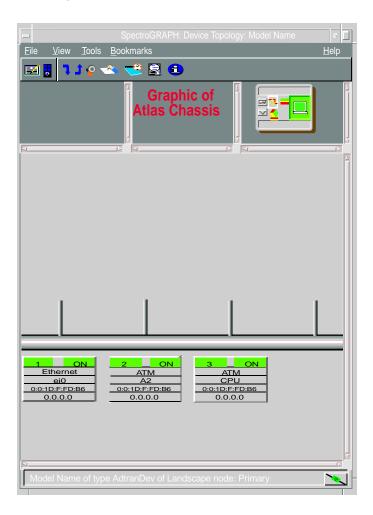
The Device Topology view (Figure 6) shows the connections between a modeled device and other network entities. The lower panel of the view uses Interface icons to represent the device's serial, network, and I/O ports. These icons provide the same information and menu options as those in the *Device View* (Page 14). If a device is connected to a particular interface, a Device icon appears on the vertical bar above the Interface icon along with an icon representing the network group that contains the device.

Figure 6: Interface Topology View

Sub-Interfaces Topology View

Access: From the **Icon Subview** menu for an Interface icon whose interface contains sub-interfaces, select **Sub-Interfaces**.

When present, the endpoints associated with multiplexed, physical connections are modeled by SPECTRUM as sub-interfaces. This includes, for example, Permanent Virtual Circuits (PVCs) on a physical ATM interface and DCL circuits on a physical Frame Relay interface. In this case, the Sub-Interfaces View displays a DLCI port icon which provides access to port information.


DevTop Chassis View

Access: From the **Icon Subviews** menu for the Atlas Device icon, select **DevTop > Chassis**.

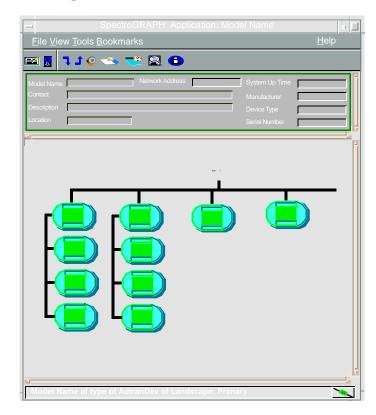
The lower panel of the Chassis Device Topology View depicts device and network connections for each port on a selected module. Select a module by clicking on its image within the top middle panel. The interface icons in this view provide the same information and menu options as those described under the *Interface Icons* (Page 15).

Refer to the **SPECTRUM Views** documentation for more information on the Device Topology views.

Figure 7: Chassis Topology View

Application Views

This section describes the main Application view and the associated application-specific subviews available for models of Adtran devices in SPECTRUM.


Access: From the **Icon Subviews** menu for the Device icon, select **Application**.

Main Application View

When a device model is created, SPECTRUM automatically creates models for each of the major and minor applications supported by the device. The main Application view identifies all of these application models, shows their current condition status, and provides access to application-specific subviews. Figure 8 shows this view in the Icon mode. If you prefer the List mode, which displays applications as text labels, select **View > Mode > List**.

For more information on this view, refer to **MIBs** and the **Application View** documentation.

Figure 8: Main Application View

Supported Applications

SPECTRUM's applications can be grouped within two general categories as follows:

- Applications associated with non proprietary MIBs. See *Common Applications* below.
- Applications associated with device-specific MIBs. See *Device-Specific Applications* (Page 24).

Common Applications

For the most part, these applications represent the non proprietary MIBs supported by your device. Listed below (beneath the title of the SPECTRUM document that describes them) are some of the common applications currently supported by SPECTRUM.

The documents listed below (in bold font) are available for viewing at:

www.aprisma.com/manuals/

• Routing Applications

- Generic Routing
- Repeater
- AppleTalk
- DECnet

- OSPF
- OSPF2
- BGP4
- VRRP
- RFC 2932

• Bridging Applications

- Ethernet Special Database
- Spanning Tree
- Static
- Transparent
- PPP Bridging
- Source Routing
- Translation
- QBridge

• MIB II Applications

- SNMP
- IP
- ICMP
- TCP
- System2
- UDP

• Transmission Applications

- FDDI
- Point to Point
- DS1
- DS3

- RS-232
- WAN
- Frame Relay
- Token Ring
- Ethernet
- Fast Ethernet
- RFC 1317App
- RFC 1285App
- RFC 1315App
- 802.11App
- SONET

• Technology Applications

- APPN
- ATM Client
- DHCP
- DLSw
- PNNI
- RFC 1316App
- RFC 1514
- RFC 2287
- RFC 2790
- RFC 2925

• DOCSIS Applications

- DOCSISCblDvApp
- DOCSISQOSApp
- DOCSISBPI2App
- DOCSISBPIApp

- DOCSISIFApp
- Digital Subscriber Line (DSL) Applications
 - ADSL

Device-Specific Applications

SPECTRUM imports the following device-level proprietary MIBs into its database for all Adtran devices:

- ADTRAN-MIB
- ADTRAN-DS1-MIB
- ADTRAN-ATLAS800-MIB
- ADTRAN-ATLAS-GENERAL-OPTIONCARD-MIB
- ADTRAN-ATLAS-INTERFACE-MIB
- ADTRAN-ATLAS-FRONTPANEL-MIB
- ADTRAN-ATLAS-V35NX4-MIB
- ADTRAN-DSUIV-MIB
- ADTRAN-TSUESP-MIB
- ADTRAN-TSU120e-MIB
- ADTRAN-TSU600e-MIB
- ADTRAN-DSUIQ-MIB
- ADTRAN-TSUIQ-MIB
- ADTRAN-IQPROBE-MIB
- ADTRAN-FRPerform-MIB
- ADTRAN-Smart16CTL-MIB

These MIBs can be used in conjunction with SPECTRUM's optional customization products (referred to as the Level I Tool Kits) to create application models and views that display the condition of selected MIB objects.

Aprisma Management Technologies can provide training, technical assistance, and custom engineering support services for creating application models and their associated views.

The views and subviews available for Adtran device-specific applications are described in the rest of this section, grouped by major applications as listed below:

- Adtran Frame Relay Performance Application (AdFRPerformApp)
- Adtran DS1 Application (AdtranDS1App) (Page 37)
- Adtran DSU IQ Configuration Application (AdDSUIQConApp) (Page 42)
- Adtran DSU IQ Status Application (AdDSUIQStatApp) (Page 49)
- Adtran IQ Probe Configuration Application (AdIQProbConApp) (Page 55)

- Adtran IQ Probe Status App (AdIQProbStaApp) (Page 61)
- Adtran TSU IQ Configuration Application (AdTSUIQConApp) (Page 66)
- Adtran TSU IQ Status Application (AdTSUIQStatApp) (Page 71)
- Adtran TSU IQ+ Configuration Application (AdTSUIQPConApp) (Page 77)
- Adtran TSU IQ+ Status Application (AdTSUIQPStaApp) (Page 80)
- Adtran DSU IV Application (AdDSUIVApp) (Page 88)
- Adtran TSU 600e Application (AdTSU600eApp) (Page 99)
- Adtran TSU 120e Application (AdTSU120eApp) (Page 101)
- Adtran Smart 16 Application (AdSmart16App) (Page 102)
- Adtran TSU ESP Application (AdTSUESPApp) (Page 103)
- Adtran Administrative Application (AdtranAdminApp) (Page 111)

The following applications are available only for Adtran ATLAS devices:

- Adtran ATLAS Chassis Application (AdATLChasApp) (Page 111)
- Adtran ATLAS General Option Card Application (AdATLGenOCApp) (Page 113)

- Adtran ATLAS Front Panel Group Application (AdATLFrPnlApp) (Page 114)
- Adtran ATLAS V35Nx4 Application (AdATLV35Nx4App) (Page 117)

Adtran Frame Relay Performance Application (AdFRPerformApp)

This application provides the following subviews:

- History Control Information View
- Current PVC Status Table View (Page 26)
- Interval PVC Status Table View (Page 27)
- Interval Port Status Table View (Page 29)
- Interval Port Error Table View (Page 30)
- Interval History Time Table View (Page 31)
- Daily PVC Status Table View (Page 32)
- Daily Port Status Table View (Page 34)
- Daily Port Error Table View (Page 35)
- Daily History Time Table View (Page 36)

History Control Information View

Access: From the Icon Subviews menu for the AdFRPerformApp icon, select History Control.

This view provides the following information.

History Interval Length

This value selects the sampling interval period for data collected in the interval table. Possible values are min5, min10, min15, min20, and min30.

Current Interval Time Remaining

Seconds remaining in the current interval.

Completed Intervals

The number of completed intervals in interval tables.

Completed Days

The number of completed days in the day table.

Current PVC Status Table View

Access: From the Icon Subviews menu for the AdFRPerformApp icon, select PVC Status.

This view provides the following information for Permanent Virtual Circuits (PVCs).

If.Status Index

The instance for this entry.

PVC State

The current state for this PVC.

Interval PVC Status Table View

Access: From the Icon Subviews menu for the AdFRPerformApp icon, select Interval PVC Status.

This view provides the following information.

If.PVC.Slot Index

The instance for this entry.

State Change

The number of state changes for this PVC for the interval.

Inactive Time

The time in seconds the PVC has been in the inactive state for the interval.

Frames Rx

The number of frames the PVC has received for the interval.

Frames Tx

The number of frames the PVC has transmitted for the interval.

Bytes Rx

The number of bytes the PVC has received for the interval.

Bytes Tx

The number of bytes the PVC has transmitted for the interval.

Avg Thruput Tx

The average throughput the PVC has transmitted for the interval.

Avg Thruput Rx

The average throughput the PVC has received for the interval.

Max Thruput Tx

The maximum throughput the PVC has transmitted for the interval.

Max Thruput Rx

The maximum throughput the PVC has received for the interval.

Avg Utilization Tx

The average utilization the PVC has transmitted for the interval.

Avg Utilization Rx

The average utilization the PVC has received for the interval.

Max Utilization Tx

The maximum utilization the PVC has transmitted for the interval.

Max Utilization Rx

The maximum utilization the PVC has received for the interval.

Burst Tx

At this time there is no MIB support for this field.

Burst Rx

At this time there is no MIB support for this field.

FECN Rx

The number of Forward Explicit Congestion Notifications (FECNs) the PVC has received for the interval.

FECN Tx

The number of FECNs the PVC has transmitted for the interval.

BECN Rx

The number of Backward Explicit Congestion Notifications (BECNs) the PVC has received for the interval.

BECN Tx

The number of BECNs the PVC has transmitted for the interval.

DERx

The number of DEs the PVC has received for the interval.

DE Tx

The number of DEs the PVC has transmitted for the interval.

CR Rx

The number of CRs the PVC has received for the interval.

CR Tx

The number of CRs the PVC has transmitted for the interval.

Min Frame Size Rx

The minimum frame size the PVC has received for the interval.

Min Frame Size Tx

The minimum frame size the PVC has transmitted for the interval.

Max Frame Size Rx

The maximum frame size the PVC received for the interval.

Max Frame Size Tx

The maximum frame size the PVC transmitted for the interval.

Avg Frame Size Rx

The average frame size the PVC received for the interval.

Avg Frame Size Tx

The average frame size the PVC transmitted for the interval.

Lost Frames

The number of Lost Frames on the PVC for the interval. Applies only if Sequence Numbering is enabled for the PVC.

Remote Lost Frames

The number of Remote Lost Frames on the PVC for the interval. Applies only if Sequence Numbering is enabled for the PVC.

Max Delay

The maximum delay in milliseconds on the PVC for the interval. Applies only if Delay Measurement is enabled for the PVC or PVC Diagnostics are being performed.

Min Delay

The minimum delay in milliseconds on the PVC for the interval. Applies only if Delay Measurement is enabled for the PVC or PVC Diagnostics are being performed.

Avg Delay

The average delay in milliseconds on the PVC for the interval. Applies only if Delay Measurement is enabled for the PVC or PVC Diagnostics are being performed.

Interval Port Status Table View

Access: From the Icon Subviews menu for the AdFRPerformApp icon, select Interval Port Status.

This view provides the following information.

If.Slot Index

The instance for this entry.

Frames Rx

The number of frames the port received for the interval.

Frames Tx

The number of frames the port transmitted for the interval.

Bytes Rx

The number of bytes the port received for the interval.

Bytes Tx

The number of bytes the port transmitted for the interval.

Avg Thruput Tx

The average throughput the port transmitted for the interval.

Avg Thruput Rx

The average throughput the port received for the interval.

Max Thruput Tx

The maximum throughput the port transmitted for the interval.

Max Thruput Rx

The maximum throughput the port received for the interval.

Avg Utilization Tx

The average utilization the port transmitted for the interval.

Avg Utilization Rx

The average utilization the port received for the interval.

Max Utilization Tx

The maximum utilization the port transmitted for the interval.

Max Utilization Rx

The maximum utilization the port received for the interval.

Full Status Rx

The number of PVC signalling full status frames received.

Full Status Tx

The number of PVC signalling full status frames transmitted.

Link Integrity Only Rx

The number of PVC signalling link integrity only frames received.

Link Integrity Only Tx

The number of PVC signalling link integrity only frames transmitted.

Asynchronous Status Frames Rx

The number of single PVC status frames received.

Interval Port Error Table View

Access: From the Icon Subviews menu for the AdFRPerformApp icon, select Interval Port Error.

This view provides the following information.

Port.Slot Index

The instance for this entry.

Unavailable Time

The time in seconds the port is unavailable due to a physical or frame relay outage.

CRC Errors

The number of frames received with CRC errors.

Abort Frames

The number of frames received without proper flag termination.

Octet Violations

The number of frames received with a bit count not divisible by eight.

Discarded Frames

The number of frames discarded by the IQ unit.

Length Errors

The number of frames received that is less than 5 bytes or greater than 4500 bytes.

EA Violations

Number of frames received with errors in the EA field of the frame relay header.

Encapsulation Error

The number of frames destined for the IQ IP stack that does not meet the FRF.3 IA.

Inactive DLCI

The number of frames received while the PVC is in the inactive state.

Invalid DLCI

The number of frames received with a DLCI value less than 16 or greater than 1007, not including PVC signaling frames.

Unroutable

The number of frames received on a management DLCI destined for the IQ unit that have the wrong IP address.

Signal Down Time

The time in seconds the signaling state has been down.

Signal Errors

The number of PVC signaling frames received with protocol violations.

Signal Time Out

The number of PVC signal timeouts. Either T391 seconds elapsed without receiving a response to a poll or T392 elapsed seconds with receiving a poll.

Signal State Change

The number of state changes for the PVC signaling protocol. This includes transactions from down state to up state and vice versa.

Interval History Time Table View

Access: From the Icon Subviews menu for the AdFRPerformApp icon, select Interval History Time.

The view provides the following information.

Time Slot Index

The history time slot index number.

Slot Time Total

The total time in seconds this interval slot represents.

Time Stamp

The time the interval started.

Daily PVC Status Table View

Access: From the Icon Subviews menu for the AdFRPerformApp icon, select Daily PVC Status.

This view provides the following information.

If.PVC.Slot Index

The instance for this entry.

State Change

The number of state changes on the PVC for the day.

Inactive Time

The time in seconds the PVC has been in the inactive state.

Frames Rx

The number of frames the PVC received for the day.

Frames Tx

The number of frames the PVC transmitted for the day.

Bytes Rx

The number of bytes the PVC received for the day.

Bytes Tx

The number of bytes the PVC transmitted for the day.

Avg Thruput Tx

The average throughput the PVC transmitted for the day.

Avg Thruput Rx

The average throughput the PVC received for the day.

Max Thruput Tx

The maximum throughput the PVC transmitted for the day.

Max Thruput Rx

The maximum throughput the PVC received for the day.

Avg Utilization Tx

The average utilization the PVC transmitted for the day.

Avg Utilization Rx

The average utilization the PVC received for the day.

Max Utilization Tx

The maximum utilization the PVC transmitted for the day.

Burst Tx

At this time there is no MIB support for this field.

Burst Rx

At this time there is no MIB support for this field.

Max Utilization Rx

The maximum utilization the PVC received for the day.

FECN Rx

The number of Forward Explicit Congestion Notifications (FECNs) the PVC received for the day.

FECN Tx

The number of FECNs the PVC transmitted for the day.

BECN Rx

The number of Backward Explicit Congestion Notifications (BECNs) the PVC received for the day.

BECN Tx

The number of BECNs the PVC transmitted for the day.

DERx

The number of DEs the PVC received for the day.

DE Tx

The number of DEs the PVC transmitted for the day.

CR Rx

The number of CRs the PVC received for the day.

CR Tx

The number of CRs the PVC transmitted for the day.

Min Frame Size Rx

The minimum frame size the PVC received for the day.

Min Frame Size Tx

The minimum frame size the PVC transmitted for the day.

Max Frame Size Rx

The maximum frame size the PVC received for the day.

Max Frame Size Tx

The maximum frame size the PVC transmitted for the day.

Avg Frame Size Rx

The average frame size the PVC received for the day.

Avg Frame Size Tx

The average frame size the PVC transmitted for the day.

Lost Frames

The number of lost frames on the PVC for the day. Applies only if the sequence numbering is enabled for the PVC.

Remote Lost Frames

The number of remote lost frames on the PVC for the day. Applies only if sequence numbering is enabled for the PVC.

Max Delay

The maximum delay on the PVC for the day. Applies only if delay measurement or PVC diagnostics are enabled for the PVC.

Min Delay

The minimum delay on the PVC for the day. Applies only if delay measurement or PVC diagnostics are enabled for the PVC.

Avg Delay

The average delay on the PVC for the day. Applies only if delay measurement or PVC diagnostics are enabled for the PVC.

Daily Port Status Table View

Access: From the Icon Subviews menu for the AdFRPerformApp icon, select Daily Port Status.

This view provides the following information.

If.Slot Index

The instance for this entry.

Frames Rx

The number of frames the port received for the day.

Frames Tx

The number of frames the port transmitted for the day.

Bytes Rx

The number of bytes the port received for the day.

Bytes Tx

The number of bytes the port transmitted for the day.

Avg Thruput Tx

The average throughput the port transmitted for the day.

Avg Thruput Rx

The average throughput the port received for the day.

Max Thruput Tx

The maximum throughput the port transmitted for the day.

Max Thruput Rx

The maximum throughput the port received for the day.

Avg Utilization Tx

The average utilization the port transmitted for the day.

Avg Utilization Rx

The average utilization the port received for the day.

Max Utilization Rx

The maximum utilization the port received for the day.

Max Utilization Tx

The maximum utilization the port transmitted for the day.

Full Status Rx

The number of PVC signalling full status frames received.

Full Status Tx

The number of PVC signalling full status frames transmitted.

Link Integrity Only Rx

The number of PVC signalling link integrity only frames received.

Link Integrity Only Tx

The number of PVC signalling link integrity only frames transmitted.

Asynchronous Status Frames Rx

The number of single PVC status frames received.

Daily Port Error Table View

Access: From the Icon Subviews menu for the AdFRPerformApp icon, select Daily Port Error.

This view provides the following information.

Port.Slot Index

The instance for this entry.

Unavailable Time

The time in seconds the port is unavailable due to a physical or frame relay outage.

CRC Errors

The number of frames received with Cyclic Redundancy Check (CRC) errors.

Abort Frames

The number of frames received without proper flag termination.

Octet Violations

The number of frames received with a bit count not divisible by eight.

Discarded Frames

The number of frames discarded by the IQ unit.

Length Errors

The number of frames received that is less than 5 bytes or greater than 4500 bytes.

EA Violations

Number of frames received with errors in the EA field of the frame relay header.

Encapsulation Error

The number of frames destined for the IQ IP stack that does not meet the FRF.3 IA.

Inactive DLCI

The number of frames received while the Permanent Virtual Circuit (PVC) is in the inactive state.

Invalid DLCI

The number of frames received with a DLCI value less than 16 or greater than 1007, not including PVC signaling frames.

Unroutable

The number of frames received on a management DLCI destined for the IQ unit that have the wrong IP address.

Signal Down Time

The time in seconds the signaling state has been down.

Signal Errors

The number of PVC signaling frames received with protocol violations.

Signal Time Out

The number of PVC signaling frames received with protocol violations.

Signal State Change

The number of state changes for the PVC signaling protocol. This includes transactions from down state to up state and vice versa.

Daily History Time Table View

Access: From the Icon Subviews menu for the AdFRPerformApp icon, select Daily History Time.

This view provides the following information.

Time Slot Index

The time slot index number.

Slot Time Total

The time in seconds this day slot represents.

Adtran DS1 Application (Adtran DS1 App)

This application provides the following subviews:

- Adtran DS1 Alarm Event Table View
- Adtran DS1 Threshold Crossing Alert Table View (Page 38)
- Adtran DS1 Current Threshold Information View (Page 40)
- Adtran DS1 Total Threshold Information View (Page 41)

Adtran DS1 Alarm Event Table View

Access: From the **Icon Subviews** menu for the AdtranDS1App icon, select **Alarm Table**.

Double-clicking on an entry in this table displays the Adtran DS1 Alarm Event Detail View. This view provides the following information.

Alarm Index

The index value which uniquely identifies the DS1 interface.

Alarm Enable

Allows you to enable or disable the generation of DS1 Alarm Traps for line status event changes. Can be set to dslAlarmOFF or dslAlarmON.

Line Event

This bit map variable indicates state changes in the DS1 line status variable (dsx1LineStatus). When a line status bit changes state, the corresponding line event bit is set in this variable. If armed, setting the event will generate an Alarm Trap. After reporting the events in an Alarm Trap or Get response, the device clears the reported events. The various alarm event bit positions are:

Table 4: Alarm Event Bit Positions

NoAlarm	No Alarm Present
FarEndLOF	Far end LOF (Yellow Alarm)
NearEndSendingLOF	Near end sending LOF Indication
FarEndSendingAIS	Far end sending AIS (Blue Alarm)
NearEndSendingAIS	Near end sending AIS
NearEndLOF	Near end LOF (Red Alarm)
NearEndLossOfSignal	Near End Loss of Signal
NearEndIsLooped	Near end is looped

Table 4: Alarm Event Bit Positions

E1_TS16_AIS	E1 TS16 AIS
FarEndSendingTS16LOMF	Far End Sending TS16 LOMF
FarEndSendingTS16LOMF	Near End Sending TS16 LOMF
NearEndDetectsTestCode	Near end detects a test code
NotDefined	any line status not defined here

Line Arm

This bit map variable arms or disarms an individual or group of events identified in Line Event as a source for generation of DS1 Alarm Trap. The variables are the same as those listed in Table 4.

Adtran DS1 Threshold Crossing Alert Table View

Access: From the **Icon Subviews** of the AdtranDS1App icon, select **Alert Table**.

Double-clicking on an entry in this table displays the Adtran DS1 Alert Event Detail View. This view displays the following information.

Alert Index

The index value which uniquely identifies the DS1 interface.

Alarm Enable

This allows you to enable or disable the generation of DS1 Alert Traps for Performance Monitor Threshold Crossing Alerts.

Current Alert

This DS1 performance status variable indicates Threshold Crossing Alerts for a Near End Current 15 minute interval. An alert bit is set in this variable when the value of the Current Table object exceeds the Threshold Value. This variable contains the sum of alert values.

Table 5: Threshold Crossing Alert bit position values

ES	Errored Seconds
SES	Severely Errored Seconds
SEFS	Severely Errored Framing Seconds
UAS	Unavailable Seconds
CSS	Controlled Slip Seconds

Table 5: Threshold Crossing Alert bit position values

PCV	Path Coding Violations
LES	Line Errored Seconds
BES	Bursty Errored Seconds
DM	Degraded Minutes
LCV	Line Code Violations

Total Alert

This DS1 performance status variable indicates Threshold Crossing Alerts for a Near End Total performance variables. An alert bit is set in this variable when the value of the Total Table object exceeds the Threshold Value. This variable contains the sum of alert values. See Table 5 for the bit position values.

Far Current Alert

This DS1 performance status variable indicates Threshold Crossing Alerts for a Near End Total performance variables. An alert bit is set in this variable when the value of the Total Table object exceeds the Threshold Value. This variable contains the sum of alert values. See Table 5 for the bit position values.

Far Total Alert

This DS1 performance status variable indicates Threshold Crossing Alerts for a Far End Current 15 minute interval. An alert bit is set in this variable when the value of the Far End Total Table object exceeds the Threshold Value. This variable contains the sum of alert values. See Table 5 for the bit position values.

Total Arm

This DS1 performance status variable indicates Threshold Crossing Alerts for a Near End Total performance variables. An alert bit is set in this variable when the value of the Total Table object exceeds the Threshold Value. This variable contains the sum of alert values. See Table 5 for the bit position values.

Far Current Arm

This DS1 performance status variable indicates Threshold Crossing Alerts for a Near End Total performance variables. An alert bit is set in this variable when the value of the Total Table object exceeds the Threshold Value. This variable contains the sum of alert values. See Table 5 for the bit position values.

Far Total Arm

This DS1 performance status variable indicates Threshold Crossing Alerts for a Near End Total performance variables. An alert bit is set in this variable when the value of the Total Table object exceeds the Threshold Value. This variable contains the sum of alert values. See Table 5 for the bit position values.

Adtran DS1 Current Threshold Information View

Access: From the **Icon Subviews** of the AdtranDS1App icon, select **Current Threshold Information**.

This view provides the following information.

Current 15 Minute Threshold Values

Errored Seconds

The DS1 performance monitor threshold value for the current 15 minute errored seconds parameter. The default value is 65 for an approximate BER level of (10** -5).

Severely Errored Seconds

The DS1 performance monitor threshold value for the current 15 minute severely errored seconds parameter. The default value is 10 for an approximate BER level of (10** -5).

Severely Errored Framing Seconds

The DS1 performance monitor threshold value for the current 15 minute severely errored framing seconds parameter. The default value is 2 for an approximate BER level of (10** -5).

Controled Slip Seconds

The DS1 performance monitor threshold value for the current 15 minute controlled slip seconds parameter. The default value is 1 for an approximate BER level of (10** -5).

Unavailable Seconds

The DS1 performance monitor threshold value for the current 15 minute unavailable seconds parameter. The default value is 10 for an approximate BER level of (10** -5).

Line Errored Seconds

The DS1 performance monitor threshold value for the current 15 minute line errored seconds seconds parameter. The default value is 65 for an approximate BER level of (10*** -5).

Current 15 Minute Coding Violations

Path Coding Violations (Super Frames)

The DS1 performance monitor threshold value for the current 15 minute path coding violations parameter, when the line type is Super Frame (AT&T D4 format) DS1. Default value for an approximate BER level of (10** -5) is 72 framing errors.

Path Coding Violations (Extended Super Frames)

The DS1 performance monitor threshold value for the current 15 minute path coding violations parameter, when the line type is Extended Super Frame (ESF) DS1. Default value for an approximate BER level of (10** -5) is 13,296 CRRC errors.

Line Code Violations

The DS1 performance monitor threshold value for the current 15 minute line code violations parameter. The default value is 13,340 for an approximate BER level of (10** -5).

Adtran DS1 Total Threshold Information View

Access: From the **Icon Subviews** of the AdtranDS1App icon, select **Total Threshold Information**.

This view displays the following information.

Total Threshold Values

Errored Seconds

The DS1 performance monitor threshold value for the total errored seconds parameter. The default value is 648 for an approximate BER level of (10**-5).

Severely Errored Seconds

The DS1 performance monitor threshold value for the total severely errored seconds parameter. The default value is 100 for an approximate BER level of (10*** -5).

Severely Errored Framing Seconds

The DS1 performance monitor threshold value for the total severely errored framing seconds parameter. The default value is 17 for an approximate BER level of (10** -5).

Controled Slip Seconds

The DS1 performance monitor threshold value for the total controlled slip seconds parameter. The default value is 4 for an approximate BER level of $(10^{**} - 5)$.

Unavailable Seconds

The DS1 performance monitor threshold value for the total unavailable seconds parameter. The default value is 10 for an approximate BER level of (10** -5).

Line Errored Seconds

The DS1 performance monitor threshold for the total line errored seconds parameter. The default value is 691 for an approximate BER level of (10**-5).

Total Coding Violations

Path Coding Violations (Super Frames)

The DS1 performance monitor threshold value for the total path coding violations parameter, when the line type is Super Frame (AT&T D4 format) DS1. Default value for an approximate BER level of (10** -5) is 132,960 framing errors.

Path Coding Violations (Extended Super Frames)

The DS1 performance monitor threshold value for the total path coding violations parameter, when the line type is Extended Super Frame (ESF). DS1. Default value for an approximate BER level of (10** -5) is 648 CRC errors.

Line Code Violations

The DS1 performance monitor threshold value for the total line code violations parameter. The default value is 133,400 for an approximate BER level of (10** -5).

Adtran DSU IQ Configuration Application (AdDSUIQConApp)

Access: From the **Icon Subviews** menu for the DSU IQ Device icon, select **Application**.

This application provides the following subviews.

- System Configuration Information View
- Trap Manager Table View (Page 43)
- Network Port Configuration View (Page 44)
- DTE Port Configuration View (Page 45)
- PVC Configuration Table View (Page 46)
- DBU Configuration View (Page 47)

System Configuration Information View

Access: From the Icon Subviews menu for the AdDSUIQConApp icon, select System Configuration.

This view provides the following information.

General Configuration

Password

Set the Telnet and Vt100 Terminal Control Password (10 characters max).

Time of Day

Set the time of day with the format hh:mm (hour:minutes).

Date

The date with the format MM-DD-YY.

Network Configuration

IP Address

Sets the unit's IP address.

Subnet Mask

The network's subnet mask.

Gateway IP Address

Sets the network's Gateway IP address.

Control Port Configuration

Port Baud

Sets the Control Port baud rate. Possible rates are bps9600, bps19200, and bps38400.

Port Mode

Selects the Control Port protocol. Possible options are terminal, slip, and ppp.

Configuration Save & Abort

Abort Configuration

A set will cancel the current selections and revert to the last Saved config.

Save Configuration

A Set operation will reset the unit and save current selections.

Trap & Alarm Configuration

Trap Manager Table

This opens the *Trap Manager Table View* (Page 43).

Enable Traps

Allows you to enable or disable traps.

Network Alarms

Network Alarm State

Allows you to monitor the alarm state.

Arm/Disarm Network Alarms

Allows you to arm/disarm network alarm by clicking on appropriate box.

Trap Manager Table View

Access: Within the System Configuration view of the AdDSUIQConApp, click the Trap Manager Table button.

Double-clicking on an entry in this table displays the Trap Manager Table Entry View. This view provides the following information.

Route Index

The index for the route.

Route IP Address

Sets the Trap Manager IP Address.

Route DLCI

Sets the Trap Manager DLCI. (Range 16 - 1007).

Route Port

Selects the Trap Manager Port.

Network Port Configuration View

Access: From the Icon Subviews menu for the AdDSUIQConApp icon, select Network Port Configuration.

This view provides the following information.

DDS Interface Configuration

Port Loop Rate

The rate for the DDS interface.

Port Clock Source

The timing source for the DDS interface.

Management DLCI Configuration

DLCI 1 Mode

Sets the mode for the management DLCI 1.

DLCI 2 Mode

Sets the mode for the management DLCI 2.

DLCI 1 PVC 1 Address

Sets the DLCI for management PVC 2. (Range 16 - 1007).

DLCI 2 PVC 2 Address

Sets the DLCI for management PVC 2. (Range 16 - 1007).

Frame Relay Management Interface Configuration

Port Signaling

The signaling type for the frame relay management interface. Types include: none, conLMI, ansiT1617D, ituTQ933A, and auto.

Link Integrity Poll Timer, T391

Sets the polling interval in seconds for the frame relay management.

LMI Status Polling Counter, N391

Sets the interval between full status polls for the frame relay management interface.

Error Threshold, N392

Sets the error count for the frame relay management interface.

Error Window, N393

Sets the error window (number of polling events) for the frame relay interface.

Frame Relay Monitoring Configuration

History Intervals

Sets the number of history intervals for storage.

History Intervals Available

Returns the number of history intervals allowed based on the maximum number.

Sampling Rate

Sets the minute intervals. The minute intervals are 5, 10. 15, 20, and 30.

Maximum PVC supported

Sets the maximum PVCs supported by the IQ unit. (Range 1 - 100).

DTE Port Configuration View

Access: From the Icon Subviews menu for the AdDSUIQConApp icon, select DTE Port Configuration.

This view provides the following information.

Physical Layer Configuration

Port Interface

Allows you to select the DTE Port Interface type.

Port Rate

Selects the DTE Port Rate.

CTS Option

Selects the Clear to Send (CTS) Option.

CD Option

Selects the Carrier Detect (CD) option. Options are forcedOn and normal.

DSR Option

Selects the Data Set Ready (DSR) option.

Flow Control

Determines how the IQ device will respond to congestion during DBU operation. If set to none, the IQ will drop frames during Dial Backup (DBU) operation when severe congestion occurs. If set for hardware, the IQ will vary the DTE TC clock during periods of severe congestion.

Frame Relay Layer Configuration

Port Management DLCI

Sets the DTE Port management DLCI. (Range 16 - 1007)

Management PVC

Controls the presence of the DTE management PVC.

Timeout, T392

Sets the timeout in seconds between polling intervals from 5 to 30 seconds.

Error Events, N392

Sets the number of error events for the frame relay management from 1 to 10.

Error Window, N393

Sets the error window (polling events) for the frame relay management.

Signaling Response

Determines how the IQ device will respond to polls from the DTE device during network failure. If set to always on, the IQ will respond to polls during a network failure.

PVC Configuration Table View

Access: From the **Icon Subviews** menu for the DSUIQConfigApp icon, select **PVC Configuration**.

This view provides PVC Configuration information. Double-click on an entry to open the PVC Configuration Detail view.

Config Index

The index identifier for this PVC entry.

DLCI Address

The address for this PVC entry, ranging from 16 to 1007.

CIR

The Committed Information Rate (CIR) for this PVC in Kbps.

Sequence Num Option

The sequence number allows the IQ to detect lost frames across the frame relay service. This option should be disabled for PVCs that do not have IQ on both ends.

Delay Pkt Option

Delay Packet Option for this PVC allows the IQ to sample round trip delay across the frame relay service. This option should be disabled for PVCs on both ends.

DBU DLCI

This object is used when this PVC entry is used for dial backup.

Stats Control

Statistics Control option. Possible values are auto, enable, and disable.

DBU Configuration View

Access: From the **Icon Subviews** menu for the DSUIQConfigApp icon, select **DBU Configuration**.

This view provides the following information.

DBU Option

This specifies whether the unit automatically enters dial backup mode or waits for manual setup.

DBU Mode

This option specifies the dial backup operating mode for the unit as originate or answer. One must be set to originate and the other end to answer.

Out of Service Option

This enables the unit to enter backup mode if an out-of-service condition is detected from the network. The options are enable or disable.

Loss of Receive Signal Option

This enables the unit to enter backup mode when a loss of receive signal is detected from the network. The options are enable or disable.

Loss of Sealing Current Option

This enables the unit to enter backup mode when a loss of sealing current is detected from the network.

Loss of LMI Option

This enables the unit to enter backup mode when the network PVC signaling state goes down.

Pass Check

This allows the unit to send and verify a dial backup passcode for an additional level of security. When enabled, the originate unit sends the passcode and the answer unit checks the passcode before the backup configuration is considered valid.

Pass Code

This sets the dial backup passcode used to provide an additional level of security. A passcode of 1 to 10 digit characters can be set. If enabled, the originate unit sends the passcode and the answer unit checks the passcode to verify the connection.

Answer Always

This enables or disables Answer Always for Dial Backup operation. If enabled, the answer unit answers any incoming calls regardless of failed conditions.

Beeper Option

This option enables or disables the audible alarm when the IQ unit goes into dial backup mode.

Phone Number

This option is used to set a phone number to place a DBU call. This allows for up to 5 different numbers to be set.

Start Lockout

This option selects the hour to begin disabling dial backup operation when daily or weekend lockout mode is inactive.

End Lockout

This option selects the hour to end dial backup lockout when daily or weekend lockout mode is active.

Weekend Lockout

This option enables or disables Weekend Lockout for Dial Backup operation. If enabled, no backup will occur from midnight Friday to midnight Saturday.

Daily Lockout

This enables or disables Daily Lockout for Dial Backup operation. If enabled, no backup will occur between Lockout Start hour and Lockout End hour.

Auto Restore Timer

This option selects the amount of time that the DSUIQ circuit must be active before the unit switches from backup to normal mode of

operation. The timer value is in minutes from 0 to 60. A zero value disables the automatic restore.

Redial Count

This allows the selection of the number of times the unit will redial the Far End unit when attempting to go to backup and a busy or reorder condition occurs. Redial count can be set for a maximum of 60.

Fail Timeout

This option allows the selection of the amount of time that the dedicated circuit failure condition is active before attempting to enter dial backup mode. The Fail Timeout value is in increments of 10 seconds up to a maximum of 600 seconds.

Redial Timer

This option works in conjunction with the Redial Counter option. The Redial Timer specifies the amount of time between redial attempts. The Redial Timer value is seconds, up to a maximum of 60.

ISDN Switch

This option is used to select the ISDN switch type. Types are att-5ess and nt-dms-100.

ISDN Channel Rate

This option is used to select the ISDN channel rate.

ISDN SPID

This option is used to set the Service Provider ID (SPID) for the ISDN interface.

ISDN LDN

This option is used to LDN for the ISDN interface.

V.34 Line Type

This option selects the type of analog phone line, either tone or pulse.

DCE Interface Type

This sets the DCE Interface type, either rs232 or v35.

DCE Bit Rate

This option is used for utilization measurement of the DPU port when an external DCE device is used.

Adtran DSU IQ Status Application (AdDSUIQStatApp)

This application has the following available application-specific subviews:

- Current Status View
- DDS Interval Status Table View (Page 51)
- DDS Daily Status Table View (Page 51)
- DBU Interval Status Table View (Page 51)
- DBU Daily Status Table (Page 53)
- Diagnostic Table View (Page 54)

Current Status View

Access: From the Icon Subviews menu for the AdDSUIQStatApp icon, select Current Status.

This view displays the following information.

DDS State

Current status of the DDS interface. Possible values are normal56K, normal64K, openLoop, noFrameSync, dSUInTest, scanning, noRXSignal, and checkTelcoCable.

DBU State

Current state of the DBU interface. Possible states are emptySlot, openLoop, gettingTEI,

tEIOK, sPIDOK, idle, inDBU, waitingForCall, noSealingCurrent, outOfService, noRXSignal, ringing, dialing, dialingNumber1, dialingNumber2, dialingNumber3, dialingNumber4, dialingNumber5, answeringCall, noDialTone, noAnswer, busy, waitingToDial, connect, connect33d6, connect31d2, connect115d2R, connect115d2, connect28d8, connect26d4, connect24d0, connect21d6, connect57d6R, connect38d4R, connect19d2R, connect9d6R, connect4d8R, connect2d4R, connect16d8, connect14d4, connect12d0, connect7d2, connect57d6, connect38d4, connect19d2, connect9d6, connect4d8, connect2d4, sendingPasscode, waitingPasscode, invalidPasscode, validPasscode and error.

DBU Port Type

The DBU card type installed. Possible types are empty, v34modem, dce, sw564wire, sw562wire, and isdn.

DTE Signaling State

Current state of the PVC signaling between the DSUIQ and the attached frame relay dte. Either up or down.

DTE Control Leads

This bit map integer reflects the current state of the DTE control leads. Possible selections are CTS, DSR, DCD, RTS, and DTR.

NET Signaling State

Current state of the PVC signaling between the DSUIQ and the frame relay service. Either up or down.

NET PVC Count

Current count of network pvcs.

NET PVC Config Table Size

Current count of rows in the PVC config table.

LAN Port Status

The LAN card type installed. Either empty or ethernet.

LED Status

This bit map integer reflects the DSUIQ front panel LED state. Possible selections are Test, RD, CTS, Alarm, TD, RTS, and DCD.

DDS Interval Status Table View

Access: From the Icon Subviews menu for the AdDSUIQStatApp icon, select DDS Interval Status Table.

This view provides the following information.

Slot Index

The instance for this entry.

Unavailable Seconds

Amount of time in seconds the DDS port is unavailable due to test or in an inactive state.

State Change

Number of changes in the DDS port state. This includes all normal, inactive, and test state transitions.

BPV Frame Error

Number of BPVs received when the DDS is set for 56K mode or the number of DDS framing errors when the DDS is set for 64K mode.

DDS Daily Status Table View

Access: From the Icon Subviews menu for the AdDSUIQStatApp icon, select DDS Daily Status Table.

This view provides the following information.

Slot Index

The instance for this entry.

Unavailable Time

Amount of time in seconds the DDS port is unavailable due to test or in an inactive state.

State Change

Number of changes in the DDS port state. This includes all normal, inactive, and test state transitions.

BPV Frame Error

Number of BPVs received when the DDS is set for 56K mode or the number of DDS framing errors when the DDS is set for 64K mode.

DBU Interval Status Table View

Access: From the Icon Subviews menu for the AdDSUIQStatApp icon, select DBU Interval Status Table.

This view provides the following information.

Slot Index

The instance for this entry.

Frames Rx

The number of frames the port received for the interval.

Frames Tx

The number of frames the port transmitted for the interval.

Bytes Rx

The number of bytes the port received for the interval.

Bytes Tx

The number of bytes the port transmitted for the interval.

Avg Thruput Tx

The average throughput the port transmitted for the interval.

Avg Thruput Rx

The average throughput the port received for the interval.

Max Thruput Tx

The maximum throughput the port transmitted for the interval.

Max Thruput Rx

The maximum throughput the port received for the interval.

Avg Utilization Tx

The average utilization the port transmitted for the interval.

Avg Utilization Rx

The average utilization the port received for the interval.

Max Utilization Tx

The maximum utilization the port transmitted for the interval.

Max Utilization Rx

The maximum utilization the port received for the interval.

DBU Active Time

Time in seconds the DBU port was active.

CRC Errors

Number of frames received with CRC errors.

Abort Frames

Number of frames received without proper flag termination.

Octet Violations

Number of frames received with a bit count not divisible by eight.

Discarded Frames

Number of frames discarded by the IQ unit.

Length Errors

Number of frames received that is less than 5 bytes or greater than 4500 bytes.

Encapsulation Errors

Number of frames destined for the IQ IP stack with that does not meet the FRF.3 IA.

Unroutable Frames

Number of frames received on a management DLCI destined for the IQ unit and have the wrong IP address.

DBU Daily Status Table

Access: From the Icon Subviews menu for the AdDSUIQStatApp icon, select DBU Daily Status Table.

This view provides the following information.

Slot Index

The instance for this entry.

Frames Rx

The number of frames the port received for the day.

Frames Tx

The number of frames the port transmitted for the day.

Bytes Rx

The number of bytes the port received for the day.

Bytes Tx

The number of bytes the port transmitted for the day.

Avg Thruput Tx

The average throughput the port transmitted for the day.

Avg Thruput Rx

The average throughput the port received for the day.

Max Thruput Tx

The maximum throughput the port transmitted for the day.

Max Thruput Rx

The maximum throughput the port received for the day.

Avg Utilization Tx

The average utilization the port transmitted for the day.

Avg Utilization Rx

The average utilization the port received for the day.

Max Utilization Tx

The maximum utilization the port transmitted for the day.

Max Utilization Rx

The maximum utilization the port received for the day.

DBU Active Time

Time in seconds the DBU port was active.

CRC Errors

Number of frames received with CRC errors.

Abort Frames

Number of frames received without proper flag termination.

Octet Violations

Number of frames received with a bit count not divisible by eight.

Discarded Frames

Number of frames discarded by the IQ unit.

Length Errors

Number of frames received that is less than 5 bytes or greater than 4500 bytes.

Encapsulation Errors

Number of frames destined for the IQ IP stack with that does not meet the FRF.3 IA.

Unroutable Frames

Number of frames received on a management DLCI destined for the IQ unit and have the wrong IP address.

Diagnostic Table View

Access: From the Icon Subviews menu for the AdDSUIQStatApp icon, select Diagnostic Table.

This view provides the following information.

Index

The instance for this entry.

DI CI

Sets the DLCI for PVC Loopback.

Control

Starts or Stops PVC Loopback Test.

Duration

Sets the Length of the PVC Loopback in minutes.

Status

PVC Loopback Test Status. Possible values are diagnosticOff and diagnosticOn.

Seconds Remaining

PVC Loopback Test time remaining in seconds.

Adtran DSU/CSU

Frames Transmitted

Diagnostic Frames transmitted.

Frames Received

Diagnostic Frames received.

Lost Frames

Diagnostic Frames Lost.

Maximum Delay

Diagnostic Maximum Delay measurement.

Minimum Delay

Diagnostic Minimum Delay measurement.

Average Delay

Diagnostic Average Delay measurement.

Adtran IQ Probe Configuration Application (AdIQProbConApp)

This application has the following available application-specific subviews:

- System Configuration Information View (Page 55)
- Trap Manager Table View (Page 56)
- DCE Port Configuration View (Page 56)
- DTE Port Configuration View (Page 58)
- PVC Configuration Table View (Page 46)
- DBU Configuration View (Page 59)

System Configuration Information View

Access: From the Icon Subviews menu for the AdIQProbConApp icon, select System Configuration.

This view provides the following information.

General Configuration

Password

Set the Telnet and Vt100 Terminal Control Password (10 characters max).

Time of Day

Set the time of day with the format hh:mm (hour:minutes).

Date

The date with the format MM-DD-YY.

Network Configuration

IP Address

Sets the unit's IP address.

Subnet Mask

The network's subnet mask.

Gateway IP Address

Sets the network's Gateway IP address.

Control Port Configuration

Ethernet Port

Selects whether the Ethernet Port is enabled or disabled.

LEDs Reflect Port

Selects which port signals the LEDs reflect.

Port Baud

Sets the Control Port baud rate.

Port Mode

Selects the Control Port protocol.

Trap & Alarm Configuration

Trap Manager Table

This opens the *Trap Manager Table View*, which is described below.

Enable Traps

Allows you to enable or disable traps.

Network Alarms

Network Alarm State

Allows you to monitor the alarm state.

Ar/Disarm Network Alarms

Allows you to arm/disarm network alarm by clicking on appropriate box.

Trap Manager Table View

Double-clicking on an entry in this table displays the Trap Manager Table Entry View. This view provides the following information.

Route Index

The index for the route.

Route IP Address

Sets the Trap Manager IP Address.

Route DLCI

Sets the Trap Manager DLCI. (Range 16 - 1007).

Route Port

Selects the Trap Manager Port.

DCE Port Configuration View

Access: From the Icon Subviews menu for the AdIQProbConApp icon, select DCE Port Configuration.

This view displays the following information.

DCE Interface Configuration

Interface Type

Interface type for the dce interface. Possible types are x21, v35, eia530, and eia232.

Port Bit Rate

This variable is uses for utilization measurement of both the DCE and DTE ports. Set this parameter in KBPS equal to the connection rate.

Management DLCI Configuration

DLCI 1 Mode

Sets the mode for the management DLCI 1.

DLCI 2 Mode

Sets the mode for the management DLCI 2.

DLCI 1 PVC 1 Address

Sets the DLCI for management PVC 2. (Range 16 - 1007).

DLCI 2 PVC 2 Address

Sets the DLCI for management PVC 2. (Range 16 - 1007).

Frame Relay Management Interface Configuration

Port Signaling

The signaling type for the frame relay management interface. Types include: none, conLMI, ansiT1617D, ituTQ933A, and auto.

Link Integrity Poll Timer, T391

Sets the polling interval in seconds for the frame relay management.

LMI Status Polling Counter, N391

Sets the interval between full status polls for the frame relay management interface.

Error Threshold, N392

Sets the error count for the frame relay management interface.

Error Window, N393

Sets the error window (number of polling events) for the frame relay interface.

Frame Relay Monitoring Configuration

History Intervals

Sets the number of history intervals for storage.

History Intervals Available

Returns the number of history intervals allowed based on the maximum number.

Sampling Rate

Sets the minute intervals. Five minute intervals from 5 to 30.

Maximum PVC supported

Sets the maximum PVCs supported by the IQ unit. (Range 1 - 100).

DTE Port Configuration View

Access: From the Icon Subviews menu for the AdIQProbConApp icon, select DTE Port Configuration.

This view displays the following information.

Physical Layer Configuration

Interface Type

Interface type for the DTE interface. Possible types are x21, v35, eia530, and eia232.

CTS Option

Selects the Clear to Send (CTS) option. Options are forcedOn and followRTS.

CD Option

The Carrier Detect (CD) option. Options are normal and forcedOn.

DSR Option

The Data Set Ready (DSR) option. Options are normal and forcedOn.

Transmit Clock Phase

Sets the phase of the DTE Transmit clock. Either normal or inverted.

Flow Control

Determines how the IQ device will respond to congestion during DBU operation. If set for none, the IQ will drop frames during DBU operation when severe congestion occurs. If set for hardware, the IQ will vary the DTE TC clock in order to control the amount of data offered to the IQ when severe congestion occurs. fechbech mode will set the FECN bit in outbound frames and set BECN bit for inbound frames leaving flow control up to the DTE devices.

Frame Relay Layer Configuration

Port Management DLCI

Selects the DTE Port Management DLCI. (Range 16 - 1007).

Management PVC

Controls the presence of the DTE management PVC in a full status response to the DTE device.

Timeout, T392

Sets the timeout in seconds between polling intervals. (Range 5 - 30).

Error Events, N392

Sets the number of error events for the frame relay management. (Range 1 - 10)

Error Window, N393

Sets the error window (polling events) for the frame relay management.

Signaling Response

Determines how the IQ device will respond to polls from the DTE device during a network failure. If set to alwayson, the IQ will respond to polls during a network failure. If set to followsNetwork, the IQ will not respond thus emulating a failure to the DTE device. If the IQ is responsible for dial backup, this option should be set to alwayson. The other option is alwaysoff.

DBU Configuration View

Access: From the Icon Subviews menu for the AdIQProbConApp icon, select DBU Configuration.

This view displays the following information.

DBU Option

This option specifies whether the unit automatically enters dial backup mode or waits for manual setup.

DBU Mode

This option specifies the dial backup operating mode for the unit as originate or answer. One end must be set to originate and the other end to answer.

Carrier Detect Loss

This option enables the unit to enter backup mode when loss of Carrier Detect on the DCE interface occurs.

Loss of LMI Option

This option enables the unit to enter backup mode when network PVC signaling state goes down.

Answer Always

This option enables or disables Answer Always for Dial Backup operation. If enabled, the answer unit answers any incoming call regardless of failed conditions.

Beeper Option

This option enables or disables the audible alarm when the IQ unit goes into dial backup mode.

Pass Check

This option allows the unit to send and verify a dial backup passcode for an additional level of security. When enabled, the originate unit sends the passcode and the answer unit checks the passcode before the backup connection is considered valid.

Pass Code

This option sets the dial backup passcode used to provide an additional level of security. A passcode of one to ten digit characters can be set. If enabled, the originate unit sends the passcode and the answer unit checks the passcode to verify the connection.

Phone Number (1 - 5)

This option is used to set a phone number to place a DBU call.

V.34 Line Type

This option selects the type of analog phone line.

DCE Interface Type

This option enables or disables Answer Always for Dial Backup operation. If enabled, the answer unit answers any incoming call regardless of failed conditions.

DCE Bit Rate

This option is uses for utilization measurement of the DBU port when an external DCE device is used. Set this parameter in KBPS close to the connection rate.

Start Lockout

This option selects the hour to begin disabling dial backup operation when daily or weekend lockout mode is active.

End Lockout

This option selects the hour to end dial backup lockout when daily or weekend lockout mode is active.

Weekend Lockout

This option enables or disables Weekend Lockout for Dial Backup operation. If enabled, no backup will occur from midnight Friday to midnight Sunday.

Daily Lockout

This option enables or disables Daily Lockout for Dial Backup operation. If enabled, no backup will occur between Lockout Start hour and Lockout End hour.

Redial Timer

This option works in conjunction with the Redial Counter option. The Redial Timer specifies the amount of time between redial attempts. The Redial Timer value is seconds, up to a maximum of 60 seconds

Fail Timeout

This option allows the selection of the amount of time that the dedicated circuit failure condition is active before attempting to enter dial backup mode. The Fail Timeout value is in increments of 10 seconds up to a maximum of 600 seconds.

Redial Count

This option allows the selection of the number of times the unit will redial the Far End unit when attempting to go to backup and a busy or reorder condition occurs. Redial count can be set for a maximum of 60.

Auto Restore Timer

This option selects the amount of time that the DSUIQ circuit must be active before the unit switches from backup to normal mode of operation. The timer value is in minutes from 0 to 60. A zero value disables automatic restore, DSUIQ operation must be restored manually.

ISDN Channel Rate

This option is used to select the ISDN channel rate.

ISDN Channel Count

This option is used to select the number ISDN channels to use.

ISDN SPID 1

This option is used to set the SPID for the ISDN interface.

ISDN SPID 2

This option is used to set the SPID for the ISDN interface.

ISDN LDN 1

This option is used to set LDN for the ISDN interface.

ISDN LDN 2

This option is used to set LDN for the ISDN interface.

Adtran IQ Probe Status App (AdIQProbStaApp)

This application has the following available application-specific subviews:

- Current Status View (Page 61)
- DBU Interval Status Table View (Page 62)
- DBU Daily Status Table View (Page 63)
- DCE Interval Status Table View (Page 65)
- DCE Daily Status Table View (Page 65)
- Diagnostic Table View (Page 54)

Current Status View

Access: From the Icon Subviews menu for the AdIQProbStaApp, select Current Status.

This view provides the following information.

DBU State

The current state of the DBU interface.

DBU Port Type

The DBU card type installed. Possible types are empty, v34modem, dce, sw564wire, sw562wire, and isdn.

DTE Signaling State

The current state of the PVC signaling between the DSUIQ and the attached frame relay DTE. Either up or down.

DCE Signaling State

The current state of the PVC signaling between the DSUIQ and the frame relay DCE. Either up or down.

NET PVC Count

The current count of network PVCs.

NET PVC Config Table Size

The current count of rows in the PVC config table.

LED Status

This bit map integer reflects the DSUIQ front panel LED state. Possible selections are Test, RD, CTS, Alarm, TD, RTS, and DCD.

DTE Control Leads

The current state of the DTE control leads. Possible selections are CTS, DSR, DCD, RTS, and DTR.

DCE Control Leads

The current state of the DCE control leads.

DBU Interval Status Table View

Access: From the Icon Subviews menu for the AdIQProbStaApp, select DBU Interval Status Table.

This view displays the following information.

Slot Index

The instance for this entry.

Frames Rx

The number of frames the port received for the interval.

Frames Tx

The number of frames the port transmitted for the interval.

Bytes Rx

The number of bytes the port received for the interval.

Bytes Tx

The number of bytes the port transmitted for the interval.

Avg Thruput Tx

The average throughput the port transmitted for the interval.

Avg Thruput Rx

The average throughput the port received for the interval.

Max Thruput Tx

The maximum throughput the port transmitted for the interval.

Max Thruput Rx

The maximum throughput the port received for the interval.

Avg Utilization Tx

The average utilization the port transmitted for the interval.

Avg Utilization Rx

The average utilization the port received for the interval.

Max Utilization Tx

The maximum utilization the port transmitted for the interval.

Max Utilization Rx

The maximum utilization the port received for the interval.

DBU Active Time

Time in seconds the DBU port was active.

CRC Errors

Number of frames received with CRC errors.

Abort Frames

Number of frames received without proper flag termination.

Octet Violations

Number of frames received with a bit count not divisible by eight.

Discarded Frames

Number of frames discarded by the IQ unit.

Length Errors

Number of frames received that is less than 5 bytes or greater than 4500 bytes.

Encapsulation Errors

Number of frames destined for the IQ IP stack with that does not meet the FRF.3 IA.

Unroutable Frames

Number of frames received on a management DLCI destined for the IQ unit and have the wrong IP address.

DBU Daily Status Table View

Access: From the Icon Subviews menu for the AdIQProbStaApp, select DBU Daily Status Table.

This view displays the following information.

Slot Index

The instance for this entry.

Frames Rx

The number of frames the port received for the day.

Frames Tx

The number of frames the port transmitted for the day.

Bytes Rx

The number of bytes the port received for the day.

Bytes Tx

The number of bytes the port transmitted for the day.

Avg Thruput Tx

The average throughput the port transmitted for the day.

Avg Thruput Rx

The average throughput the port received for the day.

Max Thruput Tx

The maximum throughput the port transmitted for the day.

Max Thruput Rx

The maximum throughput the port received for the day.

Avg Utilization Tx

The average utilization the port transmitted for the day.

Avg Utilization Rx

The average utilization the port received for the day.

Max Utilization Tx

The maximum utilization the port transmitted for the day.

Max Utilization Rx

The maximum utilization the port received for the day.

DBU Active Time

Time in seconds the DBU port was active.

CRC Errors

Number of frames received with CRC errors.

Abort Frames

Number of frames received without proper flag termination.

Octet Violations

Number of frames received with a bit count not divisible by eight.

Discarded Frames

Number of frames discarded by the IQ unit.

Length Errors

Number of frames received that is less than 5 bytes or greater than 4500 bytes.

Encapsulation Errors

Number of frames destined for the IQ IP stack with that does not meet the FRF.3 IA.

Unroutable Frames

Number of frames received on a management DLCI destined for the IQ unit and have the wrong IP address.

DCE Interval Status Table View

Access: From the Icon Subviews menu for the AdIQProbStaApp, select DCE Interval Status Table.

This view displays the following information.

Slot Index

The instance for this entry.

Unavailable Seconds

Amount of time in seconds the DCE port is unavailable due to test or in an inactive state.

DSR State Change

Number of changes in the DCE port Data Set Ready signal.

DCD State Change

Number of changes in the DCE port Carrier Detect signal.

DCE Daily Status Table View

Access: From the Icon Subviews menu for the AdIQProbStaApp, select DCE Daily Status Table.

This view displays the following information.

Slot Index

The instance for this entry.

Unavailable Seconds

Amount of time in seconds the DCE port is unavailable due to test or in an inactive state.

DCD State Change

Number of changes in the DCE port state. This includes all normal, inactive, and test state transitions.

DSR State Change

Number of changes in the DCE port Data Set Ready signal.

Adtran TSU IQ Configuration Application (AdTSUIQConApp)

This application has the following applicationspecific subviews:

- System Configuration Information View (Page 42)
- Network Port Configuration View (Page 66)
- DTE Port Configuration View (Page 68)
- PVC Configuration Table View (Page 46)
- DBU Configuration View (Page 108)

Network Port Configuration View

Access: From the Icon Subviews menu for the AdTSUIQConApp, select Network Port Configuration.

This view provides the following information.

T1 Interface Configuration

Port Frame Type

The Frame type for T1 interface. Possible values are d4, eSF, and auto.

Port Clock Source

Timing source for the transmit side of the T1 interface. Possible sources are internal and fromNetwork.

Port Line Code

The line code for the T1 interface. Possible codes are b8ZS and aMI.

Receiver Sensitivity

Selects the gain of receiver for the T1 interface. Either normal or extended.

Port Line Build Out

Line build out for the transmit side of the T1 interface. Possible values are auto, dB0, dB7, dB15, and dB22.

Channel Count

Selects the number of active channels for the T1 interface.

Channel Start

Selects the channel that begins the active channel list for the T1 interface.

Channel Bandwidth

Selects the amount of data in each active channel for the T1 interface. Options are x56Kbp and x64Kbps.

Channel Alignment

Selects the alignment of active channels for the T1 interface. Options are contiguous and alternating.

Management DLCI Configuration

DLCI 1 Mode

Sets the mode for the management DLCI 1. If set for shared, management DLCI 1 is used for customer data and IQ management data. If set for dedicated, management DLCI 1 is used only for IQ management data and is not passed to the attached frame relay DTE device.

DLCI 2 Mode

Sets the mode for the management DLCI 2. If set for shared, management DLCI 2 is used for customer data and IQ management data. If set for dedicated, management DLCI 2 is used only for IQ management data and is not passed to the attached frame relay DTE device.

DLCI 1 PVC 1 Address

Sets the address for management PVC 1 (Range 16 - 1007).

DLCI 2 PVC 2 Address

Sets the address for management PVC 2 (Range 16 - 1007).

Frame Relay Management Monitoring Configuration

Port Signaling

Signaling type for the frame relay management interface. Possible types are none, conLM, ansiT1617D, ituQ933A, and auto.

Link Integrity Poll Timer, T391

Sets the polling interval in seconds for the frame relay management interface (Range 5 - 30).

LMI Status Polling Counter, N391

Sets the interval between full status polls for the frame relay management interface (Range 1 - 255).

Error Threshold, N392

Sets the error count for the frame relay management interface (Range 1 - 10).

Error Window, N393

Sets the event window for the frame relay management interface (Range 1 - 10).

Frame Relay Monitoring Configuration

History Intervals

Sets the number of history intervals for storage.

History Intervals Available

Returns the number of history intervals allowed based on the maximum number of PVCs selected.

Sampling Rate

Allows you to set the sampling rate for frame relay monitoring. Options are min5, min10, min15, min20, and min30.

Maximum PVC supported

Sets the maximum PVCs supported by the IQ unit (Range 1 - 100).

DTE Port Configuration View

Access: From the **Icon Subviews** menu for the AdTSUIQConApp, select **DTE Port Configuration**.

This view displays the following information.

Physical Layer Configuration

CTS Option

Selects the Clear to Send (CTS) option. Options are forcedOn and followRTS

CD Option

Selects the Carrier Detect (CD) option. Either normal or forcedOn.

DSR Option

Selects the Data Set Ready (DSR) option. Either normal or forcedOn.

Transmit Clock Phase

Sets the phase of the DTE Transmit clock. Either normal or inverted.

Flow Control

Determines how the IQ device will respond to congestion during DBU operation. If set for none, the IQ will drop frames during DBU operation when severe congestion occurs. If set for hardware, the IQ will vary the DTE TC clock in order to control the amount of data offered to the IQ when severe congestion occurs. fechbech mode will set the FECN bit in outbound frames and set BECN bit for inbound frames leaving flow control up to the DTE devices.

Frame Relay Layer Configuration

Port Management DLCI

Selects the DTE Port Management DLCI (Range 16 - 1007).

Management PVC

Controls the presence of the DTE management PVC in a full status response to the DTE device. Either enabled or disabled.

Timeout, T392

Sets the timeout in seconds between polling intervals (Range 5 - 30).

Error Events, N392

Sets the number of error events for the frame relay management (Range 1 - 10).

Error Window, N393

Sets the error window (polling events) for the frame relay management (Range 1 - 10).

Signaling Response

Determines how the IQ device will respond to polls from the DTE device during a network failure. If set to alwayson, the IQ will respond to polls during a network failure. If set to followNetwork, the IQ will not respond thus emulating a failure to the DTE device. If the IQ is responsible for dial backup, this option should be set to alwayson.

DBU Configuration View

Access: From the Icon Subviews menu for the AdTSUIQConApp, select DBU Configuration.

This view displays the following information.

DBU Option

This specifies whether the unit automatically enters dial backup mode or waits for manual setup.

DBU Mode

This option specifies the dial backup operating mode for the unit as originate or answer. One must be set to originate and the other end to answer.

Network Failure Option

This option enables the unit to enter backup mode when T1 network failure occurs.

Loss of LMI Option

This enables the unit to enter backup mode when the network PVC signaling state goes down.

Answer Always

This enables or disables Answer Always for Dial Backup operation. If enabled, the answer unit answers any incoming calls regardless of failed conditions.

Beeper Option

This option enables or disables the audible alarm when the IQ unit goes into dial backup mode.

Pass Check

This allows the unit to send and verify a dial backup passcode for an additional level of security. When enabled, the originate unit sends the passcode and the answer unit checks the passcode before the backup configuration is considered valid.

Pass Code

This sets the dial backup passcode used to provide an additional level of security. A passcode of 1 to 10 digit characters can be set. If enabled, the originate unit sends the passcode and the

answer unit checks the passcode to verify the connection.

Phone Number (1 - 5)

This option is used to set a phone number to place a DBU call. This allows for up to 5 different numbers to be set.

V.34 Line Type

This option selects the type of analog phone line, either tone or pulse.

DCE Interface Type

This sets the DCE Interface type, either rs232 or v35.

DCE Bit Rate

This option is used for utilization measurement of the DPU port when an external DCE device is used.

Start Lockout

This option selects the hour to begin disabling dial backup operation when daily or weekend lockout mode is inactive.

End Lockout

This option selects the hour to end dial backup lockout when daily or weekend lockout mode is active.

Weekend Lockout

This option enables or disables Weekend Lockout for Dial Backup operation. If enabled, no backup will occur from midnight Friday to midnight Saturday.

Daily Lockout

This enables or disables Daily Lockout for Dial Backup operation. If enabled, no backup will occur between Lockout Start hour and Lockout End hour.

Redial Timer

This option works in conjunction with the Redial Counter option. The Redial Timer specifies the amount of time between redial attempts. The Redial Timer value is seconds, up to a maximum of 60.

Fail Timeout

This option allows the selection of the amount of time that the dedicated circuit failure condition is active before attempting to enter dial backup mode. The Fail Timeout value is in increments of 10 seconds up to a maximum of 600 seconds.

Redial Count

This allows the selection of the number of times the unit will redial the Far End unit when attempting to go to backup and a busy or reorder condition occurs. Redial count can be set for a maximum of 60.

Auto Restore Timer

This option selects the amount of time that the DSUIQ circuit must be active before the unit switches from backup to normal mode of operation. The timer value is in minutes from 0 to 60. A zero value disables the automatic restore.

ISDN Switch

This option is used to select the ISDN switch type. Types are att-5ess and nt-dms-100.

ISDN Channel Rate

This option is used to select the ISDN channel rate.

ISDN SPID 1

This option is used to set the Service Provider ID (SPID) for the ISDN interface.

ISDN SPID 2

This option is used to set the SPID for the ISDN interface.

ISDN LDN 1

This option is used to LDN for the ISDN interface.

ISDN LDN 2

This option is used to set LDN for the ISDN interface.

Adtran TSU IQ Status Application (AdTSUIQStatApp)

This application has the following available application-specific subviews:

- Current Status View
- T1 Interval Status Table View (Page 72)
- T1 Daily Status Table (Page 73)
- DBU Interval Status Table View (Page 74)
- DBU Daily Status Table (Page 76)
- Diagnostic Table View (Page 54)

Current Status View

Access: From the Icon Subviews menu for the AdTSUIQStatApp, select **Current Status**.

This view displays the following information.

T1 State

Current status of the T1 interface. Possible values are openLoop, testFromTelco, blueAlarm, redAlarm, yellowAlarm, eSFNormal, and d4Normal.

DBU State

The current state of the DBU interface. Possible states are emptySlot, openLoop, gettingTEI, tEIOK, sPIDOK, idle, inDBU, waitingForCall,

noSealingCurrent, outOfService, noRXSignal, ringing, dialing, dialingNumber1, dialingNumber2, dialingNumber3, dialingNumber4, dialingNumber5, answeringCall, noDialTone, noAnswer, busy, waitingToDial, connect, connect33d6, connect31d2, connect115d2R, connect115d2, connect28d8, connect26d4, connect24d0, connect21d6, connect57d6R, connect38d4R, connect19d2R, connect9d6R, connect4d8R, connect2d4R, connect16d8, connect14d4, connect12d0, connect7d2, connect57d6, connect38d4, connect19d2, connect9d6, connect4d8, connect2d4, sendingPasscode, waitingPasscode, invalidPasscode, validPasscode and error.

DBU Port Type

Returns the DBU card type installed. Possible types are empty, v34modem, dce, sw564wire, sw562wire, and isdn.

DTE Signaling State

Current state of the PVC signaling between the TSUIQ and the attached frame relay DTE. Either up or down.

NET Signaling State

Current state of the PVC signaling between the TSUIQ and the frame relay service.

NET PVC Count

Current count of network PVCs.

NET PVC Config Table Size

Current count of rows in the PVC config table.

LAN Port Status

The current status of the LAN port.

LED Status

This reflects TSUIQ front panel LED state.

DTE Control Leads

This reflects the current state of the DTE control leads.

T1 Interval Status Table View

Access: From the Icon Subviews menu for the AdTSUIQStatApp, select **T1 Interval Status Table**.

This view displays the following information.

Slot Index

The instance for this entry.

Unavail Secs

Amount of time in seconds the T1 port is unavailable due to test or in an inactive state.

State Change

Number of changes in the T1 port state. This includes all normal, inactive, and test state transitions.

Signal Loss Event

An active state represents one or more signal loss events.

Loop Back Event

Active state represents one or more loopback events.

AIS Event

Active state represents one or more AIS events. AIS is triggered by unframed all ones condition from the T1 service provider.

Red Alarm Event

Active state represents one or more AIS events. AIS is triggered by unframed all ones condition from the T1 service provider.

Yellow Alarm Event

Active state represents one or more yellow alarm events. Yellow alarm is an indication the service provider has lost frame alignment.

PLL Alarm Event

Active state represents one or more PLL alarm events. PLL alarm is an indication that the transmit and receive side of the T1 interface are

not looped timed. This will occur when both ends of the T1 are set to provide timing.

Path Code Violations

Count of path code violations received. Path code violations are a errors in the frame bit positions for D4 and ESF CRC errors when set for ESF.

Line Code Violations

Count of line code violations received. Line code violations are a combination of BPVs that are not part of B8ZS code and excess zeros. Excess zeros are eight or more consecutive zeros when set for B8ZS and fifteen or more consecutive zeros when set for AMI.

T1 Daily Status Table

Access: From the Icon Subviews menu for the AdTSUIQStatApp, select **T1 Daily Status Table**.

This view displays the following information.

Slot Index

The instance for this entry.

Unavail Secs

Amount of time in seconds the T1 port is unavailable due to test or in an inactive state.

State Change

Number of changes in the T1 port state. This includes all normal, inactive, and test state transitions.

Signal Loss Event

An active state represents one or more signal loss events.

Loop Back Event

Active state represents one or more loopback events.

AIS Event

Active state represents one or more AIS events. AIS is triggered by unframed all ones condition from the T1 service provider.

Red Alarm Event

Active state represents one or more AIS events. AIS is triggered by unframed all ones condition from the T1 service provider.

Yellow Alarm Event

Active state represents one or more yellow alarm events. Yellow alarm is an indication the service provider has lost frame alignment.

PLL Alarm Event

Active state represents one or more PLL alarm events. PLL alarm is an indication that the transmit and receive side of the T1 interface are

not looped timed. This will occur when both ends of the T1 are set to provide timing.

Path Code Violations

Count of path code violations received. Path code violations are a errors in the frame bit positions for D4 and ESF CRC errors when set for ESF.

Line Code Violations

Count of line code violations received. Line code violations are a combination of BPVs that are not part of B8ZS code and excess zeros. Excess zeros are eight or more consecutive zeros when set for B8ZS and fifteen or more consecutive zeros when set for AMI.

DBU Interval Status Table View

Access: From the Icon Subviews menu for the AdTSUIQStatApp, select **DBU Interval Status Table**.

This view displays the following information.

Slot Index

The instance for this entry.

Frames Rx

The number of frames the port received for the interval.

Frames Tx

The number of frames the port transmitted for the interval.

Bytes Rx

The number of bytes the port received for the interval.

Bytes Tx

The number of bytes the port transmitted for the interval.

Avg Thruput Tx

The average throughput the port transmitted for the interval.

Avg Thruput Rx

The average throughput the port received for the interval.

Max Thruput Tx

The maximum throughput the port transmitted for the interval.

Max Thruput Rx

The maximum throughput the port received for the interval.

Avg Utilization Tx

The average utilization the port transmitted for the interval.

Avg Utilization Rx

The average utilization the port received for the interval.

Max Utilization Tx

The maximum utilization the port transmitted for the interval.

Max Utilization Rx

The maximum utilization the port received for the interval.

DBU Active Time

Time in seconds the DBU port was active.

CRC Errors

Number of frames received with CRC errors.

Abort Frames

Number of frames received without proper flag termination.

Octet Violations

Number of frames received with a bit count not divisible by eight.

Discarded Frames

Number of frames discarded by the IQ unit.

Length Errors

Number of frames received that is less than 5 bytes or greater than 4500 bytes.

Encapsulation Errors

Number of frames destined for the IQ IP stack with that does not meet the FRF.3 IA.

Unroutable Frames

Number of frames received on a management DLCI destined for the IQ unit and have the wrong IP address.

DBU Daily Status Table

Access: From the Icon Subviews menu for the AdTSUIQStatApp icon, select DBU Daily Status Table.

This view provides the following information.

Slot Index

The instance for this entry.

Frames Rx

The number of frames the port received for the day.

Frames Tx

The number of frames the port transmitted for the day.

Bytes Rx

The number of bytes the port received for the day.

Bytes Tx

The number of bytes the port transmitted for the day.

Avg Thruput Tx

The average throughput the port transmitted for the day.

Avg Thruput Rx

The average throughput the port received for the day.

Max Thruput Tx

The maximum throughput the port transmitted for the day.

Max Thruput Rx

The maximum throughput the port received for the day.

Avg Utilization Tx

The average utilization the port transmitted for the day.

Avg Utilization Rx

The average utilization the port received for the day.

Max Utilization Tx

The maximum utilization the port transmitted for the day.

Max Utilization Rx

The maximum utilization the port received for the day.

DBU Active Time

Time in seconds the DBU port was active.

CRC Errors

Number of frames received with CRC errors.

Abort Frames

Number of frames received without proper flag termination.

Octet Violations

Number of frames received with a bit count not divisible by eight.

Discarded Frames

Number of frames discarded by the IQ unit.

Length Errors

Number of frames received that is less than 5 bytes or greater than 4500 bytes.

Encapsulation Errors

Number of frames destined for the IQ IP stack with that does not meet the FRF.3 IA.

Unroutable Frames

Number of frames received on a management DLCI destined for the IQ unit and have the wrong IP address.

Adtran TSU IQ+ Configuration Application (AdTSUIQPConApp)

This application has the following available application-specific subviews:

- System Configuration Information View (Page 42)
- Network Port Configuration View (Page 77)
- DSX Port Configuration View (Page 79)
- DTE Port Configuration View (Page 68)
- PVC Configuration Table View (Page 46)
- DBU Configuration View (Page 69)

Network Port Configuration View

Access: From the Icon Subviews menu for the AdTSUIQPConApp, select Network Port Configuration.

This view displays the following information.

T1 Interface Configuration

Port Frame Type

The Frame type for T1 interface. Possible values are d4, eSF, and auto.

Port Clock Source

Timing source for the transmit side of the T1 interface. Possible sources are internal and fromNetwork.

Port Line Code

The line code for the T1 interface. Possible codes are b8ZS and aMI.

Receiver Sensitivity

Selects the gain of receiver for the T1 interface. Either normal or extended.

Port Line Build Out

Line build out for the transmit side of the Tl interface. Possible values are auto, dB0, dB7, dB15, and db22.

Channel Bandwidth

Selects the amount of data in each active channel for the T1 interface. Options are x56Kbp and x64Kbps.

Transmit PRM

Enables performance report generation across the T1 FDL for the T1 interface. Either premon, or premoff.

Frame Relay Management Interface Configuration

Port Signaling

Signaling type for the frame relay management interface. Possible types are none, conLMI, ansiT1617D, ituQ933A, and auto.

Polling Interval (secs), T391

Sets the polling interval in seconds for the frame relay management interface. (Range 5 - 30).

Full Status Polls Interval, N391

Sets the interval between full status polls for the frame relay management interface. (Range 1 - 255).

Error Threshold, N392

Sets the number of error events for the frame relay management (Range 1 - 10).

Error Window, N393

Sets the error window (polling events) for the frame relay management (Range 1 - 10).

Management DLCI Configuration

DLCI 1 Mode

Sets the mode for the managent DLCI 1. If set for shared, management DLCI 1 is used for customer data and IQ management data. If set for dedicated, management DLCI 1 is used only for

IQ management data and is not passed to the attached frame relay DTE device.

DLCI 2 Mode

Sets the mode for the management DLCI 2. If set for shared, management DLCI 2 is used for customer data and IQ management data. If set for dedicated, management DLCI 2 is used only for IQ management data and is not passed to the attached frame relay DTE device.

DLCI 1 PVC 1 Address

Sets the address for management PVC 1 (Range 16 - 1007).

DLCI 2 PVC 2 Address

Sets the address for management PVC 2 (Range 16 - 1007).

Frame Relay Monitoring Configuration

History Intervals

Sets the number of history intervals for storage.

History Intervals Available

Returns the number of history intervals allowed based on the maximum number of PVCs selected.

Sampling Rate

Allows you to set the sampling rate for frame relay monitoring. Options are min5, min10, min15, min20, and min30.

Maximum PVC supported

Sets the maximum PVCs supported by the IQ unit (Range 1 - 100).

DSX Port Configuration View

Access: From the Icon Subviews menu for the AdTSUIQPConApp, select DSX Port Configuration.

This view displays the following information.

Port Frame Type

Frame type for DSX interface. Either d4 or eSF.

Port Line Code

Line code for the DSX interface. Either b8ZS or aMI.

Yellow Alarm Option

This option controls the origination of Yellow alarm in case of framing loss on the receive side of the DSX interface.

Port Line Build Out

Line build out for the transmit side of the DSX interface. Possible values are dB0, dB7,dB15, and db22.

Robbed Bit Signaling

Set for enabled if robbed bit signaling is used on the DSX interface.

Loopback Response

Enables the DSX interface to respond to loopback codes.

Loopback Type

Forces loopback on the DSO channels assigned to the DSX interface. none option disables loopback, line option forces a loopback toward the network, port option forces a loopback toward the attached DSX device.

Adtran TSU IQ+ Status Application (AdTSUIQPStaApp)

This application has the following available application-specific subviews:

- Current Status View (Page 80)
- T1 Interval Status Table View (Page 81)
- T1 Daily Status Table View (Page 82)
- DBU Interval Status Table View (Page 83)
- DBU Daily Status Table View (Page 84)
- DSX Interval Status Table View (Page 86)
- DSX Daily Status Table View (Page 87)
- Diagnostic Table View (Page 54)

Current Status View

Access: From the Icon Subviews menu for the AdTSUIQPStaApp, select Current Status.

This view displays the following information.

T1 State

Current status of the T1 interface. Possible values are openLoop, testFromTelco, blueAlarm, redAlarm, yellowAlarm, eSFNormal, and d4Normal.

DBU State

The current state of the DBU interface.

DBU Port Type

Returns the DBU card type installed. Possible types are empty, v34modem, dce, sw564wire, sw562wire, and isdn.

DSX State

The current state of the DSX port.

DTE Signaling State

Current state of the PVC signaling between the TSUIQ and the attached frame relay DTE. Either up or down.

NET Signaling State

Current state of the PVC signaling between the TSUIQ and the frame relay service.

NET PVC Count

Current count of network PVCs.

LAN Port Status

The current status of the LAN port.

NET PVC Config Table Size

Current count of rows in the PVC config table.

LED Status

The TSUIQ front panel LED state.

DTE Control Leads

The current state of the DTE control leads.

T1 Interval Status Table View

Access: From the Icon Subviews menu for the AdTSUIQPStaApp, select T1 Interval Status Table.

This view displays the following information.

Slot Index

The instance for this entry.

Unavail Secs

Amount of time in seconds the T1 port is unavailable due to test or in an inactive state.

State Change

Number of changes in the T1 port state. This includes all normal, inactive, and test state transitions.

Signal Loss Event

An active state represents one or more signal loss events.

Loop Back Event

Active state represents one or more loopback events.

AIS Event

Active state represents one or more AIS events. AIS is triggered by unframed all ones condition from the T1 service provider.

Red Alarm Event

Active state represents one or more AIS events. AIS is triggered by unframed all ones condition from the T1 service provider.

Yellow Alarm Event

Active state represents one or more yellow alarm events. Yellow alarm is an indication the service provider has lost frame alignment.

PLL Alarm Event

Active state represents one or more PLL alarm events. PLL alarm is an indication that the transmit and receive side of the T1 interface are not looped timed. This will occur when both ends of the T1 are set to provide timing.

Path Code Violations

Count of path code violations received. Path code violations are a errors in the frame bit positions for D4 and ESF CRC errors when set for ESF.

Line Code Violations

Count of line code violations received. Line code violations are a combination of BPVs that are not part of B8ZS code and excess zeros. Excess zeros are eight or more consecutive zeros when set for B8ZS and fifteen or more consecutive zeros when set for AMI.

T1 Daily Status Table View

Access: From the Icon Subviews menu for the AdTSUIQPStaApp, select T1 Daily Status Table.

This view displays the following information.

Slot Index

The instance for this entry.

Unavail Secs

Amount of time in seconds the T1 port is unavailable due to test or in an inactive state.

State Change

Number of changes in the T1 port state. This includes all normal, inactive, and test state transitions.

Signal Loss Event

An active state represents one or more signal loss events.

Loop Back Event

Active state represents one or more loopback events.

AIS Event

Active state represents one or more AIS events. AIS is triggered by unframed all ones condition from the T1 service provider.

Red Alarm Event

Active state represents one or more AIS events. AIS is triggered by unframed all ones condition from the T1 service provider.

Yellow Alarm Event

Active state represents one or more yellow alarm events. Yellow alarm is an indication the service provider has lost frame alignment.

PLL Alarm Event

Active state represents one or more PLL alarm events. PLL alarm is an indication that the transmit and receive side of the T1 interface are not looped timed. This will occur when both ends of the T1 are set to provide timing.

Path Code Violations

Count of path code violations received. Path code violations are a errors in the frame bit positions for D4 and ESF CRC errors when set for ESF.

Line Code Violations

Count of line code violations received. Line code violations are a combination of BPVs that are not part of B8ZS code and excess zeros. Excess zeros are eight or more consecutive zeros when set for B8ZS and fifteen or more consecutive zeros when set for AMI.

DBU Interval Status Table View

Access: From the Icon Subviews menu for the AdTSUIQPStaApp, select DBU Interval Status Table.

This view displays the following information.

Slot Index

The instance for this entry.

Frames Rx

The number of frames the port received for the interval.

Frames Tx

The number of frames the port transmitted for the interval.

Bytes Rx

The number of bytes the port received for the interval.

Bytes Tx

The number of bytes the port transmitted for the interval.

Avg Thruput Tx

The average throughput the port transmitted for the interval.

Avg Thruput Rx

The average throughput the port received for the interval.

Max Thruput Tx

The maximum throughput the port transmitted for the interval.

Max Thruput Rx

The maximum throughput the port received for the interval.

Avg Utilization Tx

The average utilization the port transmitted for the interval.

Avg Utilization Rx

The average utilization the port received for the interval.

Max Utilization Tx

The maximum utilization the port transmitted for the interval.

Max Utilization Rx

The maximum utilization the port received for the interval.

DBU Active Time

Time in seconds the DBU port was active.

CRC Errors

Number of frames received with CRC errors.

Abort Frames

Number of frames received without proper flag termination.

Octet Violations

Number of frames received with a bit count not divisible by eight.

Discarded Frames

Number of frames discarded by the IQ unit.

Length Errors

Number of frames received that is less than 5 bytes or greater than 4500 bytes.

Encapsulation Errors

Number of frames destined for the IQ IP stack with that does not meet the FRF.3 IA.

Unroutable Frames

Number of frames received on a management DLCI destined for the IQ unit and have the wrong IP address.

DBU Daily Status Table View

Access: From the Icon Subviews menu for the AdTSUIQPStaApp, select DBU Daily Status Table.

This view displays the following information.

Slot Index

The instance for this entry.

Frames Rx

The number of frames the port received for the day.

Frames Tx

The number of frames the port transmitted for the day.

Bytes Rx

The number of bytes the port received for the day.

Bytes Tx

The number of bytes the port transmitted for the day.

Avg Thruput Tx

The average throughput the port transmitted for the day.

Avg Thruput Rx

The average throughput the port received for the day.

Max Thruput Tx

The maximum throughput the port transmitted for the day.

Max Thruput Rx

The maximum throughput the port received for the day.

Avg Utilization Tx

The average utilization the port transmitted for the day.

Avg Utilization Rx

The average utilization the port received for the day.

Max Utilization Tx

The maximum utilization the port transmitted for the day.

Max Utilization Rx

The maximum utilization the port received for the day.

DBU Active Time

Time in seconds the DBU port was active.

CRC Errors

Number of frames received with CRC errors.

Abort Frames

Number of frames received without proper flag termination.

Octet Violations

Number of frames received with a bit count not divisible by eight.

Discarded Frames

Number of frames discarded by the IQ unit.

Length Errors

Number of frames received that is less than 5 bytes or greater than 4500 bytes.

Encapsulation Errors

Number of frames destined for the IQ IP stack with that does not meet the FRF.3 IA.

Unroutable Frames

Number of frames received on a management DLCI destined for the IQ unit and have the wrong IP address.

DSX Interval Status Table View

Access: From the Icon Subviews menu for the AdTSUIQPStaApp, select DSX Interval Status Table.

This view displays the following information.

Slot Index

The instance for this entry.

Unavail Secs

Amount of time in seconds the T1 port is unavailable due to test or in an inactive state.

State Change

Number of changes in the T1 port state. This includes all normal, inactive, and test state transitions.

Signal Loss Event

An active state represents one or more signal loss events.

Loop Back Event

Active state represents one or more loopback events.

AIS Event

Active state represents one or more AIS events. AIS is triggered by unframed all ones condition from the T1 service provider.

Red Alarm Event

Active state represents one or more AIS events. AIS is triggered by unframed all ones condition from the T1 service provider.

Yellow Alarm Event

Active state represents one or more yellow alarm events. Yellow alarm is an indication the service provider has lost frame alignment.

PLL Alarm Event

Active state represents one or more PLL alarm events. PLL alarm is an indication that the transmit and receive side of the T1 interface are not looped timed. This will occur when both ends of the T1 are set to provide timing.

Path Code Violations

Count of path code violations received. Path code violations are a errors in the frame bit positions for D4 and ESF CRC errors when set for ESF.

Line Code Violations

Count of line code violations received. Line code violations are a combination of BPVs that are not part of B8ZS code and excess zeros. Excess zeros are eight or more consecutive zeros when set for B8ZS and fifteen or more consecutive zeros when set for AMI.

DSX Daily Status Table View

Access: From the Icon Subviews menu for the AdTSUIQPStaApp, select DSX Daily Status Table.

This view displays the following information.

Slot Index

The instance for this entry.

Unavail Secs

Amount of time in seconds the DSX port is unavailable due to test or in an inactive state.

State Change

Number of changes in the DSX port state. This includes all normal, inactive, and test state transitions.

Signal Loss Event

An active state represents one or more signal loss events.

Loop Back Event

Active state represents one or more loopback events.

AIS Event

Active state represents one or more AIS events. AIS is triggered by unframed all ones condition from the DSX service provider.

Red Alarm Event

Active state represents one or more AIS events. AIS is triggered by unframed all ones condition from the T1 service provider.

Yellow Alarm Event

Active state represents one or more yellow alarm events. Yellow alarm is an indication the service provider has lost frame alignment.

PLL Alarm Event

Active state represents one or more PLL alarm events. PLL alarm is an indication that the transmit and receive side of the DSX interface are not looped timed. This will occur when both ends of the DSX are set to provide timing.

Path Code Violations

Count of path code violations received. Path code violations are a errors in the frame bit positions for D4 and ESF CRC errors when set for ESF.

Line Code Violations

Count of line code violations received. Line code violations are a combination of BPVs that are not part of B8ZS code and excess zeros. Excess zeros are eight or more consecutive zeros when set for B8ZS and fifteen or more consecutive zeros when set for AMI.

Adtran DSU IV Application (AdDSUIVApp)

This application has the following available application-specific subviews:

- DSU IV Status View
- Test Operation View (Page 91)
- Dial Operation View (Page 92)
- Unit Configuration View (Page 92)
- Network Configuration View (Page 93)
- DTE Configuration View (Page 97)
- Dial Configuration View (Page 98)
- Test Configuration View (Page 99)

DSU IV Status View

Access: From the Icon Subviews menu for the AdDSUIVApp, select DSU IV Status.

This view displays the following information.

Unit State

This status contains the current DSUIV operational state. Possible states are normal, alarm, dialBackup, and test.

Test Status

This status variable contains DSUIV test and remote configuration status information. Possible

values are normal, dteOnly, localLoopOnly,
localDTEandLoop, remoteConfigMaster,
remoteConfigSlave, remoteLoop,
remoteLoopTP, dteWithTP, testPattern,
dteAndLoopTest, loopOnlyTest, rdlFromDSUIV,
dbuTestOriq, and dbuTestAnswer.

Self Test

This status variable contains the DSUIV unit self test result. Possible results are selfTestPass, checksumFail, ramTestFail, lalTestFail, and eepromTestFail.

Last Command Status

This status variable indicates the result of the last command executed. Options are success or failure.

Call Disconnect Status

This Call Disconnect Status variable gives the reason the DSUIV unit dropped the last call. Possible reasons are activeCall, noAnswer, busy, noDialTone, farEndDisconnect, noPasscode, invalidPasscode, validCallBack, autoRestoreDisconnect, and powerOnReset.

ESP DBU Card

The type ESP Dial Backup Card installed in the DSUIV unit. Possible types are notInstalled, espDbuS4W, espDbuV34, and espDbuISDN.

ESP LAN Card

The type ESP Lan Card installed in the DSUIV unit. Either notInstalled or espEthernet.

Front Panel LEDs

This status value contains the on or off state of the DSUIV unit's front panel indicators. The LED bit values are: RS, CS, TD, RD, CD, ALM, and TST.

Network Loop Status

This status variable contains network loop status information. The status is a bit mapped sum, multiple bits can be active simultaneously. Possible statuses are OOS/OOFcode, NoReceiveSignal, NoSealingCurrent, NoFrameSync, AttemptRateAdapt, RTtest, LLtest, and DBUInProgress.

DTE/Dial/DBU Status

This opens another DSU IV Status View that is described in the next column.

DSU IV Status View

Access: Within the DSU IV Status view, click the DTE/Dial/DBU Status button.

This view displays the following information.

DTE Signal Status

DTE Signal Status 1

This status variable indicates DTE signal status information. The status is a bit mapped sum, multiple bits can be active simultaneously.

Table 6: Status Bit Positions

Bit Position	Meaning
TM	Test Mode Indicator
RD	Receive Data
TD	Transmit Data
CD	Carrier Detect
CS	Clear to Send
RS	Request to Send
SR	Data Set Ready
TR	Terminal Ready

DTE Signal Status 2

This status variable indicates DTE signal status information. The status is a bit mapped sum, multiple bits can be active simultaneously. The status bit positions are listed in Table 7.

Table 7: Status Positions

Value	Meaning
RI	Ring Indicator
Reserved	Reserved
Reserved	Reserved
LLB	Local Loopback
RLB	Remote Loopback
Reserved	Reserved
TimerActive	Anti-stream timer active

Dialing Status

This status variable indicates dialing status information. The status is a bit mapped sum, multiple bits can be active simultaneously. The status bit positions are listed in Table 8.

Table 8: Status Bit Positions

Value	Meaning
DialingNumber	DSU IV is dialing a number.
OnlinePassingData	DSU IV is online passing on data.
NoWinkFromSwitch	No wink from switch (cleared after 5 seconds).
NumberBusy	Number is busy.
NoAnswer	No answer (cleared after 5 seconds).
Ringing	Ringing.

DBU Status

This status variable contains the DBU card's status information. The status is a bit mapped sum, multiple bits can be active simultaneously. The status bit positions are listed in Table 9.

Table 9: DBU Status

Value	Meaning
S4WDBU-OOS	Getting TEI
S4WDBU-NoRx	Registering SPID
S4WDBU-NoSx	No Rx Signal
TransmitTestPattern	Connected & Transmitting Test Pattern.
InLoopBack	Connected & In Loopback
Reserved	Reserved
InTestFromTelco	In Test from Telco.
DBUCardPresent	DBU card is present.

Test Operation View

Access: From the **Icon Subviews** menu for the AdDSUIVApp, select **Test Operation**.

This view provides the following information.

Test Command

A Set for this option performs one of the DSUIV test operations. Possible operations are exitTest, dteLoopLL, loopOnlyRT, dteOnly, dtePattern, testPattern, selfTest, remoteLoopPattern, and remoteLoopDteData.

Test Pattern

This option selects a test pattern to be used during test commands with patterns. Possible patterns are pattern2047, pattern511, stress1, stress2, stress3, stress4, dataFromDte.

DBU Connection Test

This option performs a DBU Connection Test. The Set value selects the phone number to dial the remote unit. A value of 0 selects the Dial Backup string, 1 to 10 selects the stored phone number from the list in the phone number table.

Remote Unit Address

This option selects the address of the remote unit for remote test operations.

Insert Error

A Set operation will insert one error into the transmitted test pattern during pattern tests.

Clear Error

A Set operation will clear the error counters.

Error Count

This value indicates the number of errors accumulated by the test pattern detector.

Dial Operation View

Access: From the **Icon Subviews** menu for the AdDSUIVApp, select **Dial Operation**.

This view provides the following information.

Network Dial Command

This Network Dial command makes a call through either the Switched DDS Network or the ESP Dial Backup Card. A Set operation commands the DSUIV to go off hook and dial the number selected by the set value. A value of 0 selects the Manual Dial String, while 1 to 10 selects the stored number in the Dial Directory table (1-10).

Manual Dial String

The Manual Dial String is used to make a call when a Dial Command value 0 is set.

Turn Beeper Off

A Set operation commands the DSUIV to turn the audible beeper off.

Hang Up Call

A Set operation commands the DSUIV to terminate the current call.

Answer Call

A Set operation commands the DSUIV to answer the incoming SW56 or DBU call.

Unit Configuration View

Access: From the Icon Subviews menu for the AdSUIVApp, select Unit Configuration.

This view displays the following information.

Reset Unit

A Set operation with value of 1 causes the DSUIV Unit to perform a reset operation. The reset operation commands the unit to execute a power-up initialization.

The reset operation commands the unit to execute a power-up initialization.

Operating Config Option

A Set operation to one of the profile values will load the DSUIV operating configuration with the selected factory profile configuration values.

Remote Access

This option allows remote configuration of the unit. Enable or disable.

Keyboard Operation

This option enables or disables front panel keypad operation.

Clock Time

The DSUIV clock time in 24 hours: minutes: seconds.

Clock Date

The DSUIV clock date in month-day-year.

Enable Traps

This option enables the unit to send SNMP Trap messages for alarm conditions. The SNMP Traps are sent to stations specified in the TRAP IP Address table. The options are disable, send Generic standard traps, or enable all traps, including DSUIV enterprise specific.

Trap Host Address Table

Index

The corresponding index that identifies the stored Host Trap Address.

IP Address

The Host Trap IP Address in dotted notation. For example: 192.239.232.59.

Network Configuration View

Access: From the Icon Subviews menu for the AdSUIVApp, select Network Configuration.

This view displays the following information.

Loop Rate

This option selects the network loop operating speed. Possible speeds are autoRate, bps2400, bps4800, bps9600, bps19k, bps38k, bps56k, and bps64k.

DDS Network Type

This option configures the unit for a specific network type. Possible values are dedicated, attMciSw56, and usSprint.

DDS Network Address

This is the DDS network address used to identify the unit for remote operations in multipoint circuits.

Clock Source

This option selects the internal timing source for the DSUIV. Either master or fromLoopRx.

DBU Configuration View

Access: From the **Icon Subviews** menu for the AdSUIVApp, select **DBU Configuration**.

This view displays the following information.

DBU Option

This specifies whether the unit automatically enters dial backup mode or waits for manual setup.

DBU Mode

This option specifies the dial backup operating mode for the unit as originate or answer. One must be set to originate and the other end to answer.

Out of Service Option

This option enables the unit to enter backup mode if an out-of-service condition is detected from the network.

Loss of Receive Signal Option

This option enables the unit to enter backup mode when a loss of receive signal is detected from the network.

Loss of Sealing Current Option

This option enables the unit to enter backup mode when a loss of sealing current is detected from the network.

On Pattern Option

This option enables the unit to enter backup mode when a pattern of all ones or zeros is received that exceeds the DBU Fail Timer. If this condition is detected, the DSUIV initiates a handshake operation with the remote unit to determine if the DTE is transmitting a constant data pattern or the network has failed.

Pass Check

This option allows the unit to send and verify a dial backup passcode for an additional level of security. When enabled, the originate unit sends the passcode and the answer unit checks the passcode before the backup connection is considered valid.

Pass Code

This option sets the dial backup passcode used to provide an additional level of security. A passcode of one to ten digit characters can be set. If enabled, the originate unit sends the passcode and the answer unit checks the passcode to verify the connection.

Answer Always

This option enables or disables Answer Always for Dial Backup operation. If enabled, the answer unit answers any incoming call regardless of failed conditions.

Transition Timer (secs)

The Dial Backup Transition Timer specifies the amount of time the dial backup connection will remain active after restoral of the primary DDS circuit. After this time expires the dial backup call will be dropped. The Transition Timer value is in seconds. The default value is 60 seconds.

Maximum Timer (secs)

The Dial Backup Maximum Timer specifies the maximum time the dial backup connection will remain active. After the specified time expires, the unit will disconnect the dial backup connection. The time value is in hours with a maximum of 255. The default value is 0 which disables the timer.

Call Back Option

This option enables or disables the DBU Call Back feature. When this feature is enabled, the Answer unit will place a call to the Originate unit requesting the Originate unit to perform a Call Back for dial backup.

Caller ID Option

This option enables or disables dial backup Caller ID. When this feature is enabled, a DSUIV with an installed ISDN dial backup module can verify the source of an incoming call to provide additional security prior to going to dial backup.

Number to Dial Option

This option offers a selection of stored numbers for the unit to automatically dial. If the primary DSUIV line fails, and the DSUIV is set to originate, the DSUIV dials the numbers in chronological order to setup the dial backup line. huntfromNumber1 performs a circular hunt operation through the list of phone numbers in the phone number table. dialNumber2 will only select phone number 2 in the table for dialing.

Start Lockout

This option selects the hour to begin disabling dial backup operation when daily or weekend lockout mode is inactive.

End Lockout

This option selects the hour to end dial backup lockout when daily or weekend lockout mode is active.

Weekend Lockout

This option enables or disables Weekend Lockout for Dial Backup operation. If enabled, no backup will occur from midnight Friday to midnight Saturday.

Daily Lockout

This enables or disables Daily Lockout for Dial Backup operation. If enabled, no backup will

occur between Lockout Start hour and Lockout End hour.

Auto Restore Timer

This option selects the amount of time that the DSUIQ circuit must be active before the unit switches from backup to normal mode of operation. The timer value is in minutes from 0 to 60. A zero value disables the automatic restore.

Redial Count

This allows the selection of the number of times the unit will redial the Far End unit when attempting to go to backup and a busy or reorder condition occurs. Redial count can be set for a maximum of 60.

Fail Timeout

This option allows the selection of the amount of time that the dedicated circuit failure condition is active before attempting to enter dial backup mode. The Fail Timeout value is in increments of 10 seconds up to a maximum of 600 seconds.

Redial Timer

This option works in conjunction with the Redial Counter option. The Redial Timer specifies the amount of time between redial attempts. The Redial Timer value is seconds, up to a maximum of 60.

ISDN Dial Backup Options

ISDN Net

This option is used to select the company to provide the switched Digital Service. When US Sprint is selected, an automatic Echo Canceller Suppressor tone is emitted by the DSUIV unit when dialing. Options are att-5ess, nt-dms-100, and national-isdn1.

Protocol

This option is used to select the protocol used to transmit subrates over the ISDN link. Subrates are all rates below 56kbps. V.120 is the default protocol. Either v-120, or t-link.

V.32 bis and V.34 Dial Backup Options

MNP Mode

This option selects the type of error control to be negotiated at the start of the V.32 bis or V.34 modem connection. Possible types are normalMode, directMode, reliableMNPMode, autoReliableMNPMode, reliableAPMMode, reliableV42, and auto.

Flow Control

This option selects the type of flow control used by the V.32 bis or V.34 modem. Possible types are disabled, xon-xoff, ctsOnly, rts-cts, and uni-xon-xoff.

Data Compression

This option is used to select the data compression for the V.32 bis or V.34 operation when running asynchronously. When enabled the system will increase the effective data throughput to speeds as high as 57.6kbps, depending on data type. For synchronous applications, the speed is limited to a maximum of 14.4 kbps for V.32 and 28.8 kbps for V.34.

DTE Configuration View

Access: From the **Icon Subviews** menu for the AdDSUIVApp, select **DTE Configuration**.

This view displays the following information.

DTE Rate

This option selects the DTE operating speed. Possible speeds are bps2400, bps4800, bps9600, bps19k, bps38k, bps56ksync-57kasync, and sameAsLoop.

DTE Connector Type

This option selects the primary DTE connector type for operation as either RS-232(1) or V.35.

DTE Data Scrambler

This option enables or disables DTE data scrambler when network loop rate is operating at 64 kbps.

Command Mode

This option selects the command mode for the primary DTE interface. Possible modes are disable, atcmd, v25SDLC, and v25Async.

Command Echo

This option enables or disables command echo when in AT Command Mode.

Result Code

This option enables or disables command response when in AT Command Mode.

Code Format

This option selects short or long AT command response format when in AT Command Mode.

Anti-stream Timeout

This option selects the anti-stream timeout. The anti-stream timeout is the maximum time the DSUIV transmits data into the network from the DTE. This feature is used in multi-drop networks to prevent one DTE from continuously sending to a master DSUIV. The anti-stream timer runs when the request to send (RS) lead is active. Possible values are disable, sec10, sec30, and sec60.

CS Option

This option selects mode of operation for DTE clear to send (CS) lead. Possible modes are forcedOn, followRS, onWithCD, onWithRSCD,

offWithLOCD. offWithLOCD option is valid for SW56 mode only.

CD Option

This option selects operating mode for the receive line signal detector (CD) lead on DTE connector. Possible modes are forcedOn, normal, and offWithLossCD.

RS to CS Delay

This option selects short or long delay from RS to CS when CS is controlled by RS.

TR Option

This option selects the DSUIV response to changes in data terminal ready (TR) lead from the DTE. noDBUifOff is valid only if a ESP DBU card is installed and the unit is not operating in SW56 mode. Possible values are ignored, idleWhenOff, off-onDial1, off-onDial2, and noDBUifOff.

SR Option

This option selects operation for the data set ready (SR) lead. Possible values are forcedOn, offOOSOnly, offLOCDOnly, offTESTOnly, offTEST-OOS, and offTEST-LOCD.

Transmit Clock Source

This option selects the transmit clock source used by the unit to transfer data from the DTE.

Possible values are internal, external, and invert.

Data Format

This option selects either asynchronous or synchronous data format for the DTE interface.

Asynchronous Format

This option selects the asynchronous word length when the data format is asynchronous. Possible values are async9Bits, async10Bits, and async11Bits.

Dial Configuration View

Access: From the **Icon Subviews** menu for the AdDSUIVApp, select **Dial Configuration**.

This view displays the following information.

Auto Answer Switch 56 Call

This option enables or disables whether the DSUIV will automatically answer a Switch 56 Call.

Dial Phone Number Table

Double-clicking on an entry in this table displays the Dial Phone Number Table Entry View. This view displays the following information.

Index

The corresponding index that identifies the stored phone number.

Phone Number

The stored phone number, maximum 32 digits.

Test Configuration View

Access: From the **Icon Subviews** menu for the AdDSUIVApp, select **Test Configuration**.

This view displays the following information.

Test Timeout (secs)

This option sets the length of time the DSUIV remains in a test or remote configuration mode before automatically returning to data mode. The time is in seconds. A zero value disables the timeout operation.

Accept RDL

This option enables or disables DSUIV acceptance of remote digital loopback command.

DBU Answer Test

This DBU test option enables the unit to answer a dial backup call to perform a DBU Connection test. When enabled, and not in dial backup, the unit will answer an incoming call and loopback the DBU receiver to the DBU transmitter.

Latch LB Timeout (secs)

This option sets the length of time the DSUIV remains in a TELCO activated Latching Loopback test before automatically returning to data mode. The time is in seconds. A zero (0) value disables reception of the Latching Loopback sequence.

EIA Controlled LLB

This option enables EIA controlled local loopback LLB from the DTE.

EIA Controlled RLB

This option enables EIA controlled remote loopback RLB from the DTE.

Adtran TSU 600e Application (AdTSU600eApp)

This application has the following applicationspecific subviews:

- TSU 600e Configuration View (Page 100)
- *LED States View* (Page 101)

TSU 600e Configuration View

Access: From the **Icon Subviews** menu for the AdTSU600eApp, select **Configuration**.

This view displays the following information.

Passcode

The password string used for authentication of SNMP messages between proxy agent and the TSU600E.

Reset Performance Monitoring

A set will reset Performance Monitoring DS1 statistic counters in the TSU600E.

Phone Number

The phone number to reach the network manager.

Reboot

A set will reboot the TSU-600E.

Current T1 Map

The currently active T1 Map. Either MapA or MapB.

Enable Traps

Allows you to enable/disable traps.

Current Time

The current TSU600E time value. A sequence of ASCII characters encoded as HHMMSS.

Current Date

The current TSU600E date value. A sequence of ASCII characters encoded as MMDDYY.

Modem Initialization

The modem initialization string used by the TSU600E.

Cancel Test Modes

A set will cancel all tests modes on the TSU-600E.

Unit ID

The unit identification number for the TSU600E.

Send Traps Method

Method by which unit sends traps.

Port Status Table

Index

The index value which uniquely identifies the object instance.

Port Status Value

The status of the port. Possible values are ok, test, alarm and not-present.

LED States View

Access: From the Icon Subviews menu for the AdTSU600eApp, select LED States.

This view displays the following information.

System LED

The variable containing the state of the System LED.

Module 1 LEDs (through 6)

Possible selections are OK, ALARM and TEST.

CSU LEDs

Possible selections are OK, ALARM, TEST, and ERROR.

Adtran TSU 120e Application (AdTSU120eApp)

This application has the following applicationspecific subviews:

- TSU 120e Configuration View (Page 101)
- LED States View (Page 102)

TSU 120e Configuration View

Access: From the **Icon Subviews** menu for the AdTSU120eApp, select **Configuration**.

This view displays the following information.

Passcode

The password string used for authentication of SNMP messages between proxy agent and the TSU120E.

Reset Performance Monitoring

A set will reset Performance Monitoring DS1 statistic counters in the TSU120E.

Phone Number

The phone number to reach the network manager.

Reboot

A set will reboot the TSU-120E.

Current T1 Map

The currently active T1 Map. Either MapA or MapB.

Enable Traps

Allows you to enable/disable traps.

Current Time

The current time value. A sequence of ASCII characters encoded as HHMMSS.

Current Date

The current date value. A sequence of ASCII characters encoded as MMDDYY.

Modem Initialization

The modem initialization string used by the TSU600E.

Cancel Test Modes

A set will cancel all tests modes on the TSU-120E.

Unit ID

The unit identification number for the TSU120E.

Send Traps Method

Method by which unit sends traps.

LED States View

Access: From the Icon Subviews menu for the AdTSU120eApp, select LED States.

This view displays the following information.

DSU LEDs

The state of the DSU LEDs.

Module 1 LEDs (through 6)

Possible selections are OK, ALARM and TEST.

CSU LEDs

Possible selections are OK, ALARM, TEST, and ERROR.

Adtran Smart 16 Application (AdSmart16App)

This application has the following applicationspecific subview:

• Smart 16 Controller Provision View

Smart 16 Controller Provision View

Access: From the **Icon Subviews** menu for the AdSmart16App, select **Configuration**.

This view displays the following information.

SNMP Password

This command is used to change SNMP password.

Clock Time

This command changes time for controller's real time clock in HHMMSS format.

Clock Date

This command changes date for controller's real time clock in YYMMDD format.

Reset

A SET command resets controller to its factory default setting.

Controller IDs

A Bitmap of the Controller IDs proxied by this controller.

Power Supply

Select Smart16 power supply configuration.

Controller LED Status Table

Slot Interface

This index value uniquely identifies the slot interface.

LED Status

Bitmap of the LED status for the controller (instance 1) and each option card (instance 2-17 for slots 1-16, respectively.

Adtran TSU ESP Application (AdTSUESPApp)

Access: From the **Icon Subviews** menu for the Adtran TSU ESP device icon, select **Application**.

This application provides the following subviews.

- TSU ESP Status View
- Test Operation View (Page 105)
- Dial Operation View (Page 106)
- Unit Configuration View (Page 106)
- Network Configuration View (Page 107)
- DBU Configuration View (Page 108)
- ISDN DBU Configuration View (Page 109)
- Port Configuration View (Page 110)
- Dial Configuration View (Page 111)
- Test Configuration View (Page 111)

TSU ESP Status View

Access: From the Icon Subviews menu for the AdTSUESPApp icon, select TSU ESP Status.

This view provides the following information.

Unit State

This status contains the current TSU ESP operational state.

Self Test

This allows you to start a TSU ESP self-test operation.

Clear History

Allows you to reset the status history alarms, errors, and tests.

Last Command Status

Indicates the result of the last command executed.

DTE Port Status

The TSU ESP DTE port status.

DTE Port Data

The TSU ESP DTE port data.

ESP DBU Card

The type of ESP Dial Backup Card installed in the TSU ESP unit.

ESP LAN Card

The type of ESP LAN Card installed in the TSU ESP unit.

Front Panel LEDs

This status value contains the on or off state of the TSU ESP unit's front panel indicators. Each LED is represented by a bit in the status value. A bit value of one indicates the LED is on. The LED bit values are listed in Table 10.

Table 10: LED Bit Values

Value	LED
1	RS
2	CD
4	TD
8	RD
16	ERR
32	ALM
64	TST

Dial Status

This status variable indicates dialing status information. The status is a bit mapped sum, multiple bits can be active simultaneously.

Current/History Status

This opens the TSU ESP Current & History Status View that is described below.

Current Status

The current status of the TSU ESP. See Table 11.

Table 11: Alarm Indicators

Value	Definition
noAlarm	No alarm present
RcvYellow	Received Yellow Alarm
XmtYellow	Transmit Yellow Alarm
RcvBlue	Receive Blue Alarm
XmtBlue	Transmit Blue Alarm
RcvRed	Receive Red Alarm
RcvLos	Receive Loss of Signal
LocalLB	Local Loopback
RemoteLB	Remote Loopback
XmtPattern	Transmit Pattern Generation

Table 11: Alarm Indicators (Continued)

Value	Definition
CodeViol	Code Violation
RevBPVS	Receive Bipolar Violations
FrmBitErrs	Frame Bit Errors
PhaseLock	Phase Lock Loop Alarm
DialBackup	Dial Backup

Status History

The TSU ESP status history of alarms, errors, and tests. It is a bit map represented as a sum, multiple bits can be active simultaneously. See Table 11 for values.

Test Operation View

Access: From the Icon Subviews menu for the AdTSUESPApp icon, select Test Operation.

This view provides the following information.

DTE Loopback

This allows you to turn the TSU ESP DTE loopback either on or off.

Test Pattern

Used to select TSU ESP test pattern. Options are allOnes, pattern511, noPattern, allZeroes and patternQRSS.

Cancel All Tests

This allows you to cancel all tests.

Remote Loopback

Used to select the remote TSU ESP loopback test function. Options are remNoLoop, remPayloadATT, remPayloadANSI, remLineATT, remLineANSI, and remPayloadFT1.

Test Pattern Results

The TSU ESP test pattern results.

Dial Operation View

Access: From the Icon Subviews menu for the AdTSUESPApp icon, select Dial Operation.

DBU Dial Command

This Dial Backup command makes a call through the ESP Dial Backup Card. A Set operation commands the TSU ESP Dial Backup Card to go off hook and dial the number selected by the value. Values 0 through 9 select the corresponding stored number in the phone number table.

DBU Dial String

The dial string used to make a forced Dial Backup call. A Set operation performs a forced DBU using the given string.

Hang Up Call

A Set operation commands the TSU ESP to terminate the current call.

Unit Configuration View

Access: From the Icon Subviews menu for the AdTSUESPApp icon, select Unit Configuration.

This view provides the following information.

Reset DS1 Performance Stats

Allows you to reset all performance statistics.

Mode

The mode of the TSU ESP.

Modem Initialisation

A Set operations performs TSU ESP modem initialization.

Chain In Port Phone Number

The Chain in Port phone number used to reach the network manager.

Global Trap Setting

Allows you to enable or disable the TSU ESP from sending ADLP traps.

Passcode

The passcode string used for authentication of ADLP messages between T-Watch and TSU ESP.

TSU ESP Time

The current TSU ESP time value. A sequence of ASCII characters encoded as HR- hr, MN-Minute, SC-Second. For example, HRMNSC = 123059.

TSU ESP Date

The current TSU ESP date value. A sequence of ASCII characters encoded as MN-Month, DY-Day, YR-year. For example, MNDYYR = 073193.

Chain In Port Connection

The Chain in Port connection.

Factory Restore

Allows you to reload the factory options.

Enable Traps

This option enables the unit to send SNMP Trap messages for alarm conditions. The SNMP Traps are sent to stations specified in the Trap IP Address table. The options are disable, send mib 2 standard traps, or enable all traps, including TSU ESP enterprise specific.

Trap Host Address Table

Index

The corresponding index that identifies the stored Trap Host Address.

IP Address

The Host Trap IP Address.

Network Configuration View

Access: From the Icon Subviews menu for the AdTSUESPApp icon, select Network Configuration.

This view provides the following information.

Yellow Alarm

Enable or disable the TSU ESP to send a Yellow Alarm. Select yelAlmEnable or yelAlmdisable.

Performance Reports

Allows you to enable or disable the TSU ESP to send performance reports. Select prmdisable or prmenable.

Line Build Out

Allows you to select the TSU ESP transmission Line Build Out. Options are lineBOauto, lineBO00, lineBO75, lineBO150, and lineBO225.

Clock Source

This sets the network transmit clock source to network, internal or dte.

Network Framing Format

This sets the network framing format to D4, ESF, or auto.

Network Line Code

This option sets the network line code to B8ZS or ami.

T1 Bit Stuffing

Allows you to enable or disable TSU ESP T1 bit stuffing.

Receiver Sensitivity

This sets the network receiver sensitivity to normal or extended.

DBU Configuration View

Access: From the Icon Subviews menu for the AdTSUESPApp icon, select DBU Configuration.

This view provides the following information.

Dial Backup Configuration

DBU Mode

This specifies the dial backup operating mode for the unit. Possible modes are disabled, originate, answer, and answerAlways.

Weekend Lockout

This allows you to select whether the weekend lockout feature is lockout enabled or lockout disabled.

Enable DBU (by hour)

This selects the hour to resume enabling the entry into dial backup operation when daily or weekend lockout mode is inactive.

Disable DBU (by hour)

This selects the hour to disable dial backup operation when daily or weekend lockout mode is active.

Number to Dial Option

This offers a selection of stored numbers for the unit to automatically dial. if the primary TSU ESP line fails, and the TSU ESP is set to originate, the TSU ESP dials the numbers in chronological order to setup the dial backup line. Option huntFromNumber1 performs a circular hunt operation through the list of phone numbers in the phone number table. Option dialNumberlonly will only select phone number 1 in the table for dialing.

Auto Restore Timer

This selects the amount of time that the TSU ESP circuit must be active before the unit switches from backup to normal mode of operation. The

never setting disables the automatic restore, meaning that TSU ESP operation must be restored manually.

Redial Count

This allows the selection of the number of times the unit will redial the Far End unit when attempting to go to back up and a busy or reorder condition occurs. Redial count can be set for a maximum of 99.

Redial Timer

This option works in conjunction with the Redial Counter Option. The Redial Timer specifies the amount of time between redial attempts.

Fail Timeout

This allows the selection of the amount of time that the dedicated circuit failure is active before attempting to enter dial backup mode.

External DCE DBU Options

Pattern Verification

This option is used to select the DBU pattern verification option average.

Physical Interface

This option is used to select the physical interface option available for the External DCE DBU module.

ISDN Options

This opens the ISDN DBU Configuration View, which is described below.

ISDN DBU Configuration View

ISDN Net

This option is used to select the company to provide switched Digital Service. When US Sprint is selected, an automatic Echo Canceller Suppressor tone is emitted by the TSU ESP unit when dialing. Options are att-5ess, nt-dms-100, and national-isdn1.

ISDN Rate

This is used to select Nx56 kbps or Nx56 kbps as the backup.

Number of ISDN B Channels

This selects the number of ISDN B channels to be bonded together as a dial backup connection.

ISDN Service Profile ID (SPID) Table

Double-clicking on an entry in this table displays the ISDN Service Profile ID Table Entry View.

Index

The corresponding index that identifies the stored ISDN SPID number.

ISDN SPID Number

The stored ISDN SPID number.

ISDN Local Directory Number (LDN) Table

Double-clicking on an entry in this table displays the ISDN Local Directory Number Table Entry View.

Index

The index that identifies the stored ISDN LDN number.

ISDN LDN Number

The stored ISDN LDN number.

Port Configuration View

Access: From the Icon Subviews menu for the AdTSUESPApp icon, select Port Configuration.

This view provides the following information.

DSO Rate

Selects DS0 rate 56 kbps or 64 kbps.

DSO Channels

Selects alternating or consecutive DS0 channels.

DTE Transmit Clock Source

Select internal, external, or internal-invert TSU ESP clock source.

Inband Mode

Allows you to select TSU ESP inband mode.

Data

Allows you to enable or disable TSU ESP data inversion. Options are normalData and invData.

CTS

Allows you to enable or disable TSU ESP forced DTS. Options are normalCTS or forceCTSon.

DSR

Allows you to select whether TSU ESP DSR is forced on. Options are normalDSR or forcedDSR.

DCD

Allows you to select whether TSU ESP DCD is forced on. Options are normalDCD or forcedDCD.

Fractional T1

Start Channel Number (1-24)

Select start channel number of Fractional T1.

Number of Channels (1-24)

Allows you to select the number of channels in Fractional T1.

Dial Configuration View

Access: From the Icon Subviews menu for the AdTSUESPApp icon, select Dial Configuration.

This view provides the Dial Phone Number Table. Double-clicking on an entry in this table displays the Dial Phone Number Table Entry View.

Index

The index that identifies the stored phone number.

Phone Number

The stored phone number.

Test Configuration View

Access: From the Icon Subviews menu for the AdTSUESPApp icon, select Test Configuration.

This view provides the following information.

Test Timeout (secs)

This sets the length of time in seconds the TSU ESP remains in a test before automatically exiting. A zero value disables the timeout operation.

Answer Test

This DBU test option enables the unit to answer a dial backup call to perform a DBU Connection test. When enabled, and not in dial backup, the

unit will answer an incoming call and loopback the DBU receiver to the DBU transmitter.

Adtran Administrative Application (AdtranAdminApp)

This application has the following device-specific subview:

 Adtran Administration View, which is also displayed as the Adtran Product View (Page 122)

Adtran ATLAS Chassis Application (AdATLChasApp)

The application provides the following application-specific subviews:

• Atlas 800 Interface Table View

Atlas 800 Interface Table View

Access: From the Icon Subviews menu for the AdATLChasApp, select Configuration.

This view provides the following information.

Number of Interfaces

The number of network interfaces (regardless of their current state) present on this system. The same as ifNumber defined in the MIB-2 interfaces group.

Interface Table

Index

The instance for this entry.

Slot

The physical slot in the Atlas identified by IfIndex.

Port

The physical port in the Atlas identified by IfIndex.

Physical Table

Index

The instance for this entry.

Physical Slot

The physical slot in the Atlas.

Physical Port

The physical port in the Atlas.

Physical Index

The value of this object is equal to the value of ifIndex from the Interfaces table of MIB-II (RFC1212).

Complete Status

A bit-encoded variable that gives the overall status of the Atlas Product. It is encoded as follows in Table 12.

Table 12: Status Values

Value	Definition
ОК	0x01
ONLINE	0x02
TESTING	0x04
FLASH DOWNLOAD	0x08
ERROR	0x10
ALARM	0x20

There may be multiple bits set based on the current state of the different option cards and modules.

Adtran ATLAS General Option Card Application (AdATLGenOCApp)

This application provides the following application-specific subviews:

• ATLAS General Option Card View

ATLAS General Option Card View

Access: From the **Icon Subviews** menu for the AdATLGenOCApp, select **Configuration**.

This view displays the following information.

Index

This variable indicates the interface number of a particular port on an option card within the ATLAS product.

Slot

This variable indicates the slot number of a particular option card within the ATLAS product.

Port

This variable indicates the port number of a particular port on an option card within the ATLAS product.

OID

This variable indicates the OID that points to the specific MIB that references this particular type of Option Card with the ATLAS product.

Port Name

This variable indicates the port name for a particular port located on an option card within the ATLAS product.

Port Test Status

This variable indicates the port test status for a particular port located on an option card within the ATLAS product. Values are On, Off, and Nonapp.

Module State

This variable indicates the state of an option card within the ATLAS product, either online or offline. Valid values are On and Off.

Module Status

This variable indicates the hardware module status for an option card located within the ATLAS product. Options are Online, Offline, NoResponse, UnresponsiveOffline, NotReady, and Restarting.

Part No

This variable indicates the part number for a particular option card within the ATLAS product.

Serial No

This variable indicates the serial number for a particular option card within the Atlas product.

Hardware Rev

This variable indicates the hardware rev for a particular option card within the ATLAS product.

General Option Card Overall Module Status Table

Access: From the **Icon Subviews** menu for the AdATLGenOCApp, select **Module Status**.

Double-clicking on an entry in this table displays the General Option Card Overall Module Status Detail View.

Module Index

An index into the General Option Card Module Index. This number corresponds to the slot number into which the Option Card has been placed.

Overall Status

A bit-encoded variable that gives the overall status of the Option Card. It is encoded as listed in Table 12.

Adtran ATLAS Front Panel Group Application (AdATLFrPnIApp)

This application provides the following application-specific subview:

• ATLAS Front Panel Information View

This application contains ASN.1 objects that store the current state of all LEDs and the LCD display on the Atlas products.

ATLAS Front Panel Information View

Access: From the Icon Subviews menu for the AdATLFrPnlApp icon, select Configuration.

This view displays the following information.

Atlas LCD Display

The message that is currently displayed on the Atlas LCD.

System LED Status

This variable indicates the status of the System LED. When the system LED changes state, this variable changes accordingly. The system LED states are as follows as listed in Table 13.

Table 13: System LED States

State	Status
ОК	Green
Error	Red
Warning	Yellow
Flash Update	Flashing Green
Flash Error	Flashing Red
Off	Off

CSU LED OK Status

The status of the CSU OK LED. Values are listed in Table 14.

Table 14: CSU OK LED Status

State	Status	
ОК	Green	
Flash	Flashing Green	
Off	Off	

CSU LED Test Status

The status of the CSU Test LED. When the state changes, this variable changes accordingly. Values are listed in Table 15.

Table 15: CSU Test LED Status

State	Status	
Test in Progress	Yellow	
Flash	Flashing Yellow	
Off	Off	

CSU LED Error Status

The CSU Error LED status. When the state changes, this variable changes accordingly. Values are listed in Table 16.

Table 16: CSU Error State

State	Status	
Error	Red	
Flash	Flashing Red	
Off	Off	

CSU LED Alarm Status

The CSU Alarm LED Status. Values are listed in Table 17.

Table 17: CSU Alarm LED Status

State	Status
Alarm	Red
Flash	Flashing Red
Off	Off

Number of Module Slots

The number of module slots that are located on the Atlas product.

Module LED Table

Slot Index

Indicates which slot is indicated on the Atlas 800 product.

Card Status

The status of the card located in the slot determined by the Index variable.

Online Status

Indicates whether the card located in the slot determined by the Index is online or offline. Values are listed in Table 18.

Table 18: Online LED Status

State	Status	
Online	Green	
Flashing	Flashing Green	
Offline	Off	

Test Status

Indicates whether the card located in the slot determined by the Index is in a test mode or not. Values are listed in Table 19.

Table 19: Module Test Status

State	Status	
Test in Progress	Green	
Flashing	Flashing Red	
Off	Off	

Adtran ATLAS V35Nx4 Application (AdATLV35Nx4App)

This application provides the following application-specific subview:

• ATLAS V35Nx4 Option Card View

ATLAS V35Nx4 Option Card View

Access: From the **Icon Subviews** menu for the AdATLV35Nx4App, select **Configuration**.

This view displays the following information.

Number of V35Nx56 Ports

The number of V35Nx56 ports (regardless of their current state) present in the system.

The ATLAS V35Nx4 Option Card Interface Table

This variable indicates the interface number of a particular V35Nx56 port within the ATLAS product. This number will be the same as the ifIndex located in the MIB-II interface table.

Index

The instance for this entry.

Slot No

This variable indicates the slot number of a V35Nx4 Option card within the ATLAS product.

Port No

This variable indicates the port number of a particular port on a V35Nx4 Option card within the ATLAS product.

Alarm Status

This 4 bit-encoded variable indicates the current state of the alarms that can occur on a V35Nx4 Option Card. This variable is encoded as follows in Table 20.

Table 20: Alarm Status

NO EXT CLK ALARM	0x1
ZERO ALARM	0x2
PLL ALARM	0x4
SLIP ALARM	0x8

There may be multiple bits set based on the current state of the option card. If a bit is set, then the alarm is active, else it is not active.

DTE Status

This bit-encoded variable indicates the current state of the DTE leads that are located in an interface on a V35Nx4 Option Card. This variable is encoded as follows in Table 21.

Table 21: DTE Status

RTS	0x001
CTS	0x002
DTR	0x004
DSR	0x008
DCD	0x010
RI	0x020
TD	0x040
RD	0x080
EC	0x100

There may be multiple bits set based on the current state of the option card. If a bit is set, then the lead is active, else it is not active.

Data Rate

This variable indicates the current data rate of an interface on a V35Nx4 Option card.

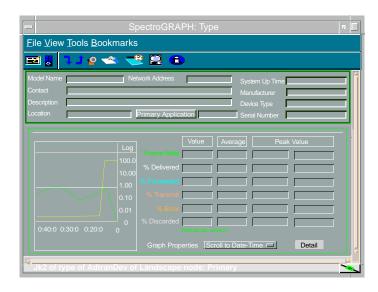
PLL/Fifo Status

This bit-encoded variable indicates the current state of the PLL/Fifo Status for an interface on a V35Nx4 Option Card. This variable is encoded as follows in Table 22.

Table 22: PLL/FiFo Status

LOCK	0x01
RXE	0x02
RXF	0x04
TXE	0x08
TXF	0x10

There may be multiple bits set based on the current state of the option card. If a bit is set, then the status is active, else it is not active.


Performance Views

This section introduces the Performance view. For details concerning this view, refer to the **SPECTRUM Views** documentation.

Performance views display performance statistics in terms of a set of transmission attributes, e.g., cell rates, frame rates, % error, etc. A typical view is shown in Figure 9. The instantaneous condition of each transmission attribute is recorded in a graph. The statistical information for each attribute is presented in the adjacent table.

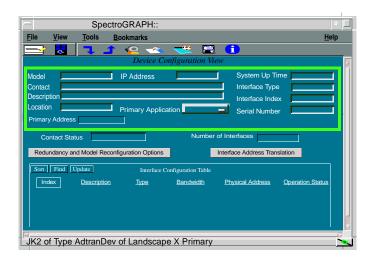
Generally, you determine performance at the device level through Performance views accessed from the Device and Application icons. You determine performance at the port/interface level through Performance views accessed from Interface icons.

Figure 9: Performance View

Configuration Views

This section describes the various Configuration views available for models of the Adtran devices in SPECTRUM.

Configuration views let you see and modify current settings for the modeled device and its interfaces, ports, and applications. The following Configuration views are available for models of Adtran devices:


- Device Configuration View
- System Configuration Information View (Page 42)
- Network Port Configuration View (Page 44)
- DTE Port Configuration View (Page 45)
- PVC Configuration Table View (Page 46)
- DBU Configuration View (Page 47)
- Unit Configuration View (Page 106)
- Network Configuration View (Page 107)
- DBU Configuration View (Page 108)
- Port Configuration View (Page 110)
- Dial Configuration View (Page 111)
- DLCI_Port Configuration View (Page 121)

Device Configuration View

Access: From the **Icon Subviews** menu for the Device icon, select **Configuration**.

A typical Device Configuration view is shown in *Device Configuration View* (Page 120). Generally, this view includes a few fields that display device information as well as an Interface Configuration Table that lists interface parameters, some of which can be changed (see *SPECTRUM Views*). Some Device Configuration views include one or more buttons that provide access to device-specific configuration information. These are described below.

Figure 10: Device Configuration View

DLCI_Port Configuration View

Access: From the Icon Subviews menu for a DLCI icon in the DevTop Sub-Interface View, select Port Configuration.

This view provides Port Polling/Logging, Performance, Detail and Service Information. Pressing the Help button opens a view that provides a detailed description of this view.

Adtran Product View

This section describes the Adtran Product view available for models of Adtran devices in SPECTRUM.

Access: From the **Icon Subviews** menu for the Adtran Device icon, select **Product Information**.

Adtran Product View

This view displays the following information.

Product Identification Information

Product Name

The Adtran product name.

Adtran Product Part Number

The Adtran product part number.

Adtran Product CLEI Code

The Adtran product CLEI code.

Product Revision

The Adtran product revision number.

Product Physical Address

This octet string contains the Adtran physical address assigned to this product. For example, the octet sequence, 16 02 03 01, specifies channel

bank number 16, digroup number 2, DSO channel slot number 3, position 1. This object value is commonly reported in SNMP traps to identify the product's location.

Product Serial Number

The Adtran product serial number.

Product Software Version

The Adtran product software version number.

Channel Information

This opens the *Adtran Channel Information View* described below.

Adtran Channel Information View

Access: Within the Adtran Product View, click on the Channel Information button.

Channel Bank Information Group

This view displays the following information.

Language Location Identifier

The Common Language Location Identifier.

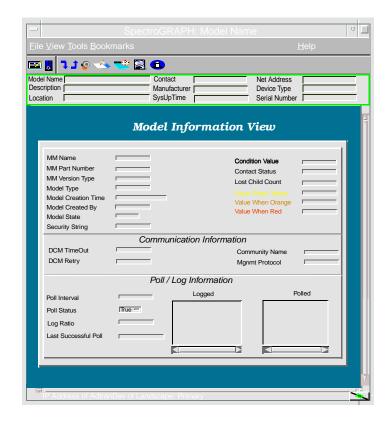
Frame Identifier

The Channel Bank Frame Identifier.

Channel Unit Information

Number of Channels

This value contains the number of channels used by the product. For example, a Card Office Channel Unit Data Port (OCUDP) operating with 56 Kbps with Error Correction enabled uses two time slots; an Nx56 Channel Unit uses N slots, etc.


Model Information View

This section provides a brief overview of the Model Information view.

This view displays administrative information about the device and its applications and lets you set thresholds and alarm severity for the device.

Figure 11 shows a sample Model Information view. The layout of this view is the same for all model types in SPECTRUM but some information will vary depending on the model it defines. Refer to **SPECTRUM Views** for a complete description of this view.

Figure 11: Model Information View

A	IQ Probe Configuration 55	Configuration
	Applications 22	DBU 108
Address	Common 23	Device 120
Interface IP 16	Device-Specific 24	Dial 111
Physical (MAC) 16	Atlas 800 Management Group 112	Dial Backup 47
Translation 17	Atlas 800 Physical Table 112	DLCI_Port 121
Admin Status 15	ATLAS V35Nx56 Interface 117	DTE Port 45
Adtran Product View 122	Average Frame Size	ISDN DBU 109
AIS Event 73	Received 28, 33	Network 107
Alarm	Transmitted 29, 34	Network Port 44
PLL 73		Port 110
Red 73, 74		PVC 46
Yellow 73	В	System 42, 55
Alarm Event Bit Positions 37		Test 111
Alarm Status 117	Beeper Option 47, 69	Unit 106
Application	Bytes	CRC Errors 30, 35
Adtran Administrative 111	Received 34	CSU LED Group 115
Adtran ATLAS 800 Interface 111	Transmitted 34	CTS 110
Adtran ATLAS Front Panel		
Group 114		
Adtran ATLAS General Option Card 113	С	D
Adtran ATLAS V35Nx4 117	Carrier Detect 45	Daily History Time 36
Adtran DS1 37	Channel Information 122	Daily Port Error 35
Adtran Frame Relay	Chassis Module Icon	Daily Port Status 34
Performance 26	Module Notes 18	Daily PVC Status 32
Adtran TSU ESP 103	Clear to Send 45	DBU Mode 47, 69, 94
DSU IQ Configuration 42	Clock Source 108	DBU Option 47, 69

DCD 110	G	Channel Rate 48, 71
DCE Bit Rate 49, 70		LDN 49, 71
DCE Interface Type 49, 70	General Option Card Interface 113	SPID 49, 71
Delay Packet Option 46	General Option Card Overall	Switch 48, 71, 96
DevTop Views 20	Module Status 114	
DLCI_Port Configuration View 121	Global Trap Setting 106	
Documentation 7		
DSO Channels 110		_
DSO Rate 110	Н	LCD Display 114
DSR 110	••	Line Build Out 107
DSR Option 45	Hardware 8	Link Integrity Only Tx 35
DTE		Lockout
Loopback 105		Daily 48, 70, 95
Port Configuration View 45		End 48, 70, 95
Port Data 104	-	Start 48, 70
Port Status 104	Icon	Weekend 48, 70, 95
Transmit Clock Source 110	Chassis Module 18	Loss of LMI 47
	Ethernet Chassis Module 18	Loss of Receive Signal 47
	Icon Subviews Menu	Loss of Sealing Current 47
E	Chassis Module 18	
	Icons	
ESP DBU Card 104	Device 10	M
ESP LAN Card 104	Interface 15	
	Inactive DLCI 31, 36	Management Tasks 12
_	Inband Mode 110	Mask 17
F	Interface	Maximum Frame Size
	Type, Device 15	Received 28, 33
Far Total Arm 39	Interface Labels 18	Maximum Frame Size
Flow Control 45	Interface Status Label 18	Transmitted 28, 33
Frames	Interface Type Label 18	Minimum Frame Size
Received 34	Invalid DLCI 31, 36	Received 33
Transmitted 34	ISDN	Transmitted 28, 33

Model Port Name 113 Information 124 Port Number 113, 117 Types of 9 Port Number. Device 15 Test Operation 105 Product Identification Test Status 113 Model Type Label 18 Module Identification Labels 18 Information 122 Threshold Information 16 Module Notes 18 Total Alert 39 Module State 113 Troubleshooting 12 Module Status 113 TSU ESP Date 107 R TSU ESP operational state 104 TSU ESP Test Pattern 106 Receiver Sensitivity 108 TSU ESP Time 107 N Redial Count 109 Redial Timer 109 **Network Framing Format 108** Network I/O ports 20 Remote Loopback 106 U Network Line Code 108 Network Type 16 Unavailable Time 30 S Serial Number 114 V Serial ports 20 Out of Service Option 47, 69 Signal V.34 Line Type 49, 70 Overall Status 114 Down Time 31, 36 Errors 31, 36 State Change 31, 36 W P Time Out 31, 36 Slot Number 113 Weekend Lockout 48, 70, 95 Part Number 113 Slot Number Label 18 Pass Check 47, 69 Specific Card OID Reference 113 Status 118 Pass Code 47, 69 Performance Reports 107 SysLed 114 Performance Statistics 119

Port Management, DLCI 45