@Hitachi Data Systems

Hitachi Adaptable Modular Storage 2000 Family Implementation and Support

TCI1835

Book 1 of 2

Notice: This document is for informational purposes only, and does not set forth any warranty, express or implied, concerning any equipment or service offered or to be offered by Hitachi Data Systems. This document describes some capabilities that are conditioned on a maintenance contract with Hitachi Data Systems being in effect, and that may be configuration-dependent, and features that may not be currently available. Contact your local Hitachi Data Systems sales office for information on feature and product availability.

Hitachi Data Systems sells and licenses its products subject to certain terms and conditions, including limited warranties. To see a copy of these terms and conditions prior to purchase or license, please call your local sales representative to obtain a printed copy. If you purchase or license the product, you are deemed to have accepted these terms and conditions.

THE INFORMATION CONTAINED IN THIS MANUAL IS DISTRIBUTED ON AN "AS IS" BASIS WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL HDS BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS MANUAL, INCLUDING, WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL OR LOST DATA, EVEN IF HDS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

Hitachi Data Systems is registered with the U.S. Patent and Trademark Office as a trademark and service mark of Hitachi, Ltd. The Hitachi Data Systems logotype is a trademark and service mark of Hitachi, Ltd.

The following terms are trademarks or service marks of Hitachi Data Systems Corporation in the United States and/or other countries:

Hitachi Data Systems Registered Trademarks

Hi-Track ShadowImage TrueCopy

Hitachi Data Systems Trademarks

Essential NAS Platform	HiCard	HiPass	Hi-PER Architecture	Hi-Star
Lightning 9900	Lightning 9980V	Lightning 9970V	Lightning 9960	Lightning 9910
NanoCopy	Resource Manager	SplitSecond	Thunder 9200	Thunder 9500
Thunder 9585V	Thunder 9580V	Thunder 9570V	Thunder 9530V	Thunder 9520V
Universal Star Network	Universal Storage Pla	atform		

All other trademarks, trade names, and service marks used herein are the rightful property of their respective owners.

NOTICE:

Notational conventions: 1KB stands for 1,024 bytes, 1MB for 1,024 kilobytes, 1GB for 1,024 megabytes, and 1TB for 1,024 gigabytes, as is consistent with IEC (International Electrotechnical Commission) standards for prefixes for binary and metric multiples.

©2010, Hitachi Data Systems Corporation. All Rights Reserved

HDS Academy 1080

Contact Hitachi Data Systems at www.hds.com.

Product Names mentioned in courseware:

Enterprise Storage Systems

- Hitachi Universal Storage Platform™ V
- Hitachi Universal Storage Platform™ VM
- Hitachi Universal Storage PlatformTM
- Hitachi Network Storage Controller

Legacy Products:

- Hitachi Lightning 9900™ Series enterprise storage systems
- Hitachi Lightning 9900™ Series enterprise storage systems

Modular Storage Systems

- Hitachi Adaptable Modular Storage system
- Hitachi Adaptable Modular Storage 200
- Hitachi Adaptable Modular Storage 500
- Hitachi Adaptable Modular Storage 1000
- Hitachi Adaptable Modular Storage 200 with iSCSI
- Hitachi Adaptable Modular Storage 200 with NAS Option
- Hitachi Adaptable Modular Storage 500 with iSCSI
- Hitachi Adaptable Modular Storage 500 with NAS Option
- Hitachi Adaptable Modular Storage 1000 with iSCSI
- Hitachi Adaptable Modular Storage 1000 with NAS Option
- Hitachi Adaptable Modular Storage 2000 Family
- Hitachi Adaptable Modular Storage 2100
- Hitachi Adaptable Modular Storage 2300
- Hitachi Adaptable Modular Storage 2500
- Hitachi Workgroup Modular Storage system
- Hitachi Workgroup Modular Storage 100
- Hitachi Workgroup Modular Storage 100 with iSCSI
- Hitachi Workgroup Modular Storage 100 with NAS Option
- Hitachi Simple Modular Storage

Legacy Products:

- Hitachi Thunder 9500TM Series modular storage systems
- Hitachi Thunder 9200V™ entry-level storage

NAS Storage Systems

- Hitachi Essential NAS Platform®
- Hitachi Essential NAS Platform[™]
- Hitachi High-performance NAS Platform, powered by BlueArc®
- Hitachi NAS Blade for Universal Storage Platform™ and Network Storage Controller

- Hitachi High-performance NAS Platform, powered by BlueArc® 2000 family
 - Hitachi High-Performance NAS Platform 2000
 - o Hitachi High-Performance NAS Platform 2100
 - o Hitachi High-Performance NAS Platform 2200
- Hitachi High-performance NAS Platform, powered by BlueArc® 3000 family
 - o Hitachi High-Performance NAS Platform 3100
 - o Hitachi High-Performance NAS Platform 3200

Management Tools

- Hitachi Basic Operating System
- Hitachi Basic Operating System V
- Hitachi Resource Manager™ utility package
 - Module Volume Migration Software
 - LUN Manager/LUN Expansion
 - Network Data Management Protocol (NDMP) agents
 - Logical Unit Size Expansion (LUSE)
 - Cache Partition Manager feature
 - Cache Residency Manager feature
 - Storage Navigator program
 - Storage Navigator Modular program
 - Storage Navigator Modular 2 program
- Hitachi NAS Blade Manager software
- Hitachi NAS Manager Suite of software

Replication Software

Remote Replication:

- Hitachi Universal Replicator software
- Hitachi TrueCopy® Heterogeneous Remote Replication software bundle (for enterprise systems)
- Hitachi TrueCopy® Remote Replication software bundle (for modular systems)
- Hitachi TrueCopy® Synchronous software
- Hitachi TrueCopy® Asynchronous software
- Hitachi TrueCopy® Extended Distance software

Hitachi In-System Replication software bundle:

- Hitachi ShadowImage® Heterogeneous Replication software (for enterprise systems)
- Hitachi ShadowImage® Replication software (for modular systems)
- Hitachi Copy-on-Write Snapshot software

Hitachi Storage Command Software Suite

- Hitachi Chargeback software
- Hitachi Device Manager software

- Hitachi Dynamic Link Manager software
- · Hitachi Global Link Manager software
- Hitachi Global Reporter software
- Hitachi Path Provisioning software
- Hitachi Protection Manager software
- Hitachi QoS for File Servers software
- Hitachi QoS for Oracle software
- Hitachi Replication Monitor software
- Hitachi Storage Services Manager software
- Hitachi Tiered Storage Manager software
- Hitachi Tuning Manager software

Other Software

- Hitachi Backup and Recovery software, powered by CommVault®
- Hitachi Backup Services Manager software, powered by APTARE®
- · Hitachi Business Continuity Manager software
- Hitachi Command Control Interface (CCI) Software
- · Hitachi Dynamic Provisioning software
- Hitachi Storage Resource Management Solutions
- · Hitachi Volume Migration software
- Hi-Track® Monitor "call home" service/remote monitoring tool

Other Solutions and Terms

- Hitachi Content Platform
- Hi-Star™ crossbar switch architecture
- Hitachi Universal Star Network™ V

Contents Book 1 of 2

Introduction	XV
Welcome and Introductions	XV
Intended Audience	
Course Description	xvii
Course Objectives	
AMS2000 Rev1 to Rev2 Transition and Positioning	
Product Names	
Lab Equipment Configuration	
Course Agenda	
Learning Paths	
HDS Academy Is on Twitter and LinkedIn	xxvi
1. PRODUCT OVERVIEW	
Module Objectives	
AMS2000 Rev1 to Rev2 Transition and Positioning	1-2
Product Description	1-3
Product Description – New in Version 2	1-5
IPv6 Support	
Product Line Positioning	
Features	1-9
High-density Expansion Unit (Intermix)	1-10
Features	
Specifications	
Specifications for Regular Expansion Unit	1-13
Specifications for Dense Expansion Unit	1-14
Dense and Regular Expansion Unit Intermix	1-15
Software and Firmware Offerings	1-18
External Design and Connections	1-20
Certified Platforms	1-21
Highlights	1-22
2. HARDWARE COMPONENTS AND ARCHITECTURE	2-1
Module Objectives	2-1
Specification Outline Hardware Rev2	
Specification Outline Hardware	2-3
iSCSI Interface	2-4
Specification Outline Hardware	2-5
Specification Outline Firmware	2-6
Detail Specification Enhancement Outline	2-8
Detail Specification Multi Protocol-Rev2 (AMS2100, AMS2300)	2-9
Detail Specification Multi Protocol – Rev2 (AMS2100E AMS2300E)	2-10
Detail Specification Multi Protocol – Rev2 (AMS2100, AMS2300)	2-11
Detail Specification Onboard Controller with FC Interface	
Detail Specification Onboard Controller with FC Interface	2-14
Detail Specification Max HDD Number Improving in AMS2300 Rev2	2-15
Detail Specification Guarding Logic	
Detail Specification Upgrading	2-20
Detail Specification Firmware Version Architecture	2-23
Detail Specification Product Number	
Detail Specification Inquiry Serial Number Conversion Mode	
Detail Specification Inquiry page E0	
Detail Specification Incompatibility between AMS2000 Rev2 and SNM2 Old Version	2-27

Detail Specification Model Identifier	. 2-28
AMS 47U Rack Assembly Overview	. 2-29
AMS 47U Rack Assembly Quick Specs	. 2-31
AMS 47U Rack Assembly Dimensions	. 2-32
AMS 47U Rack Assembly PDU Specifics	. 2-33
AMS 47U Rack Assembly Lift Specs	. 2-34
High-density Expansion Unit	. 2-35
High-density Expansion Unit Front View	
High-density Expansion Unit Rear View	
High-density Expansion Unit Power Supplies	
High-density Expansion Unit Top View	
Dense SAS in the RKAKX	
High-density Expansion Unit Disk Drive Status LEDs	. 2-41
High-density Expansion Unit ENC Card	
High-density Expansion Unit ENC Connectors	. 2-43
Specifications Dense Expansion Unit	
High-density Expansion Unit Intermix	. 2-45
Dense RKAKX Installation	
Specifications Dense Expansion Unit	
Specifications Dense Expansion Unit (Detailed)	
HDD Configurations	
Specifications Models 2100 and 2300	. 2-55
Specifications Model 2500	. 2-56
Specifications Expansion Unit	
Hardware Components	
Back End Architecture	
Processors Change	. 2-70
Enclosure Change	. 2-71
Architecture	. 2-72
AMS 2100 Architecture	. 2-73
Architecture – Model 2100E Controller Version 2	. 2-74
AMS 2300 Architecture	. 2-75
Architecture – Model 2300E Controller Version 2	. 2-76
AMS 2300 Architecture (2100-2300 Delta)	. 2-77
AMS 2500 Architecture	
Architecture – Model 2500 Controller Version 2	. 2-79
AMS 2500 Architecture (2300-2500 Delta)	. 2-80
Hardware Components	. 2-81
Connecting ENC Cables RKM/RKS+RKAK+RKAKX×2+RKAK	. 2-82
Connecting iSCSI Cables RKH+RKAKX	
Back End SAS Connections	. 2-84
Power Supply	
Uninterruptible Power Supply Connections	
Rotary Switch Power Connection Mode Settings	
Rotary Switch Settings	. 2-89
Operations	. 2-90
Access Control Without Rotary Switch	
iSCSI Interface	. 2-92
Model 2500 FC/iSCSI Host Interface Intermix	
Model 2500 Interface Combinations	
Model 2500 Interface Combinations	
Specifications	
Controller Architecture	
Cache Architecture	
Back End Architecture	
Disk Expansion Tray	
Back End Logical Configuration	2-104

	System Management Options Interface	
	New Management Tool	
	System and Data Security	2-107
	LUN Formatting	2-108
	Supported RAID Levels	2-109
	Relative RAID Performance	2-115
	Disk Drive System and User Data Areas	2-116
	System Sequential Shutdown	2-117
	Power On and Sequential Startup	2-118
	Lab Project 1: Component Location	2-119
	Lab Project 1: Objectives	
3 V	VEB TOOL	3-1
U. I	Module Objectives	
	Functions of the Web Tool	
	New Management Tool	
	Location and Function of Ethernet Ports	3-4
	IP Addresses on LAN Ports	
	Preferred Way of Connecting	
	Normal Mode Summary Information	
	Normal Mode Sufficiently Information	
	Normal Mode Error Messages	
	Normal Mode Error Messages Normal Mode Trace Dumps	
	Maintenance Mode	
	Enter Maintenance Mode	
	Maintenance Mode User ID and Password	
	Maintenance Mode Initial Window	
	Lab Project 2 Web Access Normal Mode and Collect a Trace	
	Lab Project 2 Objectives	
	,	
4 Δ	•	
4. A	ACTIVE-ACTIVE I/O ARCHITECTURE	4-1
4. A	ACTIVE-ACTIVE I/O ARCHITECTURE Module Objectives	4-1 4-1
4. A	MCTIVE-ACTIVE I/O ARCHITECTURE	4-1 4-1 4-2
4. A	MCTIVE-ACTIVE I/O ARCHITECTURE Module Objectives Cross-controller Communication Internal Transaction	4-1 4-1 4-2 4-3
4. A	MCTIVE-ACTIVE I/O ARCHITECTURE Module Objectives Cross-controller Communication Internal Transaction LU Ownership	4-1 4-1 4-2 4-3 4-4
4. A	MCTIVE-ACTIVE I/O ARCHITECTURE Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing	4-1 4-2 4-3 4-4 4-6
4. A	MCTIVE-ACTIVE I/O ARCHITECTURE Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing	4-1 4-2 4-3 4-4 4-6 4-7
4. A	MCTIVE-ACTIVE I/O ARCHITECTURE Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design	4-1 4-1 4-2 4-3 4-4 4-6 4-7 4-9
4. A	MCTIVE-ACTIVE I/O ARCHITECTURE Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing	4-14-14-24-34-44-64-74-9
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support	4-14-14-24-34-44-64-74-94-13
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support	4-14-14-24-34-44-64-74-94-13
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support NSTALLATION Module Objectives	4-14-14-24-34-44-64-74-94-135-1
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support MSTALLATION Module Objectives Installation Resources	4-14-14-24-34-44-64-74-94-124-135-15-1
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support NSTALLATION Module Objectives Installation Resources Installation Steps	4-14-14-24-34-44-64-74-94-135-15-15-25-3
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support MSTALLATION Module Objectives Installation Resources. Installation Steps. Unpack Storage System	4-14-14-24-34-44-64-74-94-135-15-15-25-3
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support NSTALLATION Module Objectives Installation Resources Installation Steps Unpack Storage System Install Units	4-14-14-24-34-44-64-74-94-135-15-15-25-35-6
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support NSTALLATION Module Objectives Installation Resources Installation Steps Unpack Storage System Install Units Installing a Dense Expansion Unit	4-14-14-24-34-44-64-74-94-135-15-15-25-35-65-6
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support NSTALLATION Module Objectives Installation Resources. Installation Steps. Unpack Storage System Install Units Installing a Dense Expansion Unit Installing a Dense Expansion Unit RKAKX	4-14-14-24-34-44-64-74-94-124-135-15-15-25-35-65-65-8
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support MSTALLATION Module Objectives Installation Resources Installation Steps Unpack Storage System Install Units Installing a Dense Expansion Unit Installing a Dense Expansion Unit RKAKX Front Bezel	4-14-14-24-34-44-64-74-94-135-15-15-15-25-85-85-95-13
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support MSTALLATION Module Objectives Installation Resources. Installation Steps. Unpack Storage System Install Units Installing a Dense Expansion Unit Installing a Dense Expansion Unit RKAKX Front Bezel Parts	4-14-14-24-34-44-64-74-94-135-15-15-15-25-85-95-13
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support NSTALLATION Module Objectives Installation Resources. Installation Steps. Unpack Storage System Install Units Installing a Dense Expansion Unit Installing a Dense Expansion Unit RKAKX Front Bezel Parts ESD Damage Example	
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support NSTALLATION Module Objectives Installation Resources. Installation Steps Unpack Storage System Install Units Installing a Dense Expansion Unit Installing a Dense Expansion Unit RKAKX Front Bezel Parts ESD Damage Example Rear Door	
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support NSTALLATION Module Objectives Installation Resources. Installation Steps. Unpack Storage System Install Units Installing a Dense Expansion Unit RKAKX Front Bezel Parts ESD Damage Example Rear Door Expansion Unit Cabling.	
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support MSTALLATION Module Objectives Installation Resources Installation Steps Unpack Storage System Install Units Installing a Dense Expansion Unit Installing a Dense Expansion Unit RKAKX Front Bezel Parts ESD Damage Example Rear Door Expansion Unit Cabling Connect ENC Cables	
	Module Objectives Cross-controller Communication Internal Transaction LU Ownership Controller Load Balancing Active-Active versus Data Sharing Performance Design Microcode Updates Dual Core Support NSTALLATION Module Objectives Installation Resources. Installation Steps. Unpack Storage System Install Units Installing a Dense Expansion Unit RKAKX Front Bezel Parts ESD Damage Example Rear Door Expansion Unit Cabling.	

	Connect Power Cables	5-29
	Power Up the Storage System	
	Test Maintenance PC Server Connectivity	
	Installing Management Software	
	3	
6.	SETUP AND CONFIGURATION OF HITACHI STORAGE NAVIGATOR MODULAR 2	6-1
	Module Objectives	6-1
	Features	
	Supported Operations	
	Architecture	
	IPv6 Support	
	Login Layers	
	Default Authentication	
	Installation Requirements	
	Graphical User Interface	
	Main Window	
	Online Help	
	System Navigation Window	
	Storage Array Navigation Tree	
	Installation Summary	
	Install Storage Navigator Modular 2	
	Start From Web Brower	
	Troubleshooting Installation	
	Configure	
	Initial Setup	
	Fibre Channel Parameters	
	Initial Setup	
	Enable License Keys	
	Lab Project 3: SNM2 Installation and Initial Setup	6-36
	Lab Project 3: Objectives	
	RAID Groups Logical Units Creation	6-38
	RAID Groups versus Parity Groups	6-39
	LU Configuration	6-40
	Creation of RAID Groups	6-41
	Example of Three RAID Groups	
	Create Logical Unit Automatically	6-43
	Map LU to Host Group	
	Example of Several LUs	6-46
	Create & Map Volume Wizard	6-47
	Normal RAID Group I/O Operations	
	RAID Group I/O Operation on Drive Failure	
	Sparing Out	
	Correction Copy	
	Dynamic Sparing	
	Copy Back	
	No Copy Back	
	Setting Spare Drive Operation Mode	
	Setting Drive Restoration Mode	
	Lab Project 4: Basic Operations	
	Lab Project 4: Objectives	
	Host Connectivity Basics	
	Host Groups and LUN Mapping	
	Host Groups	
	Host Group Security (LUN Security)	
	Host Group — Options Settings	
	Host Group — Common Settings	
	Host Group — Additional Settings	6-71

	Connecting to the Host	
	View Host Group Parameters	
	Edit the Host Group Parameters	
	World Wide Names	
	Fibre Channel Parameters	
	Host HBA Persistent Binding	6-80
	HSNM2 Procedures	6-81
	General Operation Flow	
	Create a HDP Pool	
	Create HDP Pool – Pool Properties	
	Create DP Pool – Pool Advanced Settings	
	Create a HDP Pool – View the Pool Properties	
	Create an HDP Logical Unit (Virtual-LU)	
	Monitoring the DP Pool Consumption (Get DP Pool Trend Information)	
	Add DP Pool Capacity	
	Edit the DP Pool Attributes	
	Change HDP Logical Unit (Virtual-LU) Capacity	
	Recover DP Pool	
	Delete DP Pool	
	Addition on New Dense Tray	
	RKAKX Dense Tray Drive Configuration	
	RKAKX Dense Tray Drive Configuration	6-98
	Lab Project 5: Host Groups and LUN Mapping	
	Lab Project 5: Objectives	6-100
7 1	U Grow and Shrink	7.4
/. L		
	Module Objectives	
	Change LU Capacity — LU Expansion	
	Overview of Adding LUs together	
	General Conditions and Restrictions	
	Backup First	
	Formatting Issues	
	Add LUs to Increase Size	
	Unifying a Logical Unit	
	Change LU Capacity — Grow LU Capacity from Free Space	
	Change LU Capacity: LU Shrink	7-11
	LU Grow or Shrink	7-12
	Manual LU Creation from Free Space	7-14
	Create LU from Non-contiguous Free Space	7-15
	Create LUs from Non-contiguous Free Space	7-17
	Create LU from Non-contiguous Free Space	7-18
	General Specifications	
	LU Grow Detailed Specification	
	LU Grow Detailed Specification	
	LU Shrink Detailed Specification	
	Easy LU Creation Detailed Specification	
	Lab Project 6: LU Expansion and LU Grow/Shrink	
	Lab Project 6: Objectives	
	245 1 10,000 0. 00,000 100	20
8. 0	ONLINE RAID GROUP EXPANSION	R-1
J. U	Module Objectives	
	Overview	
	Example	
	Priority Mode	
	Perform Expansion	
	Remove Expansion	
	Remove (Cancel) Expansion	ర-11

Forcible Suspending Function	8-14
General Specification	8-16
Detailed Specification	8-17
Detailed Specification	
Failure Management	
Lab Project 7: Online RAID Group Expansion	
Lab Project 7: Objectives	
, ,	
9. SETUP AND CONFIGURATION OF HITACHI STORAGE NAVIGATOR N	
Module Objectives	9-1
GUI Functions -> CLI Functions	
Install	
Start CLI	9-7
Check the Environment Variables	9-8
Modes of Operation	9-9
Register a Storage System	
Creating a RAID Group	
Referencing the RAID Groups	
Deleting RAID Groups	
Creating LUs.	
Format LUs	
Referencing LUs	
Deleting LUs	
Display Help	
Lab Project 8: SNM2 CLI	
Lab Project 8: Objectives	
245 1 10/000 0. 05/000100	5 20
10. Software Feature Overview	10-1
Module Objectives	
Features and Usage	
Launch Advanced Settings	
Cache Memory Configuration	
Basic Operation of Cache Control	
Cache Partition Manager Feature	
Advantage of Selectable Segment Size – Small I/O	
Advantage of Selectable Segment Size – Large I/O	
Advantage of Global Cache	
Disadvantage of Global Cache	
Advantage of Partitioned Cache	
Advantage of Selectable Stripe Size	
Partitioning Cache	
Partitioning Cache Feature	
User Area	
User Area with Copy-on-Write SnapShot Installed	
Create Cache Free Space	
Create Sub-partitions Example	10-21
Lab Project 9: Cache Partition Manager	10-22
Lab Project 9: Objectives	10-23
Cache Residency Manager Overview	10-24
Installing Cache Residency Manager Feature	
Functionality	
Conditions that Terminate Cache Residency Manager	
Maximum LUN Size for Cache Residency Manager	
Performance Monitor Feature Overview	
Monitored Statistics	
Enabling Performance Data Collection	
Get Performance Function	

Reviewing Performance Data	10-35
Performance Monitor Window	10-36
Lab Project 10: Performance Monitor	10-37
Lab Project 10: Objectives	10-38
Overview of Modular Volume Migration	10-39
Migration From SAS Drives to SATA Drives	10-40
Migrating Volumes for Performance	10-41
Internal Mapping and I-LUNs	10-42
Performance Considerations	10-43
Volume Migration Setup	10-46

Contents Book 2 of 2

11. Maintenance and Troubleshooting	11-1
12. Hitachi Storage Navigator Modular 2 Advanced Operations	12-1
13. SNMP Agent and Hi-Track	13-1
14. Hardware Replacement Procedures	14-1
15. Disruptive Microcode Update	15-1
Appendix A: Volume Migration and Replication Specifications	A-1
Appendix B: RKAKX Dense Tray Installation	B-1
Glossary	G-1
Evaluating this Course	E-1

Introduction

Welcome and Introductions

- Name
- Position
- Professional skills
- Expectations from the course

Intended Audience

- Hitachi Data Systems Employees
 - Architect
 - Implementation and Support
 - Storage Manager
- · Hitachi Channel Partners
 - Architect
 - Implementation and Support
 - Storage Manager

Course Description

This five day instructor-led course provides training on installation, configuration, implementation, customer-level support, and how to perform onsite service and support for customers who purchase support contracts with the Hitachi Adaptable Modular Storage 2000 Family (models 2100, 2300, and 2500).

Course Objectives

- Upon completion of this course, the learner should be able to:
 - Recognize Adaptable Modular Storage 2000 Family product positioning, product objectives, features, and benefits
 - Explain the hardware components and architectures
 - Describe the AMS2000 Rev 2 controller architecture and its multi-protocol capabilities
 - Describe the AMS2000 Rev 2 front end connectivity specifications
 - Install and configure AMS2500 iSCSI host ports
 - Explain active-active I/O pathing and identify the benefits that it offers in hardware performance
 - Identify the implementation specifications for Adaptable Modular Storage 2000 Family systems
 - Describe specific installation procedures
 - Install the Storage Navigator Modular 2 software
 - Implement IPv6 support on management and maintenance LAN ports for supported operating systems
 - Describe Secure Sockets Layer (SSL) support
 - Describe and implement Hitachi Dynamic Provisioning software

- Identify the process for contacting Hitachi Data Systems customer support
- Identify the tools and tasks necessary to maintain and troubleshoot the Adaptable Modular Storage 2000 Family system
- Perform detailed troubleshooting using the Maintenance Manual
- Use the following features and capabilities of Storage Navigator Modular 2 program, including:
 - Register an Adaptable Modular Storage 2000 Family system
 - · Use account authentication to provide access control to management functions
 - Create RAID groups and LUNs
 - Create host groups, enable host group security, register the World Wide Names of attached host bus adapters (HBA), and map internal LUNs to host group LUNs
 - Create an expanded LU using the Change LU Capacity function
 - Enable specific features by installing corresponding product license keys
 - Customize cache utilization for applications using the Cache Partition Manager feature
 - Report failures and status to an SNMP server with SNMP Agent Support feature
 - Dynamically increase or reduce the capacity of LUNs by using the LU Grow/Shrink function
 - Dynamically expand RAID groups online by using the RAID Group Expansion function

6

Storage Navigator Modular 2 program, Cache Partition Manager feature, SNMP agent, LUSE, and LUN Manager and Expansion are all features of the **Hitachi Resource Manager utility package.**

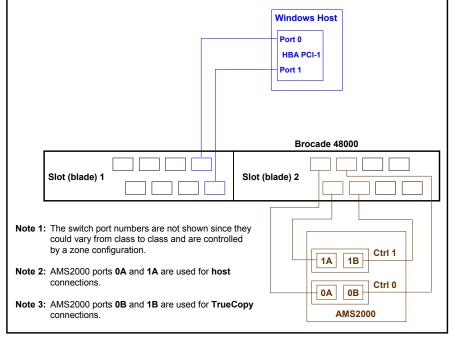
AMS2000 Rev1 to Rev2 Transition and Positioning

 In June 2010, all AMS2000 models will start shipping with new revision 2 controllers.

What the new controllers are:

- New 5th generation D-Ctl ASIC for improved sequential R/W performance on 2100, 2300 and 2500
- 2. Embedded 8Gbps FC ports on the 2100 and 2300
- 3. Host port FC and iSCSI intermix on the 2100 and 2300
- 4. 2x increase in supported RC ports for the 2100 and 2300
- 5. Sparing methodology changes from Composite to Component sparing

These new controllers are NOT:

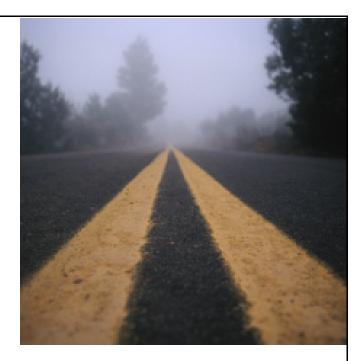

- 1. New (next) generation of AMS2000; system specs remain the same
- 2. Product enhancements apply equally regardless of controller revision level
- 3. No change in pricing; like for like systems cost the same
- 4. No change in software licensing; same license keys and pricing
- New Rev2 AMS2000 controllers are referred to as "E" controllers in our technical documentation. However, customer facing docs (marketing collateral) will refer to these as rev2 controllers.

Product Names

- Adaptable Module Storage systems are sometimes referred to as DF800 systems. The following names may appear in documentation:
 - DF800S: AMS2100 Rev1 (RKS)
 - DF800ES: AMS2100 Rev2 (RKES)
 - DF800M: AMS 2300 Rev1 (RKM)
 - DF800EM: AMS2300 Rev2 (RKEM)
 - DF800H: AMS2500 Rev1 (RKH)
 - DF800EH: AMS2500 Rev2 (RKEH)
 - Expansion unit: RKAK
 - Dense Expansion unit: RKAKX

Lab Equipment Configuration

- This diagram shows the recommended connections of the assigned lab equipment for each lab team and the configuration used at all of the HDS Americas education centers.
- Other HDS education centers and/or onsite customer classes may use a different switch or have direct-connect loop connections or use their own port configuration based on specific requirements of the client.


Course Agenda

Content	Learning Activities
Introduction	
Module 1: Product Overview	
Module 2: Hardware Components and Architecture	Lab 1: Component Location
Module 3: The Web Tool	Lab 2: Web Access: Normal Mode and Collect a Trace
Module 4: Active/Active I/O	
Module 5: Installation	
Module 6: Setup and Configuration of SNM2 GUI	Lab 3: SMN2 Installation and Initial Setup Lab 4: SNM2 Basic Operations: RAID Groups & LUNs Lab 5: Host Groups and LUN Mapping
Module 7: LU Grow/Shrink	Lab 6: LU Expansion and LU Grow/Shrink

Content	Learning Activities
Module 8: Online RAID Group Expansion	Lab 7: Online RAID Group Expansion
Module 9: Setup and Configuration of SNM2 CLI	Lab 8: SNM2 CLI
Module 10: Software Feature Overview	Lab 9: Cache Partition Manager Lab 10: Performance Monitor
Module 11: Maintenance and Troubleshooting	Lab 11: Remove and Add an Expansion Tray
Module 12: SNM2 Advanced Operations	Lab 12: SNM2 Advanced Operations (Constitute files, Firmware update, and Simple Trace)
Module 13: SNMP	
Module 14: Hardware replacement	Lab 13: Replace a Disk Drive, Control Unit, ENC, Interface Board, and SFP Host Connector
Module 15: Disruptive Microcode Update	Lab 14: Disruptive Microcode Update
Optional Appendix: Volume replication and Volume Migration Replication	
Exam	Exam for HDS Internals and HDS Installation and Configuration Partners

Learning Paths

- Are for customers, partners and employees
 - Available on HDS.com,
 Partner Xchange and HDSnet
- Enable career advancement
- Are a path to professional Certification
- Are available with the instructor
 - Details or copies

12

- HDS.com: http://www.hds.com/services/education/
- Partner Xchange: https://extranet.hds.com/http://aim.hds.com/portal/dt/
- HDSnet: http://hdsnet.hds.com/hds_academy/

Please contact your local training administrator if you have any questions regarding Learning Paths or visit your applicable website.

HDS Academy Is on Twitter and LinkedIn

Follow the HDS Academy on <u>Twitter</u> for regular training updates.

<u>LinkedIn</u> is an online *community* which enables students and instructors to actively participate in online discussions related to Hitachi Data Systems products and training courses.

13

These are the URLs for Twitter and LinkedIn:

- http://twitter.com/HDSAcademy
- http://www.linkedin.com/groups?gid=3044480&trk=myg_ugrp_ovr

1. Product Overview

Module Objectives

- Upon completion of this module, the learner should be able to:
 - Discuss the features of the Adaptable Modular Storage 2000 Family
 - List the models and benefits

AMS2000 Rev1 to Rev2 Transition and Positioning

In June 2010, all AMS2000 models will start shipping with new revision 2 controllers.

What the new controllers are:

- 1. New 5th generation D-Ctl ASIC for improved sequential R/W performance on 2100, 2300 and 2500
- 2. Embedded 8Gbps FC ports on the 2100 and 2300
- 3. Host port FC and iSCSI intermix on the 2100 and 2300
- 4. 2x increase in supported RC ports for the 2100 and 2300
- 5. Sparing methodology changes from Composite to Component sparing

These new controllers are NOT:

- 1. New (next) generation of AMS2000; system specs remain the same
- 2. Product enhancements apply equally regardless of controller revision level
- 3. No change in pricing; like for like systems cost the same
- 4. No change software licensing; same license keys and pricing

New Rev2 AMS2000 controllers are referred to as "E" controllers in our technical documentation.

However, customer facing docs (marketing collateral) will refer to these as rev2 controllers.

Product Description

- Dense, high-performance modular storage array
- Serial attached SCSI (SAS) back end architecture
 - SAS and SATA II drives
- · Fibre Channel or iSCSI front end host ports
 - Single type of front end interface with models 2100 and 2300
 - Two concurrent types of front end interface with model 2500
- NAS through Fiber Channel Gateway offerings
 - Essential NAS
 - High-performance NAS
- · Active-active symmetric high availability dual controller functionality
- Straightforward installation and configuration
- Intuitive storage management GUI (Hitachi Storage Navigator Modular 2 program)

- · Simple maintenance and troubleshooting
 - Improved back end diagnostics due to new serial back end
- Online firmware upgrade (No path failover software required)
- Replication software:
 - Hitachi Copy-on-Write Snapshot software
 - Hitachi ShadowImage® Replication software
 - Hitachi TrueCopy® Remote Replication software bundle
 - Hitachi TrueCopy® Extended Distance software
- Easy data migration to and from previous Adaptable Modular Storage systems using TrueCopy software

Product Description - New in Version 2

- New controllers will be provided for all AMS2000 products.
 - Each controller will get a new revision of the D-CTL (5th generation) for improved sequential R/W performance.
- In addition, the AMS2100 and AMS2300 will receive embedded 8Gb/s FC interface ports, 2 ports per AMS2100 controller and 4 per AMS2300 controller.
 - Optional 8Gb/s and 1Gb/s iSCSI daughter cards will be available. iSCSI option cards will allow each controller to host both iSCSI and FC protocol.
 - System with version 2.0 controller can be either all FC or FC/iSCSI.
 - An all iSCSI controller will not be available.
- The new port structure will allow the AMS2300 with version 2.0 controllers to maintain up to 8 FC ports per controller as opposed to 4 ports per controller on the version 1.0 controllers.

6

The Hitachi Adaptable Modular Storage 2000 Family includes the following products:

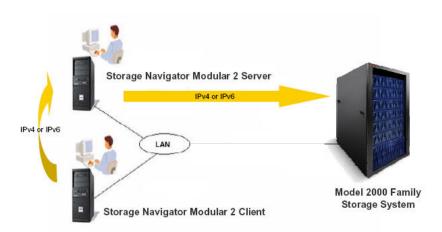
- Hitachi Adaptable Modular Storage 2100 (AMS2100)
- Hitachi Adaptable Modular Storage 2300 (AMS2300)
- Hitachi Adaptable Modular Storage 2500 (AMS2500)

• AMS2100

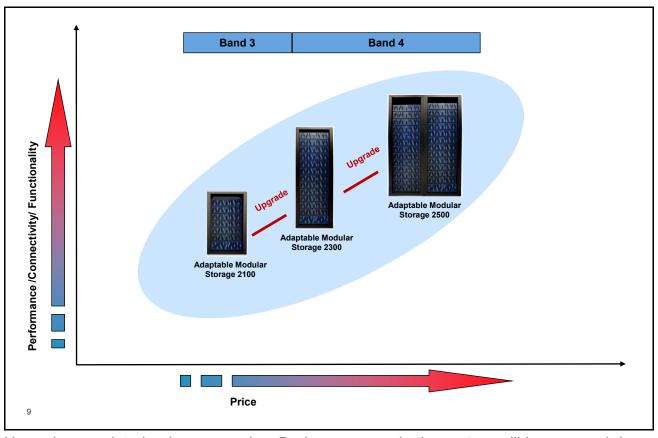
- Change from 4Gb/s to 8Gb/s FC.
- 8Gb/s FC is included in all models. (iSCSI only is not available.)
- Max # of FC ports increases from 4 to 8. (iSCSI remains the same.)
- Increase sequential performance.

• AMS2300

- 8Gb/s FC is included in all models. (iSCSI only is not available.)
- Max # of FC ports increases from 8 to 16. (iSCSI remains the same.)
- Increase in sequential performance.


• AMS2500

- Increase in sequential performance.
- 4Gb/s FC option will be not be offered; 8Gb/s FC will auto sense 2,4,8Gb/s infrastructure.


Model	Rev1	Rev2
AMS2100	CTL + 2x4Gb/s + Cache CTL + iSCSI + Cache N/A	CTL (w/2x8Gb/s) + Cache CTL (w/2x8Gb/s) + iSCSI + Cache CTL (w/2x8Gb/s) + 2x8Gb/s + Cache
AMS2300	CTL + 4x8Gb/s + Cache CTL + iSCSI + Cache N/A	CTL (w/4x8Gb/s) + Cache CTL (w/4x8Gb/s) + iSCSI + Cache CTL (w/4x8Gb/s) + 4x8Gb/s + Cache
AMS2500	CTL	CTL (w/8Gb/s) Auto senses 2,4,8 Gb/s infrastructure

IPv6 Support

- IPv6 is short for Internet Protocol Version 6.
- IPv4 has been the standard for 20 + years.
- Shortage of IPv4 addresses, as new machines are added to the Internet.
- Expectation is the IPv4 and IPv6 will both remain in use for at least a few years.
- Microsoft TechNet article that gives specific Best Practices and configurations using IPv6: http://technet.microsoft.com/en-us/library/bb742622.aspx

Product Line Positioning

Upgrades are data-in-place upgrades. During an upgrade the system will be powered down. These are **OFFLINE** procedures.

Features

- Modular High-performance and Large-capacity Systems
 - Adaptable Modular Storage 2100
 - 120 hard disk drives base unit plus 7 expansion units
 - Front end ports: 4 Fibre Channel or 4 iSCSI ports
 - Back end: 16 SAS Links 2 4x4 SAS Wide links per controller
 - Maximum 50 RAID Groups with 2048 Logical Units
 - Adaptable Modular Storage 2300
 - 240 hard disk drives base unit plus 15 expansion units
 - Front end ports: 8 Fibre Channel or 4 iSCSI
 - Back end: 16 SAS Links 2 4x4 SAS Wide links per controller
 - Maximum 75 RAID Groups with 4096 Logical Units
 - Adaptable Modular Storage 2500
 - **480** hard disk drives (**474** hard disk using intermix of standard and high density: see next slide for details) base unit plus **32** expansion units
 - · Front end ports: 16 Fibre Channel or 8 iSCSI, or a mixture
 - Back end: 32 SAS links 4 4x4 SAS Wide links per controller
 - Maximum 100 RAID Groups with 4096 Logical Units

10

The Adaptable Module Storage systems are sometimes referred to as DF800 systems. The following names may appear in documentation:

- Model 2100: DF800 S or RKS or AMS 2100
- Model 2300: DF800 M or RKM or AMS 2300
- Model 2500: DF800 H or RKH or AMS 2500
- Expansion unit: RKAK
- Expansion unit: RKAKX

High-density Expansion Unit (Intermix)

		titale describes		
Unit	Expansion Units 15 Disk Drives	High-density Expansion Units 48 disk Drives	Total Number of Disk Drives	
	0	10	480 ¹	
	1	9	447	
	2	9	462	
	3	8	429	
	4	8	444	
	5	8	459	
AMS 2500	6	8	474 ²	
AM3 2300	7	7	441	
	8	7	456	
	9	6	423	
	10	6	438	
	11	6	453	
	12	6	468	
	13	5	435	
	14	5	450	
	15	4	417	
	16	4	432	
	17	3	399	
	18	3	414	
	19	3	429	
	20	3	444	
AMS 2500	21	2	411	
	22	2	426	
	23	2	441	
	24	2	456	
	25	1	423	
	26	1	438	
	27	1	453	
	28	1	468	
	29	0	435	
	30	0	450	
	31	0	465	
	32	0	480 ³	

- Maximum number of disk drives using only high-density expansion units.
- Maximum number of disk drives using intermix of expansion units and high density expansion units.

 Maximum number of disk drives using only expansion

Expansion unit intermix:

You can set up a complex system by using the maximum of 480 disk drives by connecting a mixture of expansion units and high-density expansion units to the AMS 2500 base unit.

Base Unit		Expansion Unit					
	Disk Drives		Туре	Units		Disk Drives	
	Min	Max		Min	Max	Min	Max
AMS 2500	0	0	Expansion Unit (RKAK)	1	32	1st unit: 4 All other units: 2	15 per unit
			High-density Expansion Unit (RKAKX)	1	10	2 in each section of the unit ¹	48 per unit

Unit	Expansion Units 15 Disk Drives	High-density Expansion Units 48 disk Drives	Total Number of Disk Drives	Total Number of SAS Disk Drives
AMS 2500	0	10	480 ¹	380
	2	9	462	372
	6	8	474 ²	394
	8	7	456	386
	12	6	468	408
AMS 2500	14	5	450	400
	16	4	432	392
	20	3	444	414
	24	2	456	436
	28	1	468	458
	32	0	480 ³	480

- 1. Maximum number of disk drives using only high-density expansion units.
- 2. Maximum number of disk drives using intermix of expansion units and high-density expansion units.

 3. Maximum number of disk drives using only expansion units.

Features

- All models provide:
 - High-speed response
 - Continuous data availability
 - Scalable connectivity
 - Expandable capacity
- Competitive Features and Functionality
 - Microsoft® environments such as Virtual Disk Service (VDS) and Microsoft Volume Shadow Copy Service (VSS) provider
 - Complete Longhorn Server support (Windows 2008 code name)
 - Native Multipath I/O (MPIO, MPxIO, and so on) support
 - Hitachi Dynamic Link Manager software can still be used.
 - Functional enhancements to the Shadowlmage software features to enable competitive VSS behavior in Exchange environments
 - LUN Shrink/Grow feature
 - 60TB LUN support

Specifications

Models	2100	2300	2500
Specs	Dual Controller, 4 GB cache on each controller, 15 drives internal, Symmetric A/A, dual battery, dual redundant power supplies	Dual Controller, 8 GB cache on each controller, 15 drives internal, Symmetric A/A, dual battery, dual redundant power supplies	Dual Controller, 16 GB cache on each controller, 0 internal drives, Symmetric A/A, dual battery, dual redundant power supplies
Host Interface Options	 4 Fibre Channel (FC) auto-sensing 1/2/4 Gb/s 4 iSCSI 1000Base-T copper Ethernet 	8 Fibre Channel (FC) auto-sensing 2/4/8 Gb/s 4 iSCSI 1000Base-T copper Ethernet	Multi-Protocol Interface 16 Fibre Channel (FC) auto-sensing 2/4/8 Gb/s (8 per control unit) 4 iSCSI (2 per controller) 8 iSCSI 1000Base-T copper Ethernet (4 per controller)
Drive Interface	 16 Serial Attached SCSI (SAS) 4x4 wide link, 3 Gb/s switched 	16 Serial Attached SCSI (SAS) 4x4 wide links, 3 Gb/s switched	 32 Serial Attached SCSI (SAS) 4x4 wide links, 3 Gb/s switched
	switched		

In version 1 - The maximum cache configuration assumes using the $4\mathrm{GB}$ cache memory modules.

In version 1 - For the Adaptable Modular Storage 2000 Family 2GB and 4GB cache modules are available.

Specifications for Regular Expansion Unit

Models	2100	2300	2500			
RAID Levels	RAID 1, 1+0, 5, 6 (SAS & SA	ΓΑΙΙ drives), RAID 0 (SAS drives	only)			
Max # of RAID Groups	50	75	100			
Max # of Spare Drives	15	30	30			
Max # of LUs	2048	4096	4096			
Max LU size	60TB					
Supported Drives	300GB/15K, 400GB/10K SAS 500GB/7200, 1TB/7200 SATA					
Upgrades	Model 2100 to 2300, and 2300 to 2500 model via Controller, Data In Place Remote Mirroring interoperable with Adaptable Modular Storage					
Expansion Unit / Disk Trays (Optional based on capacity)	15 HDD/Tray (SAS/SATAII Intermix) Up to 7 trays (120 Drives total)	15 HDD/Tray (SAS/SATAII Intermix) Up to 15 trays (240 Drives total)	15 HDD/Tray (SAS/SATAI) intermix) no HDDs in the controllers Up to 32 trays (480 Drives total)			
Maximum Capacity	118TB	236TB	472TB			

14

Note:

- The Dense Expansion Unit does support only the RAID level-1, 1+0, 5 and 6!
- The Dense Expansion Unit supports only 1TB SATA disk drives with 7200 RPM!

Specifications for Dense Expansion Unit

Models	2100	2300	2500			
RAID Levels	RAID-1, 1+0, 5, 6		'			
Max # of RAID Groups	50	75	100			
Max # of Spare Drives	15	30	30			
Max # of LUs	2048	4096	4096			
Max LU size	60TB					
Supported Drives	Only 1TB/7200 SATA II					
Upgrades	Model 2100 to 2300, and 2300 to 2500 model via Controller, Data In Place Remote Mirroring interoperable with previous Adaptable Modular Storage (DF700)					
Dense Expansion Unit Disk Trays (Optional based on capacity)	Min. 4 – max. 48 HDD/Tray Max. 120 Drives total	Min. 4 – max. 48 HDD/Tray Max. 240 Drives total	Min. 4 – max. 48 HDD/Tray Max. 480 Drives total			
Maximum Capacity	120TB	240TB	480TB			

15

The firmware of the Adaptable Modular Storage (AMS) 2000 Family systems checks the numbers of disks (HDDs) connected to each back end SAS Wide link.

The maximums are as follows:

- AMS2100 max. 60 HDDs per SAS Wide link
- AMS2300/2500 max. 120 HDDs per SAS Wide link

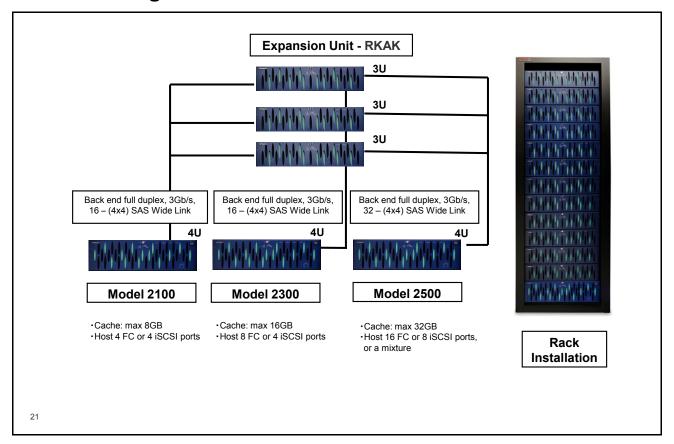
Dense and Regular Expansion Unit Intermix

Model 2 111(*) 2 100 2 111(*) 63 1 78 1 108 2 1 1 1 93 3 1 1 108 4 1 0 75 5 0 90 66 0 105 7 0 120	Madal	#of Expansion Units	#of Dense Units	#of Total HDDs
0 1 63 1 1 78 2 1 93 3 1 108 4 0 75 5 0 90 6 0 105	Model	0	2	111(*)
2 1 93 3 1 108 4 0 75 5 0 90 6 0 105	2400	0		63
3 1 108 4 0 75 5 0 90 6 0 105	2100	•	1	78
4 0 75 5 0 90 6 0 105		2		93
5 0 90 6 0 105				108
6 0 105		4		75
6 0 105 7 0 120		5		90
7 0 120		6		105
		7	0	120
16	16			

	#of Expansion Units	#of Dense Units	#of Total HDDs
lodel	0	4	207
200	1	4	222
2300	2	3	189
	3	3	204
	4	3	219
	5	3	234
	6	2	201
	7	2	216
	8	1	183
	9	1	198
	10	1	213
	11	1	228
	12	0	195
	13	0	210
	14	0	225
	15	0	240

Model	#of Expansion Units	#of Dense Units	#of Total HDDs
wodei	0	10	480
0500	1	9	447
2500	2	9	462
	3	8	429
	4	8	444
	5	8	459
	6	8	474
	7	7	441
	8	7	456
	9	6	423
	10	6	438
	11	6	453
	12	6	468
	13	5	435
	14	5	450
	15	4	417
	16	4	432
	17	3	399
	18	3	414
	19	3	429
	20	3	444
	21	2	411
	22	2	426
	23	2	441
	24	2	456
	25	1	423
	26	1	438
	27	1	453
	28	1	468
	29	0	435
	30	0	450
8	31	0	465

Software and Firmware Offerings


- Storage Management Software
 - Hitachi Storage Navigator Modular 2 (GUI and/or CLI)
 - Hitachi Storage Command Suite
- Bundled Storage Functions (Basic Operating System BOS M)
 - Account Authentication
 - Audit Logging
 - LUN Manager
 - LU Grow/Shrink
 - Online RAID Group Expansion
 - Cache Residency Manager
 - Cache Partition Manager
 - Modular Volume Migration
 - SNMP Agent Support Function
 - Performance Monitor

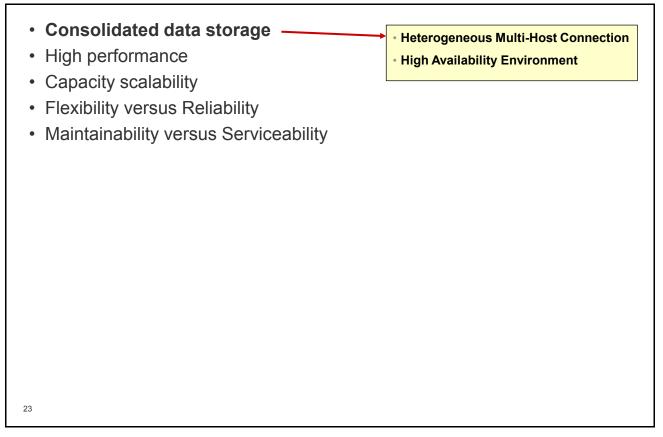
Optional Storage Features	2000 Family Product Line
ShadowImage (Clone)	1 Primary: 8 Secondary, 2048 Max, SNM2 GUI and CLI CCI RAID Manager management available
Copy-on-Write Snapshot	1 Primary: 32 Snaps, 2048 Max, SNM2 GUI and CLI CCI RAID Manager management available
TrueCopy (Sync Remote Mirroring)	1 Primary: 1 Secondary, SNM2 GUI and CLI CCI RAID Manager management available
TrueCopy Extended (Async Remote Mirroring)	1 Primary: 1 Secondary, SNM2 GUI and CLI CCI RAID Manager management available
Data Retention Utility (DRU)	Yes
Hitachi Dynamic Provisioning	Yes
Power Savings Feature (Spin Down RAID Groups)	Yes

Note: When using the SNM2 GUI or CLI, there is no HORCM file or Command Device required in order to manage the replication tasks or the Power Savings Feature.

^{*} Requires professional service

External Design and Connections

Certified Platforms


- True Multi-platform Intermix
 - Sun Solaris™ (Sparc and x64)
 - Microsoft® Windows Server® 2003 and 2008
 - HP-UX®
 - Linux[®] (RedHat[®], SuSE[™], Asianux, Oracle[®] EL, RedFlag Linux)
 - IBM® AIX
 - Novell® NetWare®
 - Apple[®] Mac OS[®] X
 - HP® OpenVMS®
 - HP Tru64
 - VMware[®]

22

- Full open systems intermix is possible and implemented by configuring **Host Groups**.
- The **Host Domain Group** concept allows for setting operating system or application software specific parameters as well as access security for Host Group individually.

A Host Group is a group of one or more LUNs and exists behind a Fibre Channel host port in the Model 2000 Family Modular Storage system.

Highlights

Support for Heterogeneous Multi-Host Connection is accomplished by setting Host-specific parameters for any individual group of LUNs (Host Group).

A High Availability environment (no single point of failure) requires the same level of redundancy in the Hosts, Storage Area Network, and in the Storage Device.

Consolidated data storage
High performance
Capacity scalability
Flexibility versus Reliability
Maintainability versus Serviceability

Two back end paths models 2100 and 2300. Also SAS Wide links to drives on the back end.

Consolidated data storage
High performance
Capacity scalability
Flexibility versus Reliability
Maintainability versus Serviceability
Up to 480 HDDs per storage system
Capacity: up to 32 expansion units (model 2500)

A system can hold a mix of both high-speed (usually more expensive) HDDs for performance, and slower (cheaper) drives for capacity.

- Performance: Used for online transactions, and more
- Capacity: Used for audio and video streaming, backups and more

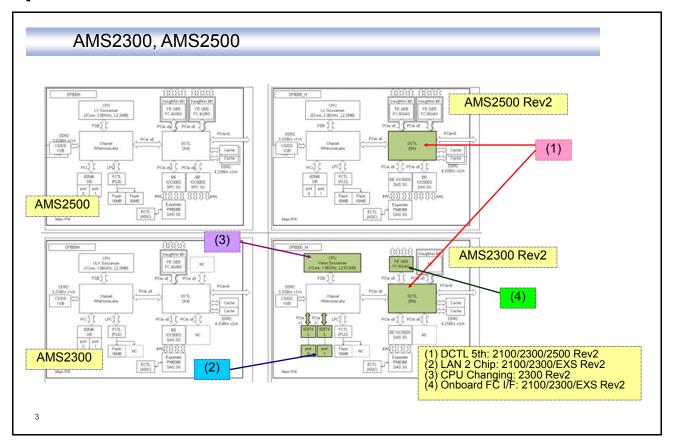
- · Consolidated data storage
- · High performance
- Capacity scalability
- Flexibility versus Reliability
- Maintainability versus Serviceability
- · Online capacity upgrade
- RAID levels supported 0, 1, 5, 6, 1+0
- Cache Partition Manager
- HDD Roaming
- Up to 30 global spare drives (models 2300, 2500)
- Online Verify and Dynamic Sparing
- LUN Mapping, Host Group Mode, and HG Security
- 8-byte Data Assurance Code

26

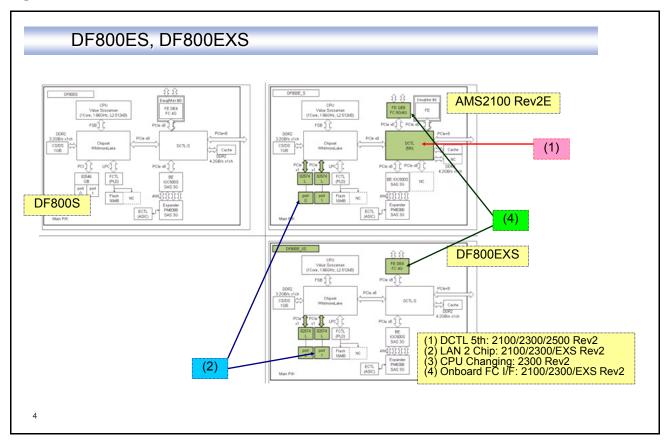
Online capacity upgrade: HDDs and expansion units can be added online; Controllers and Cache Memory cannot.

- Consolidated data storage
- High performance
- Capacity scalability
- Flexibility versus Reliability
- Maintainability versus Serviceability —
- Storage Navigator Modular 2
- Web tool
- SNMP
- Support Web Portal
- Hi-Track Monitor "call-home" service/remote maintenance tool

27


Storage Navigator Modular 2 is shipped with the array. The build center, or CTO, will install and enable feature keys for certain basic software features.

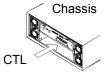
2. Hardware Components and Architecture

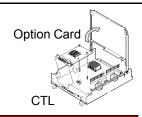

Module Objectives

- Upon completion of this module, the learner should be able to:
 - Identify the hardware components of the Adaptable Modular Storage 2000
 Family that affect installation, configuration, and troubleshooting
 - Explain the architecture that affects installation, configuration, and troubleshooting
 - Install and configure AMS2500 iSCSI HW ports
 - Describe the AMS21xx Rev2 controller architecture and its multi-protocol capabilities
 - Describe the AMS21xx Rev2 front end connectivity specifications

Specification Outline Hardware Rev2

Specification Outline Hardware




iSCSI Interface

- The AMS 2500 provides 4 iSCSI ports per controller (eight per unit) for the iSCSI configuration or two ports per controller (four per base unit) with the multi-protocol (mix of Fibre Channel and iSCSI) configuration.
 - To convert a base unit from only Fibre Channel to only iSCSI or to a multiprotocol configuration, replace both controllers and install the firmware on them.
 - The same firmware supports both fibre channel and iSCSI units.
- With the 1 Gb/s Ethernet connection, the array provides high-speed data transfer to and from a host computer.
 - The maximum transfer speed is 100 MB/s per port. Higher throughput can be obtained, even when accessing multiple devices connected to the same network.
- The AMS 2500 supports iSCSI (1000 Base-T).
 - With the HBA for iSCSI, generic NIC and software initiator, and network switch, the AMS 2500 can be located up to 100 meters from the host.

Specification Outline Hardware

- ✓ AMS2000 Rev2 and AMS2000, chassis is common.
- ✓ AMS2000 Rev2 CTL will be changed.
- ✓Option Card is common.

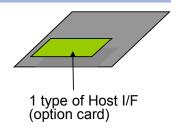
AMS				AMS					
2000	Multi	Multi FC [speed] [Max ports / System]			Multi	FC [speed] [Max ports / System]			
	Protocol	iSCSI [speed] [Max ports/System]			Protoc ol	iSCSI [speed] [Ma	ax ports/System]		
H-CTL	OK	1,2,4,8 Gb/s	16 ports	2500E-CTL	ок	1,2,4,8 Gb/s	16 ports		
		1 Gb/s	8 ports			1 Gb/s	8 ports		
M-CTL	N/A	N/A 1,2,4,8 Gb/s 8 ports 2300E-CTL	ОК	1,2,4,8 Gb/s	16 ports				
		1 Gb/s	4 ports			1 Gb/s	4 ports		
S-CTL	N/A	1,2,4 Gb/s	4 ports	2100E-CTL	ОК	1,2,4,8 Gb/s	8 ports		
						1 Gb/s	4 ports		
		1 Gb/s	4 ports	EXS-CTL	N/A	1,2,4 Gb/s	4 ports		
						N/A	N/A		

Specification Outline Firmware

#		Items				Specifications			
				DF800EXS	AMS2100 Rev2	AMS2300	AMS2300 Rev2	AMS2500	AMS2500 Rev2
1	Support Unit	Base Unit	RKS	RKEXS	RKES	RKM	RKEM	RKH	RKEH
2		Expansion Unit	RKAK(SAS/	SATA/SSD), R	(AKX(SATA)	RKAK,	RKAKX	RKAK,	RKAKX
3	Controller	Single / Dual		Single / Dual		Single	/ Dual	Di	ual
4		CPU clock	Value	e Sossaman 1.6 (Single Core)	7GHz	ULV Sossaman 1.67GHz (Single Core)	Value Sossaman 1.67GHz (Single Core)		man 2GHz Core)
5		L2 Cache capacity		512KB		2MB	512KB	2MB	
6		DCTL	DC.	TL-S	DCTL(5th)	DCTL(3rd)	DCTL(5th)	DCTL(3rd)	DCTL(5th)
7	Cache	Support capacity	10	GB, 2GB, 4GB /C	TL	1, 2, 4, 8GB /CTL		2, 4, 6, 8, 10, 12, 16GB /CTL	
8		Slot #		1 /CTL		2 /CTL		4 /CTL	
9	RAID	RAID 5	2	2D+1P ~ 15D+1	P	2D+1P ~ 15D+1P		2D+1P ~ 15D+1P	
10		RAID 6	2	2D+2P ~ 28D+2	P	2D+2P ~	· 28D+2P	2D+2P ~ 28D+2P	
11		RAID 1	1D+1D		1D+1D		1D-	+1D	
12		RAID 1+0		2D+2D ~ 8D+8D			2D+2D ~ 8D+8D		~ 8D+8D
13		RAID 0	2D	~ 16D (SATA=1	N/A)	2D ~ 16D (SATA=N/A)	2D ~ 16D (SATA=N/A)
14	1	Max RG#		50		7	'5	10	00

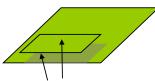
#		Items	Specifications								
			AMS2100	DF800EXS	AMS2100 Rev2E	AMS2300	AMS2300 Rev2	AMS2500	AMS2500 Rev2		
15	LU	Max LU#		2048		40	96	40	96		
16	1	Max LU size		60TB		60	ТВ	60	ТВ		
17		Max LU / HG		2048		20	48	20	48		
18		Max LU / RG		1024		10	24	10.	24		
19	HDP	Max DPVol		2047		40	95	40	95		
20		Max DP Pool#		50		6	4	64			
21		Max DPVol size		60TB		60TB		60TB			
22		DPVol / DP Pool		2047		4095		4095			
23	Spare Disk	Max Spare Disk #		15		30		3	0		
24	FC I/F	Speed	1, 2, 4	Gb/s	1,2,4,8Gb/s	1, 2, 4, 8 Gb/s		1, 2, 4,	8 Gb/s		
25		Max Port # / system	4	1	8	8	16	1	6		
26		CMD multiple rate		512CMD / port		512CMD / port		512CM	D / port		
27		Max Host #		128 / port		128 / port		128 /	port		
28	iSCSI I/F	Speed	1Gb/s	N/A	1Gb/s	1G	b/s	1G	b/s		
29		Max Port # / system	4		4	4		8	3		
30		CMD multiple rate	512CMD / port					D / port	512CM	D / port	
31		Max Host #	255 / port			255	port /	255 /	port		
32	Multi- Protocol	FC/iSCSI intermix in one CTL	N/A		Available	N/A	Available	Avail	able		

#		Items		Specifications							
			AMS2100	DF800EXS	AMS2100 Rev2	AMS2300	AMS2300 Rev2	AMS2500	AMS2500 Rev2		
33	Backend	Path# / system		4		4	1		8		
34		Basic Unit		15HDDs, 4Path	S	15HDDs	, 4Paths	0HDD,	8Paths		
35		Expansion Unit		15HDDs, 2Paths	S	15HDDs	, 2Paths	15HDDs	s, 2Paths		
36				Max 7RKAKs		Max 15	RKAKs	Max32	RKAKs		
37		Dense Unit		48HDDs, 4Path	S	48HDDs	, 4Paths	48HDDs	s, 4Paths		
38		(SATA Dense, SAS Dense)	Max 3RKAKXs			Max 4RKAKXs	Max 5RKAKXs	Max 10	RKAKXs		
39		Max HDD#		159		240	255	4	80		
40	HDD (SAS)	I/F		SAS (3Gb/s)			SAS (3Gb/s)		SAS (3Gb/s)		
41		Model		Seagate, HGST / 146G, 300G, 450G, 600G: 15Krpm / 400G: 10Krpm			, HGST / 450G, 600G: rpm / 10Krpm	146G, 300G, 15K	e, HGST / . 450G, 600G rpm / 10Krpm		
42	HDD (SATA)	I/F		HDD:SAS (3G -HDD: SATA (3	, ,	CTL-HDD:S HDD-HDD: S	SAS (3Gb/s), SATA (3Gb/s)		SAS (3Gb/s), SATA (3Gb/s)		
43		Model		Seagate, HGST / 500G, 750G, 1TB, 2TB: 7.2Krpm			, HGST / 6, 1TB, 2TB: (rpm	500G, 7500	e, HGST / G, 1TB, 2TB: Krpm		
44	SSD (SAS)	I/F		SAS (3Gb/s) SAS (3Gb/s)		3Gb/s)	SAS (3Gb/s)			
45		Model	S	TEC / 100G, 200)G	STEC / 10	00G, 200G	STEC / 10	00G, 200G		
46	Number of PG	R keys	32	128	128	32	128	32	128		


Detail Specification Enhancement Outline

#	I	tems	Contents	Notes
1	Hardware	DCTL 5th	Enhancement for new DCTL 5th	
2	Enhancement	LAN 2Chip/CTL	Hardware changing for LAN 2Chip/CTL	
3		CPU Enhancement	CPU enhancement in EM	
4		Onboard FC I/F	- Onboard FC I/F in EM, ES and EXS - Removing previous logic for I/F#0	See 4.3
5	Firmware Enhancement	Multi-Protocol	- Multi-Protocol (FC/iSCSI) in EM and ES - Onboard (FC) + Option Card (FC or iSCSI)	See 4.2
6		Max Dense# improvement	- EM supports max 255HDDs (RKEM + 5RKAKX) - No enhancement in M (max 240HDDs)	See 4.4
7		Guarding Logic	Combination between Controller and Firmware Rev.	See 4.5
8		Upgrading	- Model upgrading between DF800 and DF800E - Model upgrading in DF800E (eg: ES→EM/EH)	See 4.6

Detail Specification Multi Protocol-Rev2 (AMS2100, AMS2300)


Current AMS2000 Single-Protocol

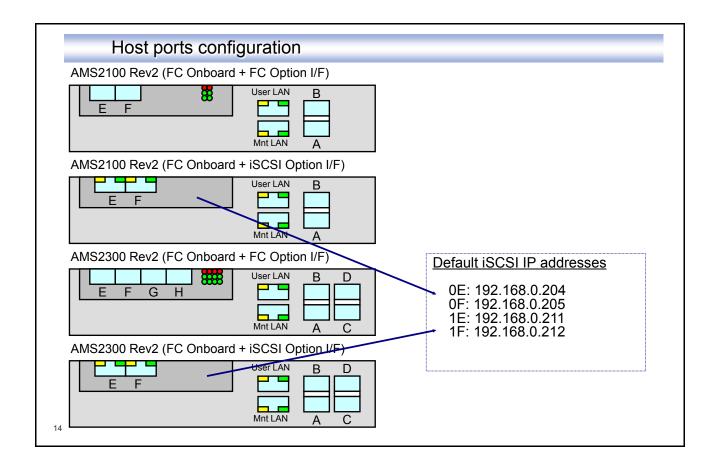
- Current AMS2100/AMS2300 are single-protocol.
- The controller can be installed with only one type of Host I/F, because it has 1 slot for option I/F card for Host I/F.
- (No host I/F is embedded on the controller.)

AMS2000 Rev2 Multi-Protocol

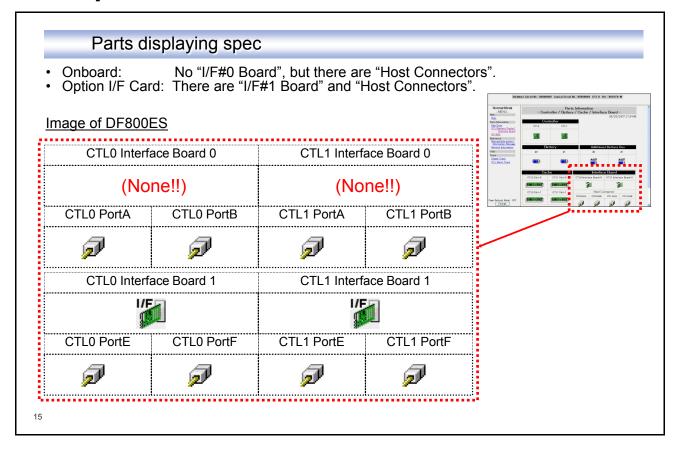
- AMS2100/2300 Rev2 support multi-protocol.
 - This multi-protocol can provide:
 - 1) More FC ports for Rev2 AMS2100/AMS2300 (Onboard FC 4(2) ports + optional FC 4(2) ports) 2) Combined Host I/F for AMS2100E/AMS2300E
 - (FC + iSCSI)
- More ports on Rev2 AMS2100/AMS2300.
- The controller can be installed with TWO TYPES of Host I/F, because it has embedded host I/F on board. in addition to the option I/F card for Host I/F.

2 types of Host I/F (embedded, and option card)

Detail Specification Multi Protocol – Rev2 (AMS2100E AMS2300E)


Combination of Onboard and Option I/F Card

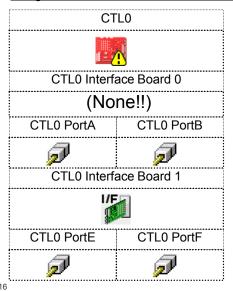
I/F, ports/CTL	L AMS2500 Rev2		AMS2300 Rev2			AMS2100 Rev2			DF800EXS	
Default (Onboard)				FC 8G x 4 (QE8)			FC 8G x 2 (QE8)			FC 4G x 2 (DE4)
	2 of below			1 of below		1 of below				
Option (I/F Card)	FC 8G x 4 (QE8)	FC 4G x 4 (QE4)	iSCSI 1G x 2	FC 8G x 4 (QE8)	FC 4G x 4 (QE4)	iSCSI 1G x 2	FC 8G x 2 (QE8)	FC 4G x 2 (DE4)	iSCSI 1G x 2	


#	Hardware (Onboard, Option I/F Card)			2100	EXS	2100 Rev2	2300	2300 Rev2	2500	2500 Rev2
1	Onboard	FC 8Gx4 (QE8)	NEW!!		N/A	N/A		Support		
2		FC 8Gx2 (QE8)	NEW!!		N/A	Support		N/A		
3		FC 4Gx2 (DE4)	NEW!!		Support	N/A		N/A		
4	Option I/F	FC 8Gx4 (QE8)		N/A		N/A	Support	Support	Support	Support
5	Card	FC 4Gx4 (QE4)		N/A		N/A	Support	Support	Support	Support
6		FC 8Gx2 (QE8)	NEW!!	N/A		Support	N/A	N/A	N/A	N/A
7		FC 4Gx2 (DE4)		Support		Support	N/A	N/A	N/A	N/A
8		iSCSI 1Gx2		Support		Support	Support	Support	Support	Support

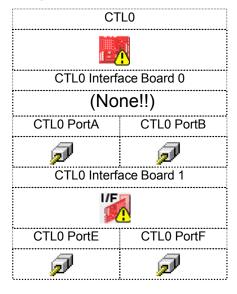
Detail Specification Multi Protocol - Rev2 (AMS2100, AMS2300)

Option I/F Card combination between CTL0 and CTL1 As same as current DF800H multi-protocol, intermix between CTL0 and CTL1 is NOT available. CTL1 AMS2300 Rev2 Onboard I/F#1 (Option I/F Card) FC 8Gx4 (QE8) FC 4Gx4 iSCSI 1Gx2 None (QE4) FC 8Gx4 (QE8) CTL0 Onboard FC 8Gx4 (QE8) Support Support N/A Support (Option FC 8Gx4 FC 4Gx4 (QE4) N/A Support Support Support I/F Card) (QE8) iSCSI 1Gx2 N/A N/A Support Support None Support Support Support Support CTL1 AMS2100 Rev2 Onboard I/F#1 (Option I/F Card) FC 8Gx2 (QE8) FC 4Gx2 iSCSI 1Gx2 None (DE4) CTL0 FC 8Gx2 (QE8) Onboard I/F#1 N/A FC 8Gx2 (QE8) Support Support Support (Option FC 8Gx2 FC 4Gx2 (DE4) Support Support N/A Support I/F Card) (QE8) iSCSI 1Gx2 N/A N/A Support Support None Support Support Support Support 13

Detail Specification Onboard Controller with FC Interface



Detail Specification Onboard Controller with FC Interface


Failure reporting spec

- Onboard failure: No "I/F#0 Board" failure, but only "CTLx" failure. Option I/F Card failure: Both "I/F#1 Board" failure and "CTLx" failure.

Image of DF800ES Onboard failure

Image of DF800ES Option I/F Card failure

Detail Specification Max HDD Number Improving in AMS2300 Rev2

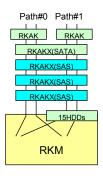
Overview

- AMS2300 Rev2 supports Max 4 RKAKXs(Dense) connection supported. (Max HDD=252)
 - Somé other combinations are also newly supported.
 - 255 HDDs configuration without RKAKX (1 RKEM + 16 RKAKS = 255) are NOT supported.
- No spec change in AMS2300 (still supports Max 4 RKAKXs connection).

Condition for considering the max support HDD

- · All following conditions must be fulfilled.
- A) Total HDD number is 255 or less.
- B) Total HDD number in each Path is 135 or less. (RKAK=15, RKAKX(SATA)=24, RKAKX(SAS)=24 (Not 19) *Note1)
- C) Total Unit number in each Path is 8 or less. (The Base-Unit is counted as Path1.)

*Note1: RKAKX(SATA) and RKAKX(SAS) use same Management Table internally, so one RKAKX(SAS) must be counted as 24HDDs in one Path, not as 19HDDs which is the actual number.


Detail table for AMS2300 Rev2 support HDD number

#	Comb	inations for AMS23	00 Rev2	Total HDDs	Note	
	RKEM (15HDDs)	RKAK (15HDDs)	RKAKX (48HDDs)			
1	1	14	0	225	Supported	
2	1	15	0	240	Supported	
3	1	16	0	255	Not supported → C)	
4	1	11	1	228	Supported	
5	1	12	1	243	Newly supported	
6	1	13	1	258	Not supported → A)	
7	1	8	2	231	Supported	
8	1	9	2	246	Newly supported	
9	1	10	2	261	Not supported → A)	
10	1	5	3	234	Supported	
11	1	6	3	249	Newly supported	
12	1	7	3	264	Not supported → A)	
13	1	2	4	237	Supported	
14	1	3	4	252	Newly supported	
15	1	4	4	267	Not supported → A)	

18

Detail table for AMS2300 Rev2 support HDD number with SAS Dense

#		Cor	Total HDDs	Note		
	RKM (15HDDs)	RKAK (15HDDs)	RKAKX (48 SATA HDDs)	RKAKX (38 SAS HDDs)		
1	1	0	0	5	205	Support
2	1	1	0	5	220	Support
3	1	2	0	5	235	N/A for Condition2
4	1	1	1	4	230	Support
5	1	2	1	4	245	N/A for Condition2
6	1	3	0	4	212	Support
7	1	4	0	4	227	N/A for Condition2

Following all conditions must be satisfied for the configuration.

- Condition1: Max 8 units / Path
- Condition2: Max 135 HDDs / Path (RKAK=15, RKAKX(SATA)=24, RKAKX(SAS)=24 (Not 19) *Note1)
 - Condition3: Max 240 HDDs / System

*Note1: RKAKX(SATA) and RKAKX(SAS) use same Management Table internally, so one RKAKX(SAS) must be counted as 24HDDs in one Path, not as 19HDDs which is the actual number.

Detail Specification Guarding Logic

Array booting up (Combination between Controller and Firmware)

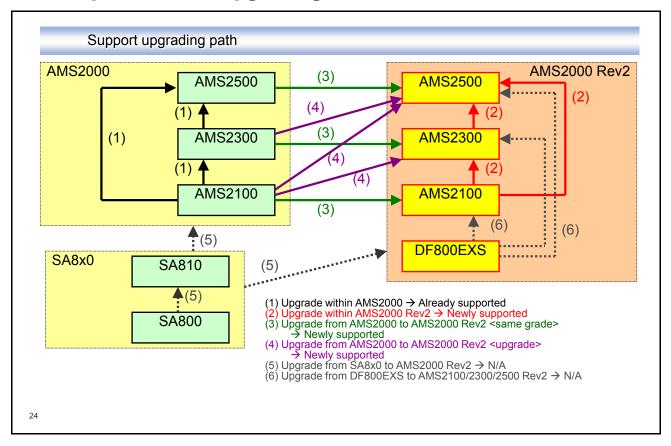
#	Controller kinds	Firmware version			
		Before V9.0	V9.0 or later (Note)		
1	AMS2100 controller	Available (Ready)	Available (Ready)		
2	AMS2300 controller	Available (Ready)	Available (Ready)		
3	AMS2500 controller	Available (Ready)	Available (Ready)		
4	DF800EXS controller	N/A (Subsystem Down)	Available (Ready)		
5	AMS2100 Rev2 controller	N/A (Subsystem Down)	Available (Ready)		
6	AMS2300 Rev2 controller	N/A (Subsystem Down)	Available (Ready)		
7	AMS2500 Rev2 controller	N/A (Subsystem Down)	Available (Ready)		

- AMS2000 Firmware cannot be installed on AMS2000 Rev2 Hardware.
 AMS2000 Rev2 Firmware cannot be installed on AMS2000 Hardware.

Array booting up (Combination between CTL0 and CTL1)

#	Controller kinds		Result	Note
	CTL0	CTL1		
1	DF800EXS	DF800EXS	Available (Ready)	
2		Other than DF800EXS	N/A (Subsystem Down)	RA7600: CTL unit type is different between the controllers
3	AMS2100	AMS2100 Rev2	Available (Ready)	
4	Rev2	Other than AMS2100 Rev2	N/A (Subsystem Down)	RA7600: CTL unit type is different between the controllers
5	AMS2300	AMS2300 Rev2	Available (Ready)	
6	Rev2	Other than AMS2300 Rev2	N/A (Subsystem Down)	RA7600: CTL unit type is different between the controllers
7	AMS2500	AMS2500 Rev2	Available (Ready)	
8	Rev2	Other than AMS2500 Rev2	N/A (Subsystem Down)	RA7600: CTL unit type is different between the controllers

21


Online controller replacement (combination between controller and firmware)

#	Current conf	iguration	Upgrading controller	Result
	Controller kinds	Firmware version	kinds	
1	AMS2100/2300/2500	Before V9.0	AMS2100/2300/2500	Available (Ready)
2			AMS2100/2300/2500 Rev2	N/A (CTL Alarm)
3		V9.0 or later	AMS2100/2300/2500	Available (Ready)
4			AMS2100/2300/2500 Rev2	N/A (CTL Alarm)
5	DF800EXS/	Before V9.0		
6	AMS2100/AMS2300/	V9.0 or later	AMS2100/2300/2500	N/A (CTL Alarm)
7	AMS2500 Rev2		DF800EXS/AMS2100/ AMS2300/AMS2500 rev2	Available (Ready)

Online firmware upgrading (combination between controller and firmware)

#	Current confi	guration	Upgrading Firmware	Result	
	Controller kinds	Firmware version	version		
1	AMS2100/2300/2500	Before V9.0	Before V9.0	Available (Ready)	
2			V9.0 or later	Available (Ready)	
3		V9.0 or later	Before V9.0	Available (Ready)	
4			V9.0 or later	Available (Ready)	
5	DF800EXS/AMS2100/	Before V9.0			
6	AMS2300/AMS2500	V9.0 or later	Before V9.0	N/A (Install guarding)	
7	Rev2		V9.0 or later	Available (Ready)	

Detail Specification Upgrading

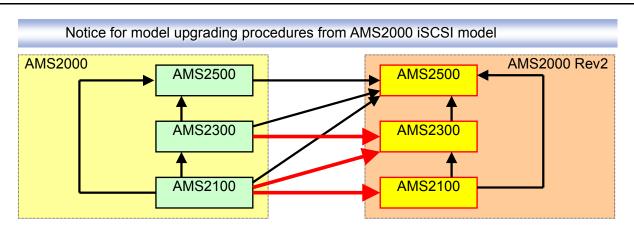
Model upgrading procedures

- Upgrading procedures in AMS2000 Rev2 are almost same as current AMS2000's. Some cases are simpler than the current ones because the Product Number is not changed in this upgrading.

#	# Upgrading procedures type		Upgrade kinds							
			(1) Within AMS2000		(2) Within AMS2000 Rev2			(3) AMS2000→AMS	(4)AMS2000 to AMS2000 Rev2	
			2100→	2300→	(6)	2100 Rev2→	EXS/2100	2000 <same grade=""></same>		grade>
			2300	2500	2500 EXS→ 2100 Rev2		Rev2/2300 Rev2→ 2500 Rev2		S → 2300 Rev2	S/M- > 2500 Rev2
1	Controller upgrading		X		N/A	X			X	
2	Chassis and Controller upgrading with Drive transferring			X	N/A		X			X
3	Controller upgrading (without Product ID changes)	NEW!!			N/A			X		

25

Model upgrading spec for PP information


- In conventional procedures of Model Upgrading, each PP must be un-installed before the Model Upgrading, then be installed again after the Upgrading. From V9.0/A, only HDP and DRU can be allowed to take over their PP information in Model Upgrading procedures, so there are not necessary the un-install and re-install procedures before and after Model Upgrading.

#	PP	Model Upgrading during PP key Enable	Impact for the Product		
1	LUN Manager	N/A	None (Setting information can be taken over.)		
2	Performance Monitor	N/A	None (No information must be taken over.)		
3	SNMP Agent Support	N/A	None (Setting information can be taken over.)		
4	Cache Residency Manager	N/A	Medium (Setting information can NOT be taken over.)		
5	Cache Partition Manager	N/A	Medium (Setting information can NOT be taken over.)		
6	Account Authentication	N/A	Medium (Setting information can NOT be taken over.)		
7	Audit Logging	N/A	None (Setting information can be taken over.)		
8	Data Retention Utility	Support in V9.0	(User cannot un-install the key during indicated term, so the Model Upgrading also cannot be executed.)		
9	Copy-on-Write Snapshot	N/A	Big (All V-Vols and Pool are deleted at the PP un-installing.)		
10	Shadowlmage	N/A	Big (All pair information are deleted at the PP un-installing.)		
11	TrueCopy remote replication	N/A	Big (All path and pair information are deleted at the PP uninstalling.)		

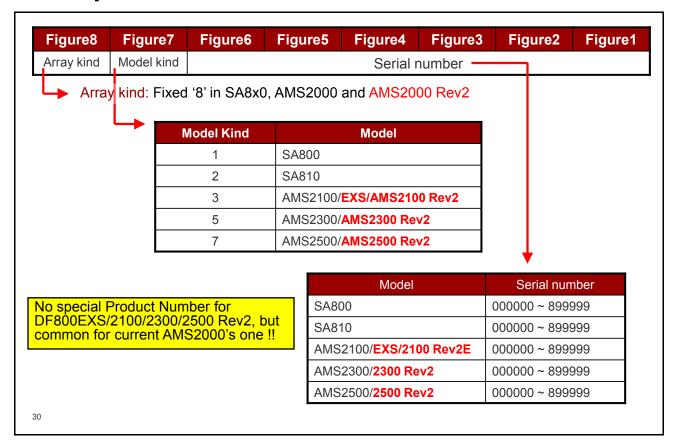
Model upgrading spec for PP information

#	PP	Model Upgrading during PP key Enable	Impact for the Product
12	TCMD	N/A	Big (All path and pair information are deleted at the PP uninstalling.)
13	TCED	N/A	Big (All path, pair and Pool information are deleted at the PP un-installing.)
14	Modular Volume Migration	N/A	Small (Model Upgrading should be executed after Migration.)
15	Power Saving	N/A	None (User should reconsider the setting contents after Model Upgrading.)
16	HDP	Support in V9.0	(All DP-Vols and DP Pools must be deleted at the PP uninstalling.)

27

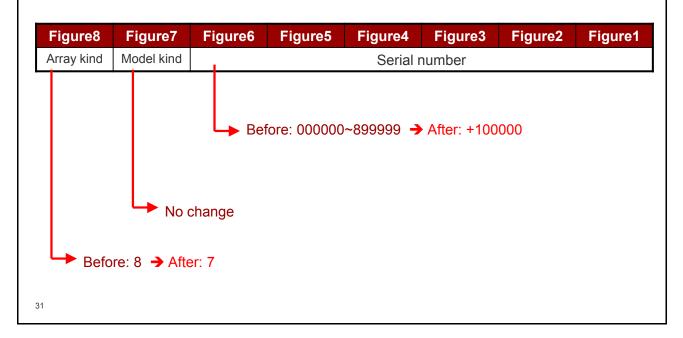
- In any upgrading cases, iSCSI specific information (IP address, iSCSI Name) is taken over to the destination Array, so that user does not take care some additional setting in the Host side.
- Above three Red → cases, although iSCSI specific information is taken over to the destination Array, just their Port locations are changed from original Array because of FC Onboard Controller spec.

Ex) Before: Port0A,0B,1A,1B → After: Port0E,0F,1E,1F


Detail Specification Firmware Version Architecture

Ver	Firmware Version (Full description)										
	Sealed Array		AMS2000			AMS2000 Rev2					
	SA800	SA810	2100	2300	2500	EXS	2100	2300	2500		
V4.0	1840/A-A	1840/A-B	0840/A-S	0840/A-M	0840/A-H						
V5.0	1850/A-A	1850/A-B	0850/A-S	0850/A-M	0850/A-H						
V6.0	1860/A-A	1860/A-B	0860/A-S	0860/A-M	0860/A-H						
V7.0	1870/A-A	1870/A-B	0870/A-S	0870/A-M	0870/A-H						
V8.0	1880/A-A		0880/A-S	0880/A-M	0880/A-H						
V9.0	1890/A-A		0890/A-S	0890/A-M	0890/A-H	0890/A-W	0890/A-X	0890/A-Y	0890/A-Z		

Note:


- AMS2000 Firmware cannot be installed on AMS2000 Rev2 Hardware.
- AMS2000 Rev2 Firmware cannot be installed on AMS2000 Hardware.

Detail Specification Product Number

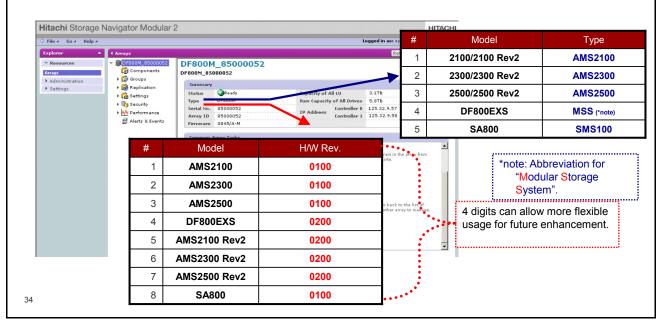
Detail Specification Inquiry Serial Number Conversion Mode

- This mode is the one for the customer who uses the old version of Symantec VxVM which supports only DF700, not AMS2000.
- When enabling the mode, the Array Product ID which is just for the response of Inquiry command is converted by following the rule of DF700.
- AMS2000 Rev2 supports this mode as same as AMS2000.

Detail Specification Inquiry page E0

Bi Byte	t 7	6	5	4	3	2	1	0	
0	Pei	Peripheral Qualifier Peripheral Device Type							
1				Page Code	(0xE0)				
2				Reserv	/ed				
3				Page Le	ngth				
4	P/S Vld	P/S			Vend	or Unique			
5	SWVld	A/PG	A/P	A/A	Rpt	Cnv	Rese	rved	
6 - 15				Vendor U	nique				
16 - 31				Product Identi	, ,				
32 - 39				Drive Type	(ASCII)				
40				Additional Prod					
41 - 127				Vendor U	nique				
#	Model	Byte	16-31: Produ	ct Identifier (A	SCII)	Additional Product Identifier			
1	AMS2100	"DF80	0S	" : (10 space	·s)	0x00 (No change)			
2	AMS2300	"DF80	OM	" : (10 space	·s)	0x00 (No change)			
3	AMS2500	"DF80	ОН	" : (10 spaces)		0x00 (No change)			
4	DF800EXS	"DF80	"DF800S ": (10 spaces)						
5	AMS2100 Rev2	2 "DF80	0S	" : (10 space	·s)	0x20 (NEW!!)			
6	AMS2300 Rev2	2 "DF80	OM	" : (10 space	·s)	0x40 (NEW!!)			
	AMS2500 Rev2	"DF80	011	" : (10 space	\	0x80 (NEW!!)			

Detail Specification Incompatibility between AMS2000 Rev2 and SNM2 Old Version


 Because the old version of SNM2 (Ver.8.xx or before) cannot show full spec configuration for AMS2000 Rev2, especially about the parts which are newly supported from V9.0, old version of SNM2 restricts to register AMS2000 Rev2 Array with following Error message.

DMEA001079: Cannot use this function for the specified device.

#	Model	SNM2 Ver.8.xx or before	SNM2 Ver.9.00 or later
1	AMS2100	No problem	No problem
2	AMS2300	No problem	No problem
3	AMS2500	No problem	No problem
4	DF800EXS	N/A (DMEA001079)	No problem
5	AMS2100 Rev2	N/A (DMEA001079)	No problem
6	AMS2300 Rev2	N/A (DMEA001079)	No problem
7	AMS2500 Rev2	N/A (DMEA001079)	No problem

Detail Specification Model Identifier

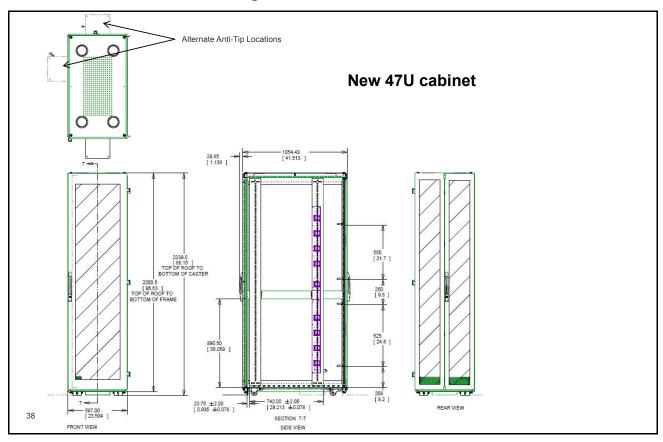
• Since there are some spec differences between AMS2000 and AMS2000 Rev2, we must be able to identify each Model in SNM2. Also, this Model identifier is necessary from maintenance point of view. Therefore, SNM2 supports one new category as "H/W Rev." in Array Components Screen, shown as "0100" for current AMS2100/2300/2500 and SA800, "0200" for new AMS2100/2300/2500 Rev2 and DF800EXS.

AMS 47U Rack Assembly Overview

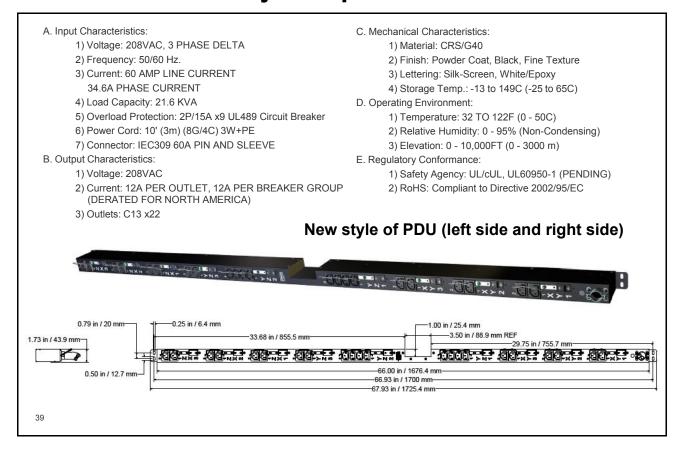
· Purpose:

- To satisfy customer requirements for more efficient use of floor space
- Our first rack config offering a 2 PDU design (requires 3 phase power)
- An alternative to the Solutions Rack

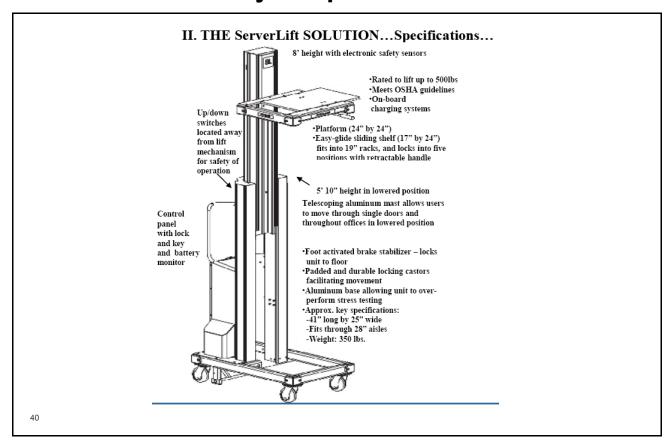
· Design Notes:


- Additional 5U height allows for a total of 10 Dense Trays within a single frame (one more than solutions capacity).
- 2 PDU Options:
 - 30A single phase 24 Outlet PDU x 4 (used in Solutions Rack)
 - New 60A 3-phase 22 Outlet PDU x 2
- The pair of 60A 3-Phase PDU's fit a "0U" form factor, maximizing cabling space within the rack.

- HDS will populate the rack up to half-height for shipping (consistent with previous AMS configurations).
- Customers must ensure this rack will fit through Data Center doors and in their transportation vehicles (if planning to ship).
- Must have height/weight appropriate lifts on-site to allow for completion of tray installation/maintenance and staff qualified to operate.
- Units will ship with a stabilizing plate and baying kit to assist with freestanding stability; however, bolting these units to the ground or ceiling is ideal (if possible).

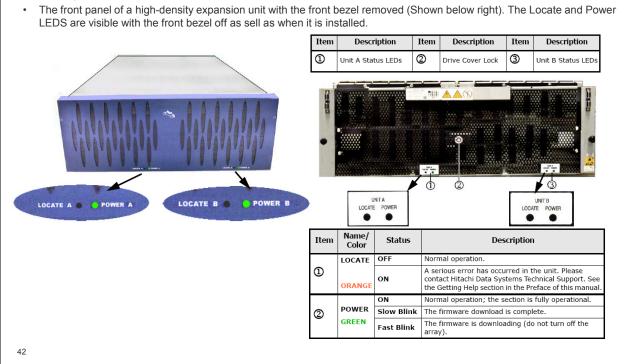

AMS 47U Rack Assembly Quick Specs

Item	Specification	Item	Specification
P-code	7846475	Front Door	Perforated, with lock, black
Dimensions (HxWxD)	88.13 x 23.5 x 41.5 inches 2238.6 x 597 x 105.43 mm	Rear Door	Split with Master/Slave, Lock
Usable Volume (HxWxD)	6.85 x 1.6 x 2.63 feet 2088 x 488 x 802 mm	Side Panels	Solid, with screws
Weight (approx)	410 lbs / 186 kg	Mounting	Four 19" vertical rails, with "U" markings
Static Weight Capacity*	3200 lbs / 1451 kg	Casters	2 fixed in the front 2 swivel casters in the rear Each caster rated at 249 kg (550 lbs) each (dynamic capacity)*
Power	208VAC, 3 Phase Delta, (2) 60 Amp PDUs	Dynamic Load	2250 lbs / 1021 kg
PDU	Power Cord: Rated 60A, 208V, 50/60Hz	Leveling Feet	4
Component Power Cords	Power cord 2 feet, 250V, 15 amps, C14/C13 connector	Cable Management	Cable ring guides in the rea
Indicator		Grounding	Black ground straps (door/ sides/roof)
PDU Source Power Cord	10' (3m) (8G/4C) 3W+PE	Blanking Panels	A sufficient number of 3U solid blanking panels to satisfy a configuration
Temperature	32° to 122°F (0° to 50°C)	Support Rails	None
Humidity	0 – 95%, non-condensing	Front Stabilizer Plate	One "L" shaped stabilizer plate included with the rack for front use
Color	Black	Side Stabilizer Plate	Required for stand-alone configurations
Mounting Height in EIA Units	47U	Safety Approvals (rack with power strips)	UL/cUL UL60950-1
Frame	Welded steel	Options	Temperature and humidity probe
Roof	Solid with 4 cable entry holes	Baying Interconnect Kits	8800490


AMS 47U Rack Assembly Dimensions

AMS 47U Rack Assembly PDU Specifics

AMS 47U Rack Assembly Lift Specs



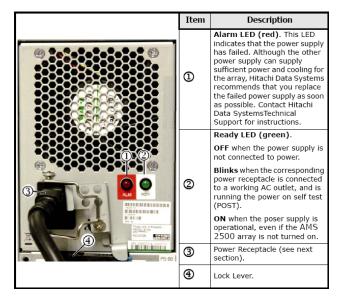
High-density Expansion Unit

- A high-density expansion storage unit (factory designation RKAKX) provides significant
 additional storage capabilities for the base units. It contains from 6 to 48 SATA disk drives,
 four redundant power supplies, and four ENC adapter units (cards). The ENC units manage
 the drives and are also used to connect the expansion unit to the base unit and other
 expansion units.
- There are no switches on a high-density expansion unit. Power is turned on and off with a
 control signal that is routed from the base unit via the ENC cables that are connected to the
 ENC unit in the high-density expansion unit. An AMS 2500 base unit supports up to 10 highdensity expansion units.
- A high-density expansion unit has 48 drive slots in the drive section of the unit. Each slot can
 accommodate one SATA drive or one drive filler. A drive filler is a solid but lightweight box
 that fills the slot to maintain airflow within the high-density expansion unit if 48 drives are not
 installed.
- The following are requirements for the high-density expansion unit:
 - All disk drives in this unit must be SATA drives.
 - The Hitachi Data Systems minimum supported number of drives that must be installed in the highdensity expansion unit is two in Unit A (slots 0-1) and two in Unit B (slots 0-1).
 - After the minimum configuration is met, you can add up to two SATA drives in each unit (which
 makes a RAID 1 configuration) at a time, or other combinations of drives as required to meet the
 RAID configurations specified in Chapter 1.

High-density Expansion Unit Front View

The front panel of the high-density expansion unit (Shown below left) includes two sets of Power and Locate status LEDs
that show the status of each section (A and B) in the unit and identify the unit in case of a failure. The installation location
should provide an unobstructed view of these LEDs.

High-density Expansion Unit Rear View


- The rear panel of a high-density expansion unit includes four power supplies, four ENC-IN ports, and four ENC-OUT ports. The ports provide the connections to daisy-chain high-density expansion units in the system.
- The rear panel also provides LEDs that show the status of the ENC units and the power supplies.

Item	Description	Item	Description	Item	Description
1	Power Supply B0	(5)	ENC Unit B0 IN	9	ENC Unit A0 IN
2	Power Supply B1	6	ENC Unit B0 OUT	100	ENC Unit A0 OUT
3	Power Supply A0	Ø	ENC Unit B1 IN	(11)	ENC Unit A1 IN
4	Power Supply A1	8	ENC Unit B1 OUT	12	ENC Unit A1 OUT

High-density Expansion Unit Power Supplies

The high-density expansion unit has two fully redundant power supplies for each section in the unit (total
of four power supplies). If one power supply in a section fails, the other one can supply sufficient power
and cooling to the section until the failed power supply is replaced.

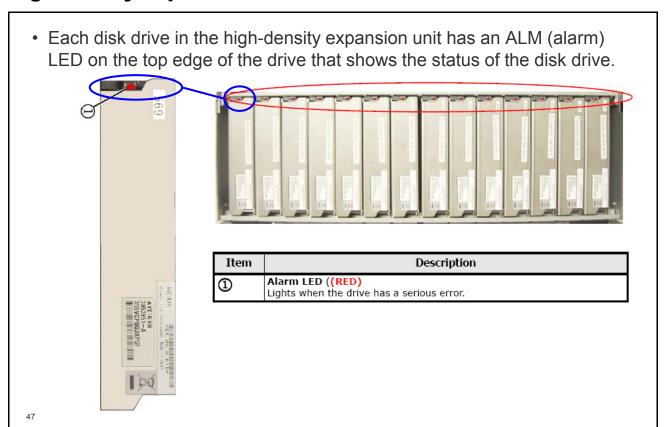
High-density Expansion Unit Top View

• The top view of high-density expansion unit with the drive cover removed. The disk drives and ENC cards can be seen along with the drive fillers where disk drives are not installed. These are required to prevent loss of cooling air to the drives.

10	HDU-B23	HDU-B18	HDU-B13	HDU-B6
	HDU-B22	HDU-B17	HDU-B12	HDU-B5
	ENC	-B0	HDU-B11	HDU-B4
	HDU-B21	HDU-B16	HDU-B10	HDU-B3
Z	ENC	-B1	HDU-B9	HDU-B2
0	HDU-B20	HDU-B15	HDU-B8	HDU-B1
1	HDU-B19	HDU-B14	HDU-B7	HDU-B0
LOCATION	HDU-A23	HDU-A18	HDU-A13	HDU-A6
0	HDU-A22	HDU-A17	HDU-A12	HDU-A5
0	ENC	-A0	HDU-A11	HDU-A4
-1	HDU-A21	HDU-A16	HDU-A10	HDU-A3
	ENC		HDU-A9	HDU-A2
-	HDU-A20	HDU-A15	HDU-A8	HDU-A1
- 2	HDU-A19	HDU-A14	HDU-A7	HDU-A0

Item	Description	Item	Description
1	Power Supplies (4) 0	3	Disk Drive Filler (must be in all slots that do not have disk drives installed).
2	ENC Unit (four required)	4	Disk Drive. See Disk Drive Configurations following this table.

Dense SAS in the RKAKX


Configuration: (0890/B or higher)

AMS2500 (RKHE2)	RKAK (15)	RKAKX	SAS Drives	SATA Drives
			(38 per RKAKX)	(48 per RKAKX)
	0	10	380	480
	2	9		462
	6	8	394	474
	8	7		456
	12	6		468
	14	5		450
	16	4		432
	20	3		444
	24	2		456
	28	1		468
	32	0		480
AMS2300 (RKM)			SAS Drives	SATA Drives
			(38 per RKAKX)	(48 per RKAKX)
	0	4	167	192
	1	4	182	222
	3	4	212 - Rev 0200 CTL	
	5	3	204	234
	7	2		216
	11	1		228
	15	0		240
AMS2100 (RKS)			SAS Drives	SATA Drives
			(38 per RKAKX)	(48 per RKAKX)
	0	3	129	159
	3	2	136	156
	5	1		138
	7	0		120

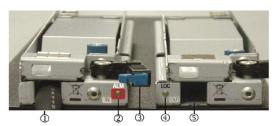
Note:

When installing SAS HDDs into the RKAKX drive tray, HDDs cannot be installed in slots A19~A23 or B19~B23, these slots are logically blocked in microcode. This is due to the power requirements of the SAS drives, which is higher than the SATA drives.

High-density Expansion Unit Disk Drive Status LEDs

High-density Expansion Unit ENC Card

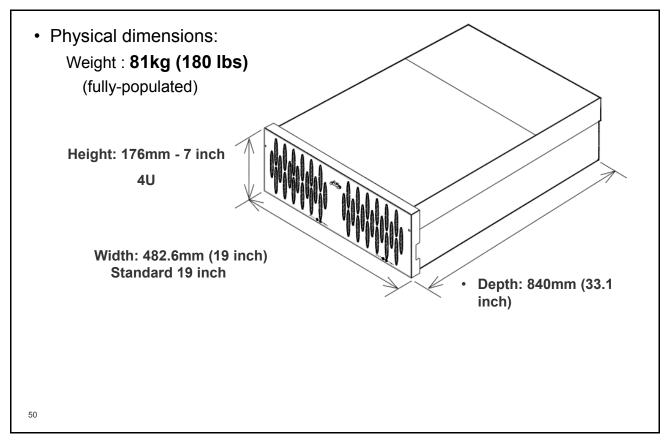
 Four ENC units (cards) are mounted in the disk drive area of the high-density expansion unit. The ENC cards are the interfaces between the high-density expansion unit in which they are mounted and the controller in a base unit or the ENC unit in a standard expansion unit or another high-density expansion unit. Each ENC card has a LO (locate) LED and an ALM (alarm) LED.


Item			Description					
1	Lock Lever	Secures the	secures the ENC unit in the chassis.					
		Alarm RED	This LED indicates that the ENC unit has failed.					
			OFF	Normal operation				
			Blinking 6 (slow)	Voltage on the control unit is abnormal. (Reset of the control unit is not canceled)				
١_			1 (fast) ¹	SRAM error.				
2	Status LEDs	LOCATE	2 (fast)	ENC hard error.				
		ORANGE	3 (fast)	Firmware error in flash memory.				
			4 (fast)	CUDG error in ENC.				
			6 (slow)	Voltage on the control unit is abnormal. (Reset of the control unit is not canceled)				
			ON	Boot section error in the ENC firmware, a RAM error, or ENC hard configuration error.				

Note 1:
When blinking fast, the LED is on for 400ms and off for 200ms for each fast blink. After the number of fast blinks has completed, the LED goes off for

one second.

High-density Expansion Unit ENC Connectors


- The ENC cards in the high-density expansion unit are mounted inside the unit and do not have direct access to the outside of the unit. Each ENC card is connected to two ENC connector extension units (IN and OUT) that connect the ENC cables to the ENC card.
- The ENC IN connector includes an ALM (alarm) LED that turns on when the ENC card to which it is connected fails.

Item	Description	Item	Description		
1	ENC Port (IN). Connects to the OUT port on either the base unit controller the IN port on the ENC unit in an expansion unit or high-density expansion unit.	2	ALM (alarm) LED RED This LED indicates that the ENC unit has failed.		
3	Lock Lever	4)	LOC (locate) LED ORANGE		
	Eddit Edver)	See Table 4-21 on page 4-24.		
(3)	ENC Port (OUT). Connects to IN on either the controller on a base unit or the IN port on the ENC unit in an expansion unit or high-density expansion unit				

Specifications Dense Expansion Unit

Power and heat specifications:

- Input Voltage (V): 100/200 AC
- Frequency: 50/60
- Number of Phases / Cabling: Single Phase with protective grounding
- \bullet Steady State current (AC 100V/200V): 3.7 A x 4 / 1.9 A x 2
- Breaking Current: 16 A
- Required Power Steady State (VA/W) (AC 100V/200V): 1480/1440
- Required Power Starting State (VA/W) (AC 100V/200V): 1480/1440
- Heat Output (kJ/h): 5190

High-density Expansion Unit Intermix

Unit	Expansion Units 15 Disk Drives	High-density Expansion Units 48 disk Drives	Total Number of Disk Drives	
	0	10	480 ¹	
	1	9	447	
	2	9	462	
	3	8	429	
	4	8	444	
	5	8	459	
AMS 2500	6	8	474 ²	
AMS 2500	7	7	441	
	8	7	456	
	9	6	423	
	10	6	438	
	11	6	453	
	12	6	468	
	13	5	435	
ĺ	14	5	450	
	15	4	417	
	16	4	432	
	17	3	399	
	18	3	414	
	19	3	429	
	20	3	444	
	21	2	411	
	22	2	426	
AMS 2500	23	2	441	
	24	2	456	
l	25	1	423	
1	26	1	438	
l	27	1	453	
l	28	1	468	
l	29	0	435	
l	30	0	450	
1	31	0	465	
l	32	0	480 ³	

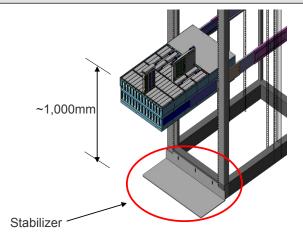
- Maximum number of disk drives using only high-density
- Maximum number of disk drives using intermix of expansion units and high density expansion units.

 3. Maximum number of disk drives using only expansion units.

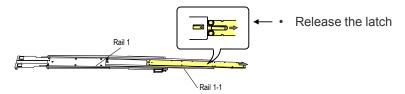
Expansion unit intermix:

You can set up a complex system by using the maximum of 480 disk drives to connect a mixture of expansion units and high-density expansion units to the AMS 2500 base unit.

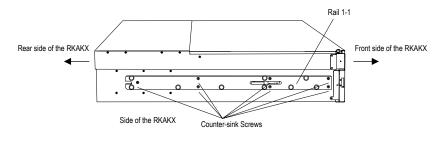
Base Unit			Expansion Unit				
	Disk Drives		Туре	Units		Disk Drives	
	Min	Max		Min	Max	Min	Max
AMS 2500	0 0	0	Expansion Unit (RKAK)	1	32	1st unit: 4 All other units: 2	15 per unit
		High-density Expansion Unit (RKAKX)	1	10	2 in each section of the unit ¹	48 per unit	


Unit	Expansion Units 15 Disk Drives	High-density Expansion Units 48 disk Drives	Total Number of Disk Drives	Total Number of SAS Disk Drives
AMS 2500	0	10	480 ¹	380
	2	9	462	372
	6	8	474 ²	394
	8	7	456	386
	12	6	468	408
AMS 2500	14	5	450	400
	16	4	432	392
	20	3	444	414
	24	2	456	436
	28	1	468	458
	32	0	480 ³	480

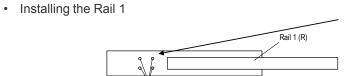
- 1. Maximum number of disk drives using only high-density expansion
- 2. Maximum number of disk drives using intermix of expansion units and high-density expansion units.
- Maximum number of disk drives using only expansion units.


Dense RKAKX Installation

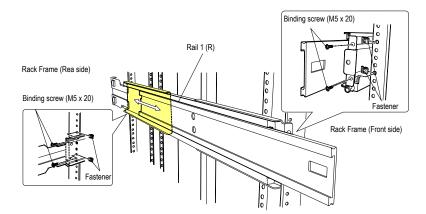
Caution:


- Need Stabilizer on the Rack (See below Fig.)
- When installing RKAKX, due to weight of the tray this operation should not be performed by a single person.
- Dense_RKA must be mounted within 1,000mm height.
- Make a blank space (2U) in the bottom of the Rack, to put ENC cable

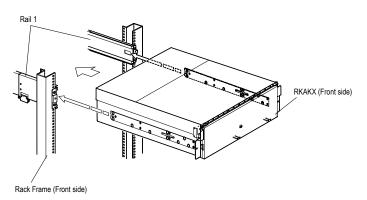
- · Mounting the RKAKX on Rack Frame
 - Installing the rails:
 - Remove the rail 1-1 from the rail 1 (R) and rail 1(L) by sliding it.



• Install the rail 1-1 in the both sides of RKAKX, and fix it with the counter-sink screws (seven places each at right and left).


53

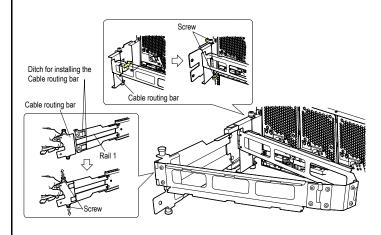
- · Mounting the RKAKX on Rack Frame (continued)
 - Installing the rails (cont'd)

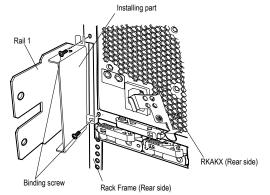


Adjustable screw

· Loosen the adjustable screw

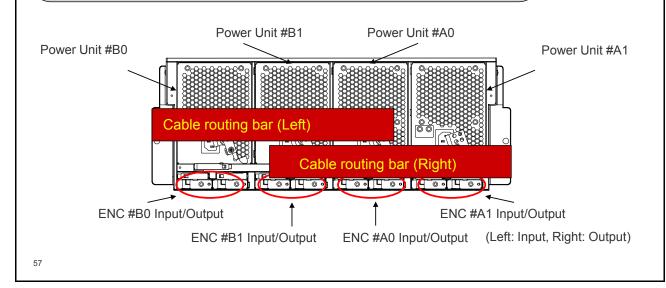
- Mounting the RKAKX on Rack Frame (continued)
 - Installing the RKAKX

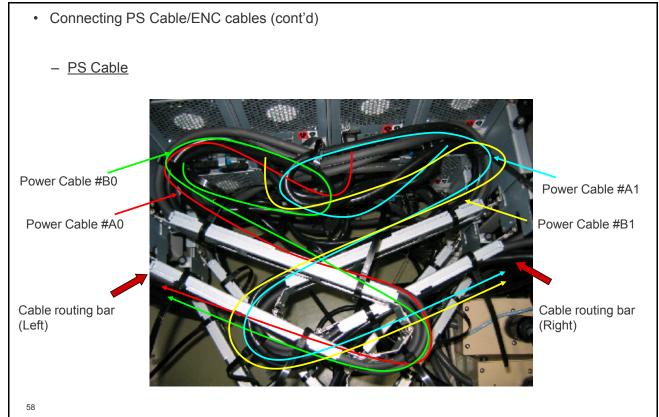


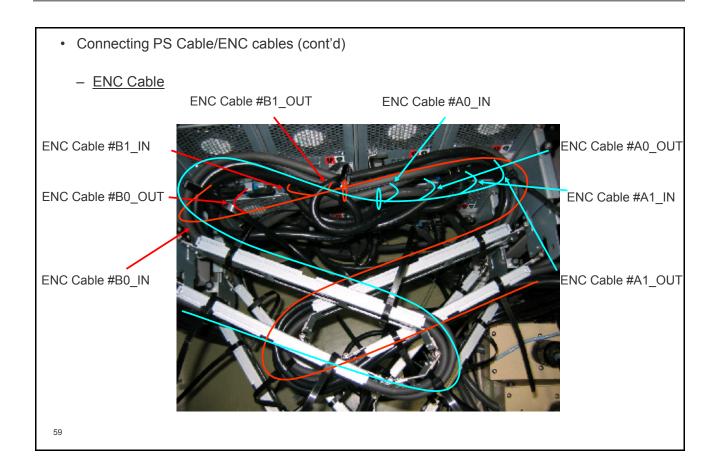

Caution:

- Installing RKAKX requires a two person operation plus proper lifting device.
- Dense RKA must be mounted within 1,000mm height.
- Make a blank space (2U) in the bottom of the Rack

55


- Mounting the RKAKX on Rack Frame (continued)
 - Installing the cable routing bar





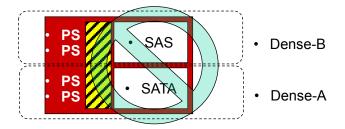
Fixing the front side of RKAKX

- Connecting PS Cable/ENC cables
 - Fix PS #A0/B0 cable and ENC #A0/#A1 input/output cable to cable routing bar (left).
 - Fix PS #A1/#B1 cable and ENC #B0/#B1 input/output cable to cable routing bar (right).
 - All cables must be within the own RKAKX 4U height.

Specifications Dense Expansion Unit

			SAS Dense 3.5"SAS x 38sp/4U	SATA Dense 3.5"SATA x 48sp/4U	
	Chassis Name		RKAKX (Note1)	RKAKX (Note 1)	
	Maintenance parts (ENC,PS)		Common		
	Support Drive	3.5"SATA	N/A	Support (1TB: 7.2Krpm)	
		3.5"SAS	Support (450GB:15Krpm, 600GB: 15Krpm) (<i>Note 2</i>)	N/A	
Spec.		2.5"SAS	Not supplied	Not supplied	
орос.		SSD	Not supplied	Not supplied	
	# of HDD (Unit)		38sp	48sp	
	# of HDD (system)	DF800H	380 (38HDDx10)	480 (48HDDx10)	
		DF800M	167 (38HDDx 4 +15HDD)	207 (48HDDx 4 +15HDD)	
		DF800S	129 (38HDDx 3 +15HDD)	159 (48HDDx 3 + 15HDD)	
	Noise		65dB(raw62dB)		
	Power supply		AC100/200V		
	Size(W x H x D)		483 x 176 x 840		

- Note 1: SATA Dense and SAS Dense are common Hardware Chassis as RKAKX.
- Note 2: 450GB HDD and 600GB HDD can be intermixed in one Dense tray.
- The max number of Dense Trays (RKAKX + RKAKX) for one AMS is the same as the current specification.


SATA Dense and SAS Dense are common Hardware Chassis!

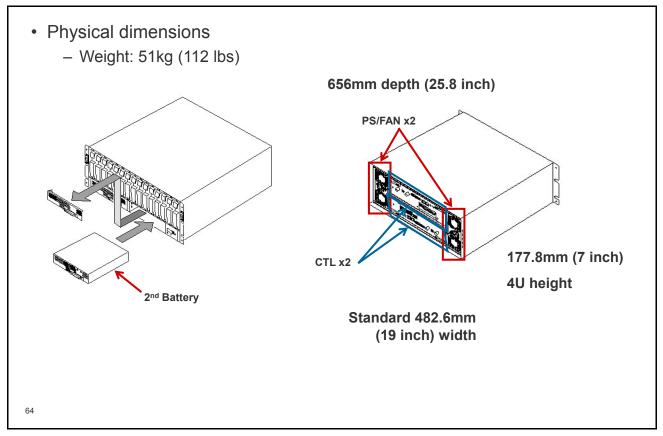
- Physically NOT covered, but logically restricted!!
- · SAS HDDs cannot be installed in this area.
- The Firmware will check and notify with error message if the rule is not observed.

Specifications Dense Expansion Unit (Detailed)

- Unable to mix SAS HDD and SATA HDD in the same Dense RKA.
 - ("Dense-A for SAS and Dense-B for SATA" is also unavailable.)
- The Firmware will check and notify with error message if the rule is not observed.

- One AMS can have Dense RKA with SAS HDDs and Dense RKA with SATA HDDs at the same configuration.
- · SSD is not supported for Dense RKA.

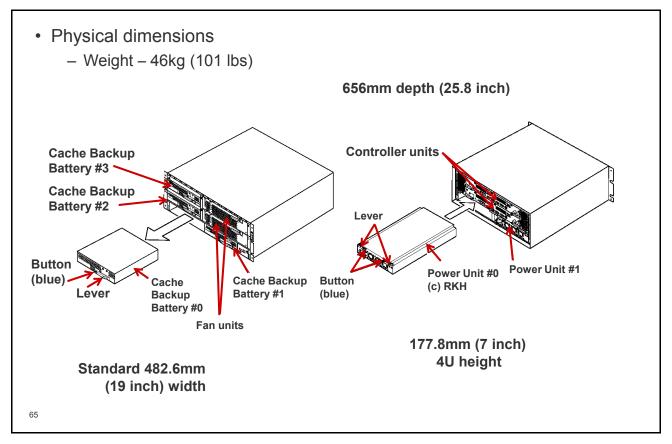
HDD Configurations


• Total support HDD number for AMS2500

#		Со	Total HDDs	Note		
	RKH (0HDD)	RKAK (15HDDs)	RKAKX (48 SATA HDDs)	RKAKX (38 SAS HDDs)		
1	1	0	0	10	380	Support
2	1	1	0	10	395	N/A for Condition2
3	1	2	0	9	372	Support
4	1	3	0	9	387	N/A for Condition2
5	1	0	1	9	390	Support
6	1	1	1	9	405	N/A for Condition2
7	1	6	0	8	394	Support
8	1	7	0	8	409	N/A for Condition2
9	1	0	2	8	400	Support
10	1	1	2	8	415	N/A for Condition2

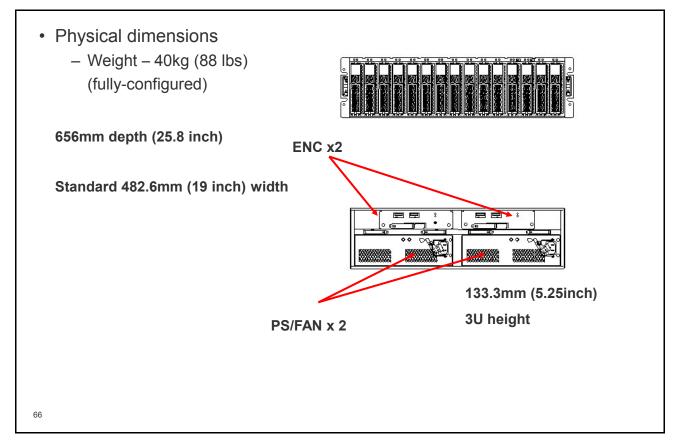
- All of the following conditions must be satisfied for the configuration:
 - Condition1: Max 8 units / Path
 - Condition2: Max 120 HDDs / Path (RKAK=15, RKAKX(SATA)=24, RKAKX(SAS)=24 (Not 19) *Note1)
 - Condition3: Max 480 HDDs / System

*Note1: RKAKX(SATA) and RKAKX(SAS) use same Management Table internally, so one RKAKX(SAS) must be counted as 24HDDs in one Path, not as 19HDDs which is the actual number.


Specifications Models 2100 and 2300

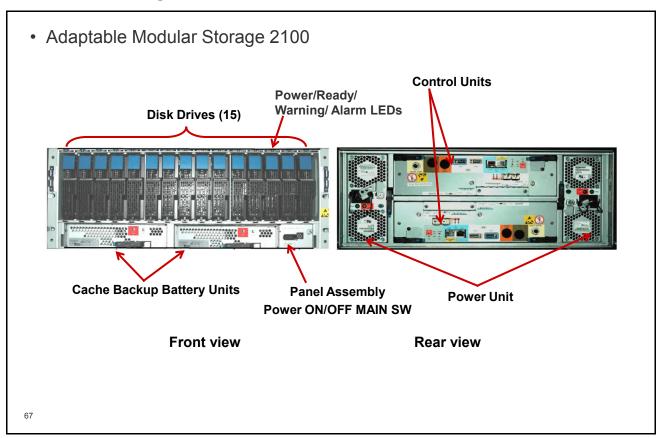
Power and heat specifications:

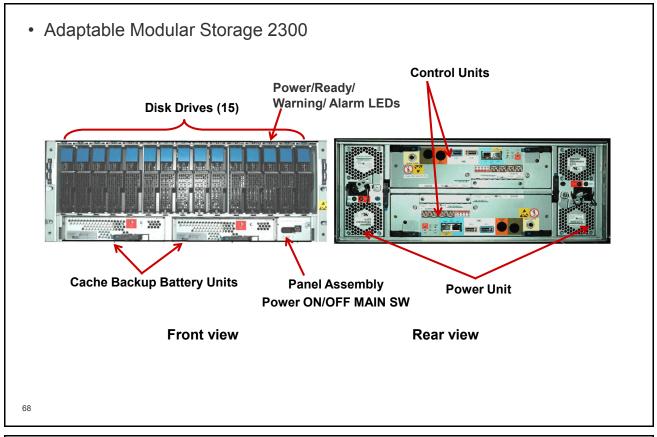
- Input Voltage (V): 100/200 AC
- Frequency: 50/60
- Number of Phases / Cabling: Single Phase with protective grounding
- Steady State current (AC 100V/200V): $3.8 \text{ A} \times 2 / 1.9 \text{ A} \times 2$
- Breaking Current: 16 A
- Required Power Steady State (VA/W) (AC 100V/200V): 760/740
- Required Power Starting State (VA/W) (AC 100V/200V): 760/740
- Heat Output (kJ/h): 2670

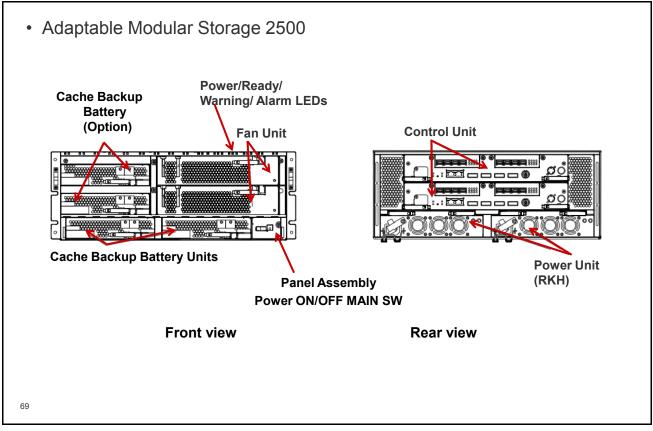

Specifications Model 2500

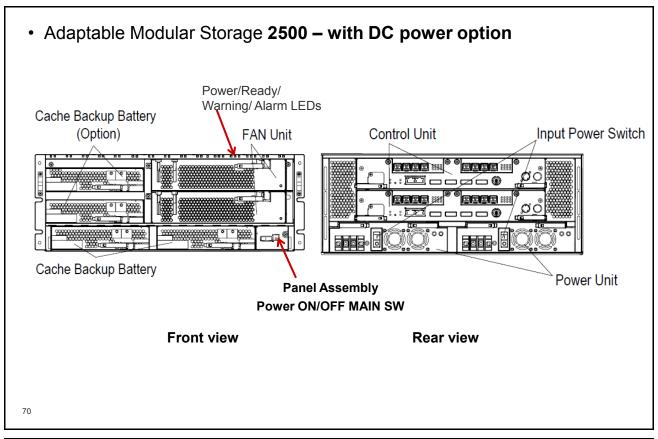
Power and heat specifications:

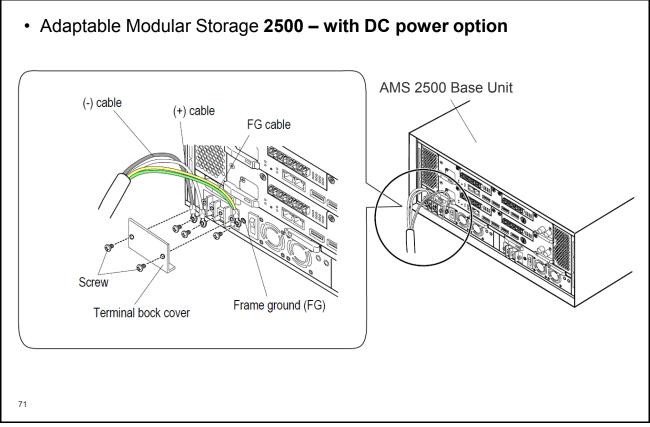
- Input Voltage (V): 100/200 AC
- Frequency: 50/60
- Number of Phases / Cabling: Single Phase with protective grounding
- Steady State current (AC 100V/200V): 2.6 A x 2 / 1.3 A x 2
- Breaking Current: 16 A
- Required Power Steady State (VA/W) (AC 100V/200V): 440/400
- Required Power Starting State (VA/W) (AC 100V/200V): 440/400
- Heat Output (kJ/h): 1400

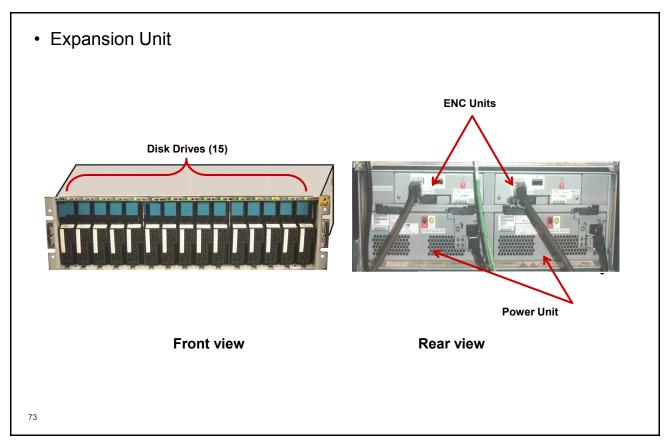

Specifications Expansion Unit



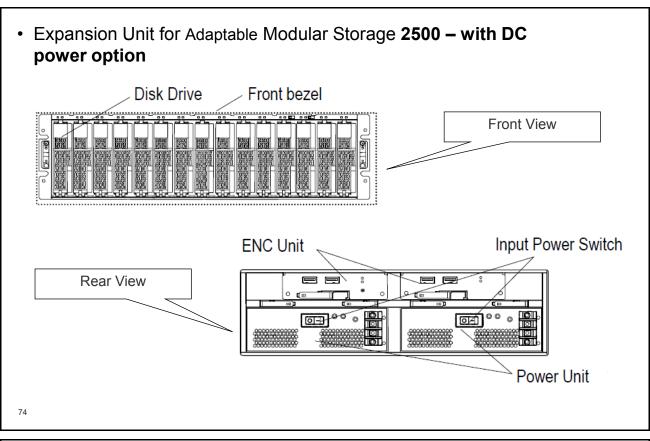

Power and heat specifications:

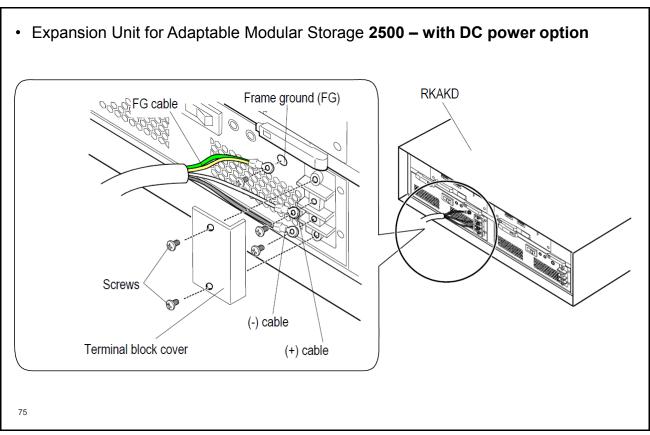

- Input Voltage (V): 100/200 AC
- Frequency: 50/60
- Number of Phases / Cabling: Single Phase with protective grounding
- \bullet Steady State current (AC 100V/200V): 2.4 A x 2 / 1.2 A x 2
- Breaking Current: 16 A
- Required Power Steady State (VA/W) (AC 100V/200V): 480/460
- Required Power Starting State (VA/W) (AC 100V/200V): 480/460
- Heat Output (kJ/h): 1660


Hardware Components

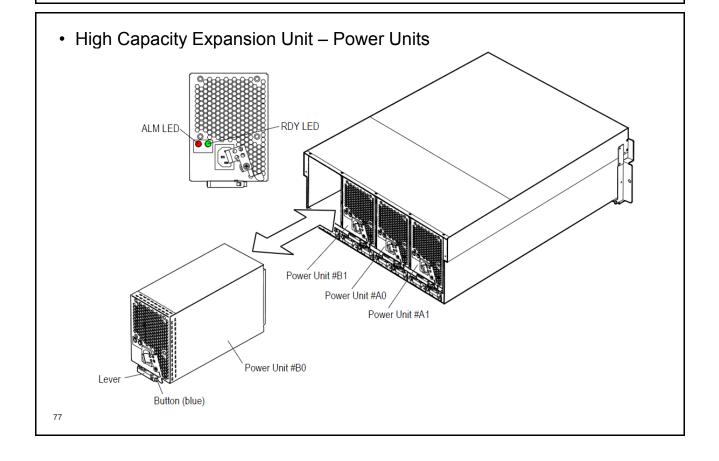


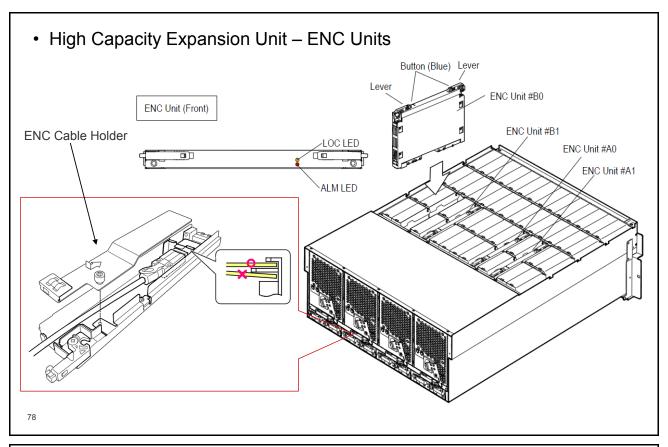
•	Adaptable Modula	r Storage 250	0 – with DC	power option
---	------------------	----------------------	-------------	--------------

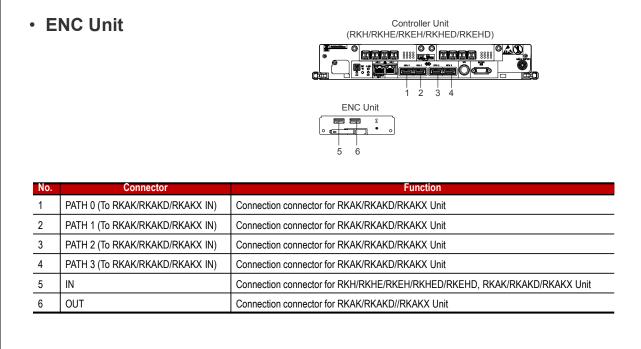

M4 terminal M5 terminal		3-core	Single core
50mm	Wire Description	1015/1431 rating temperature=105° C	1015/1431 rating temperature=105° C
	Size AWG	AWG12	AWG16
	Stranding	65/0.26 mm	54/0.18mm
	Breaker	20	Α

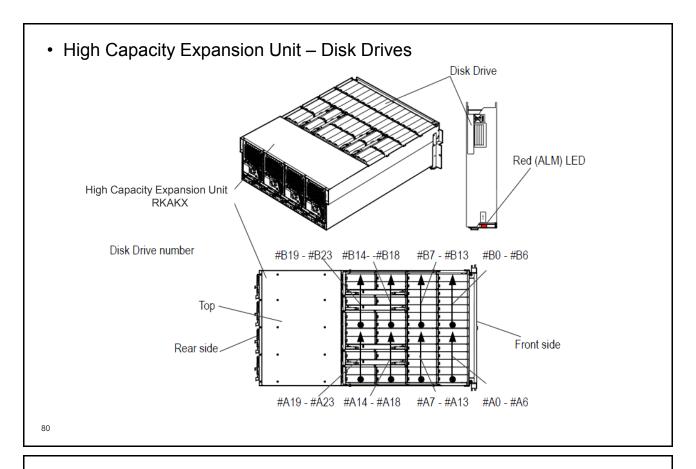

HDS delivers power cables if a Hitachi rack is used. Otherwise, cable specifications are provided.

The power distribution unit (PDU) will be connected to the unit by HDS service personnel. HDS will not connect the source DC power to the PDU — the customer must do that.

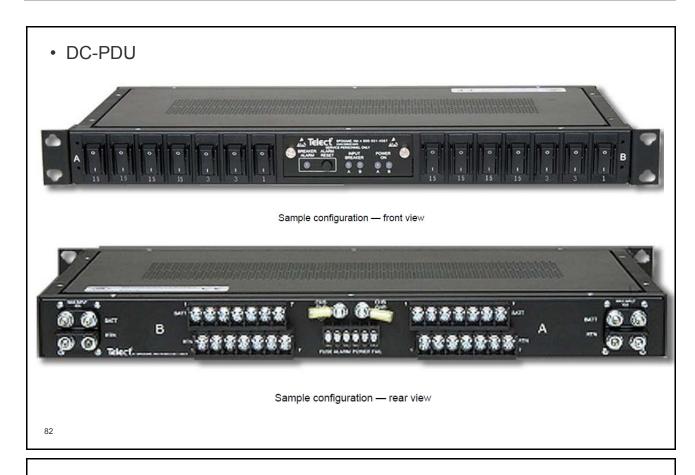



- HDD LEDs
- Power Ready, Warning and Alarm LEDs





• Expansion Unit for Adaptable Modular Storage 2500 – with DC power option M4 terminal Single core 3-core M5 terminal 1015/1431 1015/1431 Wire rating rating **Description** temperature=105° C temperature=105° C 70mm 50mm Size AWG AWG10 AWG14 **Stranding** 104/0.26mm 41/0.26mm **Breaker** 30 A



- DC Power Distribution Unit (DC-PDU)
 - It is used to connect power to the DC power supplies in the controller and expansion unit with DC option.
 - It is the customer's responsibility to connect the DC-PDU to their power grid.
 - The DC-PDUs are preconfigured and connected to the controller and the expansion units at the HDS Distribution Center and are shipped to the customer with cable in place.
 - In case of an upgrade or replacement, the HDS technician connects the DC-PDUs to the affected controller and expansion units.

DC-PDU specifications

Electrical

Nominal voltage	±24V, -48V
Input rating	100A per bus
Max. input interrupt device	125A
Max. output protection device	20A
Power dissipation (full load)	20W per bus

• DC-PE)U speci	fications
---------	----------	-----------

Mechanical

Dimensions	17.25" W x 1.75" H x 8" D (438 mm x 45 mm x 203 mm)
Weight	12 lbs. (5.44 kg)
Material	Cold-rolled steel
Finish	Black, powder coat
Mounting	19" or 23"

Environmental

Temperature range	-10° to 55° C
Humidity	0 to 90%, non-condensing

84

The unit height is 1U.

Back End Architecture

- The Adaptable Modular Storage 2000 Family uses a new back end architecture that is very different from the one used by earlier Adaptable Modular Storage systems.
- On the earlier systems, the DCTL RAID chip was directly connected to the back end Tachyon DX2 (2Gb/sec Fibre Channel – Arbitrated Loop or FC-AL) interface chips.
- On the Adaptable Modular Storage 2000 Family controller board, the enhanced DCTL chip sends commands to a powerful companion SAS I/O Controller processor (IOC).

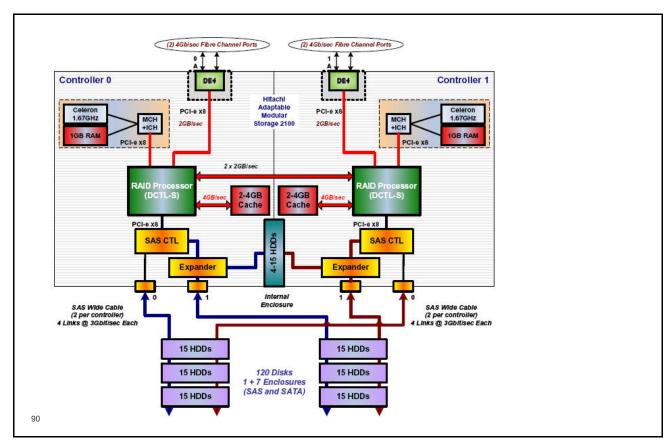
Processors Change

- The earlier modular storage systems use a PowerPC 7447a processor and chipset. All paths
 within the controller were PCI-X, a 533MB/sec protocol (wire speed). The Adaptable Modular
 Storage 2000 Family has moved up to an Intel "Sossaman" (core duo) CPU and chipset that
 uses PCI-express (PCI-e) 8-lane busses operating at an aggregate of 2GB/sec (wire speed).
 Though the PowerPC and Intel CPUs have similar clock speeds, the Intel design has far
 more power due to:
 - A much faster system bus (667MHz versus 166MHz, controlling access to local RAM and the Intel MCH Memory and I/O Controller chip)
 - Single or dual CPU cores per chip
 - A much higher degree of execution parallelism within each core.
- The DCTL processor has also been improved (eighth generation Hitachi ASIC), and now
 uses the PCI-express eight-lane busses (2GB/sec) instead of the PCI-X busses
 (533MB/sec). The DCTL processor is the I/O "pump" for each controller. It works in
 conjunction with the Intel CPU, which runs the microcode and makes all determinations
 about I/O processing. The DCTL has two basic functions:
 - It is a RAID XOR (parity) processor that creates all parity for RAID-5 or RAID-6 writes.
 - It is also the DMA path from the front end components (Xeon CPU, Tachyon chips) to the data cache.
 - The two DCTL processors in a system use two private 2GB/sec bidirectional communications bus (PCle eight-lane) to communicate status, pass certain I/O request commands, and copy the mirrored write blocks.

Enclosure Change

- Another major change is that the Adaptable Modular Storage 2000 Family has a single type of enclosure common to both SAS and SATA disks. On the earlier generation of modular systems, there were separate enclosure types needed for Fibre Channel and SATA disks. In the Adaptable Modular Storage 2000 Family, both disk types may be intermixed in the same enclosure.
- The two *expander units* in each external enclosure for the 2100 and 2300 are part of the new back end disk matrix system.
- Also, the Adaptable Modular Storage 2000 Family enclosure no longer has address switches – something that could cause installation headaches on the earlier generation of modular storage when not properly set.
- As a last note, in the earlier generation systems, care had to be taken to put Fibre Channel disks (HDDs) in certain slots within the tray (for dispersed disk selection). Also, one needed to disperse the member drives of a SATA RAID Group across the enclosures (1 per tray typically) in order to avoid the serialization of SATA disks within the same tray. These requirements are completely eliminated in the 2000 Family.

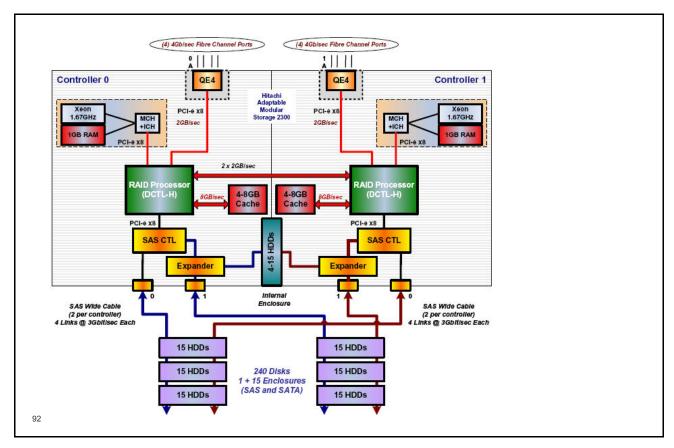
Architecture


• The table below lists the major differences within the 2000 Family.

Model	Maximum Disks	Cache Sizes (GB)	Fibre Channel Host Paths	SAS Disk Links	Bandwidth to Cach (Overall)
2100	120	4/8	4	16	8GB/Sec
2300	240	8/16	8	16	16GB/Sec
2500	480	16/32	16	32	16GB/Sec

AMS 2100 Architecture

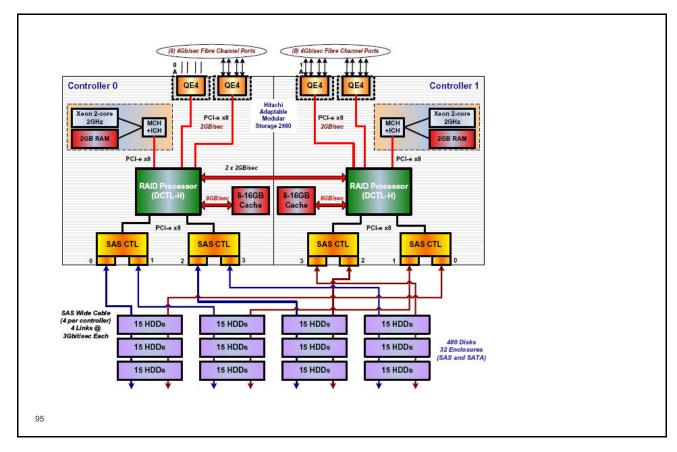
- Each Adaptable Modular Storage 2100 controller includes:
 - A DCTL-S processor (the I/O pump with RAID XOR functions).
 - A 1.67GHz Intel Sossaman Celeron Value series (low voltage) processor and 1GB of memory; this processor is the microcode engine or the I/O management brains.
 - 4GB (2GB DIMMs) or 8GB (4GB DIMMs) of cache per system.
 - Two high-performance Tachyon DE4 two-port 4Gb/sec Fibre Channel processors controlling the front end host connections.
 - Two SAS controllers servicing the 16 active back end SAS disk links.
 - All internal busses are now 2GB/sec eight-lane PCI Express (PCIe) instead of the previous 533MB/sec PCI-x bus.


Architecture - Model 2100E Controller Version 2

AMS 2300 Architecture

- Each Adaptable Modular Storage 2300 controller includes:
 - A DCTL-H processor (the I/O pump with RAID XOR functions).
 - A 1.67GHz Intel Sossaman Xeon LV series (low voltage) processor (single core) and 1GB of local memory; this processor is the microcode engine or the I/O management brains.
 - 8GB (2GB DIMMs) or 16GB (4GB DIMMs) of cache per system.
 - Two high-performance Tachyon QE4 four-port 4Gb Fibre Channel processors controlling the eight front end host connections.
 - Two SAS controllers servicing the 16 active back end SAS disk links.
 - All internal busses are now 2GB/sec eight-lane PCI Express (PCIe) instead of the previous 533MB/sec PCI-x bus.

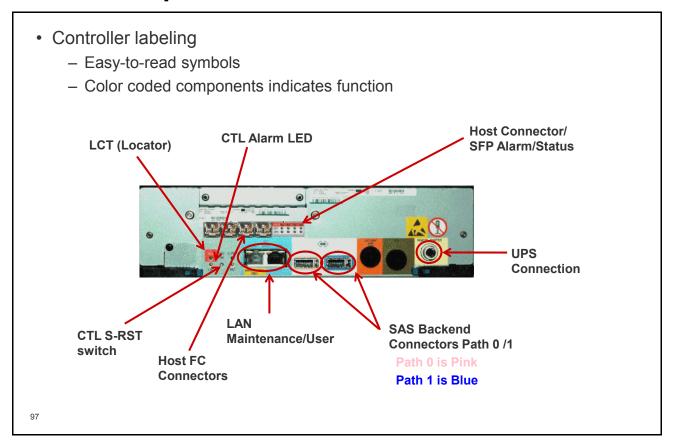
Architecture - Model 2300E Controller Version 2


AMS 2300 Architecture (2100-2300 Delta)

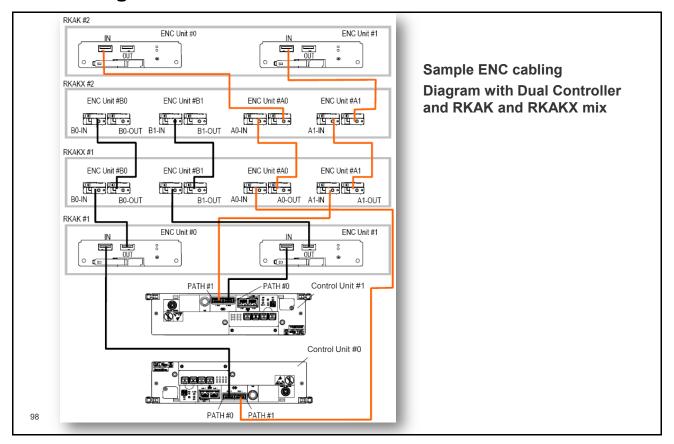
- The Adaptable Modular Storage 2100 uses the Celeron processor instead of a Xeon (both are the Sossaman family).
 - The Adaptable Modular Storage 2100 uses DCTL-S (RAID and I/O processor) instead of the DCTL-H used on the 2300.
 - The Adaptable Modular Storage 2100 uses two banks of cache with one DIMM slot each (8GB) versus four banks of cache used on the 2300. This is with optional cache installed with one DIMM slot each (16GB).
 - The Adaptable Modular Storage 2100 uses the two-port DE4 Tachyon processor (four ports) instead of the four-port QE4 Tachyon processor (eight ports) used on the 2300.
 - The Adaptable Modular Storage 2100 has 120 disks versus 240 disks on the 2300.

AMS 2500 Architecture

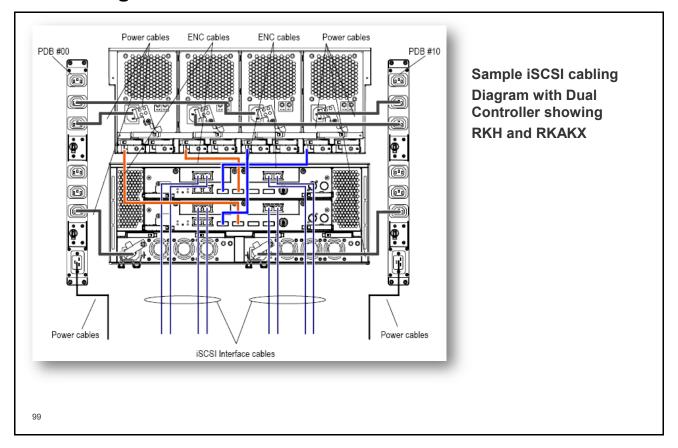
- Each Adaptable Modular Storage 2500 controller includes:
 - A DCTL-H processor (the I/O pump with RAID XOR functions)
 - A 2GHz Intel Sossaman Dual Core Xeon LV series (low voltage) processor and 2GB of local memory; this processor is the microcode engine or the I/O management brains.
 - 16GB (2GB DIMMs) or 32GB (4GB DIMMs) of cache per system.
 - Four high-performance Tachyon QE4 four-port 4Gb/sec Fibre Channel processors controlling the 16 front end host connections.
 - Four SAS controllers servicing the 32 active back end SAS disk links.
 - All internal busses are now 2GB/sec eight-lane PCI Express (PCIe) instead of the previous 533MB/sec PCI-x bus.


Architecture - Model 2500 Controller Version 2

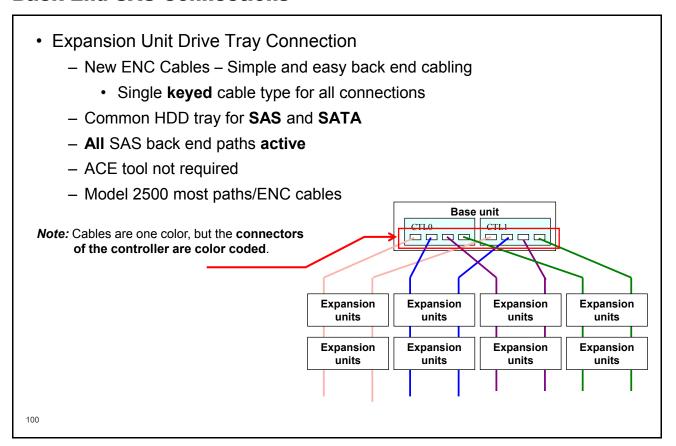
AMS 2500 Architecture (2300-2500 Delta)

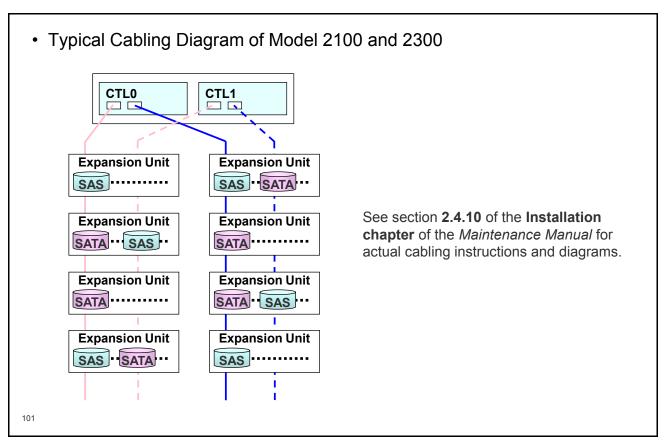

- The Adaptable Modular Storage 2500 is a significant upgrade from the 2300. The actual differences (2300 versus 2500) are as follows:
 - The 2300 uses 1.67GHz single core Xeons and 1GB of RAM versus 2GHz dual core Xeons with 2GB of RAM on the 2500.
 - The 2300 has four banks of cache with one DIMM slot each (16GB max) versus four banks of cache with two DIMM slots each (32GB max) on the 2500.
 - The 2300 has one four-port QE4 Tachyon processor per controller (eight host ports total) versus dual four-port QE4 Tachyon processors (16 host ports) per controller on the 2500.
 - The 2300 has two SAS I/O engines (16 disk links) per system versus four SAS I/O engines (32 SAS links) per system on the 2500.
 - 240 disks versus 480 disks.

Hardware Components

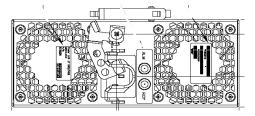


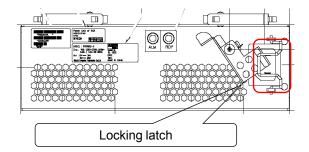
LCT is a new locator LED. This is also located on the expansion units (front and rear) to identify and locate with Storage Navigator Modular 2.


Connecting ENC Cables RKM/RKS+RKAK+RKAKX×2+RKAK

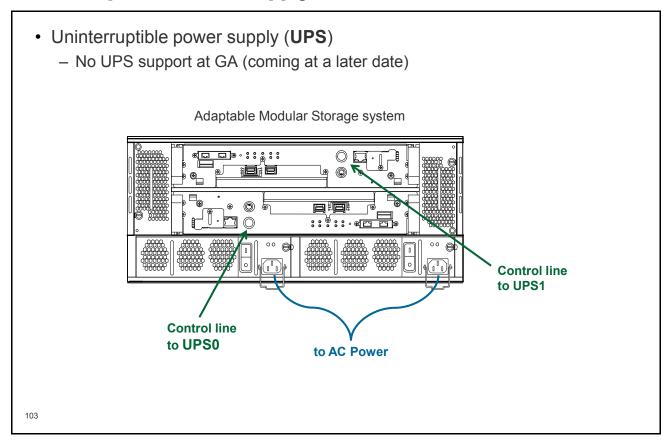

Connecting iSCSI Cables RKH+RKAKX

Back End SAS Connections


ENC stands for enclosure.

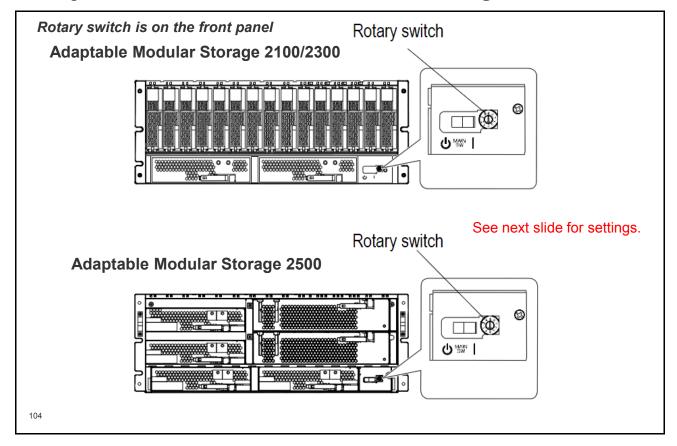


Simple cabling no longer requires ACE tool in Storage Navigator Modular 2.


Power Supply

- Power supply does not have a switch.
- To turn power off, remove power supply cable.
- Power supply has been improved to allow power-off by cable removal.
 - Power supply swap can be performed by end-user.
- Locking latch component added to secure power supply cable.
 - Power supply unit cannot be removed from unit frame while connected.

Uninterruptible Power Supply Connections



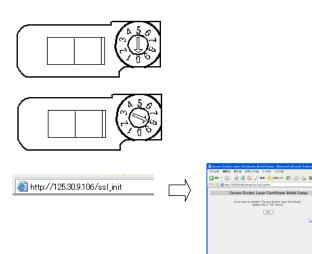
UPS systems from APC and Powerware are qualified for other Hitachi Adaptable Modular Storage models and they are probably qualified for Adaptable Modular Storage 2000 Family system as well. Check with Product Management.

The UPS interface can detect high or low voltages, and more on the Adaptable Modular Storage 2000 Family system.

Install manuals can be found on the Internet vendor Web page, such as Powerware and APC Web sites.

Rotary Switch Power Connection Mode Settings

Rotary Switch Settings


Mode of power control is decided the settings when the subsystem start up. In the Ready state, Rotary switch #8 is used to enable the access to web special pages.

Rotary switch	Operation mode name	Operation mode	
0	LOCAL	Local mode (Before shipment. When the remote adaptor is not used.)	
1	-	_	
2	REMOTE	Remote mode by means of the HOST AC (using a remote adapter)	
3	-	-	
4	UPS Interlock mode 1	Interlock mode 1 with an UPS exclusive for the subsystem. To set the mode, connect AC #0 and AC #1 to the UPS and an external and an external AC power supply or the PDB of the RK40 rack frame respectively.	
5	UPS Interlock mode 2	Interlocking mode 2 with an UPS exclusive for the subsystem To set the mode connect AC #0 and AC #1 to the one UPS.(*1)	
6	UPS Interlock mode 3	Interlocking mode 3 with an UPS exclusive for the subsystem To set the mode, connect each of AC #0 and AC #1 to the different UPSs. (*2)	
7	_	- Added at AMS2000V6.2	
8	Enable the access to Web special pages	Access to web special pages is Enabled. This is available in the Ready state.	
9	-	-	
*1: *2:	The duplication of the power supply system becomes unable to be done. This cannot be used in the case of the single controller configuration.		

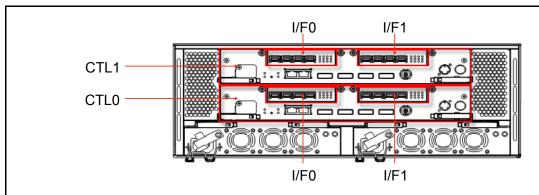
Maintenance Manual (INST 01-0180-00)

Operations

- Following operations are required DF800V6.2 or later, to access to the special Web pages.
- Be sure to record which number is set on the rotary switch to document the current setting.
- Set the rotary switch to number position 8. (This does not change the Mode of power control.)
- After 10 seconds from step 2, access http://(address of the subsystem)/sslc_init to access special Web pages for SSL Initial Setup.
- 4. Click OK button.
- 5. Set the rotary switch back to the value recorded at step 1 above.

Access Control Without Rotary Switch

When Rotary switch is NOT #8, special web page is NOT accessible. (To keep the DF800 hardware secure, unauthorized accesses are not allowed.)


Not Found

**Not Found*

iSCSI Interface

- The AMS 2500 provides 4 iSCSI ports per controller (eight per unit) for the iSCSI configuration or two ports per controller (four per base unit) with the multi-protocol (mix of Fibre Channel and iSCSI) configuration.
 - To convert a base unit from only Fibre Channel to only iSCSI or to a multiprotocol configuration, replace both controllers and install the firmware on them. The same firmware supports both fibre channel and iSCSI units.
- With the 1 Gb/s Ethernet connection, the array provides high-speed data transfer to and from a host computer.
 - The maximum transfer speed is 100 MB/s per port. Higher throughput can be obtained, even when accessing multiple devices connected to the same network.
- The AMS 2500 supports iSCSI (1000 Base-T).
 - With the HBA for iSCSI, generic NIC and software initiator, and network switch, the AMS 2500 can be located up to 100 meters from the host.

Model 2500 FC/iSCSI Host Interface Intermix

 Each I/F board on CTL0 and CTL1 must be the same type of I/F board or None.

If not, the storage system will not go into the **Ready** status.

Exception:

If the Interface board type of I/F0 on **CTL0** is **iSCSI**, the Interface board I/F0 on **CTL1** must be either **iSCSI** or **None**.

109

Notes:

- The FC/iSCSI Host Interface intermix on an AMS2500 storage system will be supported with the v.6 firmware.
- I/F0 and I/F1 in this picture are images for FC Interface board, not for iSCSI Interface board (iSCSI has only 2 ports per Interface board).

Model 2500 Interface Combinations

	CTL#0		CTL#1		21.1
No I/F	I/F#0	I/F#1	I/F#0	I/F#1	Status
1			FC	FC	Ready
2			FC	iSCSI	Subsystem Down
3			FC	None	Ready
4			iSCSI	FC	Subsystem Down
5	FC	FC	iSCSI	iSCSI	Subsystem Down
6			iSCSI	None	Subsystem Down
7			None	FC	Ready
8			None	iSCSI	Subsystem Down
9			None	None	CTL Warning
10			FC	FC	Subsystem Down
11			FC	iSCSI	Ready
12			FC	None	Ready
13			iSCSI	FC	Subsystem Down
14	FC	iSCSI	iSCSI	iSCSI	Subsystem Down
15			iSCSI	None	Subsystem Down
16			None	FC	Subsystem Down
17			None	iSCSI	Ready
18			None	None	CTL Warning
19			FC	FC	Ready
20			FC	iSCSI	Ready
21			FC	None	Ready
22			iSCSI	FC	Subsystem Down
23	FC	None	iSCSI	iSCSI	Subsystem Down
24			iSCSI	None	Subsystem Down
25			None	FC	Ready
26			None	iSCSI	Ready
27			None	None	CTL Warning

NI-	CTL#0		CTL#1		Otation
No	I/F#0	I/F#1	I/F#0	I/F#1	Status
28			FC	FC	Subsystem Down
29			FC	iSCSI	Subsystem Down
30			FC	None	Subsystem Down
31			iSCSI	FC	Ready
32	iSCSI	FC	iSCSI	iSCSI	Subsystem Down
33			iSCSI	None	Ready
34			None	FC	Ready
35			None	iSCSI	Subsystem Down
36			None	None	CTL Warning
37			FC	FC	Subsystem Down
38			FC	iSCSI	Subsystem Down
39			FC	None	Subsystem Down
40			iSCSI	FC	Subsystem Down
41	iSCSI	iSCSI	iSCSI	iSCSI	Ready
42			iSCSI	None	Ready
43			None	FC	Subsystem Down
44			None	iSCSI	Ready
45			None	None	CTL Warning
46			FC	FC	Subsystem Down
47			FC	iSCSI	Subsystem Down
48			FC	None	Subsystem Down
49			iSCSI	FC	Ready
50	iSCSI	None	iSCSI	iSCSI	Ready
51			iSCSI	None	Ready
52			None	FC	Ready
53			None	iSCSI	Ready
54			None	None	CTL Warning

Model 2500 Interface Combinations

	СТ	L#0	C	TL#1	01.1	
No I/F#0	I/F#0	I/F#1	I/F#0	I/F#1	Status	
55			FC	FC	Ready	
56			FC	iSCSI	Subsystem Down	
57			FC	None	Ready	
58			iSCSI	FC	Ready	
59	None	FC	iSCSI	iSCSI	Subsystem Down	
60			iscsi	None	Ready	
61			None	FC	Ready	
62			None	iSCSI	Subsystem Down	
63			None	None	CTL Warning	
64		iSCSI	FC	FC	Subsystem Down	
65			FC	iSCSI	Ready	
66	None		FC	None	Ready	
67			iSCSI	FC	Subsystem Down	
68			iSCSI	iSCSI	Ready	
69			iSCSI	None	Ready	
70			None	FC	Subsystem Down	
71			None	iSCSI	Ready	
72			None	None	CTL Warning	
73			FC	FC	CTL Warning	
74			FC	iSCSI	CTL Warning	
75			FC	None	CTL Warning	
76			iSCSI	FC	CTL Warning	
77	None	None	iSCSI	iSCSI	CTL Warning	
78			iSCSI	None	CTL Warning	
79			None	FC	CTL Warning	
80			None	iSCSI	CTL Warning	
81			None	None	Subsystem Down	

Specifications

Memory and Unit Height Specifications

		2100	2300	2500	
Height base unit		4U	4U	4U	
Height expansion un	it	3U			
Dual Controller		Default	Default	Default	
	Slot	1/CTL	2/CTL	4/CTL	
Cache (4GB DIMM)	Capacity	4GB/CTL 8GB/system	8GB/CTL 16GB/system	16GB/CTL 32GB/system	

• Chart assumes 4GB DIMMs (capacity is half if 2GB DIMMs)

Battery Life

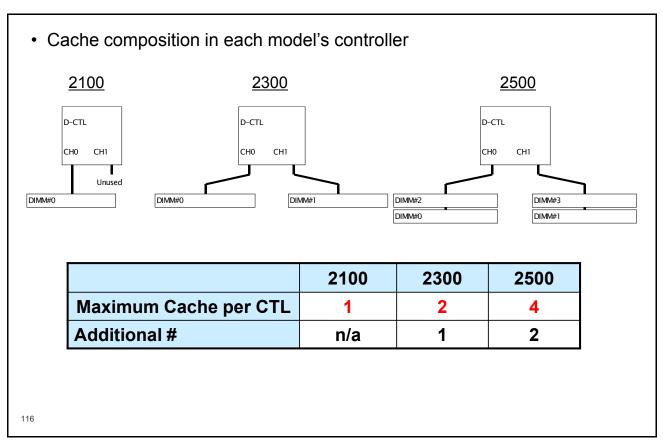
		2100	2300	2500
Maximum Cache	2GB DIMMs	4GB per array	8GB per array	16GB per array
Maximum Cache	4GB DIMMs	8GB per array	16GB per array	32GB per array
Internal Batteries		2	2	2 (default) 2 (optional)
Internal Battery 2GB/4GB DIMMs		72/48 hours	36/24 hours	24/48/96 hours
External Batteries		N.A.	N.A.	1 or 2
External Battery Backup Time	One	N.A.	N.A.	90 hours
(with maximum internal batteries)	Two	N.A.	N.A.	168 hours

114

Note: This is applicable with maximum internal Batteries installed and Batteries fully loaded and working properly.

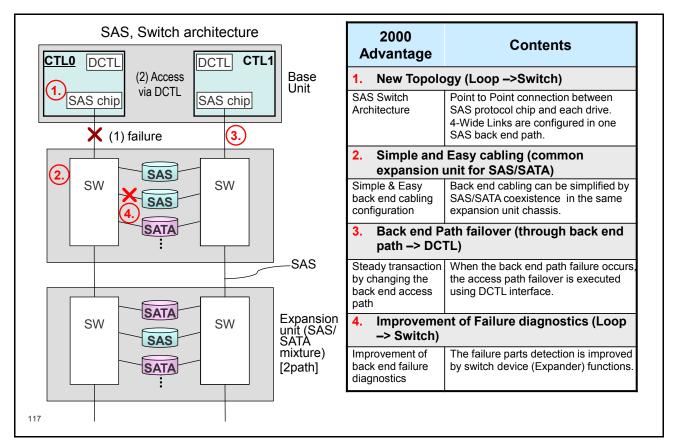
Controller Architecture

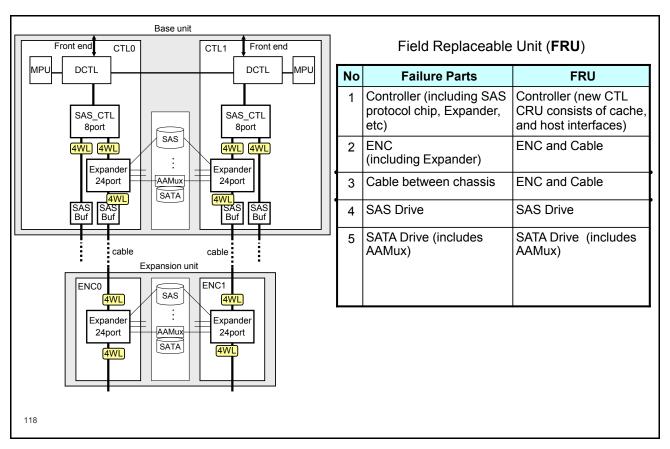
- Model 2100 CTL Architecture
 - MPU:IA32 (Celeron) 1.67GHz
 - Internal data bus: PCI-express
 - Back end: SAS
 - Fibre Channel interface 2 Ports
 - iSCSI interface 2 Ports
- Model 2300 CTL Architecture
 - MPU: IA32 (Xeon) 1.67GHz
 - Internal data bus: PCI-express
 - Back end: SAS
 - Fibre Channel interface 4 Ports
 - iSCSI interface 2 Ports


- Model 2500 CTL Architecture
 - MPU: IA32 (Xeon) 2.0GHz Dual Core
 - Internal data bus: PCI-express
 - Back end: SAS
 - Fibre Channel interface 8 Ports
 - iSCSI interface 4 Ports

115

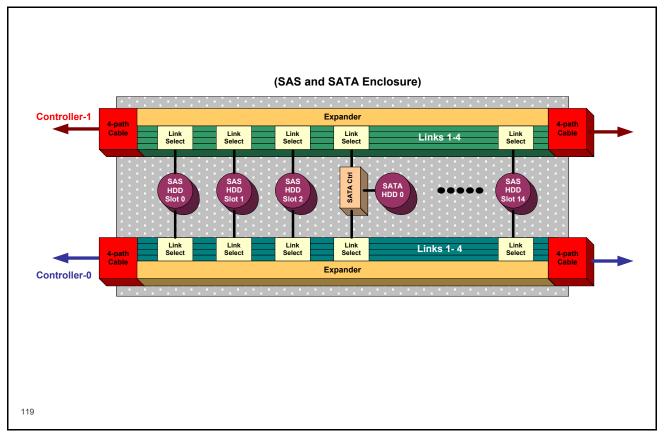
Notes:


- On models 2100 and 2300 you cannot intermix Fibre Channel and iSCSI.
- On the 2500 model you can intermix Fibre Channel and iSCSI. In this case you will have 4 Fibre Channel ports per controller and 2 iSCSI ports per controller.


Cache Architecture

Note: Model 2500 - Cache units should be installed in PAIRS.

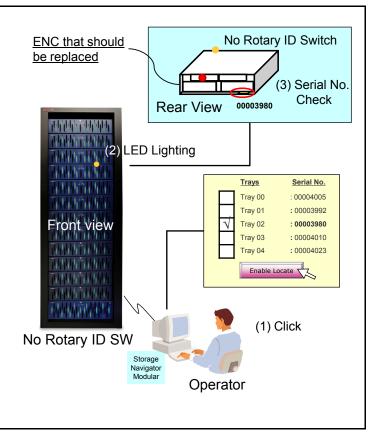
Back End Architecture



WL: Wide Link

AAMux: Active-Active Multiplexer

Disk Expansion Tray



Note that the SATA enclosures use a different connection method from the FC enclosures.

An AAmux (SATA Ctrl) chip is installed on every SATA Disk.

Back End Logical Configuration

- Expansion units do not have a Rotary Address Switch.
- Storage Navigator Modular 2 shows the Logical Configuration and serial number of each expansion unit.
- Users can recognize a target expansion unit by illuminating an LED using Storage Navigator Modular 2 and executing a Check with Serial No. of RKAK.
- Users can recognize a failed component (ENC, PS, etc.) by LED.

RKAK refers to the expansion unit.

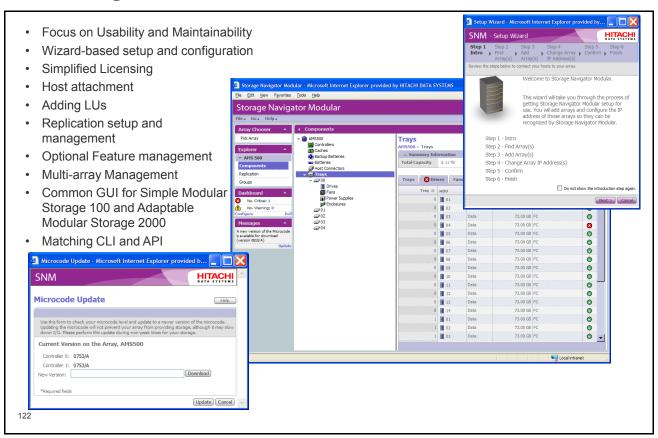
System Management Options Interface

· Out of band

Hitachi Storage Navigator Modular 2 – CLI and GUI

- SNMP (trap for failure information only)
- Maintenance
- Embedded Web Server for Field Maintenance
- Inband (not required)

RAID Manager CCI for


- Hitachi Shadowlmage Heterogeneous Replication software
- Hitachi TrueCopy Heterogeneous Remote Replication Software
- Hitachi Copy-on-Write Snapshot software

121

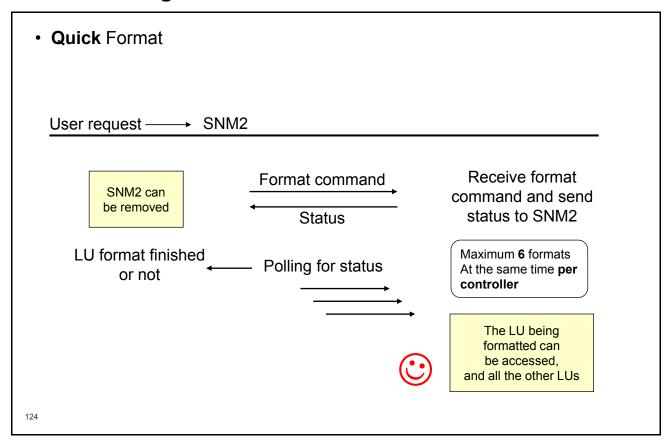
The management interface Storage Navigator Modular 2 is a new, easy to use GUI utility developed for the Adaptable Modular Storage 2000 and Simple Modular Storage product lines. It is based on HBase. It replaces Storage Navigator Modular.

There is also a CLI version of Storage Navigator Modular 2 but has not changed significantly from Storage Navigator Modular.

New Management Tool

System and Data Security

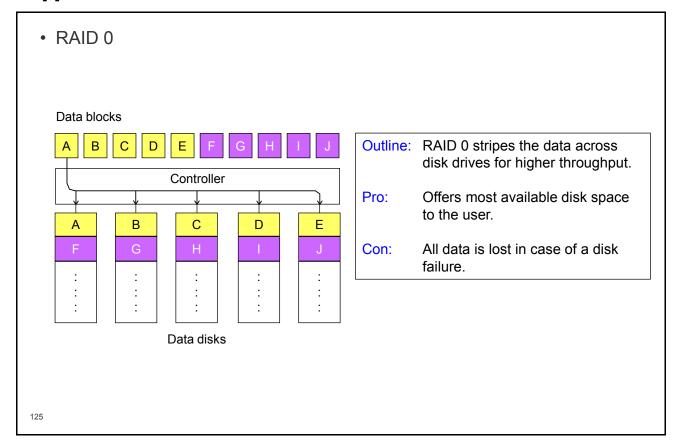
- · Account Authentication
 - System management access based on one of three roles (account administrator, storage administrator, or auditor)
 - Unique login and password for each user
- System Audit Logging
 - Records all system changes and all power ups and downs
 - Sends all changes to Syslog server
 - Enables IT managers to meet compliance requirements including auditable trails
- Data Retention Utility
 - Makes selected data non-erasable and non-rewriteable
 - Read access can be limited
- Common Criteria Evaluation Assurance Level 2 Certification in process

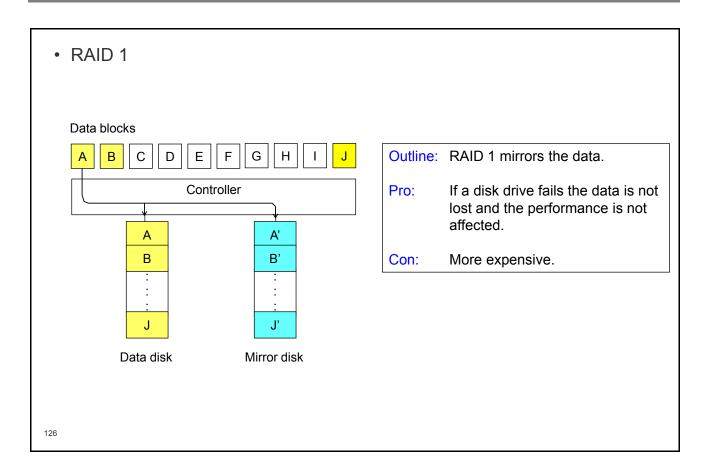

123

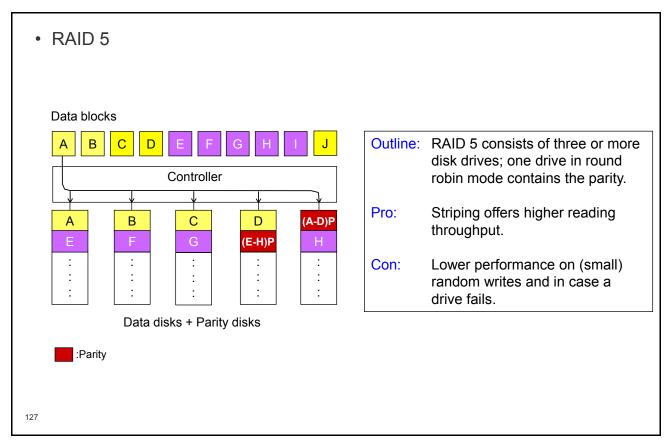
The Evaluation Assurance Level (EAL1 through EAL7) of an IT product or system is a numerical grade assigned following the completion of a Common Criteria security evaluation, an international standard in effect since 1999. The increasing assurance levels reflect added assurance requirements that must be met to achieve Common Criteria certification. The intent of the higher levels is to provide higher confidence that the system's principle security features are reliably implemented. The EAL level does not measure the security of the system itself, it simply states at what level the system was tested to see if it meets all the requirements of its Protection Profile.

EAL2: Structurally Tested

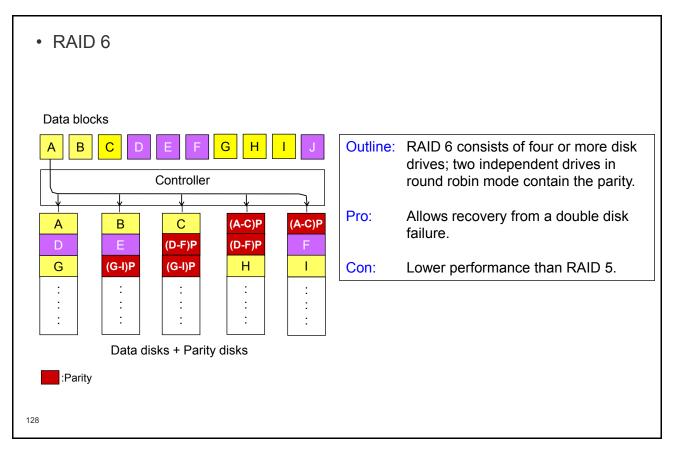
EAL2 requires the cooperation of the developer in terms of the delivery of design information and test results, but should not demand more effort on the part of the developer than is consistent with good commercial practice. As such, it should not require a substantially increased investment of cost or time. EAL2 is therefore applicable in those circumstances where developers or users require a low to moderate level of independently assured security in the absence of ready availability of the complete development record. Such a situation may arise when securing legacy systems.

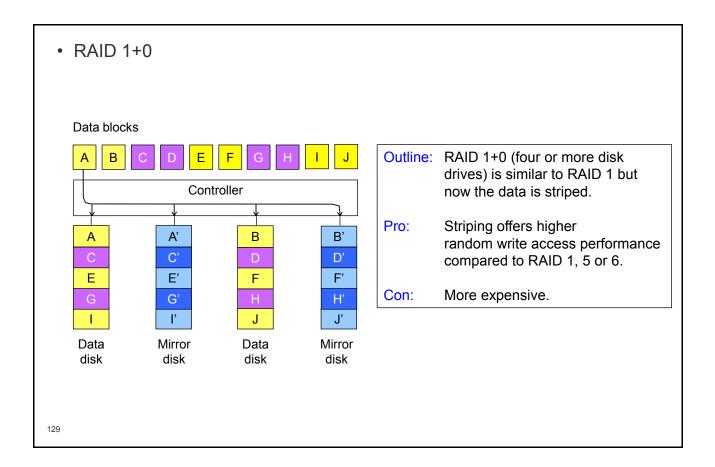

LUN Formatting




QuickFormat is the only formatting method available on Adaptable Modular Storage 2000 Family. It allows issuing format commands for up to 512 LUNs. The queue is maintained in the storage system allowing the engineer's laptop to be disconnected. An Adaptable Modular Storage 2000 Family, however, will only format a maximum of 6 LUNs concurrently per controller. The format is running in the background and the LUNs can almost immediately be accessed without the need of waiting for the full format to finish. (Caution – Do not POWER down the array before you check that the format is truly complete, otherwise the format will not finish.)

In the diagram, **SNM2** stands for Storage Navigator Modular 2.


Supported RAID Levels


RAID 5: At least three disks are required to implement RAID 5. RAID 5 will not sustain a double-disk failure and is more likely to occur with SATA drives.

RAID 6: At least four disks are required to implement RAID 6. This configuration is very similar to RAID 5, with an additional parity block, allowing block level striping with two parity blocks. The advantages and disadvantages are the same as the RAID 5, except the additional parity disk protects the system against double-disk failure. This feature was implemented to ensure the reliability of the SATA drives.

Key value: Two parity drives allow a customer to lose up to two hard disk drives (HDDs) in a RAID group without losing data. RAID groups configured for RAID 6 are less likely to lose data in the event of a failure. RAID 6 performs nearly as well as RAID 5 for similar usable capacity. RAID 6 also gives the customer options as to when to rebuild the RAID group. When an HDD is damaged, the RAID group must be rebuilt immediately (since a second failure may result in lost data). During a rebuild, applications using the volumes on the damaged RAID group can expect severely diminished performance. A customer using RAID 6 may elect to wait to rebuild until a more opportune time (night or weekend) when applications will not require stringent performance.

HDD roaming allows the spare to become a part of the RAID group; no copy back is required saving rebuild time.

Overview

RAID Level	Supported Range			
RAID Level	Models 2100, 2300, and 2500			
0	2D to 16D			
U	(RAID-0 only supported on SAS HDDs)			
1	1D + 1P			
E	2D + 1P to			
5	15D + 1P			
6	2D + 2P to			
0	28D + 2P			
1+0	2D + 2P to			
1+0	8D + 8P			

Relative RAID Performance

Relative Performance

The table shows the performance levels for different RAID configurations **relative to RAID 1+0 (2D+2P)**, which is assumed to be 100% for reads and writes.

The illustration is **not** meant to be a recommendation or imply that one RAID Group is better than another RAID Group, but to illustrate how performance of a RAID Group should be matched to the type of performance that an application needs.

RAID Level	Random Read, Sequential Read	Sequential Write	Random Write
RAID 1+0 (2D+2P)	100%	100%	100%
RAID 5 (3D+1P)	100%	150%	50%
RAID 5 (7D+1P)	200%	350%	100%
RAID 6 (6D+2P)	200%	300%	66.7%
Note	Proportional to the number of disks	Proportional to the number of data disks	See notes

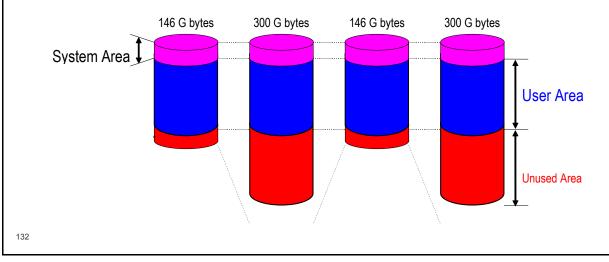
131

Note: The values listed in the table were not collected using an AMS 2000, but using an earlier AMS 500. The table is meant to illustrate that different applications may require different performance characteristics from its RAID Group.

- This table shows the performance levels for different RAID configurations relative to RAID 1+0 (2D+2P), which is assumed to be 100% for reads and writes.
- The second column shows that the random read and sequential write performance is proportional to the number of disks, because the disks can be accessed simultaneously.
- With sequential writes, there are no reads involved, as with random writes, therefore the performance is proportional to the number of data disks.
- Random writes. The reason for the performance difference between RAID 6 (6D+2P) and RAID 5 (7D+1P) is that RAID 6 (6D+2P) must process 1.5 times (see below) more disk I/Os than RAID 5 (7D+1P), therefore the random write performance in RAID 6 (6D+2P) is 33% lower than with RAID5 (7D+1P).
- The number of disk I/Os in RAID 5 random writes: Four (old data/old parity reads, new data/new parity writes).
- The number of disk I/Os in RAID 6 random writes: Six (old data/old parity (P)/old parity (Q) reads, new data/new parity (P)/new parity (Q) writes).

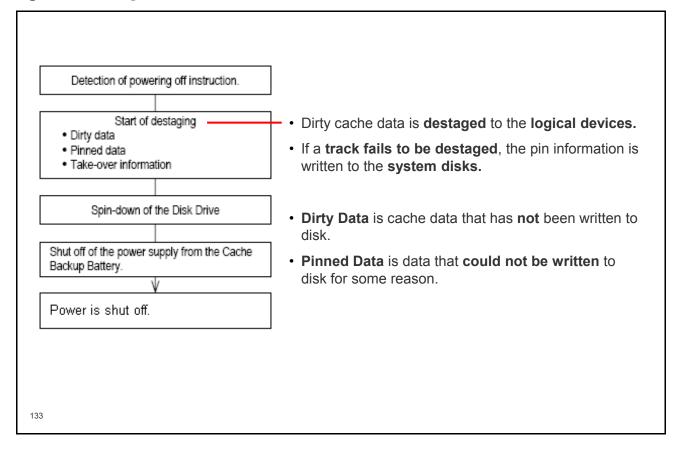
Disk Drive System and User Data Areas

• RAID Group storage is divided into two data areas: System and User.

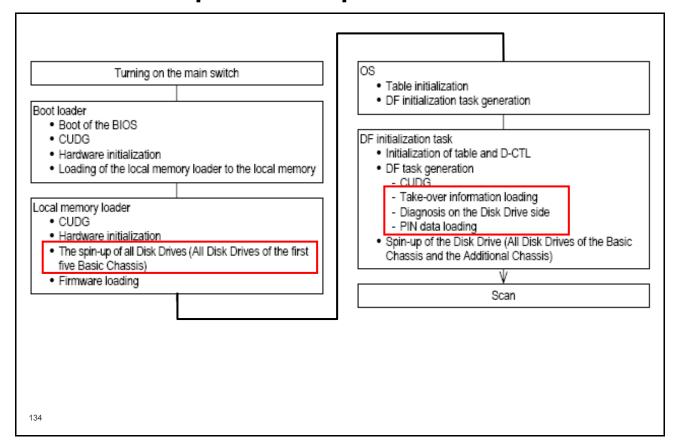

- System Area: Approximately 1GB of space on each disk.

System Disks: The first five disks in the system use the system area to store trace

data, configuration data, microcode, and cache data (see next slide).


User Area: User data is stored here.

If unequal disk sizes are used, space is lost on the larger disks.



- This graphic shows that a part of the physical capacity is reserved as system area. The area is only used as system area on the very first five disks of a system, for example, disk 0~4 in the RK unit. The system area contains microcode, trace and log data and the configuration data.
- A disk is always bigger than what is offered to the user. The example shows that if a RAID group would exist with disks of different capacity, on the bigger drives a substantial part can be left unused. The user data area part must be the same for all disks in a RAID group.

System Sequential Shutdown

Power On and Sequential Startup

Lab Project 1: Component Location

- · Timing and Organization
 - Time allotted to complete the project: 30 minutes
 - The lab project contains two sections:
 - Section 1 is the lab activity
 - Section 2 contains the review questions
 - Time allotted to go over the review questions: 10 minutes
 - The class will be split into lab groups and will perform the lab project on the lab equipment assigned to them by their instructor.

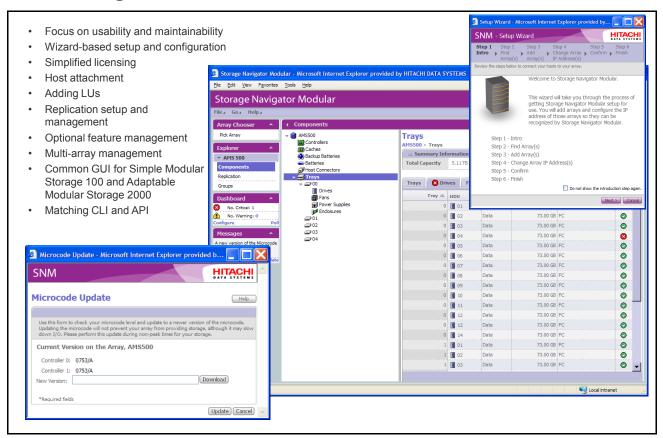
Lab Project 1: Objectives

- Upon completion of the lab project, the learner should be able to:
 - Identify and locate hardware components
 - Identify management and maintenance LAN connections
 - Identify Fibre Channel connections
 - Verify the connections of the ENC cables from the base unit to the accompanying expansion units
 - Apply power to the rack Power Distribution Units (PDUs)
 - Power up the storage system and verify its Ready status

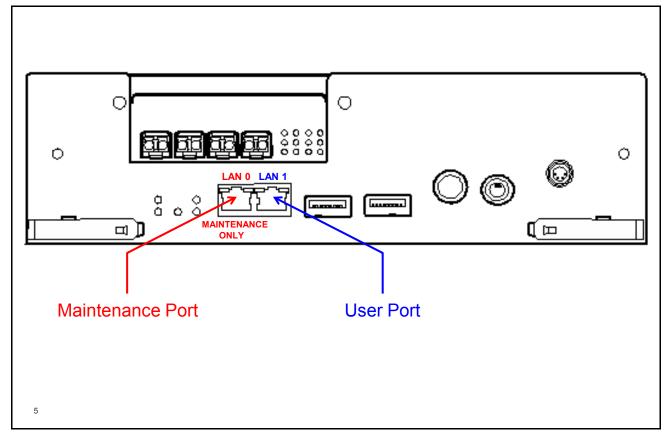
3. Web Tool

Module Objectives

- Upon completion of this module, the learner should be able to:
 - Explain the purpose and function of the Web Tool
 - Demonstrate the operation of the Web Tool
 - Discuss network issues
 - Activate the different modes of operation
 - Demonstrate the use of special functions


Functions of the Web Tool

- Provides a convenient browser type interface
- Communicates to an HTTP server in Adaptable Modular Storage system and becomes operational shortly after powering on the system
- Can operate with the system in Normal or Maintenance mode
 - Normal Mode: Mainly monitoring (online) in read-only mode
 - Maintenance Mode: Allows some basic configuration changes to be made
- Requires a User ID and Password to operate in Maintenance mode
- Functionally overlaps with Storage Navigator program
- Required for initial setup, initial IP address, and Serial Number setting
- Used for loading microcode
 - The correct Java Runtime Environment (JRE) is required.


3

Microsoft® Internet Explorer™ is recommended.

New Management Tool

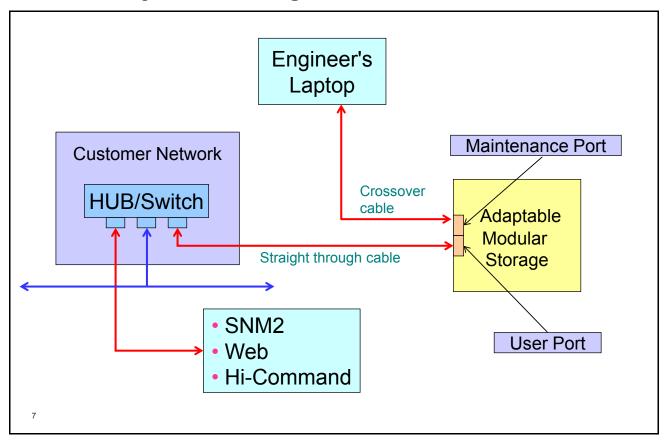
Location and Function of Ethernet Ports

The Maintenance port is typically for Customer Engineer access.

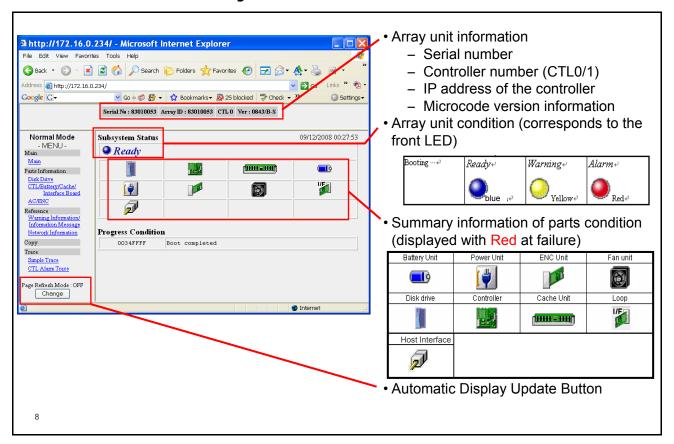
The User port is the port that can be assigned any IP address and is normally connected to the customer's network.

The functionality of both ports is the same.

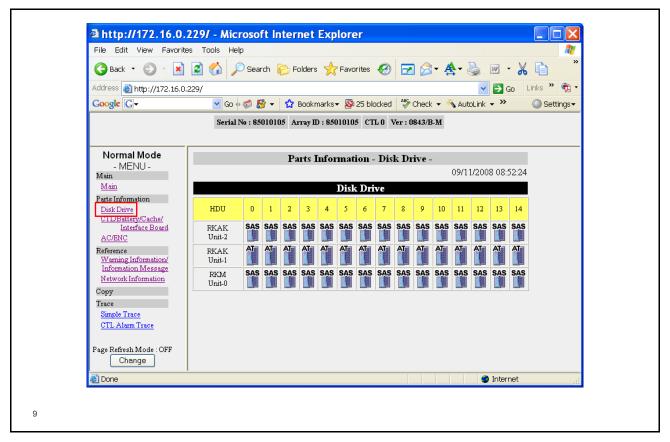
IP Addresses on LAN Ports

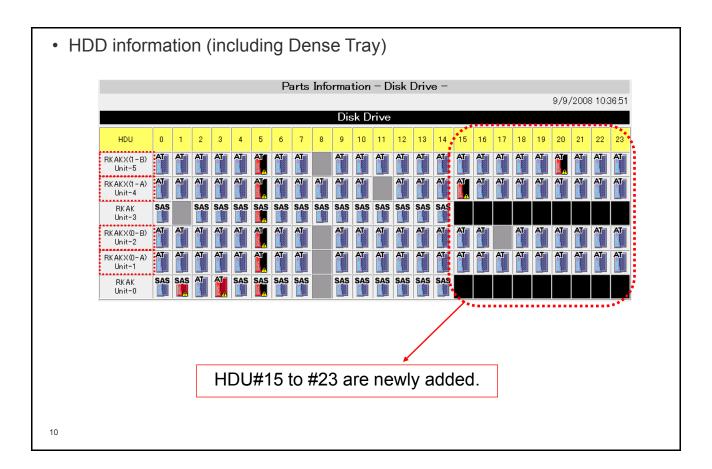

	Contro	ller 0	Controller 1		
	Port 0	Port 1	Port 0	Port 1	
	Maintenance	User	Maintenance	User	
	(fixed)	(variable)	(fixed)	(variable)	
Default IP Address	10.0.0.16	192.168.0.16	10.0.0.17	192.168.0.17	
Subnet Mask	255.255.255.0	255.255.255.0	255.255.255.0	255.255.255.0	
Default Gateway	0.0.0.0	0.0.0.0	0.0.0.0	0.0.0.0	
DHCP	Off	Off	Off	Off	

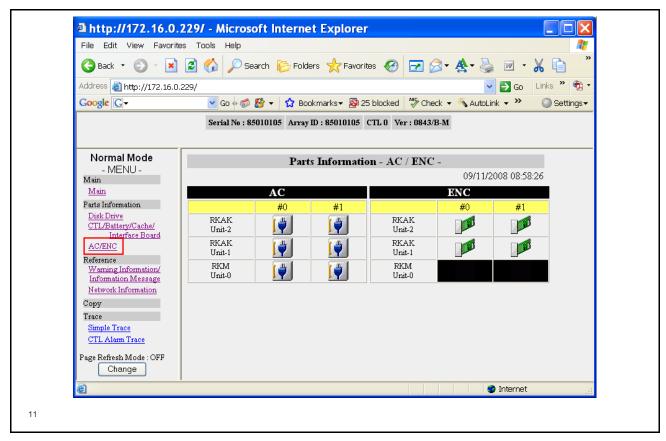
6


The IP address for the Maintenance port is either 10.0.0.16/17 (default) or 192.168.0.16. It depends on what the address configuration is on the User Port. The underlying idea is to guarantee that, in case the Maintenance port and the User port are connected to the same network, there will never be a (duplicate) IP address conflict.

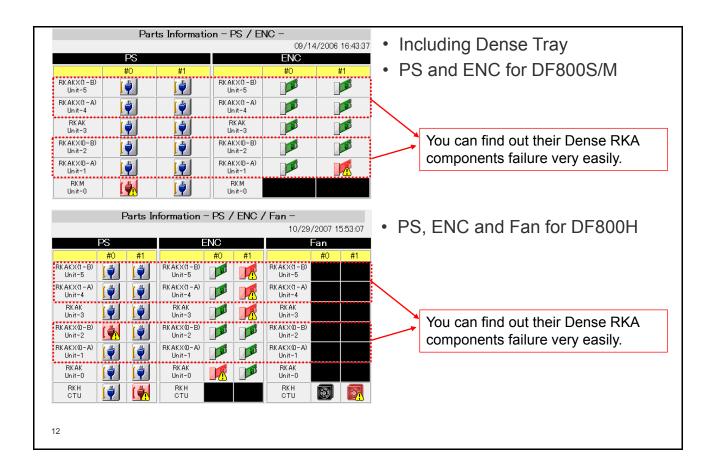
Refer to the Web section in the Maintenance Manual for more information.

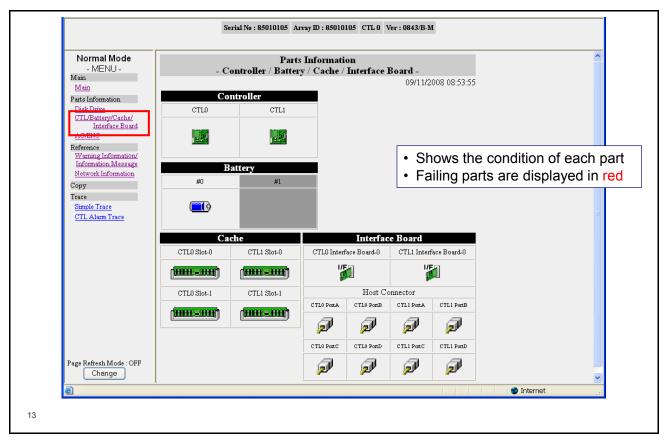

Preferred Way of Connecting

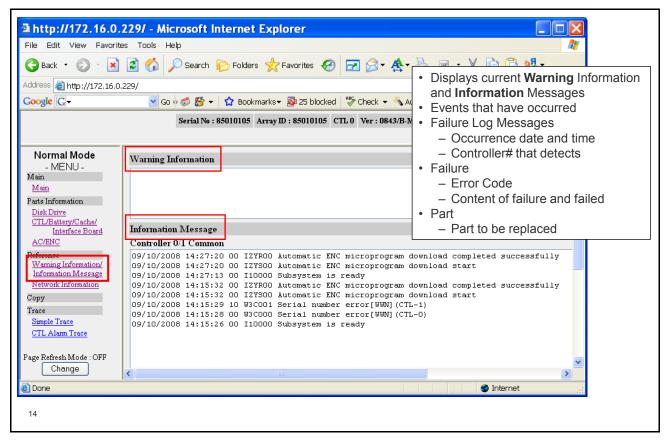

Normal Mode Summary Information

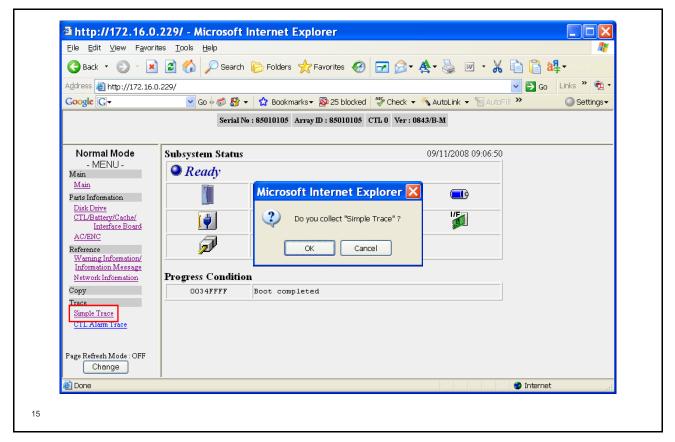


Normal Mode Parts Information




Disk Drive Parts Information

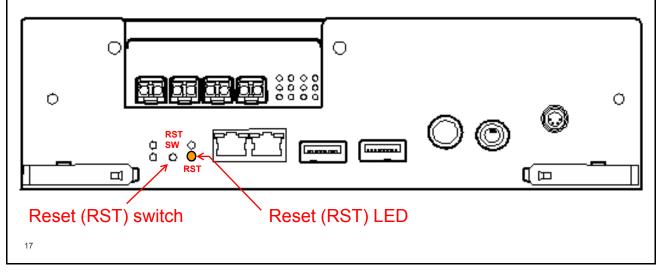

Power Units (AC) and ENC modules


Controller, Battery, Cache, and Host Interface information

Normal Mode Error Messages

After the error has been fixed, you may need to click on **Information Message** to clear the Subsystem Status LED.

Normal Mode Trace Dumps

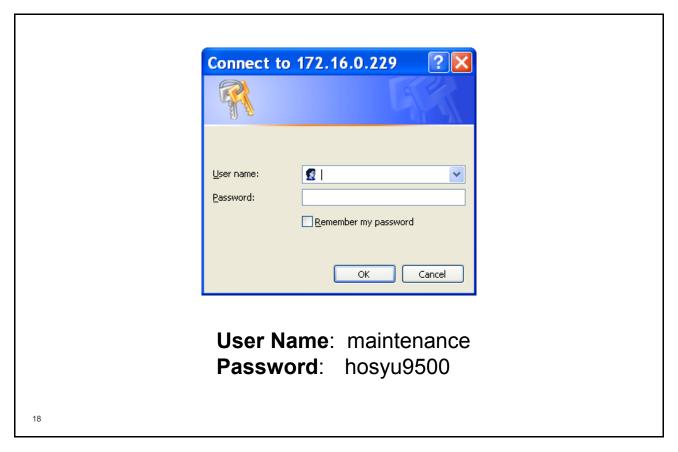

Simple Trace: Perform this step only if the maintenance manual indicates this or HDS technical support asks you to do so. It may take up to an hour to complete.

Maintenance Mode

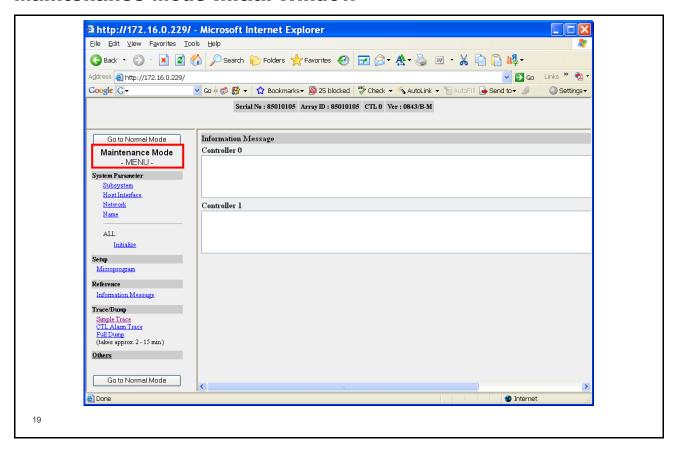
- Used by a service person to perform maintenance related tasks.
 - Set system parameters
 - Download microcode
 - Collect detailed information about the system (Full Dump)
 - Set system serial number
- Maintenance Mode is entered by performing a soft reset at each controller.
 - Host ports are **blocked** (I/O traffic is disrupted).
 - User ID and Password are required to enter Maintenance Mode.

Enter Maintenance Mode

- Maintenance Mode is entered by resetting both controllers.
 - Reset Controller 0 first.
 - Reset Controller 1 **second** (wait 3–5 seconds after the reset of Controller 0).
 - Remember, Controller 1 is upside down for 2100 and 2300 models.
 - Open a browser and connect to the system (see next slide).



To enter Maintenance Mode, you must press the **Soft Reset** button on the back of Controller 0, and then repeat the step for Controller 1.


When the reset button is pressed for the first time, the buzzer will start. It stops when the second controller is reset.

Full dumps can be performed in Maintenance Mode.

Maintenance Mode User ID and Password

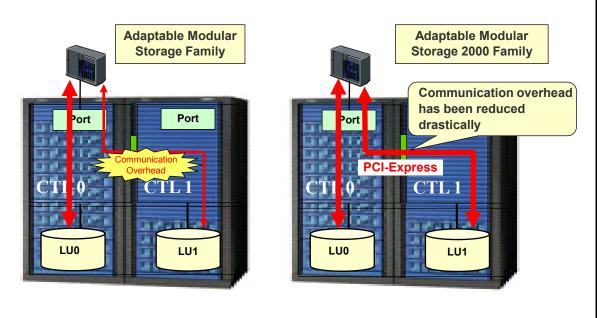
Maintenance Mode Initial Window

Lab Project 2 Web Access Normal Mode and Collect a Trace

- Timing and Organization
 - Time allotted to complete the project: **45 minutes**
 - The lab project contains three sections:
 - Section 1 is the lab activity.
 - Section 2 contains the answers to the embedded lab questions.
 - Section 3 contains the review questions.
 - Time allotted to go over the review questions: 10 minutes
 - The class will be split into lab groups and will perform the lab project on the lab equipment assigned to them by their instructor.

Lab Project 2 Objectives

- Upon completion of the lab project, the learner will be able to do the following:
 - Use a web browser such as Microsoft Windows Internet Explorer or Netscape to connect to the Adaptable Modular Storage in Normal Mode
 - Display status of the individual components of the Adaptable Modular Storage
 - Display Warning Information
 - Use the Simple Trace function of the Web Browser, and dump trace information of an Adaptable Modular Storage controller to a file on the connected host system

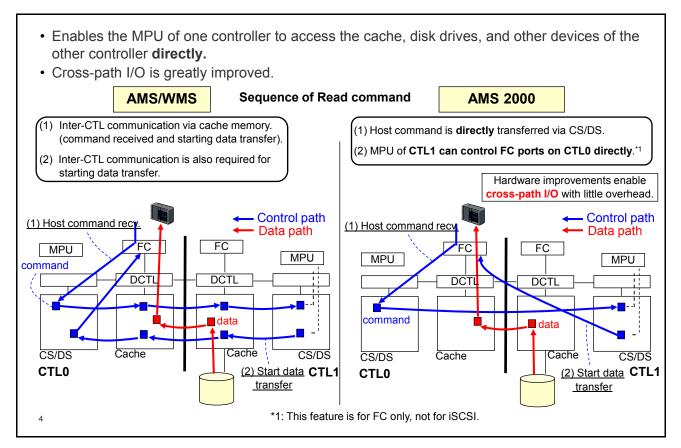

4. Active-Active I/O Architecture

Module Objectives

- Upon completion of this module, the learner should be able to:
 - Explain Active-Active controller architecture
 - Identify the benefits in the Adaptable Modular Storage 2000 Family in terms of hardware performance

Cross-controller Communication

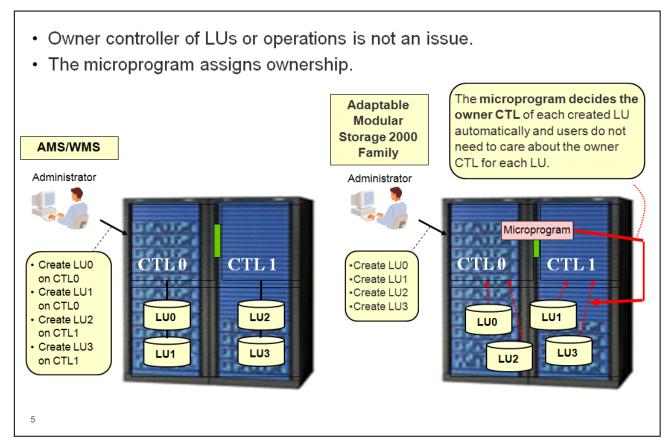
- Previous modular systems use data-share mode
- Adaptable Modular Storage 2000 Family cross-path communication is improved


Previous Adaptable Modular Storage systems and Workgroup Modular Storage system use the *data-share mode* which enables non-owner controller to receive I/Os for the target logical unit (LU). But the I/O performance is greatly reduced compared to the owner controller, so it is used only temporarily, for example as an alternate path if the main path fails.

In the Adaptable Modular Storage 2000 family, I/O performance directed to non-owner controller is drastically improved. This *cross-path* can be used as the normal I/O path with regards to performance.

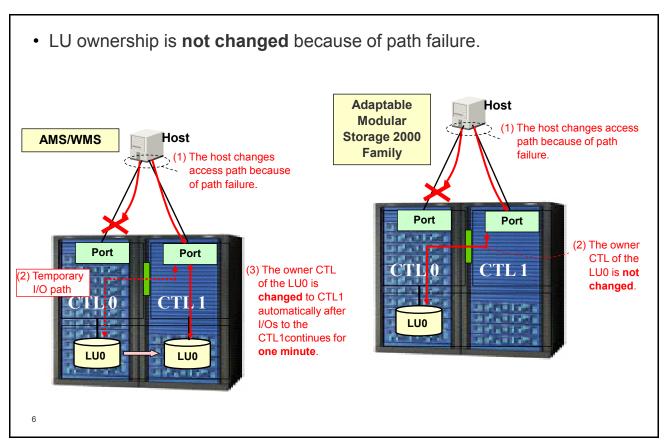
In the diagram and following slides, Adaptable Modular Storage Family represents previous Hitachi modular storage, including the following:

- Workgroup Modular Storage system 100 (WMS 100)
- Adaptable Modular Storage system 200 (AMS 200)
- Adaptable Modular Storage system 500 (AMS 500)
- Adaptable Modular Storage system 1000 (AMS 1000)


Internal Transaction

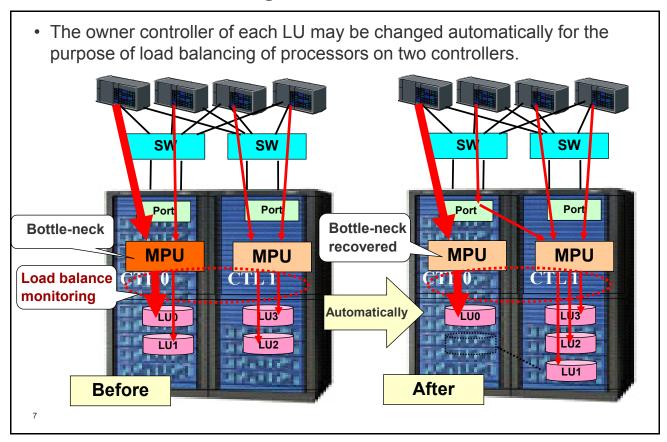
In the diagram:

- AMS/WMS stands for previous Hitachi modular storage systems
- CS/DS stands for Local Memory of the controller


LU Ownership

The user need not consider which controller should be the owner when he creates each LU or for all operations of the array.

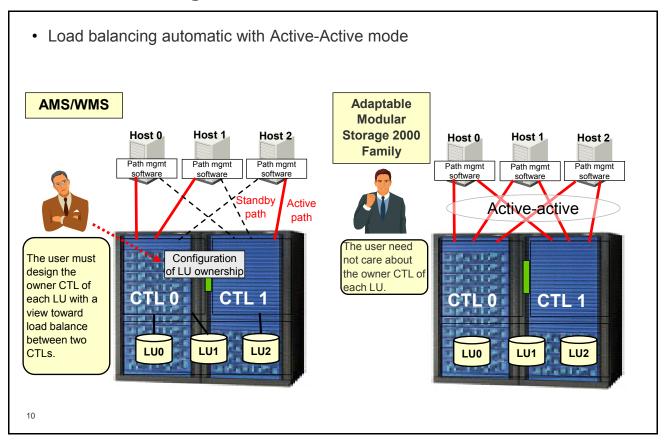
Therefore the non-owner controller of the target LU may receive I/O commands from hosts. But it is not a problem because such commands are processed by high performance cross-path.


The manual setting mode (like previous modular systems) is also available in the Storage Navigator Modular 2 GUI.

Hosts can send commands to storage via any path of any controller for the purpose of path load balancing. This is possible because cross-path I/O is high performance and ownership of each LU is stable.

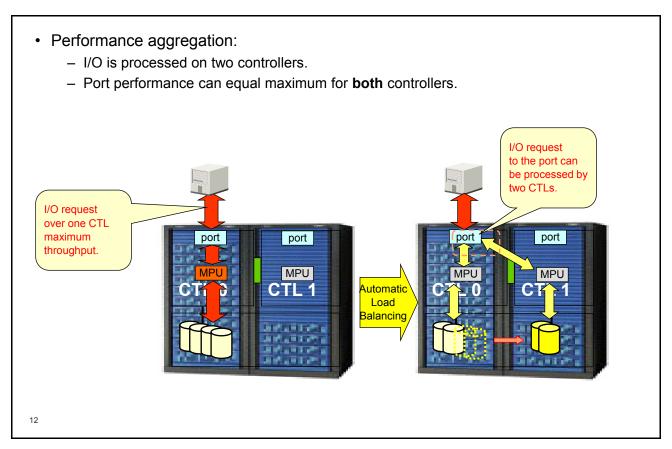
In previous modular systems ownership moved move back and forth. If a path failed, a temporary cross-controller path was established for a predetermined period, like one minute. After that, ownership changed to the other controller, sometimes described as *LU ping-pong*.

Controller Load Balancing


The load balancing function can be enabled and disabled. It should be disabled this when using the Cache Partition Manager to avoid changing the partition setting for each LU automatically.

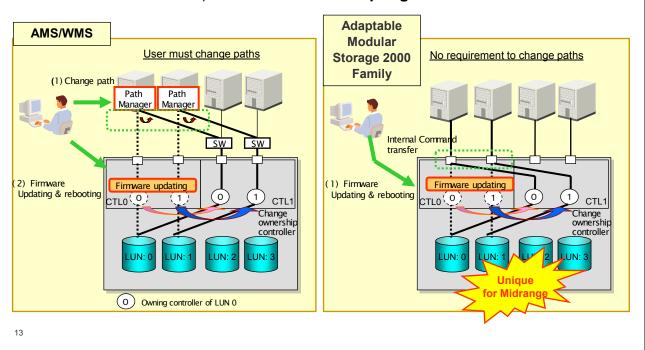
Active-Active versus Data Sharing

Items	Data sharing (AMS/WMS)	Active-Active (AMS 2000)
Support way	Default function	Default function
Setting the LU ownership	Necessary to set the LU ownership when creating the LU.	Automatically assigned to each LU based on round-robin order: 1. CTL1 core1 2. CTL0 core1 3. CTL1 core0 4. CTL0 core0 (1. 2. : dual core only)
Exceptional commands for cross-path I/O	There are some specific commands to change the owner controller, such as the Verify command.	None
TrueCopy or TrueCopy Extended	 No P-VOL on the non-owner controller can be the copy pair. When the pair is created, P-VOL and S-VOL must be owned by the same controller. When a path failure occurs, the P-VOL owner controller is changed to the other controller automatically to continue the copy. 	- Any P-VOL and S-VOL can be a pair, so there is no need to change owner controller when a pair is created.


Items	Data sharing (AMS/WMS)	Active-Active (AMS 2000)
Shadowlmage or Modular Volume Migration	P-VOL and S-VOL must be in the same owner controller.	The owner controller of the S-VOL is automatically changed to the same controller as P-VOL.
Copy-on-Write or TrueCopy Extended	POOL should be the only one in the controller and it will not be changed the owner controller. P-VOL and POOL must be in the same owner controller.	Though P-VOL and POOL must be in the same owner controller internally, the owner of the P-VOL is automatically changed to the same controller as the POOL.

Performance Design

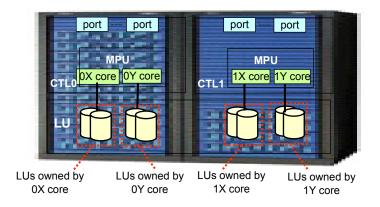
The user does not need to consider the load balance of controllers and ports when doing the performance design. The user should set just the path management software of all hosts as the **Active-Active** mode, and then the load of controllers is automatically balanced.


 Automatic optimization for performance: When the rate of access for the processor of one controller becomes high, the average of response time for the controller becomes long. If the processor usage of the two controllers is balanced by automatic load balancing, the response time remains good. CTL0 processor usage has become high because of access pattern has changed timing. Usage(%) Average Response Time 10ms 3.6ms 5.0ms 5.0ms MPU usage 20% 50% 50% DF700H Response Time Characteristics (1CTL 4KB read60% write40% hit20%) MPU MPU MPU MPU Automatic Time(ms) Load Response Tir Balancing 50% MPU usage

I/O requests to the port can be processed on two controllers by using a *cross-path* mechanism. So the port performance can exceed the maximum performance of a single controller, and it can be expanded to the maximum performance for both controllers.

Microcode Updates

- · Benefits:
 - Non-disruptive firmware updates are easily and quickly accomplished.
 - Firmware can be updated without interrupting I/O.

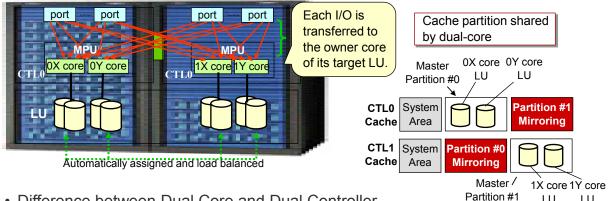


For firmware updates:

- No need to use host path management software
- No need to change path from firmware-updating CTL to other CTLs

Dual Core Support

- Adaptable Modular Storage 2500 contains dual-core MPU on each controller.
- Designed with little shared resources.
- Each LU is owned by either one of two MPU cores, and each MPU core can access any LUs owned by it without any exclusion control.


14

Options 3 and 4 for models 2100 or 2300, and 1, 2, 3, 4 for model 2500 – Adaptable Modular Storage 2500 will support the dual core MPUs.

Automatically assigned to each LU based on round-robin order:

- 1. CTL1core1
- 2. CTL0core1
- 3. CTL1core0
- 4. CTL0core0 (1. 2.: only dual core)

- Users are unaware of the owner core of each LU.
- Any MPU core can process I/Os received by any port on the storage system with same mechanism as active-active.

- Difference between Dual Core and Dual Controller
 - Cache area is not divided into two areas for two cores externally. Although each core has independent cache directory, any free segments in the cache area of the controller are shared by two cores.
 - Each core is not represented as an independent component, that is, there is no status such as one core partial stoppage.

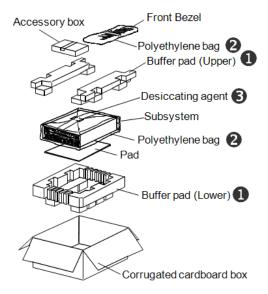
5. Installation

Module Objectives

- Upon completion of this module, the learner should be able to:
 - Install and set up a storage system from the Adaptable Modular Storage 2000 Family
 - Describe the AMS2000 Rev2 controller architecture and its multi-protocol capabilities
 - Describe the AMS2000 Rev2 front end connectivity specifications
 - Install and configure AMS2500 iSCSI host ports

Installation Resources

- Maintenance Manual
- User Manual
- · Quickstart Guide


The User Manual and the Quick Start Guide are included with purchase of an Adaptable Modular Storage 2000 Family system.

Installation Steps

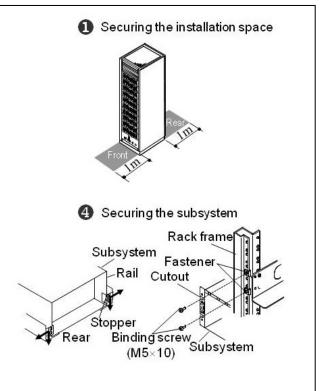
- 1. Unpack the storage system.
- 2. Install base unit and expansion units.
- 3. Connect cables:
 - a. ENC cables (expansion unit SAS back end connection)
 - b. Host interface cables
 - c. LAN cables
 - d. Power cables
- 4. Test host server connectivity.

Unpack Storage System

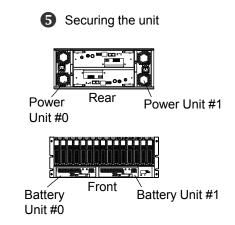
- 1. Loosen the polyester bands.
- 2. Remove the outer package and various packing materials.
- 3. Take out the array from the polyethylene bag.
- 4. Remove tape and wrapping attached to the array.

Precautions

- Be extremely careful when moving, tipping, and unpacking the unit.
 - Work with two or more people to move the units.


The weights are:

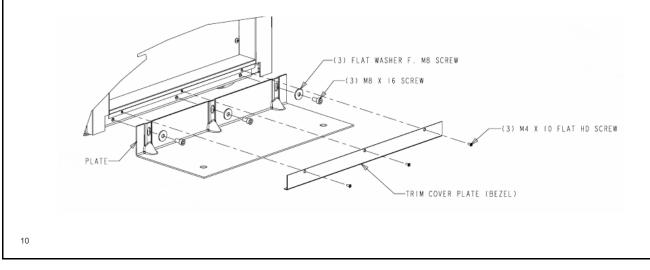
- 51 kg (112 pounds) for the base unit
- 40 kg (88 pounds) for the expansion units
- 94 kg (209 pounds) for the dense expansion units
- Be careful of condensation.
 - Condensation may develop if you unpack the units in extreme temperatures.
- Place the peripherals in a safe location.
 - Various cables and keys are included. Store them carefully.
 - The keys supplied with the base unit are prepared for data security.
 - Check before connecting to the system.
 - · Name tags are attached to ENC cables.


О

Install Units

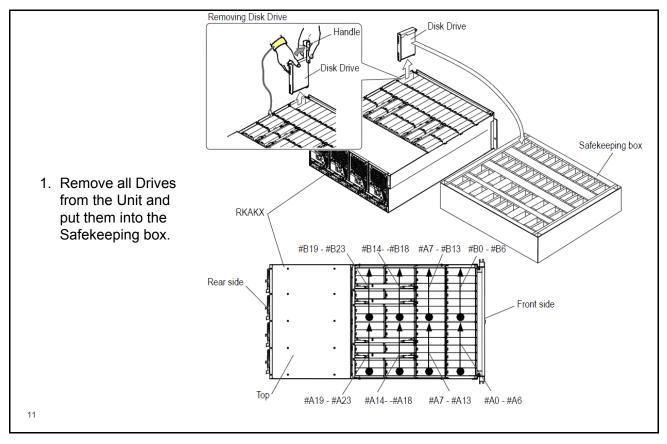
- 1. Check that the installation space is secured.
- For a basic configuration, remove the power unit and the battery unit from the base unit. (Do not remove them if connecting additional units.)
- 3. Open the rear door.
- Put the unit on the rails in the rack, and delicately push it all the way in.

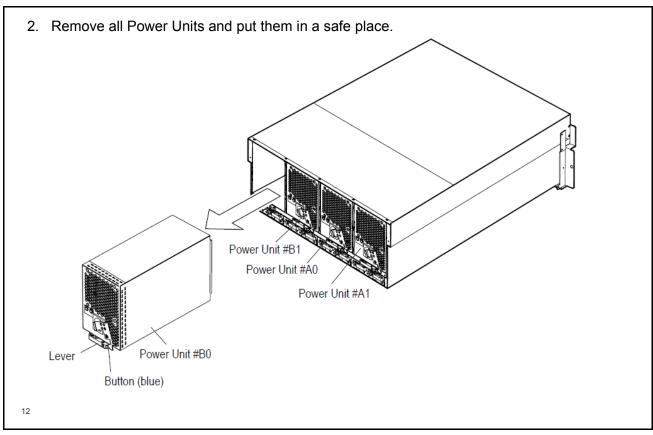
- 5. Secure the unit.
 - Connect the front of the storage system to the rack frame with binding screws (M5×10).
 - Push the stoppers (at the lower left and right) to the rear of the unit, make them touch the frame, and tighten them with the binding screws.
- 6. Install the Power Unit and Battery Unit.
 - For a basic configuration, install the power unit and the backup battery unit in the storage system.

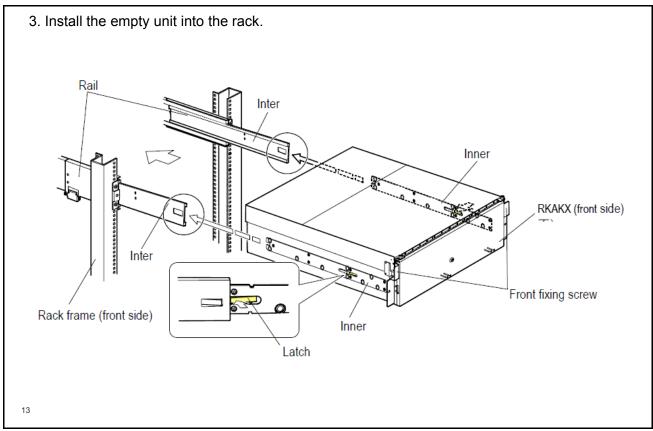

8

Precautions

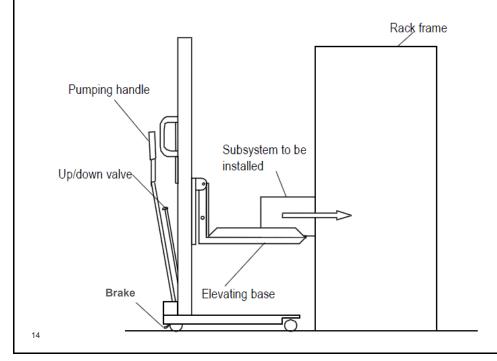
- Clear the installation space.
 - When installing the unit, clear the installation area to allow ventilation of the front and rear.
 - Never block the vent holes because this can cause a failure or fire.
- Make the work space wide enough for the service personnel to work on the rack rails.
 - The rack and the rack rails should be installed in advance.
- Work with two or more people, the units are heavy.

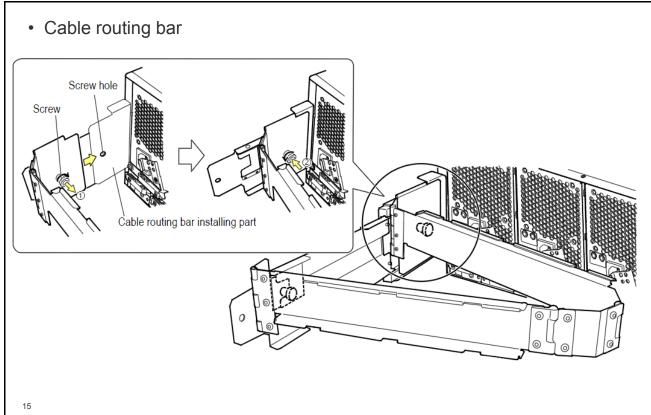

Installing a Dense Expansion Unit

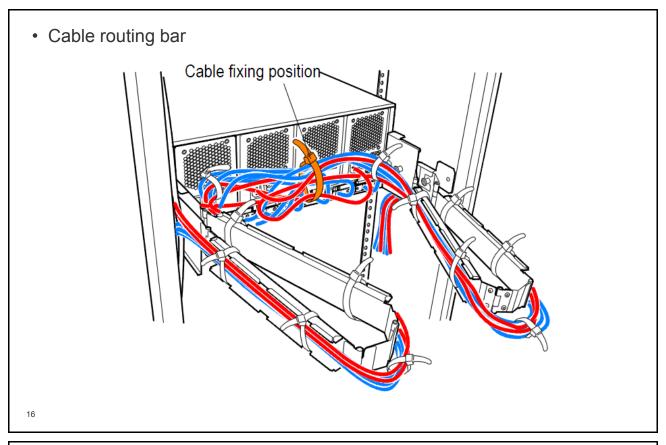

- Before installing the Dense Expansion Units, RKAKX, make sure that the rack stabilizers have been installed and the rack cannot tip over. In case of a single cabinet, check the side stabilizers as well!
- If you install the Dense Expansion Unit, anchor the plates on the ground.
- If you have more than one rack, connect the racks in order to maximize the stability.

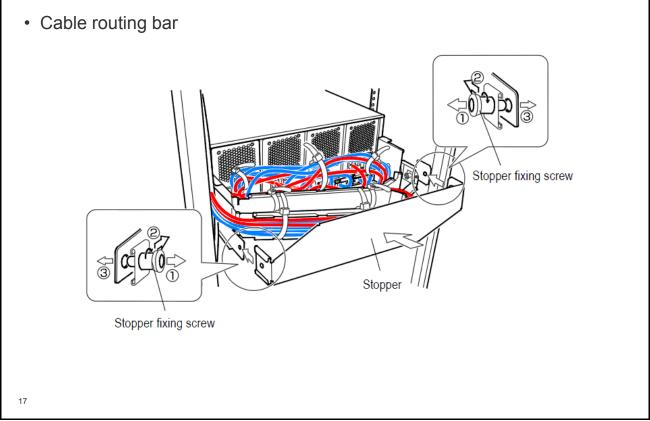


Note: HDS strongly recommends anchoring to the floor. Before installing, check for additional local safety regulations!

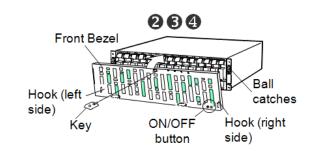

Installing a Dense Expansion Unit RKAKX







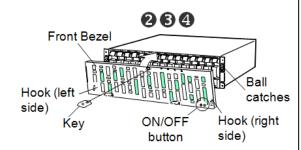
• Use a lifter to install the Dense Expansion Unit or whenever you move it in the rack.



Front Bezel

- To mount the front bezel:
 - 1. Hold the sides of the front bezel with your hands.
 - 2. Engage the right and left hooks (bottom) of the bezel in the hole at the lower right part of the base unit.
 - Engage the ball catches at the right and left of the bezel, push them, and attach the bezel.
 - Insert the key into the keyhole, and lock the bezel.

When you attach both Front Bezels, turn the key to the left, and lock the Front Bezel.

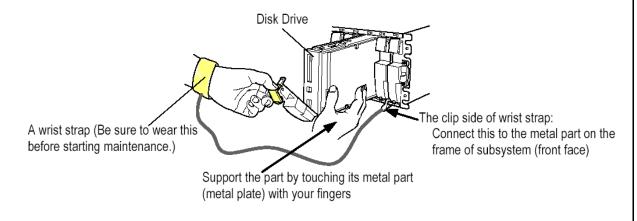


Pull the key out after aligning the groove with the positioning mark on the lock. (The key can only be inserted or pulled out in this position.)

The key cannot be pulled out when the groove is not aligned with the positioning mark on the lock.

- · To mount the front bezel:
 - Hold the sides of the front bezel with your hands.
 - 2. Engage the right and left hooks (bottom) of the bezel in the hole at the lower right part of the base unit.
 - 3. Engage the ball catches at the right and left of the bezel, push them, and attach the bezel.
 - 4. Insert the key into the keyhole, and lock the bezel.

When you attach both Front Bezels, turn the key to the left, and lock the Front Bezel.


Pull the key out after aligning the groove with the positioning mark on the lock. (The key can only be inserted or pulled out in this position.)

The key cannot be pulled out when the groove is not aligned with the positioning mark on the lock.

Parts

- Precautions
 - Be sure to wear an electrostatic discharge (ESD) wristband.
 - Connect wristband lead wire to the storage system enclosure before starting the work, and do not remove it until the work is completed.
 - When installing a disk drive, hold the part with the hand wearing the wristband.

20

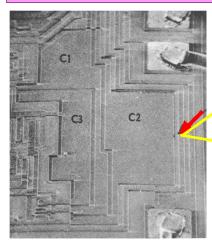
Protect parts from electrostatic discharge (ESD).

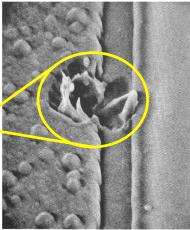
- To prevent part failures caused by static electrical charge built up on your own body
- Be sure to wear a wrist strap connected to the chassis
 - Before starting.
 - Whenever you unpack parts from a case.
 - Do not take it off until you finish.

Otherwise, the static electrical charge on your body may damage the parts.

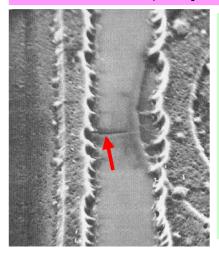
- When you install a disk drive, support its metal part with your hand that has the wrist strap. You can discharge static electricity by touching the metal plate.
- The diagram shows how to properly wear a wristband when working with the array.

ESD Precautions

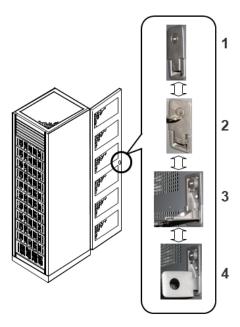

- Always use ESD wrist straps and antistatic mats when handling components.
- Put components in ESD bags for transport.
- Components are damaged almost every time when handled without ESD protection.
 - Components damaged today may fail sometime in the future.

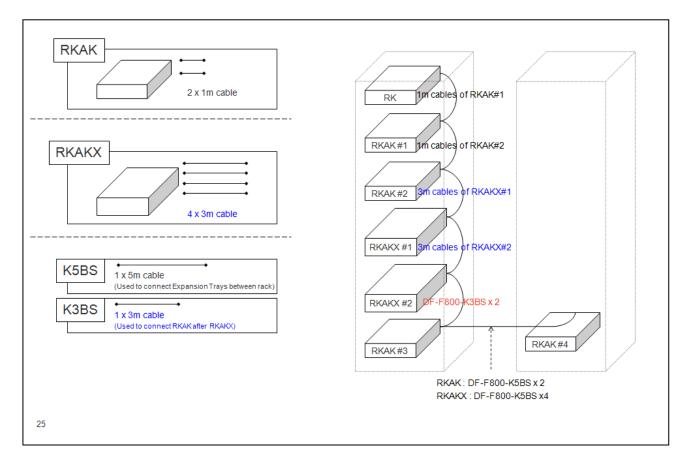

ESD Damage Example

Microscopic view of damaged caused by improper ESD protection


ESD Damage

HA-2700 surface damage in the C2 MOS capacitor 175X and 4300X
(Courtesy of JPL)

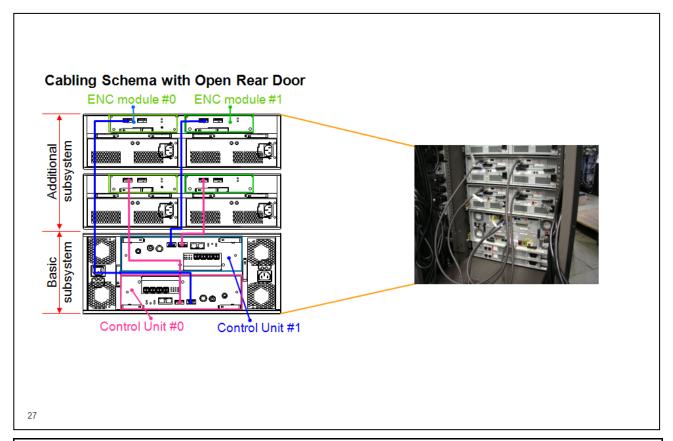

ESD Damage (Courtesy of JPL)

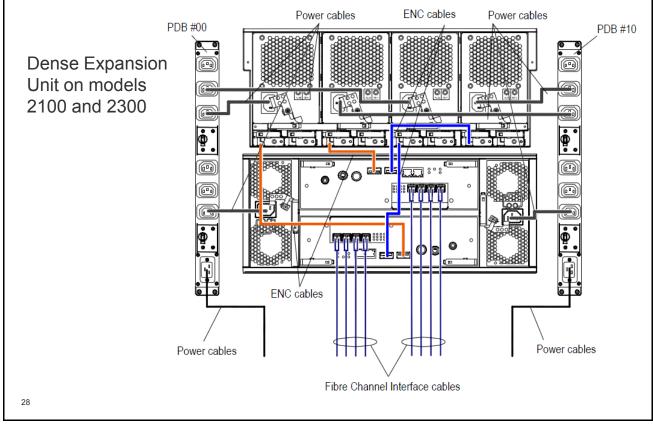

Scanning electron microscope (SEM) view clearly showing the surface oxide crack produced by ESD.

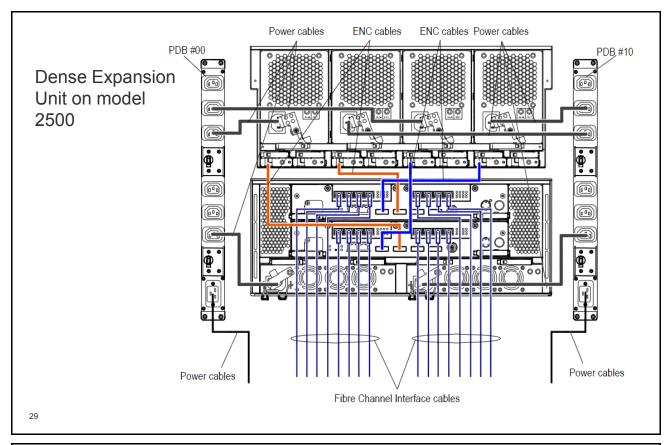
Rear Door

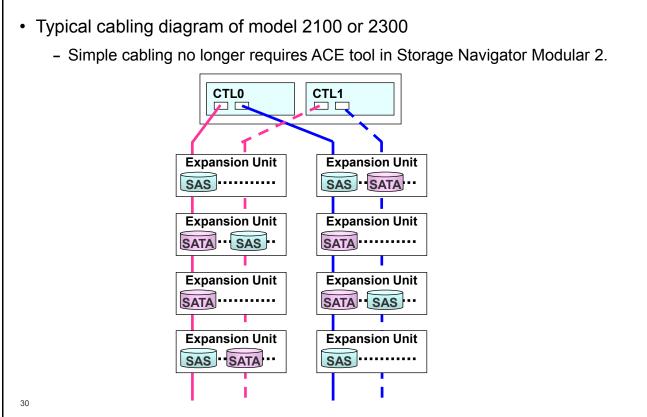
- Precautions
 - Be careful of catching cables when attaching the rear door.
 - Fingers can be caught in the door, causing injury.

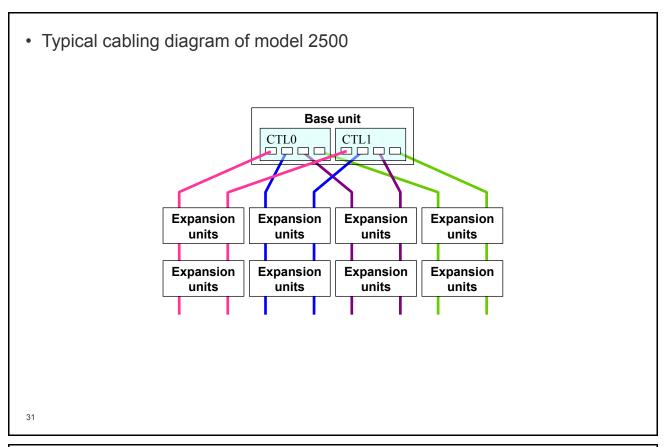
Expansion Unit Cabling

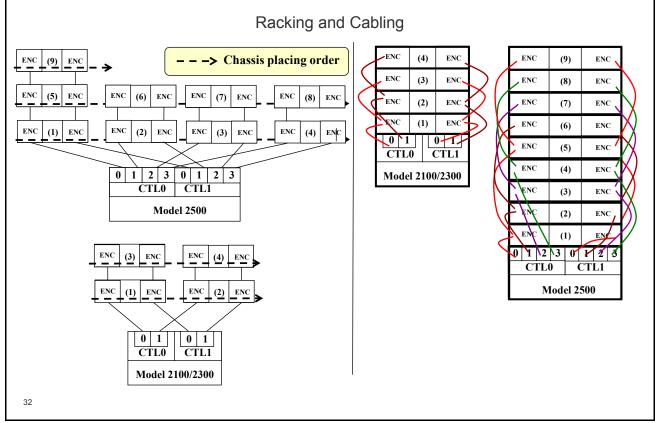


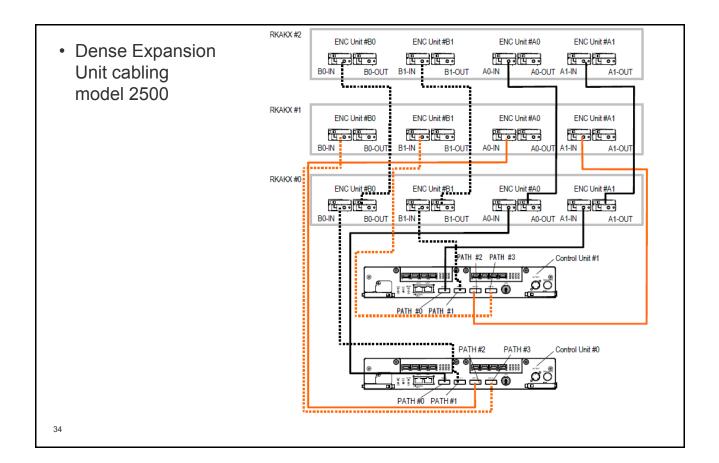

Connect ENC Cables


- 1. Connect PATH #0 (pink) of Control Unit #0 and ENC module #0 (IN). (The first additional subsystem).
- 2. Connect PATH #0 (pink) of Control Unit #1 and ENC module #1 (IN). (The first additional subsystem).
- Connect PATH #1 (blue) of Control Unit #0 and ENC module #0 (IN).
 (The second additional subsystem).
- 4. Connect PATH #1 (blue) of Control Unit #1 and ENC module #1 (IN). (The second additional subsystem).
- 5. After connecting ENC cables, roll up the excess part of the cables in a circle, tighten them lightly with the repeat binder, and put them inside the enclosure.
- 6. Affix labels: Affix PATH #0 (pink) and PATH #1 (blue) on the tags.

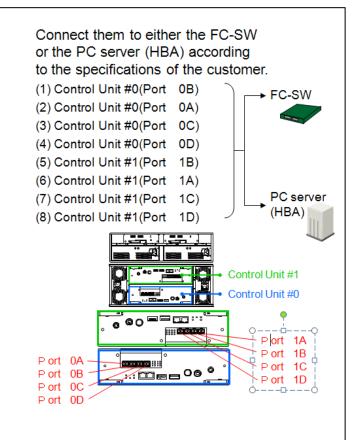

When coiling cables, maintain a radius greater than 30mm to avoid straining the cables or connectors.







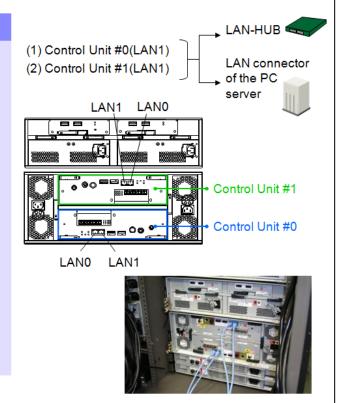
RKAKX #3 Dense Expansion ENC Unit #B0 ENC Unit #B1 ENC Unit #A0 ENC Unit #A1 Unit cabling models <u>Ц ээ Ц ээ</u> B1-IN B1-OUT A0-OUT A1-IN A1-OUT A0-IN A0-C ц <u>• П</u> B0-IN 2100 and 2300 RKAKX #2 <u>Ц</u> эЦ э В1-IN В1-С A1-OUT RKAKX #1 ENC Unit #A0 ENC Unit #B1 ENC Unit #A1 A0-OUT A1-IN A1-C <u>П</u> с В1-IN B1-OUT PATH #1 PATH#0 Control Unit #0 PATH#1 33



Connect Host Interface Cables

Operating procedure

- What devices are connected?
 When the customer provides Fibre
 Channel, connect the control unit
 (each port) and the FC-SW, or the
 PC server (HBA).
 - Be careful when connecting the Control Unit.
 - Two Control Units are symmetrical.
 Connect them carefully.

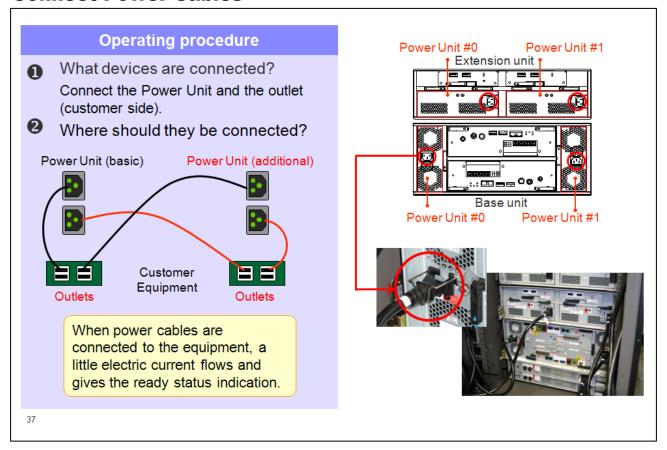


Connect LAN Cables

Operating procedure

- What devices are connected? Connect the Control Unit #0(LAN1) or #1(LAN1) and the LAN connector of the PC server or the LAN-HUB.
 - Cable connection is performed with one or two cables according to the specifications of the customer.
 - Unless otherwise specified, the IP address at the time of shipment is:
 - Control Unit #0(LAN1):192.168.0.16#0: For maintenance
 - Control Unit #1(LAN1):192.168.0.17#1: For End user
- What is connected where? Connect the Control Unit #1 and the LAN connector of the PC server or the LAN-HUB.

36

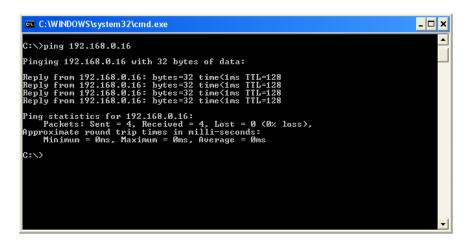

User LAN port (CTL0/1)

LAN1 - 192.168.0.16/17

Maintenance LAN port (CTL0/1) - Service Personnel only

LAN0 - 10.0.0.16/17

Connect Power Cables


Power Up the Storage System

- Confirm that both power receptacles on the rear of the base unit are connected to working outlets.
 - The green LEDs above each receptacle should be ON and the green front panel RDY LED should blink.
- To turn power on, locate the button on the front bezel and press the ON button.
- The unit should power up as follows:
 - Expansion Trays (if any)
 - System disks in base unit
 - Remaining Disks in base unit
- Ensure the HDD LEDs (ACT) are lit as the unit powers up.

Test Maintenance PC Server Connectivity

- Test maintenance PC server connectivity to the storage system through the IP network.
- Use the **ping** command to verify the IP address of the LAN port.
- Default IP address for User LAN ports is 192.168.0.16/17
- Default IP address for Maintenance LAN is 10.0.0.16/17

Make sure that your storage management array can communicate with your client machine by pinging the IP address of the LAN port as specified in your AMS 2100/2300 Quick Start Guide.

Installing Management Software

 Storage Navigator Modular 2 (SNM2) Preparation for the server for the storage management 		The management software called Storage Navigator Modular 2 (SNM2) is used for the initial setting the management of the storage subsystem.		
		For installing SNM2, prepare the computer of the following specifications as a server for the management in advance.		
OS and	Windows Server 2003, Windows XP Pro SP1 (Internet Explorer 7.0)		Hard disk	Free capacity of 1GB or more
Web browser		nterprise Linux AS4, Solaris 10		It should be connected to the storage subsystem of the management target through LAN
Memory	1GB or more are recommend	ded	Optical drive	CD-R can be read.
	Insta	allation proce	dure	
stora start	t the supplied CD in the prog age management. The prog s automatically. w the instruction on the wir	gram for installation		4.3

6. Setup and Configuration of Hitachi Storage Navigator Modular 2

Module Objectives

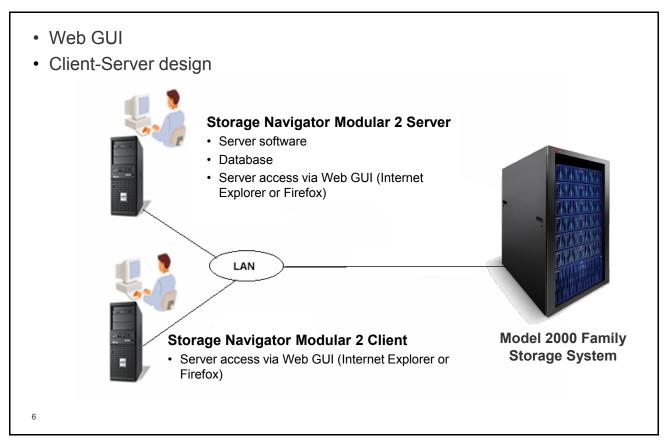
- Upon completion of this module, the learner should be able to:
 - Explain the purpose and benefits of Storage Navigator Modular 2 (SNM2) program
 - Describe Secure Sockets Layer (SSL) support
 - Implement IPv6 support on management and maintenance LAN ports for supported operating systems
 - Register an Adaptable Modular Storage 2000 family system in SNM2
 - Use Add Array wizard
 - Use Initial Setup wizard
 - Create RAID Groups and use LU Wizard to create and format logical units (LUs)
 - Create Host Groups, enable Host Group Security and register the World Wide Name (WWN) of attached host bus adapters
 - Map internal LUNs to Host Group LUNs
 - Describe and implement Hitachi Data Provisioning software

Features

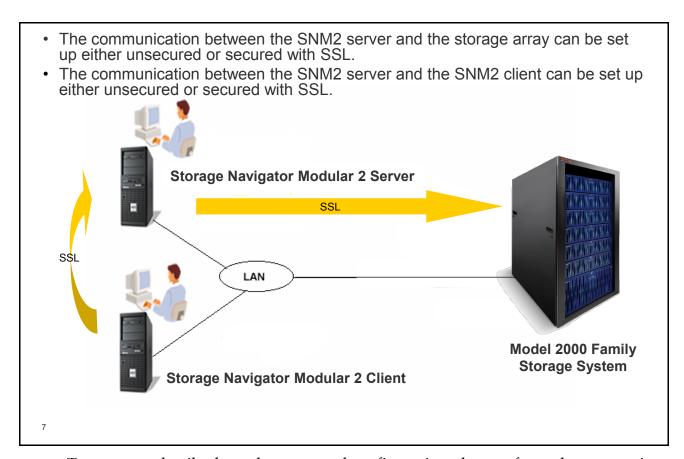
- Hitachi Storage Navigator Modular 2 allows you to:
 - Centralize storage management
 - Configure the storage system using:
 - · Add Array wizard
 - Initial Setup wizard
 - · Create and Map Volume Wizard
 - Allocate user volumes to the host server
 - Replicate Logical Units using standard Hitachi replication software
 - Replication wizard
 - Obtain system configuration and status information
 - Automatic Error Alert Monitoring
 - Error Alert email system
 - Error Alert window for failed components, listing all customer replaceable unit (CRU) details

3

The Adaptable Modular Storage 2000 family unit and various other Hitachi storage arrays house the actual disks for storage. Built on a graphical-user-interface, Storage Navigator Modular 2 manages those disks to provide end users access to the disk space to manage their storage environment. Through the GUI, users can centralize their storage management, replicate data, manage performance, and easily diagnose and fix errors.

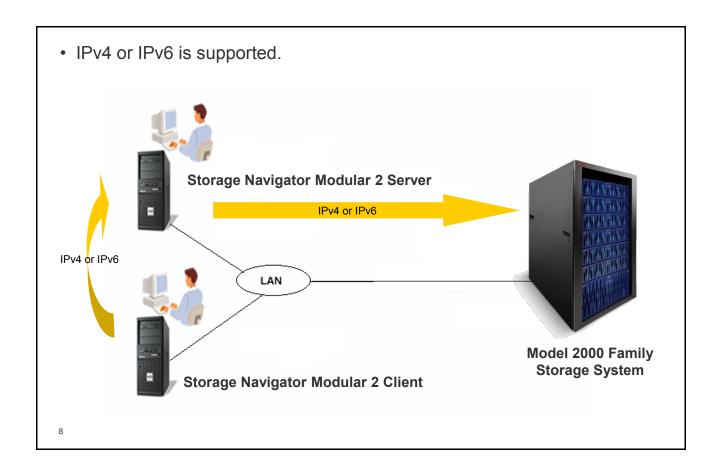

- Simple
 - Easy to use graphical user interface
 - Installs in minutes
 - Wizard-guided setup, configuration and data replication
 - Intuitive error detection and messaging
 - Non-disruptive firmware updates
 - Online Help

Supported Operations


- Configuration of storage system
 - Create and Map Volume Wizard
- · License key enablement of additional supported software
- · Installation and updating of firmware
- Data replication
 - Replication Wizard
 - Snapshots (Hitachi Copy-on-Write Snapshot software)
 - Full-volume cloning (Hitachi Shadowlmage[®] Replication software)
 - Disaster Recovery
 - Hitachi TrueCopy[®] Synchronous Software
 - Hitachi TrueCopy® Extended Distance (Asynchronous) software
- Alert settings
- Storage system health and performance monitoring

Э

Architecture



Storage Navigator Modular 2 runs from your primary management server or client PC. It is designed on common web-based client-server technology using a standard IP network. In other words, you can attach your model 2100 or 2300 and Storage Navigator Modular 2 primary management server to your existing LAN environment. Storage Navigator Modular 2 communicates with the storage system through a web browser. If client PCs are attached to the network, they can connect to the Storage Navigator Modular 2 primary management server and remotely configure the storage system.

To get more details about the setup and configuration please refer to the appropriate user documentation.

The procedures may differ depending on the storage system firmware level and the SNM2 version.

IPv6 Support

IPv6 link local address

 The IPv6 link local address is created automatically from the MAC address regardless of the availability of the IPv6 address. The array creates the interface ID which extends the MAC address (48 bits) to the EUI-64 format (64 bits) and has the address which adds fe80::/10 to the high 64 bits as the link local address.

(Example) When the MAC address is "00:00:87:12:34:56"

- 1. Split the MAC address by 24 bits "000087" and "123456".
- 2. Insert "1111 1111 1111 1110 (0xFFFE)" between the split addresses.

"0000 87FF FE12 3456"

3. Reverse the 7th high bits.

"0200 87FF FE12 3456"

4. Add "fe80::/10" to high 64 bits to be the link local address.

"fe80::0200:87FF:FE12:3456"

Setting IPv6 address

- We recommend the manual setting for the IPv6 address. When using it by setting to obtain the IPv6 address automatically, since the IPv6 address is created based on the MAC address, the IPv6 address set to the array is changed automatically if the Control Unit is replaced due to a failure, etc. In this case, it is required to perform the search array and registration again. For the range of the IPv6 address set manually, use the global unicast address "2001::/16" for the IPv6 Internet.

• IPv6 support conditions for each operating systems are shown below.

	Operating			
Vendor	Operating System Name	Service Pack	IPv6 Support Conditions	
	Windows 2000	SP3/SP4	Not Support(*1)	
	Windows XP	SP2	Not Support (*2)	
	Windows Server 2003 (x86)	SP1	Support	
	Windows Server 2003 (x86)	SP2	Support	
Microsoft	Windows Server 2003 R2 (x86)	SP1	Support	
	Windows Server 2003 R2 (x64)	SP1	Support	
	Windows Vista (x86)	SP1	Support	
	Windows Server 2008 (x86)	SP1	Support	
	Windows Server 2008 (x64)	SP1	Support	

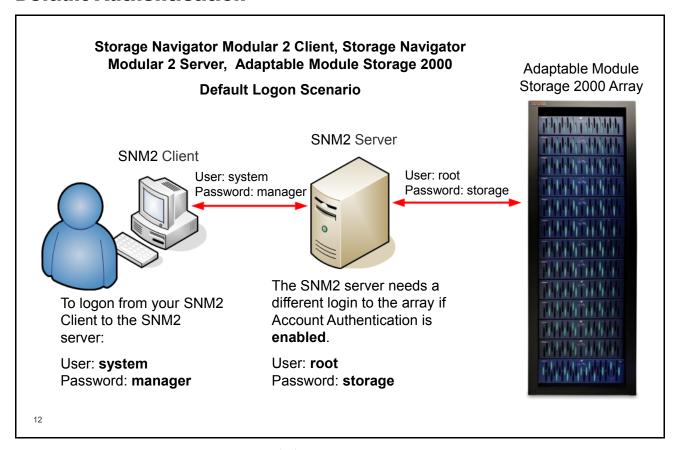
^{*1:} IPv6 protocol is not supported.

^{*2:} Although the IPv6 protocol can be used by installing Microsoft TCP/IP version6, **Hitachi Storage Navigator Modular 2** does not support it because the WEB browser cannot use the IPv6 literal address [address in the colon(:)-delimited hexadecimal form].

Login Layers

- Connecting to an individual storage array is a layered process.
 - 1. Open a properly configured Java browser and launch SNM2.
 - 1. The Login window opens.
 - 2. Log into SNM2 using **system** (USER ID) and **manager** (default password).
 - 3. The login places you into the **Arrays** window, from which you select a specific array to connect to from a list of registered arrays.
 - 2. Select a specific array to connect to from a list of registered arrays. Connection to the array is allowed one of two ways:
 - If Account Authentication is not installed or disabled, connection is allowed.
 - If Account Authentication **is** installed and enabled, then a second User ID and Password are required to gain access.

Default strings:


User ID = root

Password = storage

11

When SNM2 is used in a Hitachi Device Manger environment, use the Device Manager credentials to log in to SNM2. This is Single Sign-on mode.

Default Authentication

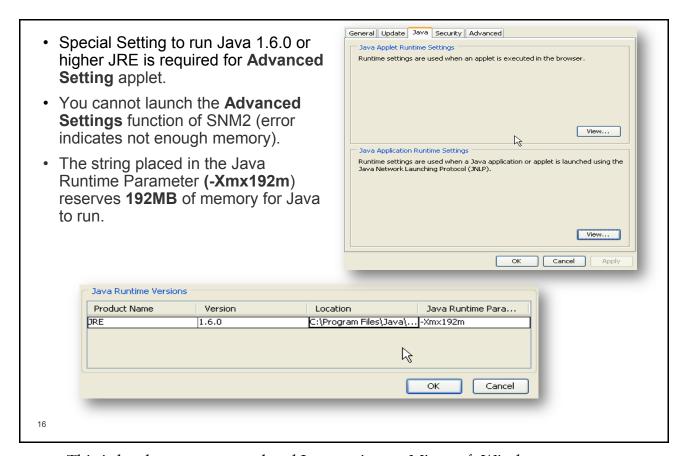
SNM2: Storage Navigator Modular 2

AMS2000: Adaptable Modular Storage 2000

Installation Requirements

	A computer as Storage Navigator Modular 2 server	A computer as Storage Navigator Modular 2 client			
Network Interface	100BASE or 1000BASE, to communicate with storage system and Storage Navigator Modular 2 client	100BASE or 1000BASE, to communicate with Storage Navigator Modular 2 server			
os	Microsoft Windows 2000 Pro (SP3 and 4), Microsoft Windows Server 2003 (SP1)/XP Pro (SP2)				
RAM	2GB or higher is recommended	512MB or more			
Free disk space	1.5GB or more to install				
CPU	1Ghz Minimum (2.0GHz recommended)	-			
Others	Optical drive, to install Storage Navigator Modular 2 from CD-ROM.	JRE* (Java Runtime Environment) 1.6.0 or higher http://java.sun.com/products/archive/			
		Video: 1024x768 (recommended) or more			
		Web Browser: Microsoft Internet Explorer 6.0			
		Mouse (or pointing device) and keyboard			

Verify that your PC and operating system meet these basic requirements. These are standard for most of the today's applications. In addition, the *Release Notes* and the *User's Guide* have current information.


The JAVA JRE 1.6.0 can be downloaded from the SUN web site at the link.

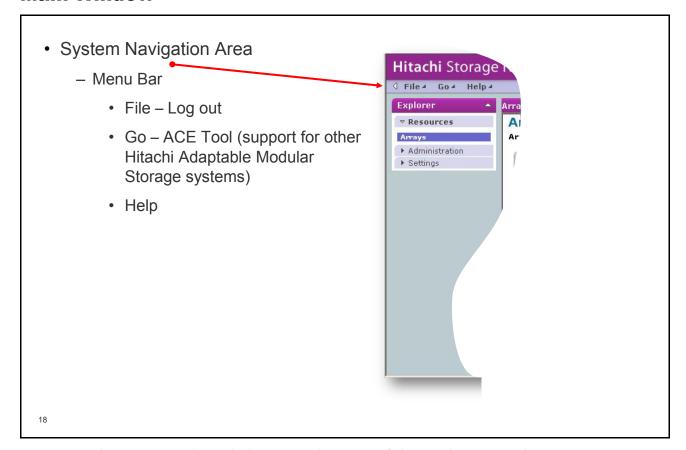
- · Know the IP address of your management PC.
 - Know the IP address prior to starting the installation procedure.
 - You are prompted to enter this IP address during the installation.
 - This IP address can be checked by typing the ipconfig command into the command prompt window.

14

- Advanced Settings
 - Required to configure the following:
 - Configuration Settings
 - Access Mode
 - Performance Monitor
 - Mapping Guard
 - Parity Correction
 - Cache Residency
 - Maintenance
 - Is a Java applet
 - Java 6.0 (1.6.0 or higher) Runtime environment settings must be configured.
 - Start → Run → Control Panel → Java → (Java Applet Runtime Settings) View
 Java Runtime Parameter → -xmx192m
 - Disable DHCP on the server operating Storage Navigator Modular 2.
 - Turn off pop-up blockers.

Note: A time out will occur after **30 minutes** when working with Advanced Settings.

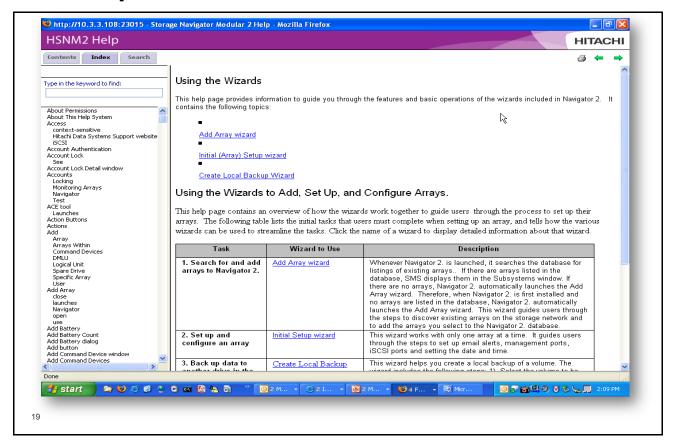
This is local user account related Java setting on Microsoft Windows systems. It has to be set up for each different Windows user who uses the SNM2 Web GUI.

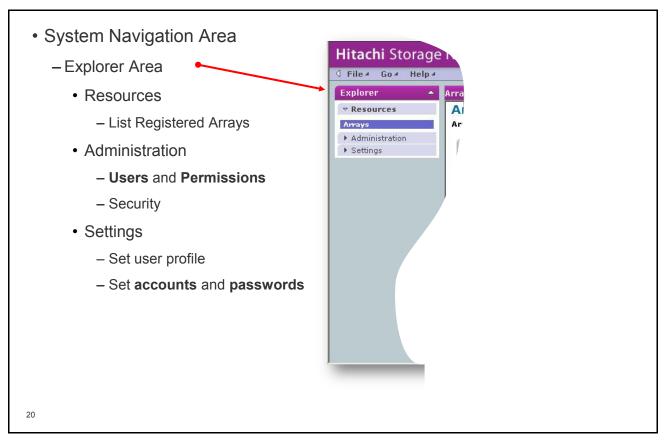

Graphical User Interface

Main WindowSystem Navigation AreaStorage Array Area		

The **System Navigation** area is displayed when you first log in.

The **Storage Array** area allows you to perform configuration functions.

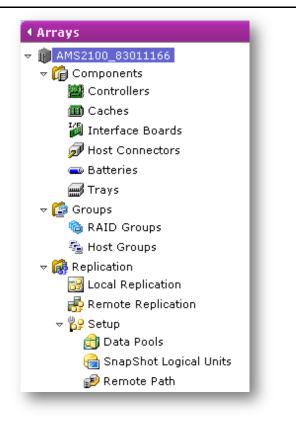

Main Window


On the top menu bar, click File to close out of the application or log out.

Click **Help** to open the **Online Help** or select **About** to display the properties of Storage Navigator Modular 2.

Online Help

System Navigation Window


Under **Resources**, click **Arrays**. From the Array Properties area, you can view and configure arrays, add a new array, edit the array properties, remove the array, or toggle the filter. The main window has a lot of information, including serial number, drive types, array capacity, and the IP address of the iSCSI ports.

Under Administration, you can configure User and Permissions and Security.

- Expand Users and Permissions
 - Click Users. You can view the users that have been created.
 - You can click the **Permissions** option to view and edit the permissions for each user.
- **Security** settings enable you to edit the password polices, account lock policies, and update the message that appears in the warning banner.
- Under Settings you can edit the profiles all of the users created. You can change the password and edit the profile settings.
- Click **Edit Profile** to edit the profile.
- Click **Change Password** to change the password.

Storage Array Navigation Tree

- Components
 - All hardware components status
- Groups
 - RAID Groups
 - Host Groups
- Replication
 - Local Replication
 - Remote Replication
 - Setup
 - Data Pools
 - SnapShot Logical Units
 - · Remote Path

21

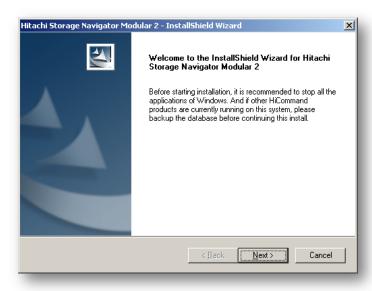
This interface allows you to launch and navigate the various components, functions, and array settings.

For example, **Local Replication** allows you to view the status of your replication pairs including pair name, primary volume, secondary volume, group name, and back up time. Beneath the window you can perform additional functions to your backup such as create a new pair, split a pair, resync a pair, restore a pair, and delete a pair.

To view the volumes that you created for snapshots, expand the **Setup** menu and click **Snapshot Logical Units**. From this screen, you can view the snapshot volume that you created and its capacity. Beneath the window, you can perform additional functions such as creating another snapshot volume or deleting the snapshot volume.

- Settings
 - FC Settings
 - Spare Drives
 - Licenses
 - Command Devices
 - DMLU
 - LAN
 - Firmware
 - Email Alert
 - Date & Time
 - Advanced Settings
- Power Savings
 - RAID Group Power Saving
- Security
 - Secure LAN
 - Audit Logging
- Performance
 - Monitoring
 - Tuning Parameter
- Alerts and Events

🗸 🄼 Settings 🦀 FC Settings 🌇 Spare Drives 🦺 Licenses 🂫 Command Devices DMLU <table-of-contents> LAN 🐞 Firmware 🙈 E-mail Alert O Date & Time 📡 Advanced Settings → Y Power Saving. 🙀 RG Power Saving 🗸 👣 Security 👣 Secure LAN 🖣 Audit Logging → M Performance Monitoring 🕨 🌇 Tuning Parameter 🕏 Alerts & Events


Installation Summary

- 1. Install JAVA JRE 1.6.0 application.
- 2. Install Storage Navigator Modular 2 from CD-ROM.
- 3. Start Storage Navigator Modular 2 using Web browser.
- 4. Use the Add Array Wizard at first time usage to register the storage system.

Install Storage Navigator Modular 2

 Insert the installation CD into the host that will serve as the primary management sever.

The InstallShield Wizard loads to start the installation

24

The installation process takes approximately 20 minutes to complete.

Click the default file settings. You must enter the IP address of the management server and the port 1099.

Start From Web Brower

1. Open a Web browser.

2. Access the Storage Navigator Modular 2 software from the browser.

Set URL = http://
3. Log in.

• User Name: system
• Password: manager

Hitachi Storage Command Suite

Hitachi Storage Navigator Modular 2

**Copyright (2) 2007, 2008, Hitachi, Edit Storage Navigator Modular 2

Since this is the first time you are running Storage Navigator Modular 2, the **Add Array** wizard appears and prompts you to add your storage system.

Troubleshooting Installation

- Microsoft Windows Services
 - To access, Start > Programs > Administrative Tools > Services
 - HBase Storage Mgmt Common Service
 - HBase Storage Mgmt Web Service
 - HIRDB
 - Storage Navigator Modular 2 Server
- The following command can be run to **start** and **stop** all required services: hcmdssrv.exe /stop or hcmdssrv.exe /start
 - The above mentioned command is located at the following folder:C:\program files\hicommand\base\bin

Note: If the user is running Hitachi Storage Command Suite, these applications and SNM2 are compatible, but you must stop their services in order to install SNM2. Only one data base will exist, but a second instance will run for SNM2.

26

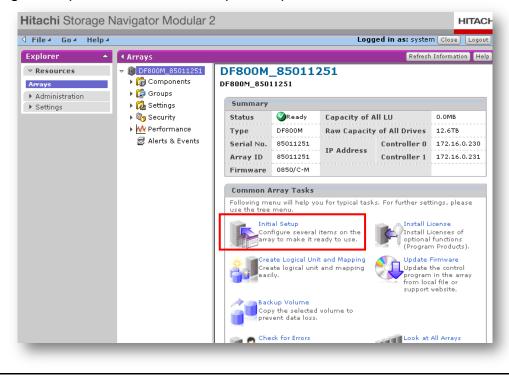
These services should be running on your PC to successfully run Storage Navigator Modular 2.

Configure

- Adaptable Modular Storage 2000 Family systems default Controller IP settings:
 - Controller 0/1
 - User LAN port 192.168.0.16/17 factory default
 - LAN1 port
 - Controller 0/1
 - Maintenance LAN port 10.0.0.16/17 factory default
 - LAN0 port

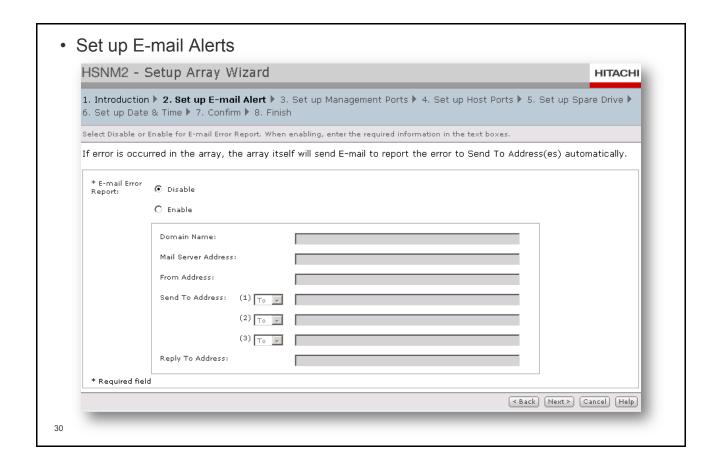
- 1. Perform Initial Setup (The setup wizard is launched automatically.)
 - 1. Set up email alerts.
 - Set up management LAN ports.
 - 3. Set up front end host ports.
 - 4. Set up spare drives.
 - 5. Set up date and time.
- 2. Create and Map Logical Units to Host Servers
 - 1. Create RAID Groups.
 - 2. Create LUs.
 - 3. Create host groups.
 - 4. Map LUs to hosts and host groups.
- 3. Enable License Keys

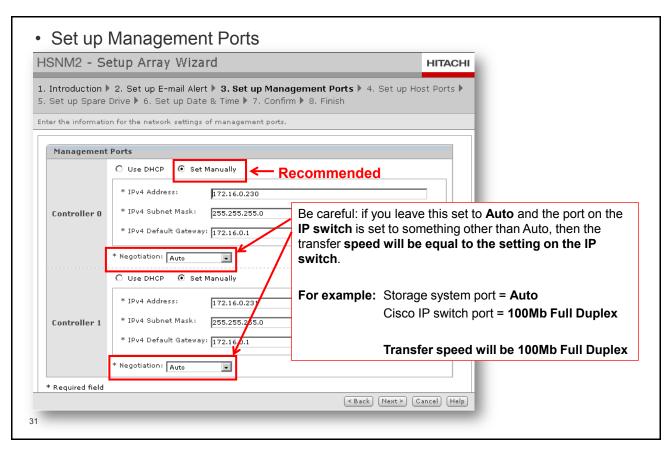
28

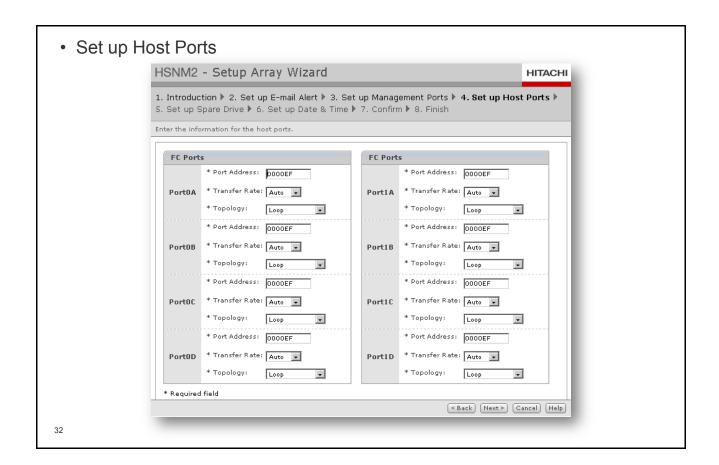

Configuring the array is done in easy steps.

- 1. Initial setup.
- 2. Install any license keys (in most cases this is done at build center).
- 3. Create the RG/LU storage volumes.
- 4. Format the LUs.
- 5. Create any Host groups and setup.
- 6. Map the LUs to your hosts.

Initial Setup

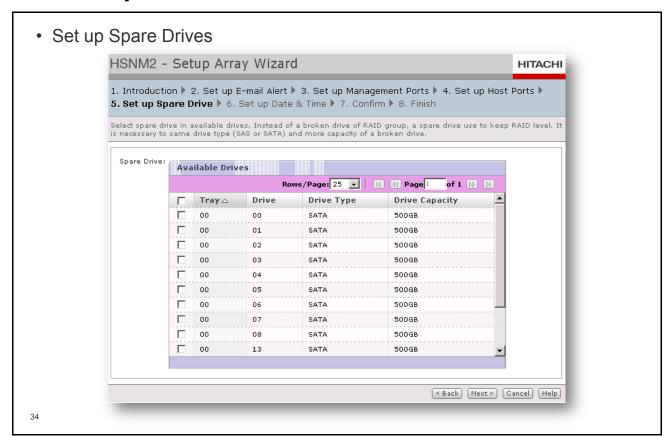

29

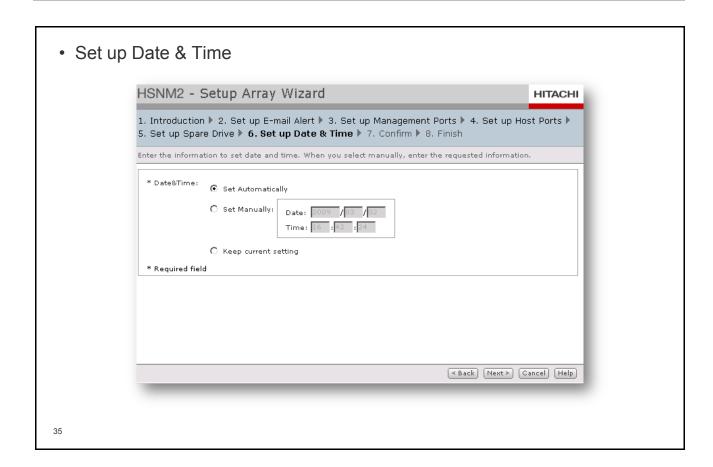

 Initial Setup wizard guides you through the setup of E-mail alerts, LAN Management ports, Front end Host ports, Spare drives, and Data and Time.


The **Initial Setup** is the very first step in configuring your array. The wizard enables you to quickly set up your new storage unit for first-time use. It guides you through setting up the management and the iSCSI ports, and email notification in case the system detects an error.

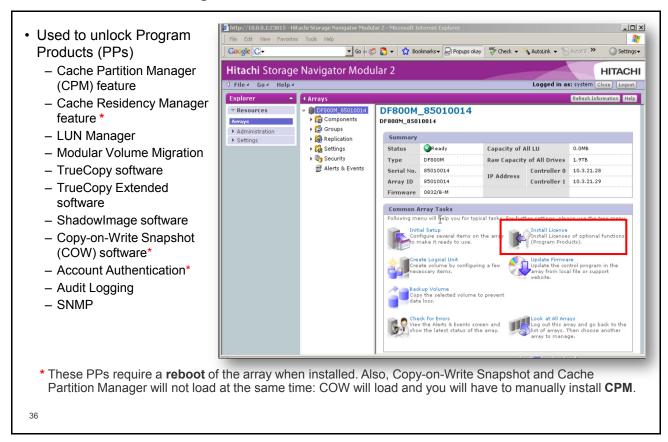
- 1. From the **Common Array Tasks** window, click **Initial Setup**. The wizard prompts you to set up an email alert, set management ports, set host ports and set up spare drives and date and time.
- 2. Click **Next** to confirm the modifications you have made to the alerts.
- 3. Finally, click **Next** to confirm the modifications you have made to the management ports.
- 4. Click Confirm.

Here you can modify the IP addresses of the controllers. Default for the Adaptable Modular Storage 2000 family is dual controllers.




Fibre Channel Parameters

- Fibre Channel Configuration
 - Fibre Channel parameters are set to the internal port and not to the physical host connector.
 - The Adaptable Modular Storage Port Address parameter is the request for a Fibre Channel Arbitrated Loop Physical Address (AL_PA).
 - The Topology Information parameter has two settings:
 - Loop when direct-connected
 - Point-to-Point (P-to-P is fabric mode and should be used when connected to a Fibre Channel switch)
 - The Transfer Rate parameter has four settings: 1Gb/s, 2Gb/s and 4Gb/s (only with 4Gb/s hardware), and Auto.


Recommended setting: Set this parameter to the **known** speed of the HBA or switch port.

Initial Setup



Enable License Keys

In most case these will be installed at the build center, but may or may not be enabled for use.

- Two methods of entering license keys:
 - Enter an individual 48-character key
 - Use the Product License Key file (.plk) and install multiple files at once
- Keys can be installed, de-installed, or features can be enabled or disabled.

Lab Project 3: SNM2 Installation and Initial Setup

- Timing and Organization
 - Time allotted to complete the project: 60 minutes
 - The lab project contains two sections:
 - Section 1 is the lab activity
 - Section 2 contains the review questions
 - Time allotted to go over the review questions: 15 minutes
 - The class will be split into lab groups and will perform the lab project on the lab equipment assigned to them by their instructor.

Notes:

- Beginning with this lab project and through the remaining lab projects, it is important that
 each lab project be followed and completed as written. The reason for this is to insure
 that conditions and configurations created by one lab projected are in place at the beginning
 of a following lab project. The array configuration is built upon as the course
 progresses and in order for all the lab projects to flow smoothly, the expected configuration
 must exist.
- This does not mean that you cannot experiment, but remember to leave your array in the
 condition specified at the end of each lab project, and please remember that specific time
 limits have been set to insure all material of the course is effectively covered.

Lab Project 3: Objectives

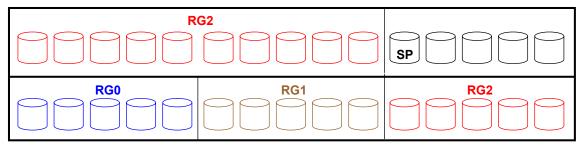
- Upon completion of the lab project, the learner should be able to do the following:
 - Install the correct Java JRE on your management server
 - Configure the Java Runtime Parameter so Storage Navigator Modular 2 (SNM2) clients can utilize the Advanced Settings function of SNM2
 - Install SNM2, creating the SNM2 Management Server on your assigned lab management server
 - Initialize and set up the storage system for first time use
 - Register your assigned storage system with SNM2
 - Install Program Products license keys
 - Create new User accounts and assign role permissions

RAID Groups Logical Units Creation

- RAID Groups can be created in two ways:
 - Automatic Selection of disk drives
 - Takes drives in numerical order, skipping over unlike drives
 - Manual Selection of disk drives (HDD roaming)
 - · Drives can be selected at random.
 - · You cannot select drives of different densities.
 - You can select drives with different RPMs.
- Logical Units (LU) can be created in two ways:
 - Create LU (one at a time)
 - Automatically: User specifies the size, SNM2 creates LU from

available free space.

Manually: The user selects one or more segments from a list of

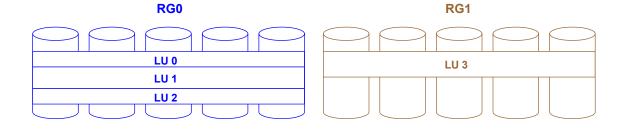

available free space segments.

Create and Map Volume Wizard (create several LUs at once)

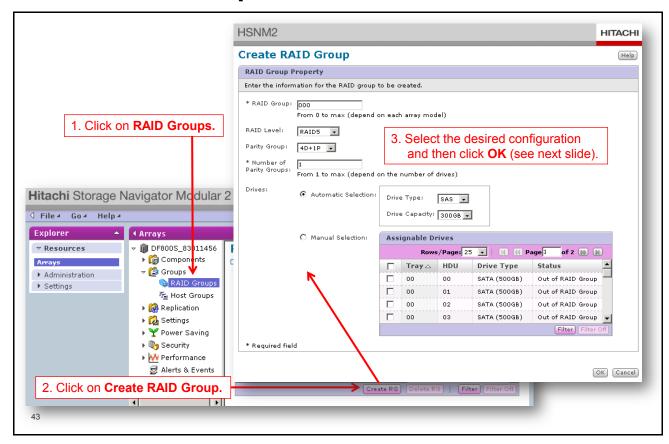
RAID Groups versus Parity Groups

- Example of three RAID Groups
 - RG0 = RAID 5 (4D+1P)
 - RG1 = RAID 5 (4D+1P)
 - RG2 = RAID 5 (14D+1P)

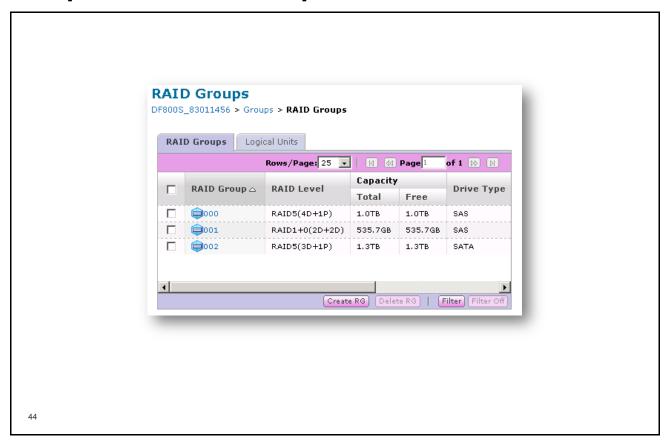
SP = Spare Drive

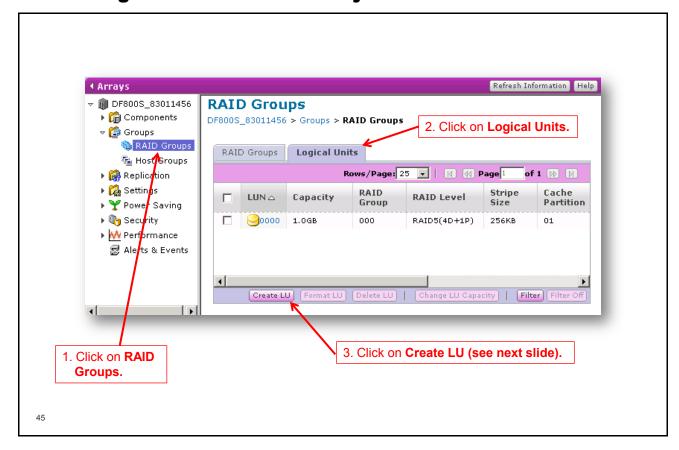

When creating an RG, Hitachi Data Systems strongly recommends a **1-to-1** relationship between the RG and Parity Group to avoid any potential performance problems or recovery issues:

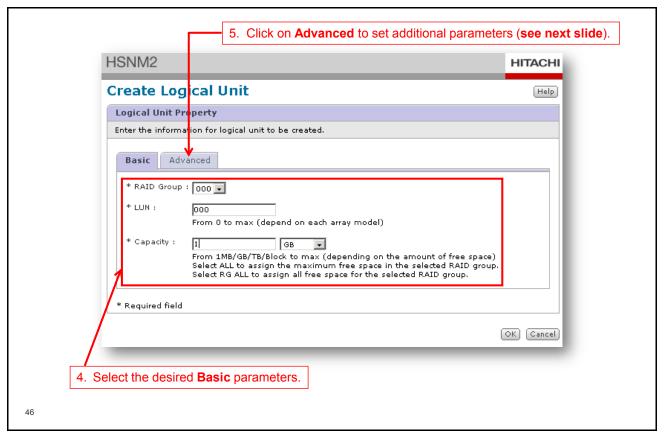
- 1. During a failure condition, there may be an impact to multiple workloads sharing the RAID Group, even if the LUN resides within the Parity Group that is not sparing out an HDD.
- 2. The space is concatenated, which means that a LUN may span the two Parity Groups within the RAID Group, thereby increasing the possibility of parity generation overhead.

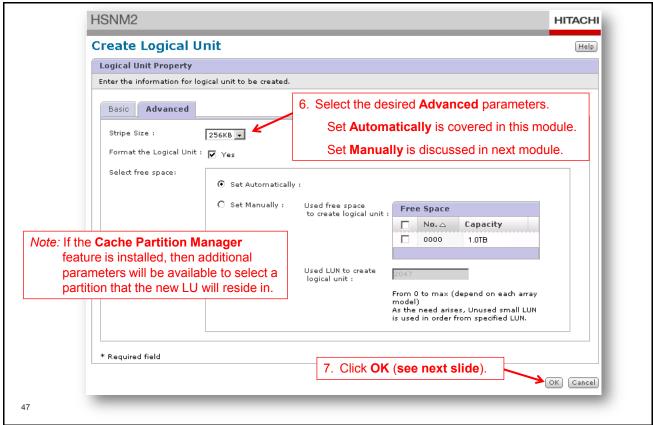

- The building block for a RAID group is a parity group. The building block for parity group is a physical disk.
- 4D+1P refers to the layout of a parity group.
- Keep the ratio of RAID Group and parity Group at 1-to-1.

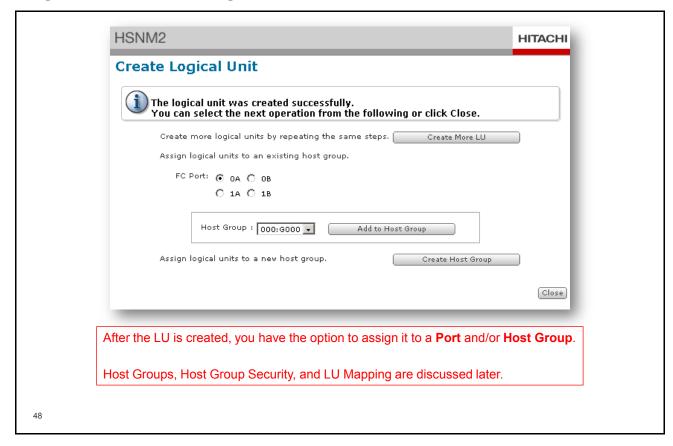
LU Configuration

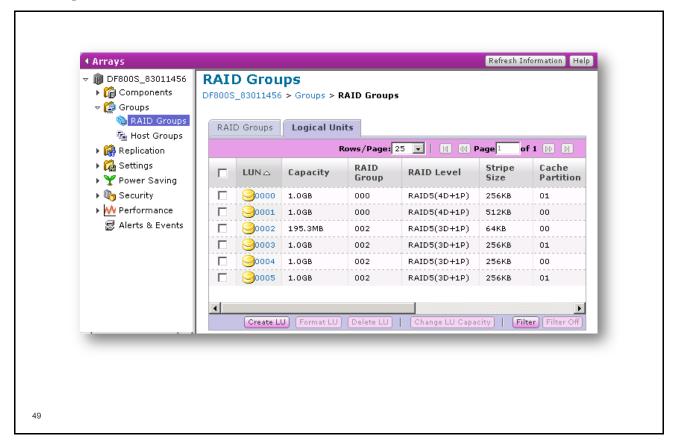

- LUs are slices from the user data area of a RAID Group
 - 3 LUs form RG0
 - 1 LU from RG1
- Maximum LUs
 - Model 2100 = **2,048**
 - Model 2300 = **4,096**
 - Model 2500 = **4,096**

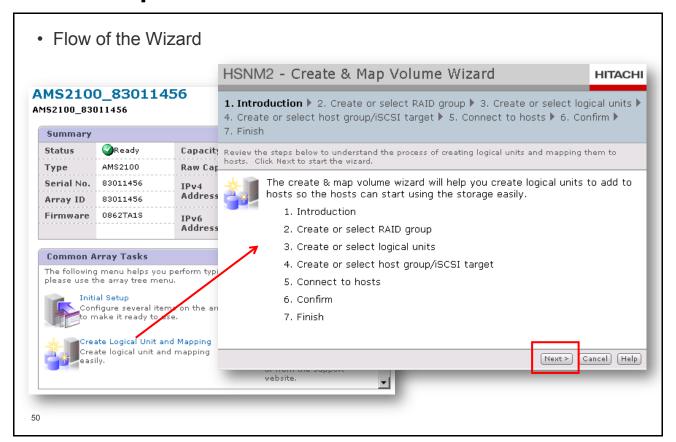

Creation of RAID Groups

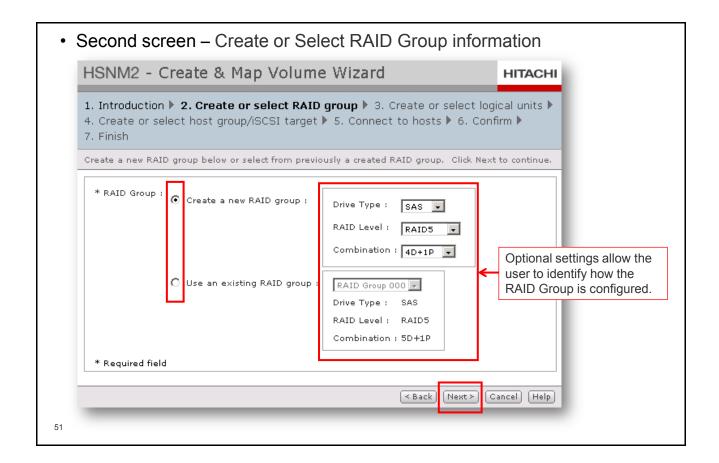


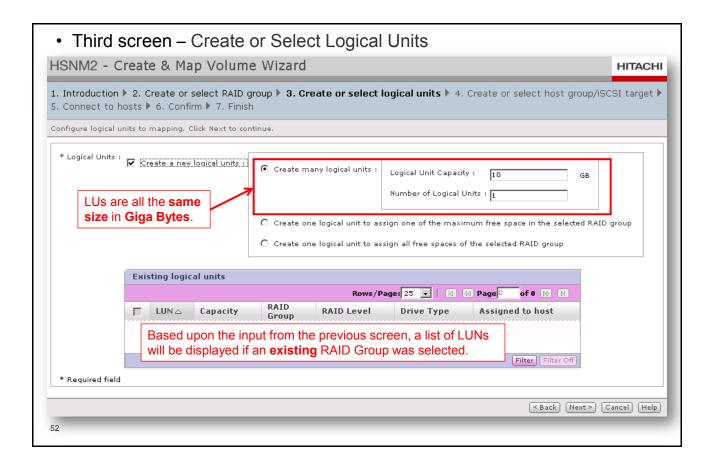

Example of Three RAID Groups


Create Logical Unit Automatically



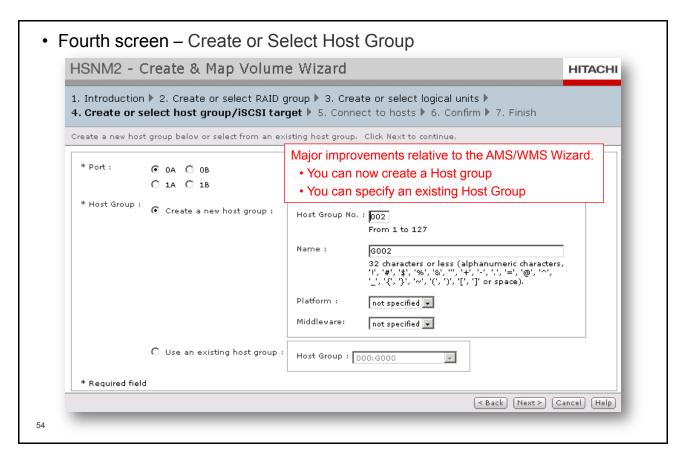

Map LU to Host Group

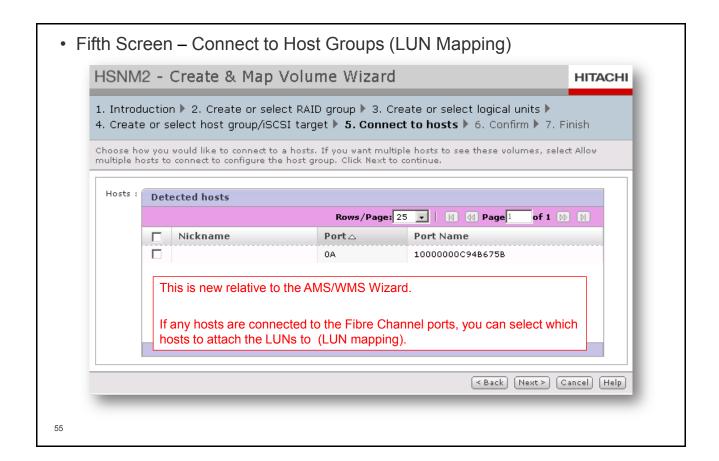

Example of Several LUs



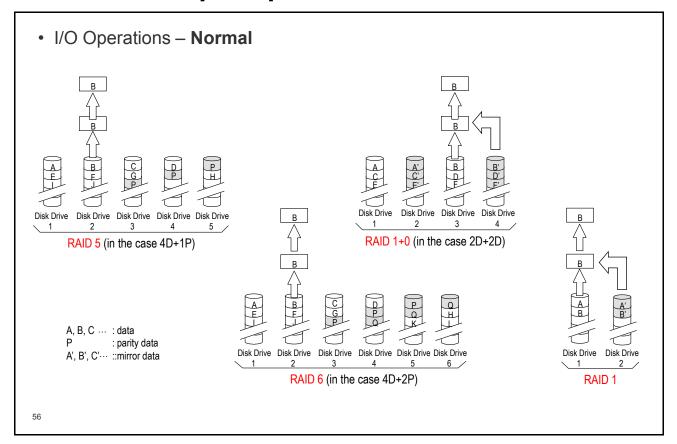
Create & Map Volume Wizard

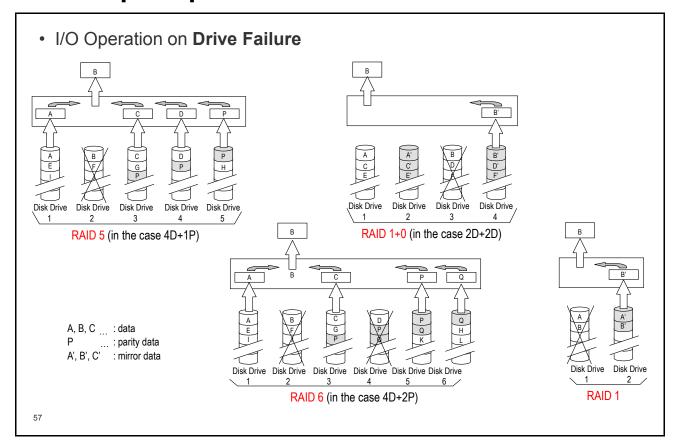
The flow is greatly improved from previous Hitachi modular systems.




• Internal procedure used for creating LUs:

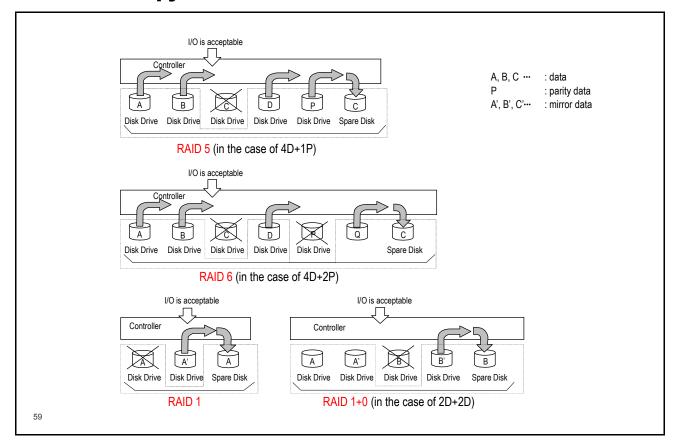
On what RAID group will the LUs be created?


RAID Configuration	Specification	
An existing RAID Group with enough space is available.	LU or LUs will be created on the existing RAID group or you can select from a list of existing LUs.	
No usable RAID Group available.	You can create a new RAID Group from which a new LU or LUs will be created.	
No usable RAID group, and not enough unused HDDs for a new RAID Group.	The wizard will not allow the operation.	

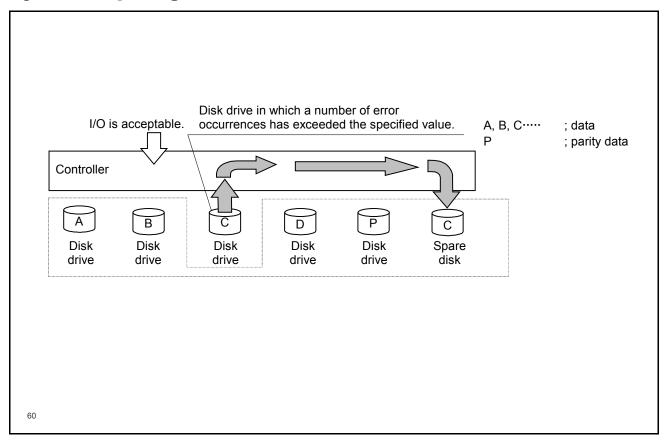

Before you can create a Host Group, you must enable Host Group Security for the front end FC ports.

Normal RAID Group I/O Operations

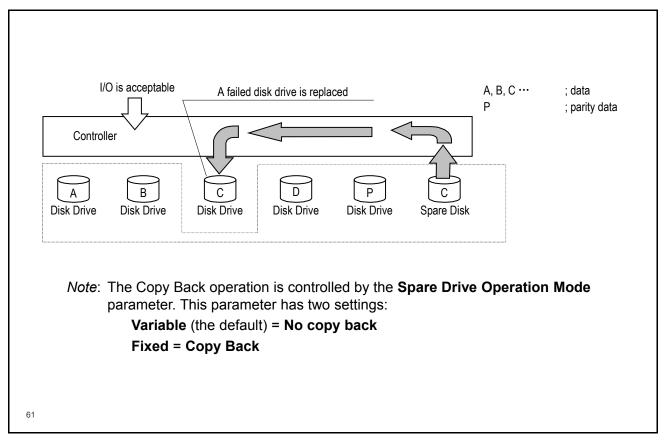
RAID Group I/O Operation on Drive Failure


Sparing Out

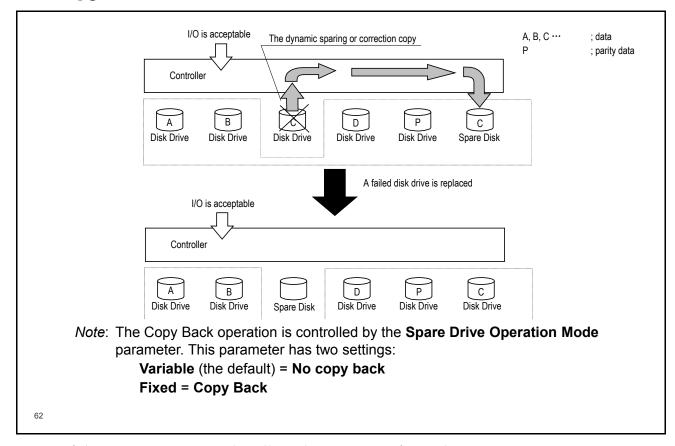
- Two methods exist that support the sparing-out of RAID Group data:
 - Correction copy
 - Occurs when a drive in a RAID Group fails and a compatible spare drive exists.
 - Data is reconstructed on the spare drive.
 - Dynamic sparing
 - Occurs if the online verify process (built-in diagnostic) determines that the number of errors has exceeded the specified threshold of a disk in a RAID Group.
 - Data is moved to the spare disk (a much faster process than reconstruction).


58

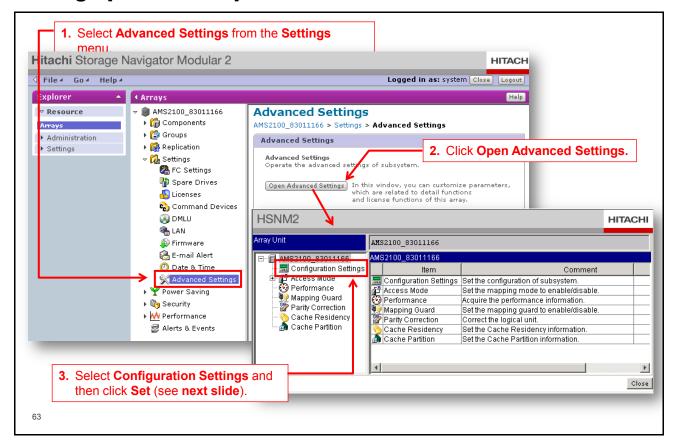
An AMS 2000 system supports up to 30 Spare Drives. Any disk can be configured as a spare drive. However, there are certain rules such as size, FC, and SATA mix.

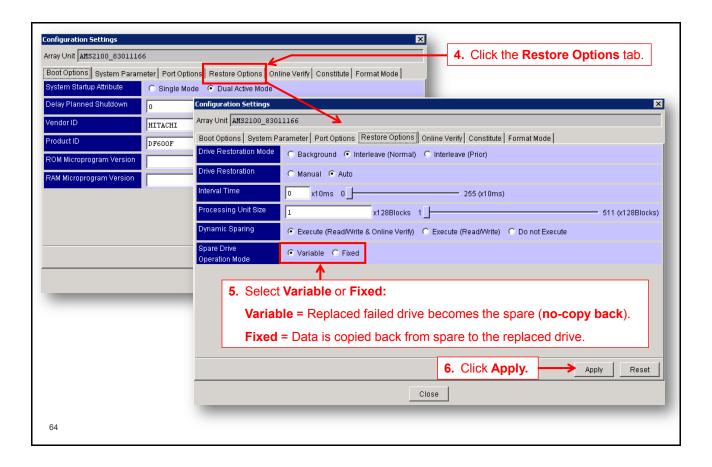

Correction Copy

Dynamic Sparing



Copy Back


In case a copy is required, the system simply copies the data from the spare disk that was being used to the new replacement disk C in this example.


No Copy Back

If the HDD Roaming rules allow this process, after a dynamic sparing process or correction copy, the spare disk will become a permanent member of the RAID Group and a copy back will not occur.

Setting Spare Drive Operation Mode

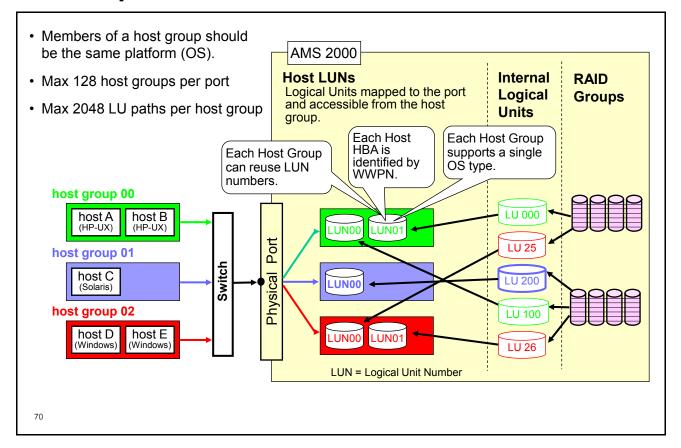
Setting Drive Restoration Mode

Lab Project 4: Basic Operations

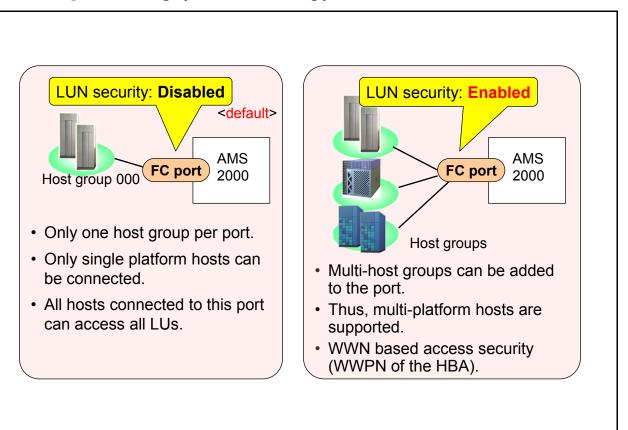
- Timing and Organization
 - Time allotted to complete the project: **60 minutes**
 - The lab project contains **two** sections:
 - Section 1 is the lab activity
 - Section 2 contains the review questions
 - Time allotted to go over the review questions: 15 minutes
 - The class will be split into lab groups and will perform the lab project on the lab equipment assigned to them by the instructor.

Lab Project 4: Objectives

- Upon completion of the lab project, the learner will be able to do the following:
 - Create several RAID Groups specifying different RAID levels and disk combinations using both **Automatic** and **Manual** selection of the disk drives
 - Delete a RAID Group
 - Manually create several Logical Units of different sizes.
 - Delete a Logical Unit
 - Set the Spare Drive Operation Mode to fixed (copy-back function)


Host Connectivity Basics

- Basic steps for connecting the model 2000 systems to open systems hosts:
 - 1. Verify that the host has a compatible OS and HBAs
 - Required patches and software are installed.
 - HBAs are running with the correct version of firmware.
 - You can refer to HiFire for this information.
 - 2. Connect ports to HBAs (direct connect loop) or Switch (point-to-point)
 - 3. Set correct Topology and Transfer Rate for each HBA and AMS 2000 port
 - 4. Verify Fibre Channel Link and Login
 - 5. Enable Host Group Security on desired storage system ports
 - 6. Create RAID Groups and LUs
 - Create Host Groups and associate the correct HBA WWNs to each Host Group
 - 8. Map Internal storage system LUs to Host Group LUs
 - 9. Verify the Host detection of LUs and prepare LUs for use


Host Groups and LUN Mapping

- Host Groups allow for the Heterogeneous Multi-Host Connections.
- **LUN Manager** is the Program Product that manages access paths between hosts and logical units for each port.
- Illegal access to LUNs from any host system can be prevented using the LUN Security feature.
- Host Group is a virtual port created on the physical port.
 - Host Group can be tuned to the connected host OS.
 - Each physical port has one default Host Group (Host Group 000).
- Internal LUs are mapped to a Host Group as Host LUNs.
 - Two of more hosts that require a LUN 0 can be connected to the same port.

Host Groups

Host Group Security (LUN Security)

To protect mission-critical data in your disk storage system from unauthorized access, you should implement LUN security. LUN security allows you to prevent unauthorized hosts from either seeing or accessing the data on the secured LU. If LUN security is applied to a particular port, that port can only be accessed from within its own host group (also known as a host storage domain). The hosts cannot access LUs associated with the other host groups.

Host Group — Options Settings

- Options Settings
 - Platform:
 - · HP-UX, Solaris, AIX, Linux, Windows, and VMware
 - not specified is the default
 - Middleware:
 - VCS and TruCluster
 - not specified is the default

Note: Refer to the System Parameter section of the latest Maintenance Manual or the Adaptable Modular Storage 2000 Family Host Installation Guides for a complete list of all options, settings, and combinations.

72

VCS = VeritasTM Cluster Server

TruCluster = HP high availability cluster server

Host Group — **Common Settings**

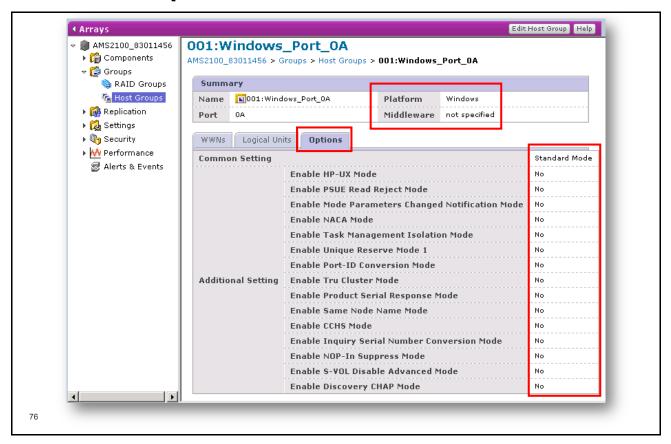
 The following describes the I/F specification and purpose of the Connection Settings:

No	Mode	I/F Specifications	Purpose
1	Standard Mode	(standard)	
2	Open VMS Mode	Exclusive format on Inquiry(83H) byte0 data for Open VMS	Necessary to connect Open VMS
3	TRESPASS Mode	Add LU ownership information to Inquiry byte0 data	Necessary to connect Sequent, egenera, VVM V3.0SP1/V3.1
4	Wolfpack Mode	Adjust management of SCSI command to MSCS	Necessary to connect MSCS

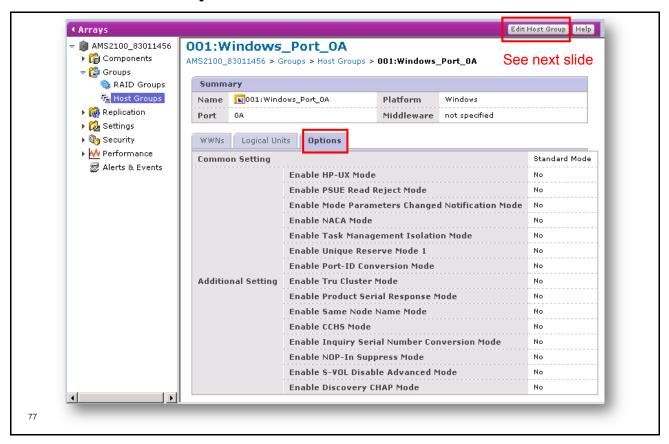
Host Group — **Additional Settings**

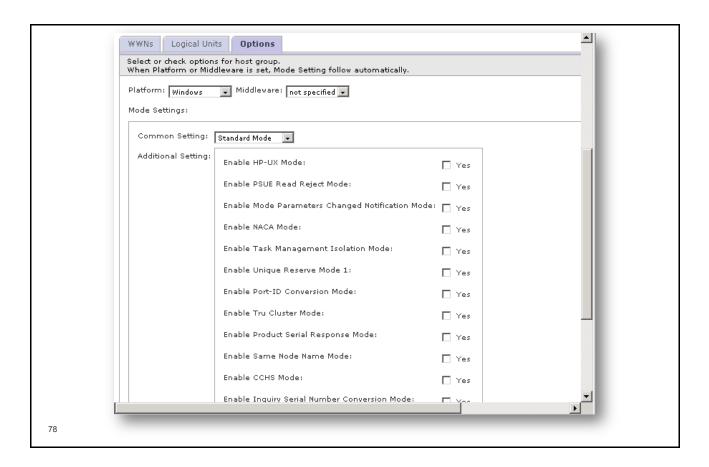
Additional Settings

When the Platform or Middleware settings are selected, corresponding **Additional Setting** parameters are set automatically.

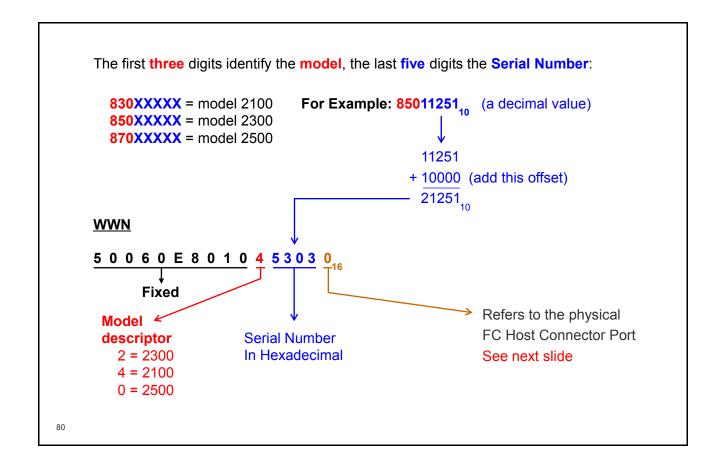

No.	Mode	Purpose
1	HP-UX Mode	This mode makes LUs, whose LU numbers are 8 up to 63, recognized when the subsystem is connected to the HP server.
2	PSUE Read Reject Mode	Set it when the fence level of TrueCopy remote replication is used with Data and the pair status suppresses the read access to P-VOL at the time of PSUE transition.
3	Mode Parameters Changed Notification Mode	Unit attention (06/2A00) is reported.
4	NACA Mode	Supports NACA (Normal Auto Contingent Allegiance) that is a standard on SCSI-3.
5	Task Management Isolation Mode	Set it when the own port also does not reset the command while another port received the command reset instruction.
6	Unique Reserve Mode 1	Supports Persistent Reserve command.
7	Port-ID Conversion Mode	This mode enables Port-ID that reported by Inquiry command is converted. Do not set it usually.

Connecting to the Host


Additional Settings


No.	Mode	Purpose
8	Tru Cluster Mode	When using Tru Cluster, set this mode.
9	Product Serial Response Mode	This mode enables each LU to be assigned a unique DID in the SUN Cluster 3.0 system.
10	Same Node Name Mode	This mode allows each port of same array to respond as the same World Wide Node Name.
11	CCHS Mode	CCHS convert Mode
12	Inquiry Serial Number Conversion Mode	This mode enables the serial number that is reported by the Inquiry command to be converted. Usually, do not set it.
13	NOP-In Suppress Mode	This mode suppresses that NOP-In transmission.
14	S-VOL Disable Advanced Mode	When using C2NAS, set this mode.

View Host Group Parameters


Edit the Host Group Parameters

World Wide Names

- Adaptable Modular Storage World Wide Names (WWNs)
 - Each Hitachi storage system sets its own WWN for each port.
 - Each WWN is the result of the following:
 - Specific bits are determined by the storage family and model.
 - The system serial number is part of the WWN.
 - · The last digit of the WWN identifies the port.

2100	2300	2500
CTL0 Port A = 0 CTL0 Port B = 1 CTL1 Port A = 2 CTL1 Port B = 3	CTL0 Port A = 0 CTL0 Port B = 1 CTL0 Port C = 2 CTL0 Port D = 3 CTL1 Port A = 4 CTL1 Port B = 5 CTL1 Port C = 6 CTL1 Port D = 7	CTL0 Port A = 0 CTL0 Port B = 1 CTL0 Port C = 2 CTL0 Port D = 3 CTL0 Port E = 4 CTL0 Port F = 5 CTL0 Port G = 6 CTL0 Port H = 7 CTL1 Port A = 8 CTL1 Port B = 9 CTL1 Port C = A CTL1 Port D = B CTL1 Port E = C CTL1 Port G = E CTL1 Port G = E

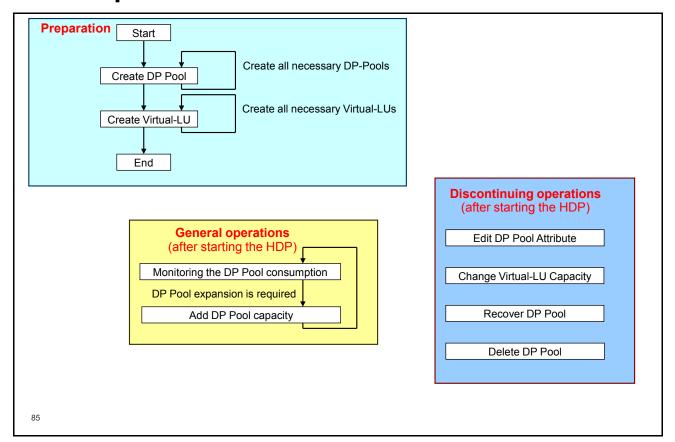
Fibre Channel Parameters

- Fibre Channel Configuration
 - Fibre Channel parameters are set to the internal port and not to the physical host connector.
 - The Adaptable Modular Storage **Port Address** parameter is the request for a Fibre Channel Arbitrated Loop Physical Address (**AL_PA**).
 - The Topology Information parameter has two settings:
 - Loop when direct-connected
 - Point-to-Point (P-to-P is fabric mode and should be used when connected to a Fibre Channel switch)
 - The Transfer Rate parameter has four settings: 1Gb/s, 2Gb/s and 4Gb/s (only with 4Gb/s hardware), and Auto.

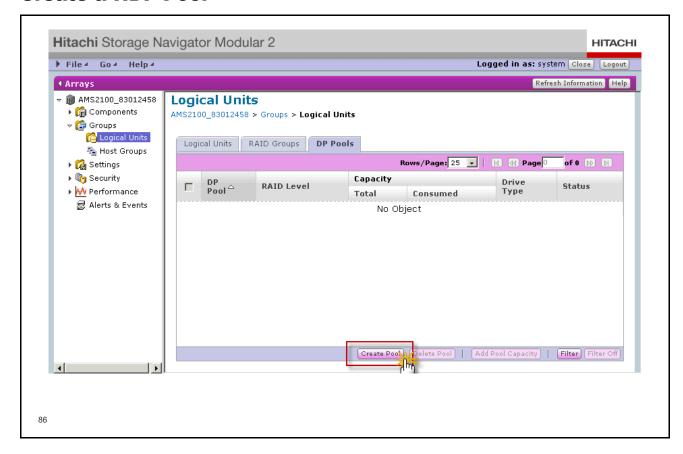
Recommended setting: Set this parameter to the **known** speed of the HBA or switch port.

Host HBA Persistent Binding

- If your host systems are connected to a Fibre Channel switch, HDS strongly recommends that host HBA Persistent Binding be configured.
 - User associates WWPN of the connected storage array port to a specified Target ID (TID).
 - LUNs are identified and associated to the TID.
 - Binding prevents the TID from changing when devices join or leave the fabric.
 - If the TID changes, the host will lose access to the LUNs on that path.

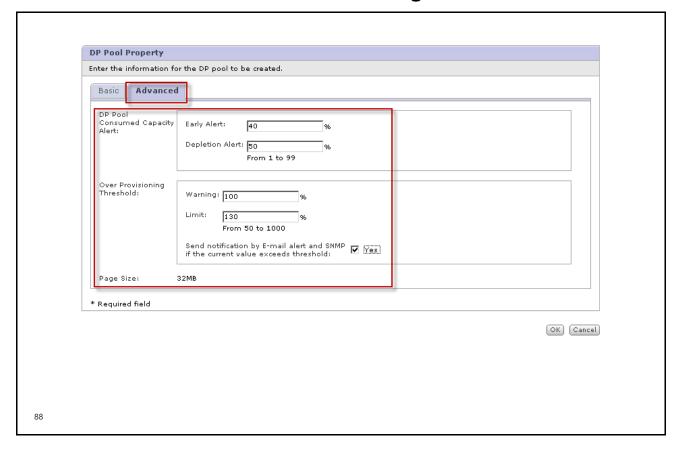

83

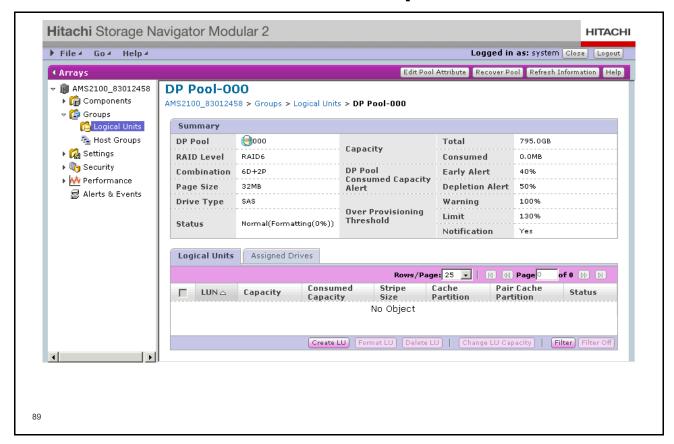
Persistent Binding is also known as LUN mapping or mapping.

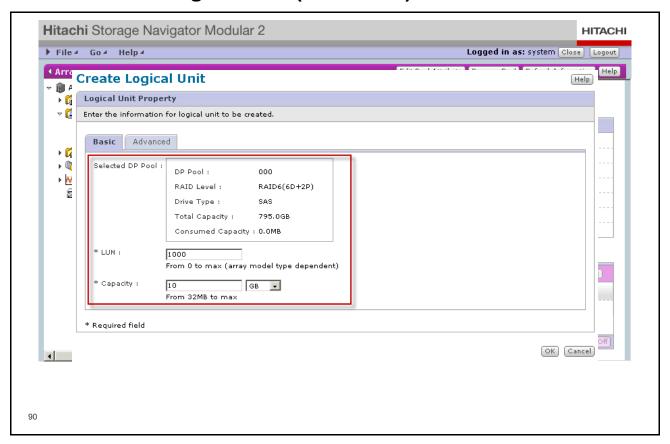

HSNM2 Procedures

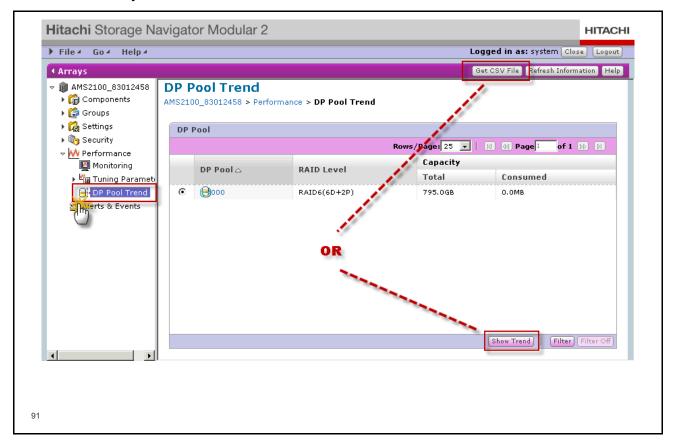
- General operation flow
- Create DP Pool
- Create Logical Unit (Virtual-LU)
- Monitoring the DP Pool consumption (get DP Pool Trend information)
- Add DP Pool Capacity
- Edit DP Pool Attribute
- Change Logical Unit (Virtual-LU) Capacity
- Recover DP Pool
- Delete DP Pool

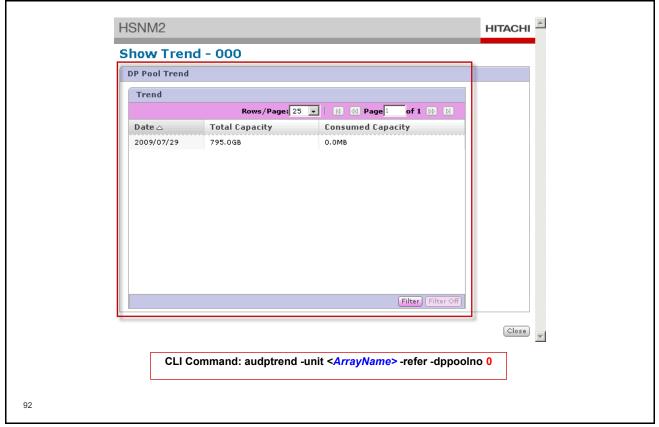
General Operation Flow

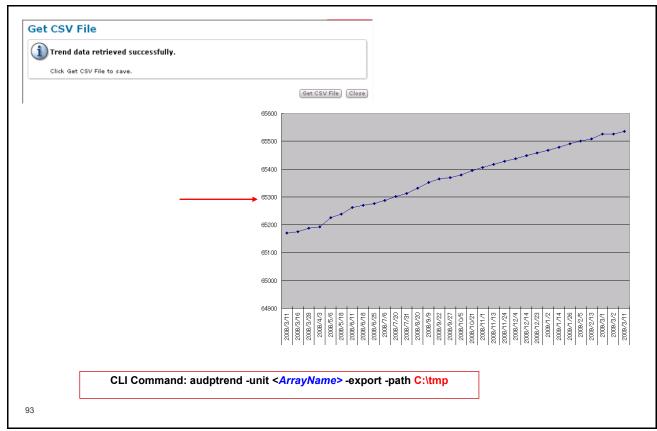

Create a HDP Pool

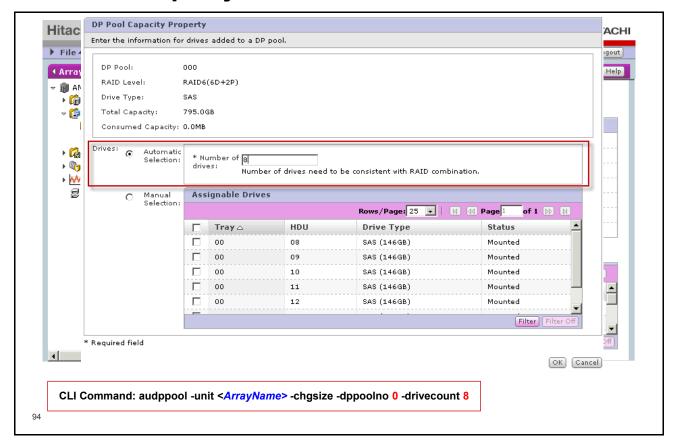

Create HDP Pool - Pool Properties

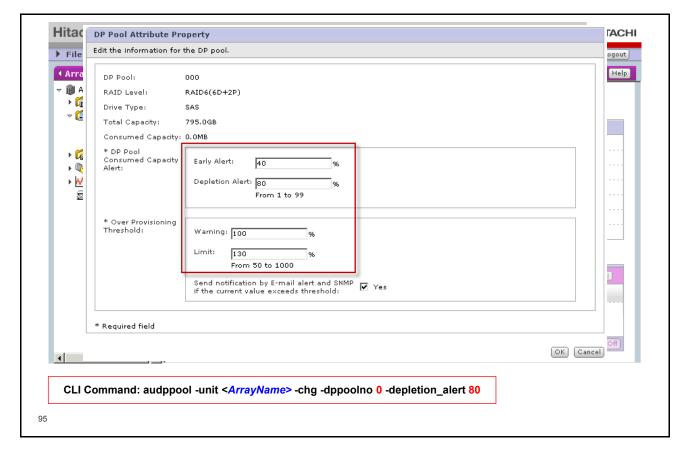

Create DP Pool - Pool Advanced Settings

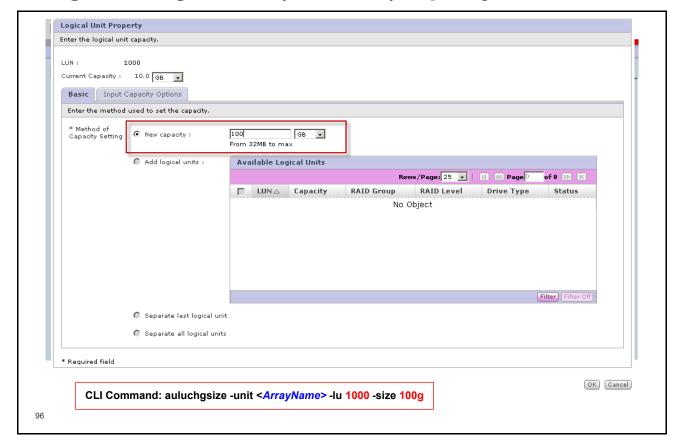

Create a HDP Pool – View the Pool Properties

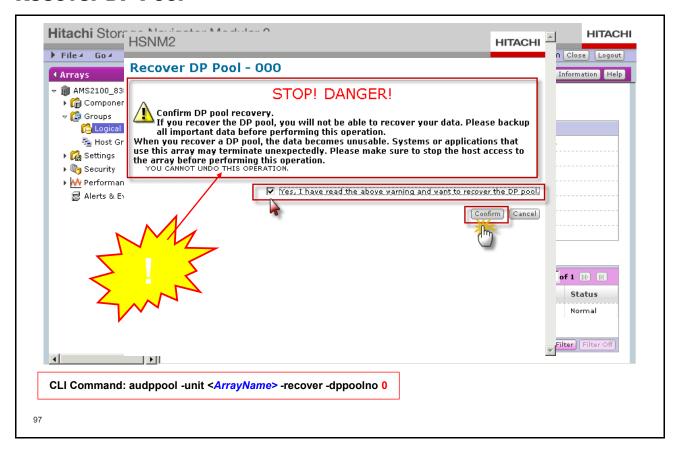


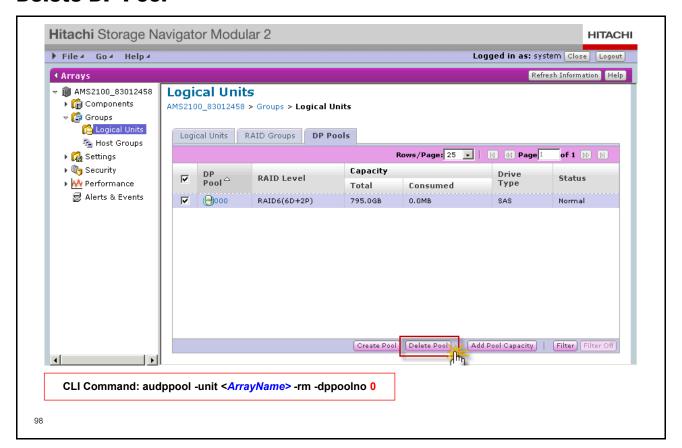

Create an HDP Logical Unit (Virtual-LU)

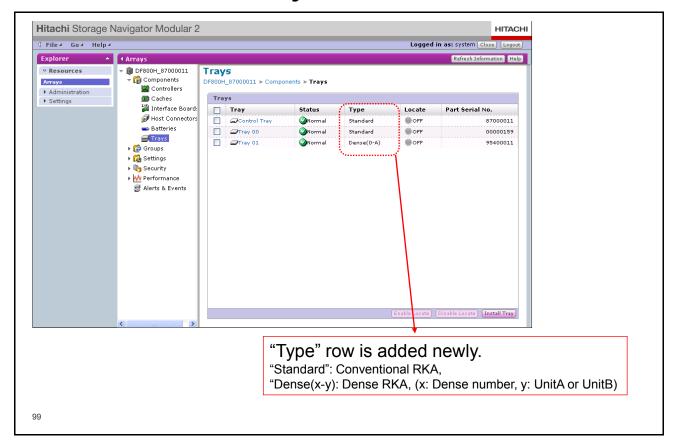

Monitoring the DP Pool Consumption (Get DP Pool Trend Information)

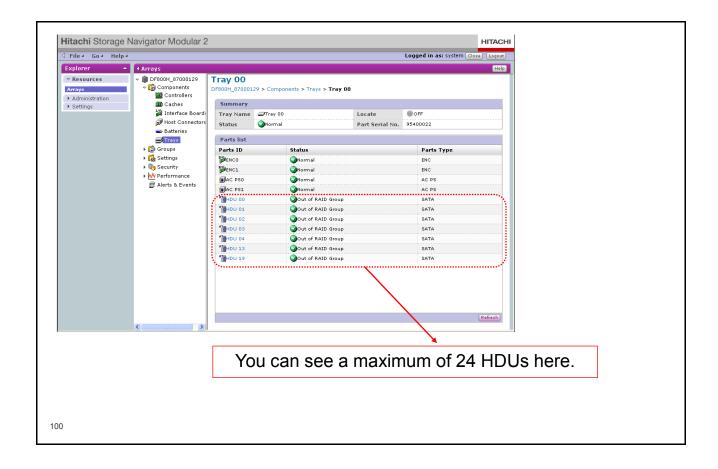



Add DP Pool Capacity

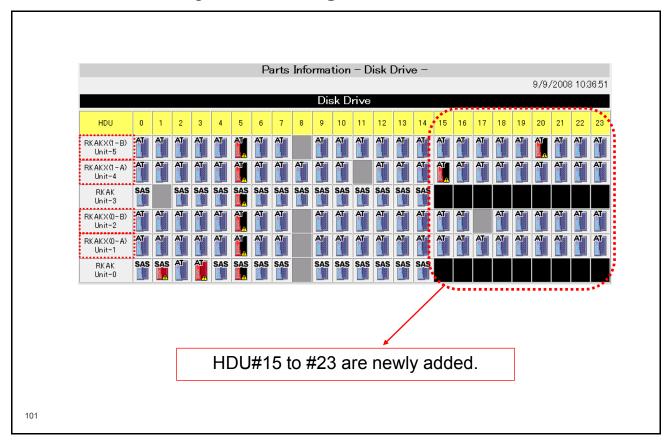

Edit the DP Pool Attributes


Change HDP Logical Unit (Virtual-LU) Capacity

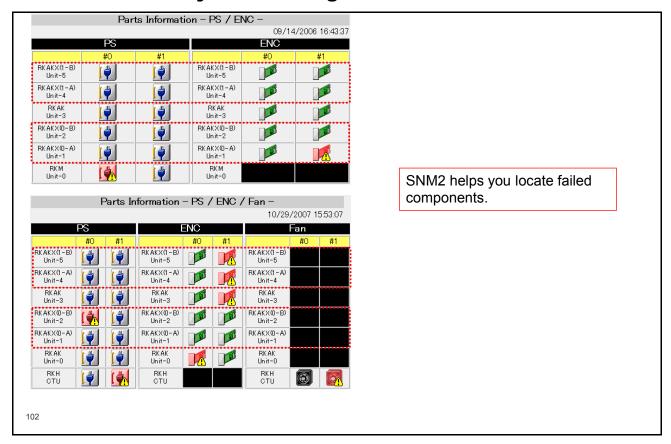

Recover DP Pool



Delete DP Pool



Addition on New Dense Tray



RKAKX Dense Tray Drive Configuration

RKAKX Dense Tray Drive Configuration

Lab Project 5: Host Groups and LUN Mapping

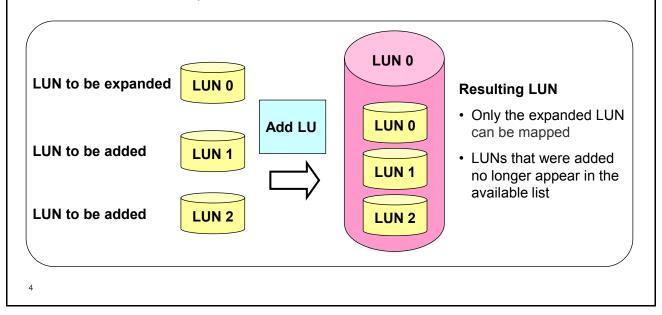
- Timing and Organization
 - Time allotted to complete the project: 60 minutes
 - The lab project contains **two** sections:
 - Section 1 is the lab activity
 - Section 2 contains the review questions
 - Time allotted to go over the review questions: 15 minutes
 - The class will be split into lab groups and will perform the lab project on the lab equipment assigned to them by their instructor

Lab Project 5: Objectives

- Upon completion of the lab project, the learner should be able to:
 - Enable Host Group Security for ports 0A and 1A (also called LUN Security).
 - Create a Host Group for the Windows host server on ports 0A and 1A
 - Set the port options parameter to support a Windows host connection
 - Associate the WWPN of the Windows HBA port to the Windows Host Group
 - Map two internal logical units (LUs) to the newly created Windows Host Groups
 - Verify that the Windows host server discovers the LUNs
 - Create and manage Hitachi Dynamic Provisioning Pools

7. LU Grow and Shrink

Module Objectives


- Upon completion of this module, the learner should be able to:
 - Use the Change LU Capacity function to expand the capacity of a LUN by adding additional LUNs to it
 - Use the Change LU Capacity function to grow the capacity of a LUN by adding additional space to it from existing free space
 - Describe how the Change LU Capacity function can **shrink** (reduce) the capacity of a LU
 - Describe how a new LU can be created manually

Change LU Capacity — LU Expansion

- Relative to LU expansion by unifying LUs, Change LU Capacity is comprised of the following functions:
 - Add LUs add additional LUNs to an existing unified LUN
 - Separate Last LU separate the last LUN from the unified LUN
 - Separate All LUs separate all the LUNs from the unified LUN
- Change LU Capacity is part of the LUN Manager function
- Change LU Capacity operations can be performed using Storage Navigator Modular 2 GUI or CLI
- This function used to be called Logical Unit Size Expansion (LUSE)

Overview of Adding LUs together

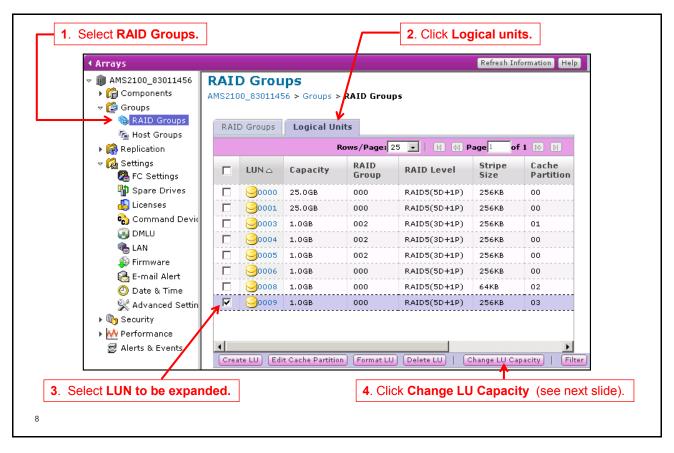
- Two or more LUNs are unified (concatenated) into one larger LU
- LUNs can come from different RAID Groups
- 128 LUNs maximum
- RAID 5/RAID 6/RAID 1/RAID 1+0 (RAID 0 is not supported)
- LUN concatenation up to 60TB

The LUSE function refers to the LUNs in the process as:

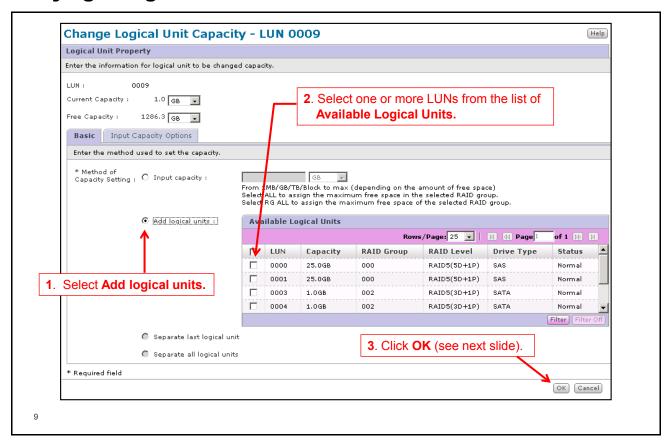
- The top LUN is the **Main LUN**.
- The other LUNs are called **Sub-LUNs**.

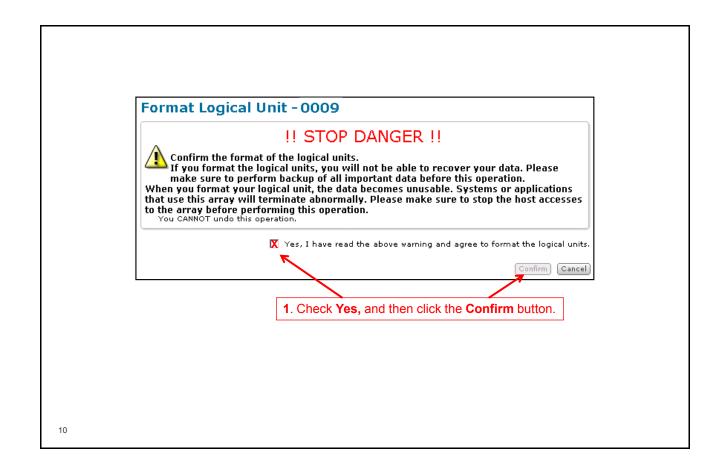
General Conditions and Restrictions

- 1. LUNs must be in normal status.
- 2. You cannot expand LUs that are being formatted.
- 3. You cannot expand a LU if drive restoration is in progress on the affected LU.
- 4. You cannot expand the following LU types:
 - Shadowlmage replication and Copy-on-write SnapShot pairs
 - TrueCopy remote replication or TrueCopy Extended Distance pairs
 - LUs or reserved LUs for Modular Volume Migration
 - LUs in which Cache Residency Manager is set
 - LUs that are set for a command device
 - Differential Management Logical Units (DMLUs)
 - LUs that are registered in the data pool
 - LUs that are in the RAID Group during a RAID Group expansion

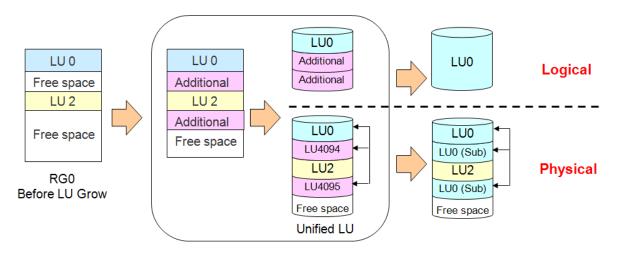

Backup First

- Data assurance of the LUNs to be unified
 - Follow all the steps of the on-screen instructions (data could be lost).
 - Back up the logical units before modifying them.
 - Format the unified logical units to delete the volume label which the operating system adds to logical units.
 - Map the expanded LUN to the host and restore the data.
 - Depending on the Host OS and software installed, a reboot may or may not be necessary.

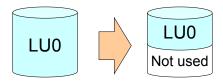

Formatting Issues


- · Formatting the Unified LUN
 - A format on the unified LUN is also performed on all the internal LUNs in sequence.
 - When an internal LUN blockage or degeneration (Alarm or Regression) occurs while formatting, the status of the unified LUN becomes blocked or degenerated at the time when formatting finishes.

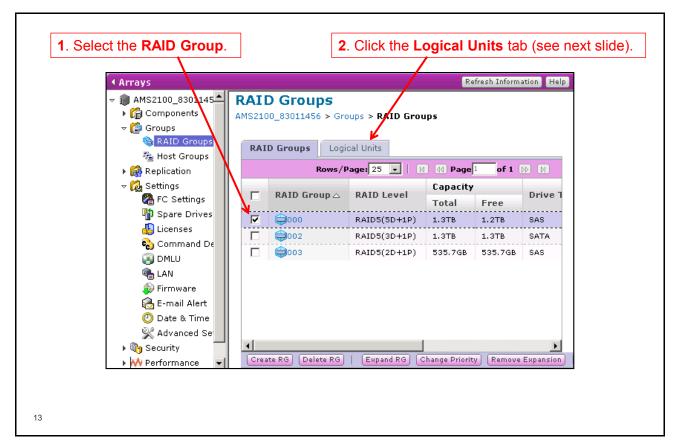
Add LUs to Increase Size

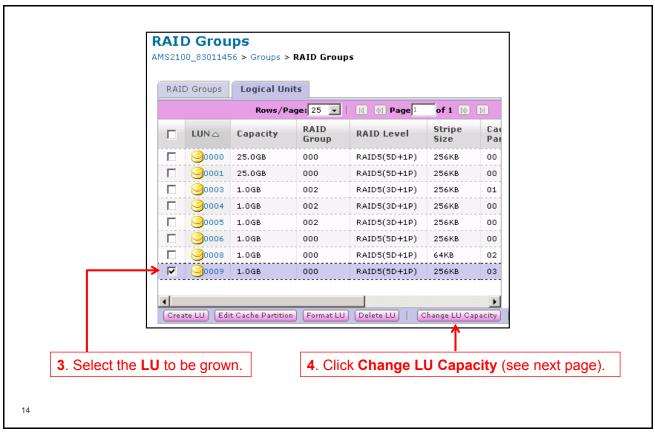

Unifying a Logical Unit

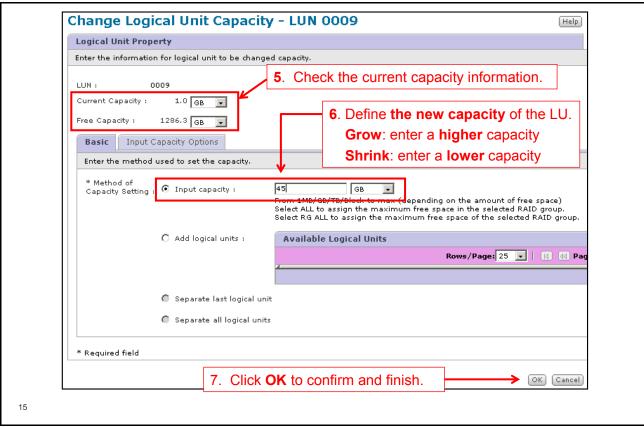
Change LU Capacity — Grow LU Capacity from Free Space


- Grow (add) a specific capacity to an existing LU from disk free space.
- · Free space has to be in the same RAID Group.

Grow **LU 0** by specifying a growth capacity and SNM2 automatically selects the space.

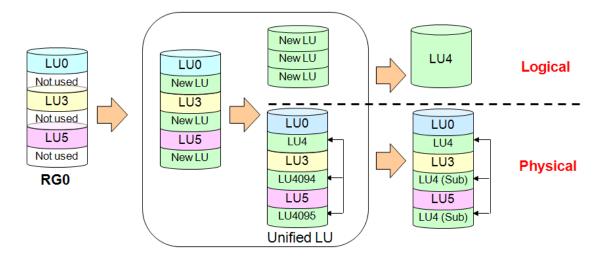

Change LU Capacity: LU Shrink

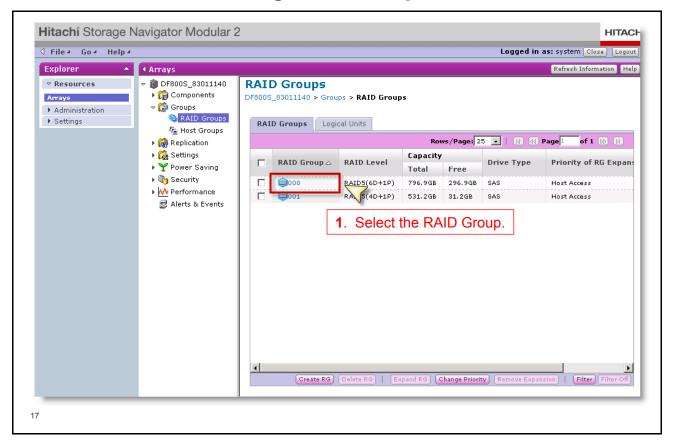

• This function reduces the capacity from an LU.

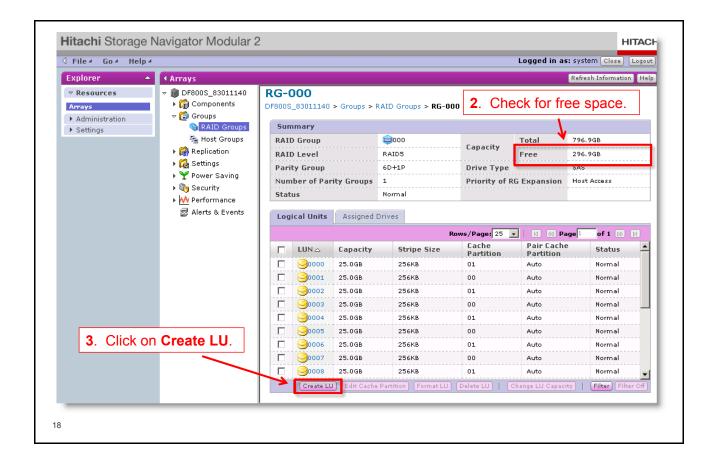


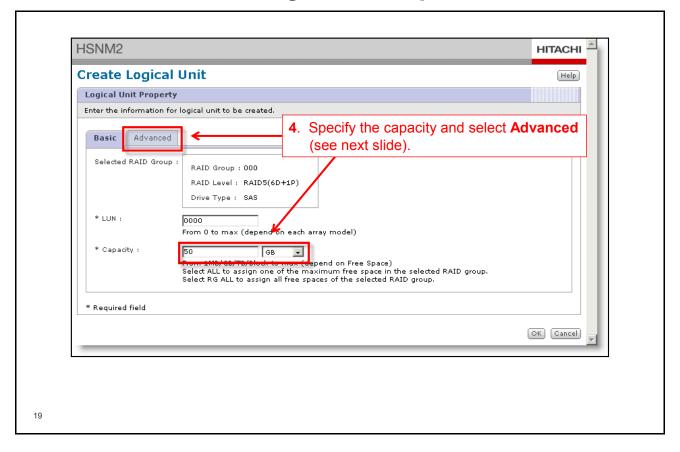
Note: The Host OS must support volume shrinking if you use LU Shrink, and you must execute the Host OS side volume shrink first, then execute the storage array side LU Shrink.

LU Grow or Shrink

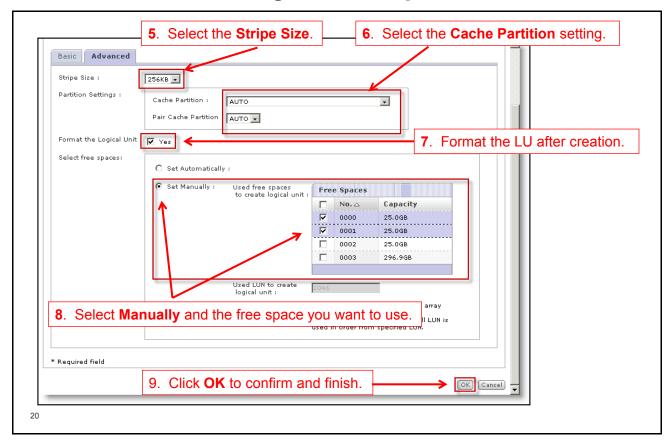



Manual LU Creation from Free Space


 Create a new LU by manually selecting free space segments that exist in the same RG.


Create a new LU 4 from existing free space segments.

Create LU from Non-contiguous Free Space



Create LUs from Non-contiguous Free Space

Create LU from Non-contiguous Free Space

General Specifications

No	Functions	Specifications	
1	Supporting Model	2100, 2300, 2500	
2	LU Grow	Available	
3	LU Shrink	Available	
4	Easy LU creating	Available	
5	Supported RAID Level	RAID-5/RAID-6/RAID-1/RAID-1+0 (RAID-0 is not supported)	
6	Allocation of LUN for Add LU	Allocating of the last LUN which is not used automatically	
7	Max. Number of Internal Unified LU	128 LUN	
8	RG that the LU Grow can be executed.	LU expansion is done only by using unused space in the same RG.	
9	Maximum capacity for shrinking the LU	Less than the original LU capacity (not deleting the LU)	

LU Grow Detailed Specification

No	Array Tasks	Specifications	
		LU Grow operation in general	LU Grow operation while the array executes task
1	LU formatting	Available	N/A
2	LU Expansion (LUSE)	Available	N/A within multiple RG Available within the same RG
3	Parity recovery	Available	N/A
4	HDD recovery	Available	Available
5	RG no redundancy	Available	N/A (LUSE is available)
6	Online verify	Available	Available
7	Firmware upgrade	Available	N/A
8	ENC Microprogram download	Available	Available
9	Online HDD Firmware upgrade	Available	N/A

No	Array Tasks	Specifications		
		LU Grow operation in general	LU Grow operation while the array executes task	
10	DM-LU setting	Available	N/A	
11	Command Device setting	Available	N/A	
12	POOL LU setting	Available	N/A	
13	LU deletion	Available (If the LU includes unified LUs from multiple RAID groups, it cannot be deleted.)	N/A	
14	RG deletion	Available (If the RG includes unified LUs from multiple RAID groups, it cannot be deleted.)	N/A	
15	LU Shrink	Available	N/A	

LU Grow Detailed Specification

No	Program Product	Specifications	
		LU Grow operation in general	LU Grow operation while the array executes a PP task
1	Shadowimage	Available	Available just in SMPL status
2	Snapshot	Available	Available just in SMPL status
3	TrueCopy/TCE	Available	Available just in SMPL status
4	Modular Volume Migration	Available	N/A
5	Cache Residency Manager	N/A	N/A
6	Power Saving	Available	N/A for the spined down RG
7	Cache Partition Manager	Available	N/A for a LU where the CPM setting reserved.
8	Data Retention Utility	Available	N/A
9	LUN Manager	Available	Available
10	Password Protection	Available	Available
11	SNMP Agent	Available	Available
12	Account Authentication	Available	Available
13	Audit Logging	Available	Available

LU Shrink Detailed Specification

		Specifications		
No	Array Tasks	LU Grow operation in general	LU Grow operation while the array executes task	
1	LU formatting	Available	N/A	
2	LU Expansion (LUSE)	Available	N/A within multiple RG Available within the same RG	
3	Parity recovery	Available	N/A	
4	HDD recovery	Available	N/A	
5	RG no redundancy	Available	Available	
6	Online verify	Available	Available	
7	Firmware upgrade	Available	N/A	
8	ENC Microprogram download	Available	Available	
9	Online HDD Firmware upgrade	Available	N/A	

	o Array Tasks	Specifications		
No		LU Grow operation in general	LU Grow operation while the array executes task	
10	DM-LU setting	Available	N/A	
11	Command Device setting	Available	N/A	
12	POOL LU setting	Available	N/A	
13	LU deletion	Available (If the LU includes unified LUs from multiple RGs, it cannot be deleted.)	N/A	
14	RG deletion	Available (If the RG includes unified LUs from multiple RGs, it cannot be deleted.)	N/A	
15	LU Grow	Available	N/A	

26

	Program Product	Specifications	
No		LU Grow operation in general	LU Grow operation while the array executes a PP task
1	Shadowimage	Available	Available just in SMPL status
2	Snapshot	Available	Available just in SMPL status
3	TrueCopy/TCE	Available	Available just in SMPL status
4	Modular Volume Migration	Available	N/A
5	Cache Residency Manager	N/A	N/A
6	Power Saving	Available	Available
7	Cache Partition Manager	Available	Available
8	Data Retention Utility	Available	N/A
9	LUN Manager	Available	Available
10	Password Protection	Available	Available
11	SNMP Agent	Available	Available
12	Account Authentication	Available	Available
13	Audit Logging	Available	Available

Easy LU Creation Detailed Specification

	Array Tasks	Specifications		
No		LU Grow operation in general	LU Grow operation while the array executes task	
1	LU formatting	Available	N/A	
2	LU Expansion (LUSE)	Available	N/A	
3	Parity recovery	Available	N/A	
4	HDD recovery	Available	Available	
5	RG no redundancy	Available	Available	
6	Online verify	Available	Available	
7	Firmware upgrade	Available	N/A	
8	ENC Microprogram download	Available	Available	
9	Online HDD Firmware upgrade	Available	N/A	

	Array Tasks	Specifications		
No		LU Grow operation in general	LU Grow operation while the array executes task	
10	DM-LU setting	Available	N/A	
11	Command Device setting	Available	N/A	
12	POOL LU setting	Available	N/A	
13	LU deletion	Available (If the LU includes unified LUs from multiple RGs, it cannot be deleted.)	N/A	
14	RG deletion	Available (If the RG includes unified LUs from multiple RGs, it cannot be deleted.)	N/A	
15	LU Grow / Shrink	Available	N/A	
16	RG Expansion	Available	N/A	

29

	Program Product	Specifications		
No		LU Grow operation in general	LU Grow operation while the array executes a PP task	
1	Shadowimage	Available	Available	
2	Snapshot	Available	Available	
3	TrueCopy/TCE	Available	Available	
4	Modular Volume Migration	Available	Available	
5	Cache Residency Manager	N/A	Available	
6	Power Saving	Available	N/A within spun down RGs	
7	Cache Partition Manager	Available	Available	
8	Data Retention Utility	Available	Available	
9	LUN Manager	Available	Available	
10	Password Protection	Available	Available	
11	SNMP Agent	Available	Available	
12	Account Authentication	Available	Available	
13	Audit Logging	Available	Available	

Lab Project 6: LU Expansion and LU Grow/Shrink

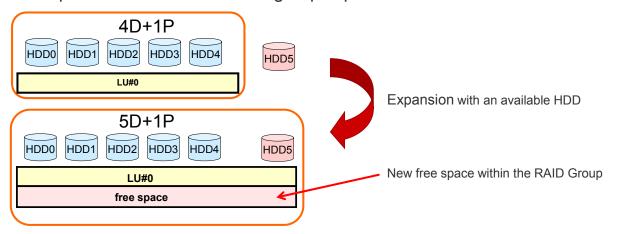
- Timing and Organization
 - Time allotted to complete the project: 30 minutes
 - The lab project contains **two** sections:
 - Section 1 is the lab activity
 - Section 2 contains the review questions
 - Time allotted to go over the review questions: 15 minutes
 - The class will be split into lab groups
 - The class will be split into lab groups and will perform the lab project on the lab equipment assigned to them by their instructor.

Lab Project 6: Objectives

- Upon completion of the lab project, the learner should be able to:
 - Create an expanded LUN from two normal internal LUNs
 - Separate an expanded LUN into its original internal LUNs
 - Expand an existing LU
 - Shrink an existing LU

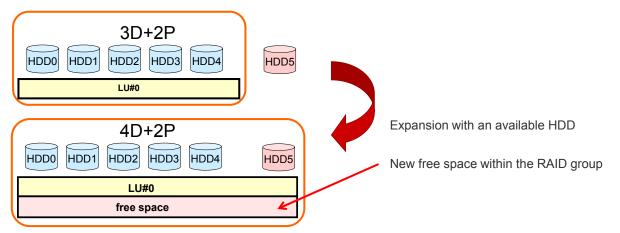
8. Online RAID Group Expansion

Module Objectives


- Upon completion of this module, the learner should be able to:
 - Describe the online RAID group expansion feature
 - Use Hitachi Storage Navigator Modular 2 to perform online RAID Group expansion operations

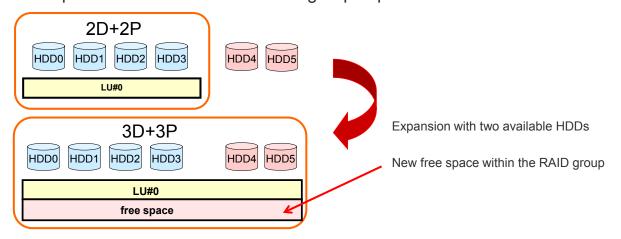
Overview

- The online RAID group expansion feature allows you to expand an existing RAID group in an Hitachi Adaptable Modular Storage 2000 Family storage system.
- To expand an RAID group you can use existing unused hard disk drives or a newly installed one.
- All RAID levels are supported for expansion, but you cannot change the RAID level (for example, from RAID 5 to RAID 6 or from RAID 5 to RAID 1+0).
- You cannot shrink a RAID group.
- You can remove the expansion on a Waiting expansion RAID group.
- You can remove the expansion on an Expanding RAID group¹.
- ¹ This is a disruptive procedure and requires Storage Navigator Modular 2 in **Maintenance Mode** and HDS Technical Resource Center assistance.


Example

• Example of a RAID 5 4+1 RAID group expansion

• After the expansion, you can either expand LU #0 by using the LU Grow feature or you can create a new LU.


• Example of an RAID 6 3+2 RAID group expansion

 After the expansion, you can either expand LU #0 by using the LU Grow feature or you can create a new LU.

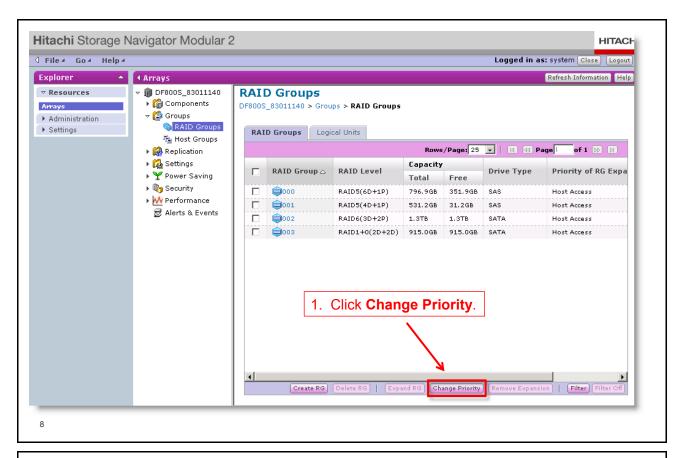
5

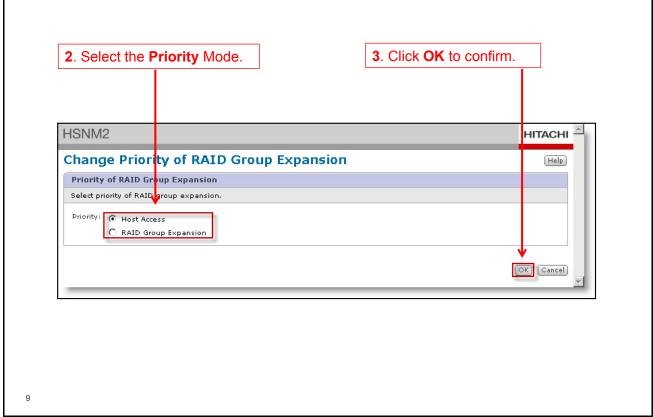
• Example of an RAID 1+0 2+2 RAID group expansion

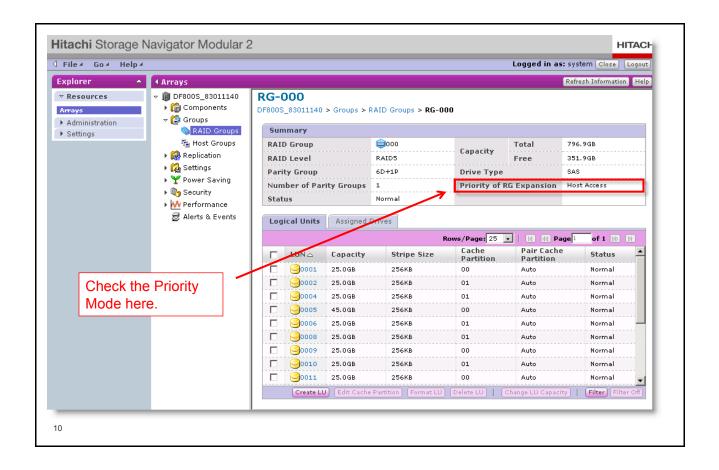
 After the expansion, you can either expand LU #0 by using the LU Grow feature or you can create a new LU.

Note: When expanding RAID 1 or RAID 1+0 RAID groups, you must expand these RAID groups with a multiple of at least two HDDs.

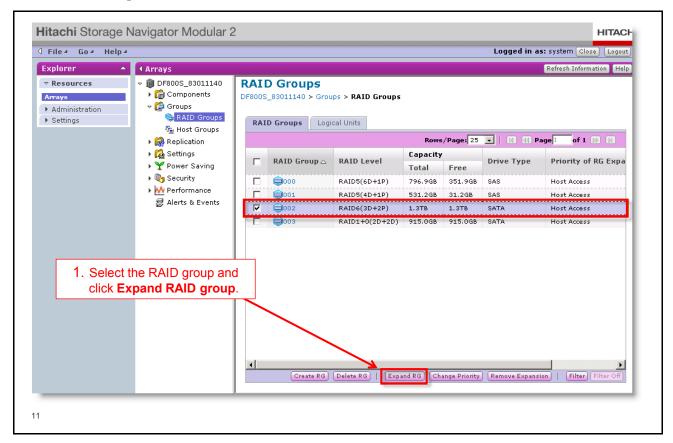
Priority Mode

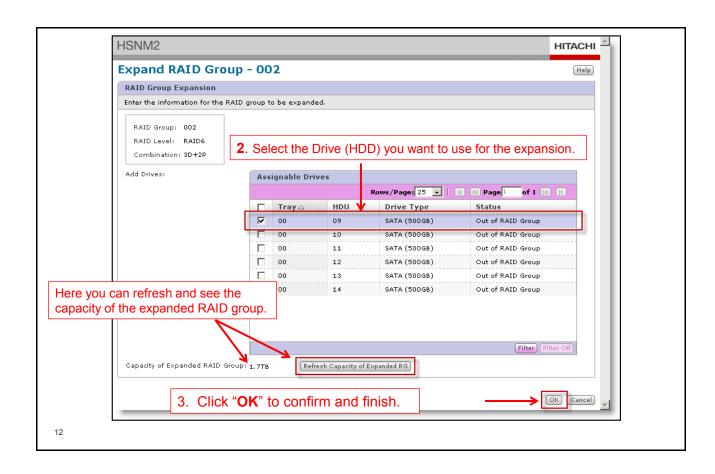

- RAID Group expansion affects front-end performance.
- The user needs to select one of following two priority modes, which can be changed at any time:


- Host Access


- If the Host I/O **exceeds** a specific threshold, the RAID group expansion transaction will be aborted and the Host I/O transaction will be prioritized.
- If the Host I/O rate is low, the RAID group expansion transaction will be executed normally.

- RAID Group Expansion


• The Host I/O gets a lower priority than the RAID group expansion transaction.



Perform Expansion

Remove Expansion

- The Remove Expansion feature can only be used for RAID groups, where the status is **Waiting expansion**.
- If the status is **Expanding**, you must use the **Forcible suspending function**.
 - This function can only be executed when Storage Navigator Modular 2 is in Maintenance Mode.
 - Internally, the LUs of the expanding RAID group are in half finished status, so the operator needs to select one of the following two options:
 - Change the status of the LUs in the expanded area to **unformat**OR
 - 2. Change the status of the LUs in the unexpanded area to unformat

Note: The **Forcible Suspending Function** causes data loss on the affected LUs and HDS Technical Resource Center must be asked for permission.

Remove (Cancel) Expansion

Change the status of the LUs in the expanded area to unformat

 Change the status of the LUs in the unexpanded area to unformat

LUI

LUI

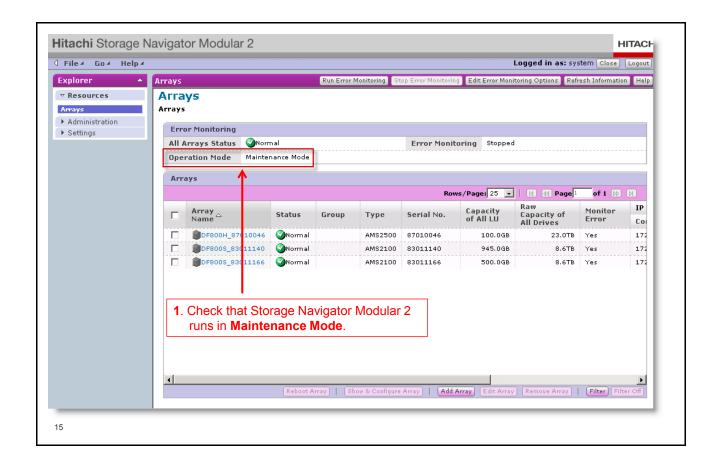
LUZ

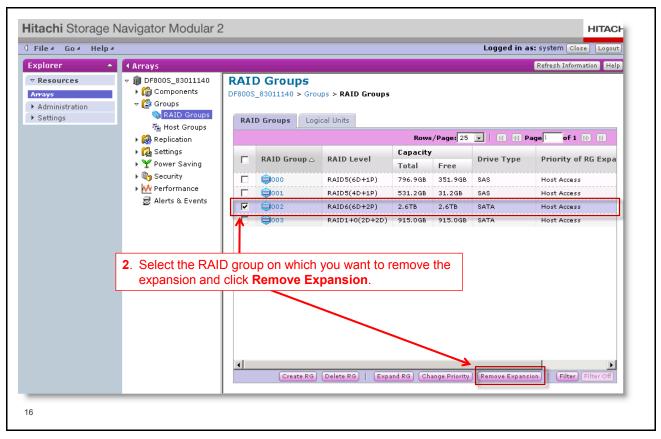
LU3

HDD0

HDD1

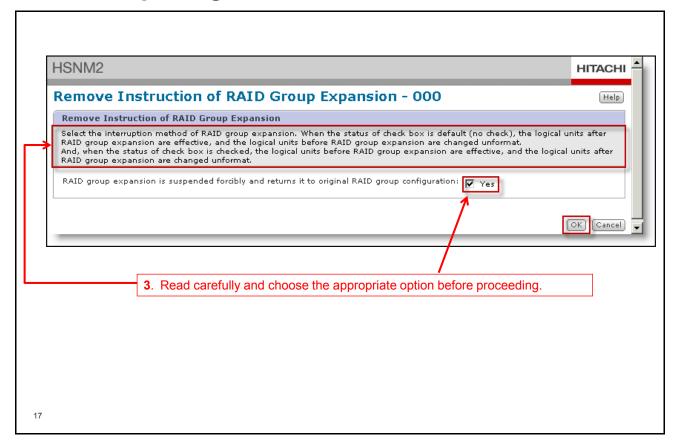
HDD2

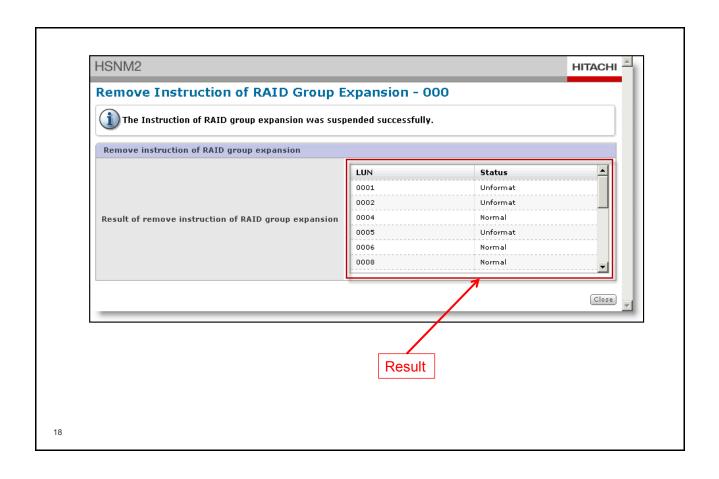

HDD3


HDD4

HDD5

HDD6


HDD7



Note: You only can remove expansion from RAID Groups where an expansion task is running.

Forcible Suspending Function

General Specification

No	Functions	Specifications
1	Supported Model	2100, 2300, and 2500
2	Operation Interface	Storage Navigator Modular 2 (GUI/CLI)
3	Online RAID group expansion ¹	Available
4	RAID group shrink	N/A
5	RAID level Change	N/A
6	Supported RAID Level	RAID 5, RAID 6, RAID 1, RAID 1+0
7	Maximum number of RAID Groups they can be expanded simultaneously in the same system.	2 RAID Groups per System(1 RAID Group per CTL) at the same time
8	Supported Parity Group Depth	1 only
9	Maximum number of HDDs they can be added to the original RAID group in one operation.	Maximum 8 HDDs per RAID Group
10	Criteria for an available HDD for expansion	Same HDD type (SAS/SATA) Capacity is same or larger than the current HDDs in the RAID Group.
11	The time when the expanded capacity will be available	After the expansion completed successfully (reboot of the storage system is not necessary.)
12	The Maximum number of queued RAID group expansion tasks	No restriction (the 1st one will be executed and other will be pending/waiting)
13	RAID group expansion if the DM-LU, a Command Device or a POOL LU resides in this RAID group	Available
14	Priority Mode	Prioritizing the Host I/O [Default] Prioritizing the RAID Group expansion (re-striping)

¹ The Hosts can utilize the LUs in the RAID Group being expanded. This function is non-disruptive to the Hosts.

Detailed Specification

	Functions	Specifications		
No		System operations during RG Expansion	RG Expansion during system operations	
1	LU formatting	Available	N/A for RAID group containing a LU being formatted	
2	LU Expansion (LUSE)	N/A for LU in RAID group being expanded.	Available	
3	HDD recovery	Available	N/A for RAID group containing a LU being recovered	
4	Parity recovery	Available	N/A for RAID group containing a LU being recovered	
5	RAID group no redundancy	Available	N/A	
6	Online verify	Available	Available	
7	Online Firmware Upgrade	N/A	N/A	
8	Offline Firmware Upgrade	Available	N/A	
9	ENC Microprogram downloading	Available	Available	
10	Online HDD Firmware upgrading	Available	N/A	
11	DM-LU setting	Available	Available	
12	Command Device setting	Available	Available	
13	POOL LU setting	Available	Available	
14	LU creation/deletion	N/A	N/A	
15	RAID group creation/deletion	N/A	N/A	
16	Load balancing	Back end load balancing i	is N/A for the RAID group which is being expanded	

- If the LU is in a RAID Group which is being expanded, the LU formatting process is prioritized. After format completion, the RAID Group expansion process will be restarted.
- If the HDD is in a RAID Group which is being expanded, the HDD recovery process is prioritized. After recovery completion, the RAID Group expansion process will be restarted.
- If the LU is in a RAID Group which is being expanded, the LU recovery is prioritized. After recovery completion, the RAID Group expansion process will be restarted.
- The HDD firmware upgrade process will be started after completion of the RAID Group expansion process.

Detailed Specification

	Functions	Specifications		
No		System operations during RG Expansion	RG Expansion during system operations	
1	Shadowlmage	Cannot execute pair operations	Must be in "SMPL/PSUS" beforehand	
2	Snapshot	Cannot execute pair operations	Must be in "SMPL/PAIR" beforehand	
3	TrueCopy/TCE	Cannot execute pair operations	Must be in "SMPL/PSUS" beforehand	
4	Modular Volume Migration	N/A	N/A	
5	Cache Residency Manager	N/A	N/A	
6	Power Saving	N/A	N/A	
7	Cache Partition Manager	N/A	N/A	
8	Data Retention Utility	Available	Available	
9	LUN Manager	Available	Available	
10	Password Protection	Available	Available	
11	SNMP Agent	Available	Available	
12	Account Authentication	Available	Available	
13	Audit Logging	Available	Available	

Failure Management

No	Failures during RG Expansion	Failure management policy
1	HDD failure (with redundancy)	The system continues the RAID group expansion process.
2	HDD failure (no redundancy)	The system stops the RAID group expansion process. After fixing the failed HDD, the process continues.
3	HDD recovery process	The system stops the RAID group expansion process until the HDD failure is recovered.
4	Controller failure	The system continues the RAID group expansion process.
5	Array shutdown / reboot	The system memorizes the progression before the power off and continues the RAID group expansion process after the power on.
6	P/S stop without volatile	The system continues the RAID group expansion process after the Reboot.
7	P/S stop with volatile	The system reduces the effect of data lost as much as possible and continues the RAID group expansion process after the Reboot. ¹
8	Other critical abnormal status	The system prepares for the forcible suspending function.

¹ With the reboot after a P/S stop with volatile, the forcible parity recovery process will be performed. During this process, if a HDD fails, the status of all LUs in the affected RAID group will be changed to unformatted.

Lab Project 7: Online RAID Group Expansion

- Timing and Organization
 - Time allotted to complete the project: **30 minutes**
 - The lab project contains two sections:
 - Section 1 is the lab activity
 - Section 2 contains the review questions
 - Time allotted to go over the review questions: 15 minutes
 - The class will be split into lab groups.
 - The lab groups will perform the lab project on the lab equipment assigned to them by their instructor.

Lab Project 7: Objectives

•	Upon completion of the lab project, the learner will be able to do the	าย
	following:	

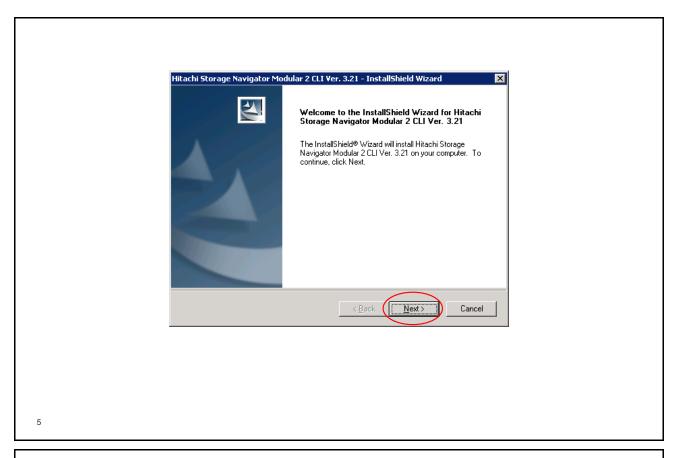
- Create an expanded RAID Group from an existing RAID Group

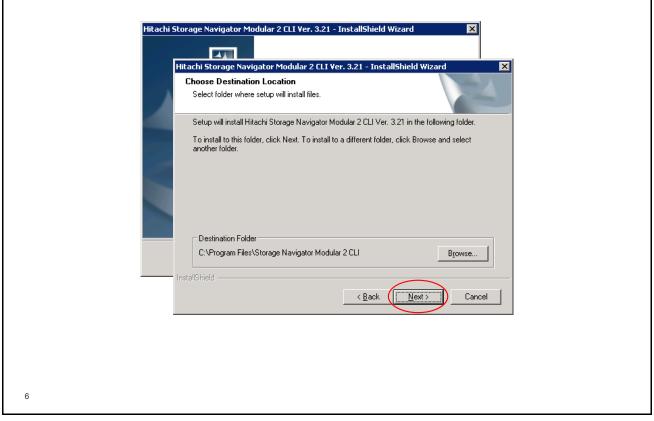
9. Setup and Configuration of Hitachi Storage Navigator Modular 2 CLI

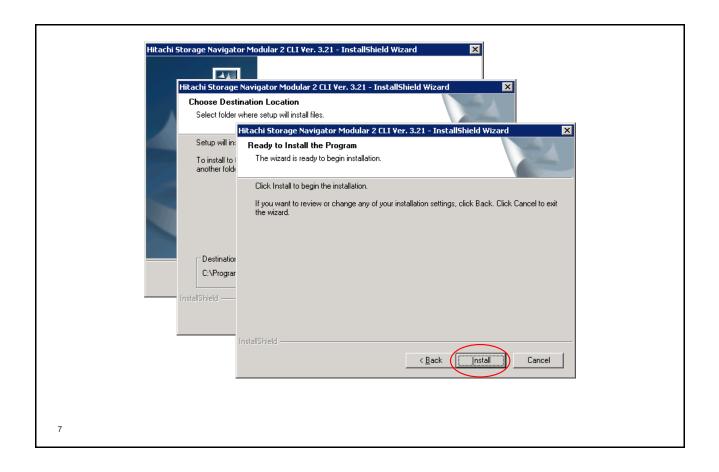
Module Objectives

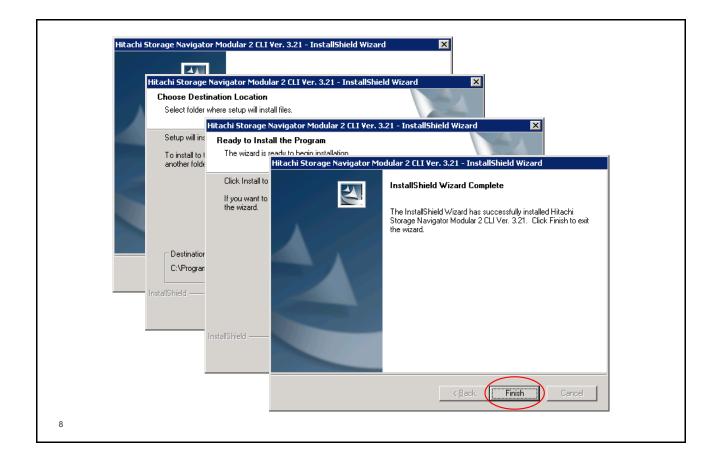
- Upon completion of this module, the learner should be able to:
 - State the purpose of Hitachi Storage Navigator Modular 2 Command Line Interface (CLI)
 - Identify the two modes of operation
 - Install the CLI on a Dynamic Link Manager Microsoft Windows host system
 - Register an Adaptable Modular Storage 2000 family system
 - Create or delete a RAID Group
 - Create or delete a LUN
 - Format a LUN

GUI Functions -> CLI Functions

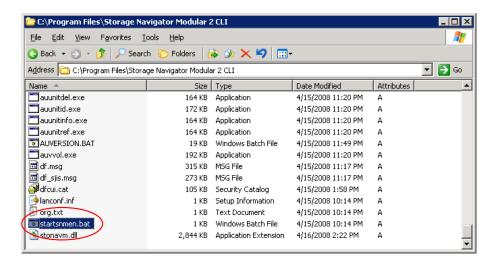

- Host Group setting
- · LAN configuration
- Spare disk setup
- Drive restoration control option
- Host Group port options
- Create RAID Groups and LUNs
- Map LUNs to Host Groups
- · Microcode replacement
- · Drive restoration mode
- SNMP configuration
- Collect performance statistics
- Configuration information import and export from or to a file

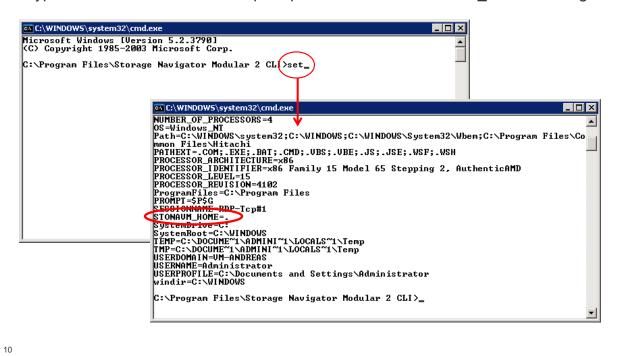

- Fibre Channel information
 - Topology setup
 - Setting port address (not really used)
 - Connection speed
- Enable features and optional software
- · Configure online verify mode
- · Configure optional software components
 - Shadowlmage Replication software
 - Copy-on-Write Snapshot software
 - TrueCopy Remote Replication software
 - TrueCopy Extended Distance software


CLI commands can be put into a **script** file, giving the CLI a major advantage over the GUI. Specific functions can be automated.


Install

- Insert the Storage Navigator Modular 2 CLI CD-ROM or browse to the folder that contains the installation program.
- If installation does not start automatically, run setup.exe.
- Follow the instructions, leaving the defaults when possible.




Start CLI

 To start the CLI, browse to the Installation folder and double click startsnmen.bat.

Check the Environment Variables

- · Before using the CLI, check the environment variables.
- Type set on the command line prompt and look for STONAVM_HOME setting.

When starting CLI as described here, the environment variables are set automatically.

But in any case, it is recommended to double check the settings.

Modes of Operation

- Before DF800
 - Normal Mode
 - No password is required to switch to Management Mode.
 - This is a view-only mode.
 - Management Mode
 - A password is required.
 - You can change various settings in this mode.
- DF800
 - Management Mode is the default.
 - No password is required.

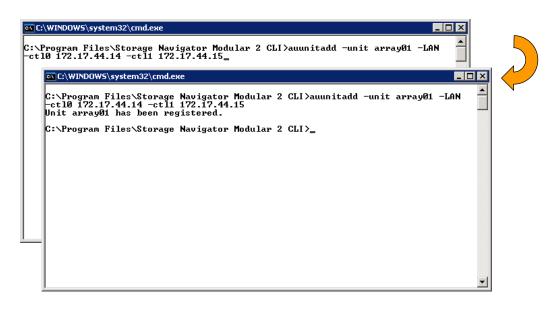
Register a Storage System

 To manage a storage system you must register it in Storage Navigator Modular 2.

Array Unit Registration

Format

```
auunitadd [-unit unit_name] [-group group_name]
[-RS232C | -LAN] -ctl0 device | address
[-ctl1 device | address] [-ignore]
```


Description

This command registers an array unit with the Resource Manager. The registration information consists of the array unit name, group name, connection interface, and device.

- Example:

```
auunitadd -unit array01 -LAN -ctl0 172.17.44.14 -ctl1 172.17.44.15
```

 To manage a storage system you must register it in Storage Navigator Modular 2.

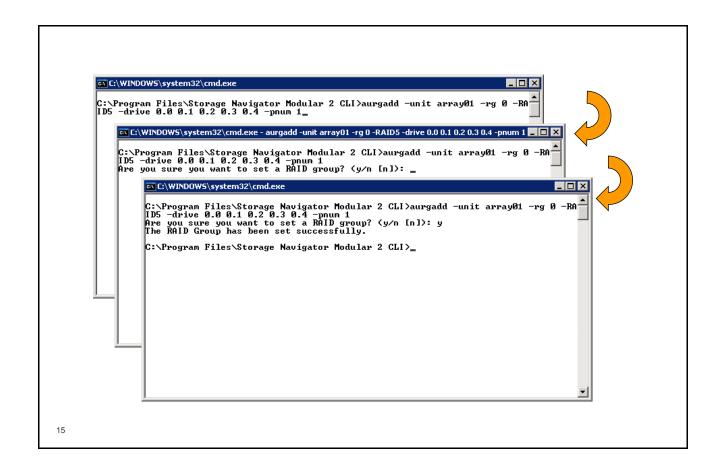
Creating a RAID Group

```
    Create a RAID Group
```

```
Format
```

```
aurgadd -unit unit_name -rg rg_no
-RAID0 | -RAID1 | -RAID5 | -RAID10 | -RAID6
-drive unit_no. hdu_no ...
-pnum pty_num
```

Description


This command creates a RAID Group in a specified array unit.

– Example:

```
aurgadd -unit array01 -rg 0 -RAID5 -drive 0.0 0.1 0.2 0.3 0.4 -pnum 1
```

This will create RAID Group 0 in RAID5 4+1 from the first five disks in Unit 0.

Disk Number = X.Y, where X = the Tray Number, Y = Disk Number

Referencing the RAID Groups

- · Review the RAID Group configuration of a storage system
 - Format
 aurgref -unit unit_name [-m | -g] [-detail rg_no]
 - Description

This command displays a list of existing RAID Groups. The displayed contents include the RAID group number, RAID level, and size in blocks (default) MB or GB.

Example:aurgref –unit array01 -g

• Review the RAID Group configuration of a storage system.

SICWINDOWS\system32\cmd.exe

C:\Program Files\Storage Navigator Modular 2 CLI\aurgref -unit array01 -g

RID RAID

Group Level Briev

Group Level Groups Type Total Capacity

BY 5 (49+1P) 1 S88 1071.5 GB (100.0%)

C:\Program Files\Storage Navigator Modular 2 CLI\aurgref -unit array01 -g

RID RAID

Group Level Briev

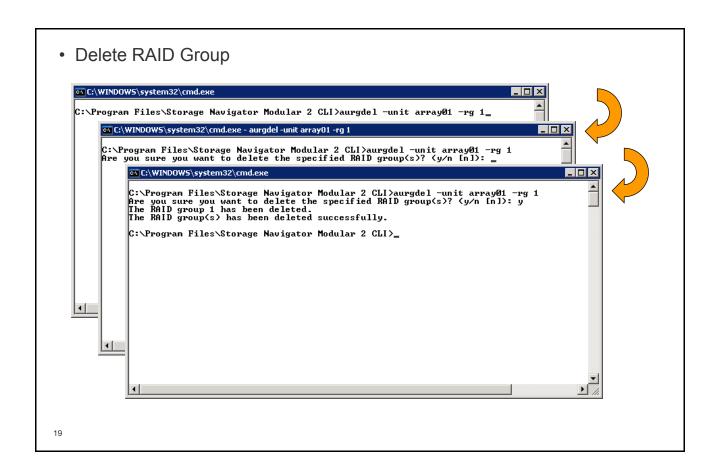
Group Type Total Capacity

Free Capacity

1071.5 GB (100.0%)

Deleting RAID Groups

- Delete RAID Groups
 - Format


```
aurgdel -unit unit_name -rg rg_no [-f]
aurgdel -unit unit_name -ALL [-f]
```

- Description

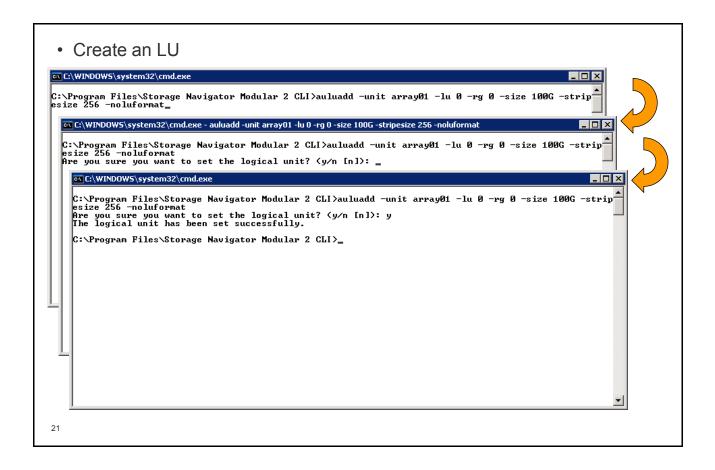
This command deletes the specified RAID Group or deletes all RAID groups in an array unit

– Example:

aurgdel -unit array01 -rg 1

Creating LUs

· Create an LU


```
Format auluadd -unit unit_name [ -lu lun ] -rg rg_no -size num [ m | g | t ] | rest [ -stripesize 64 | 256 | 512 ] [ -cachept pt_no ] [ -paircachept pt_no | auto ] [ -createarea area_no ] [ -noluformat]
```

- Description

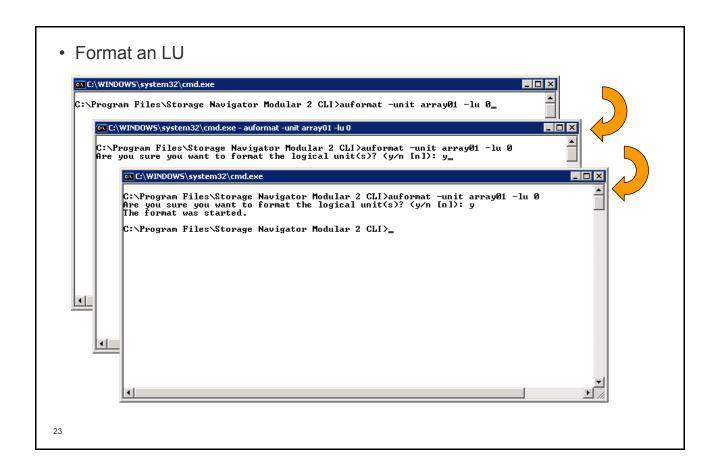
This command is used to create LUs.

– Example:

auluadd -unit array01 -lu 0 -rg 0 -size 100g -stripesize 256 -noluformat

Format LUs

- Format an LU
 - Format

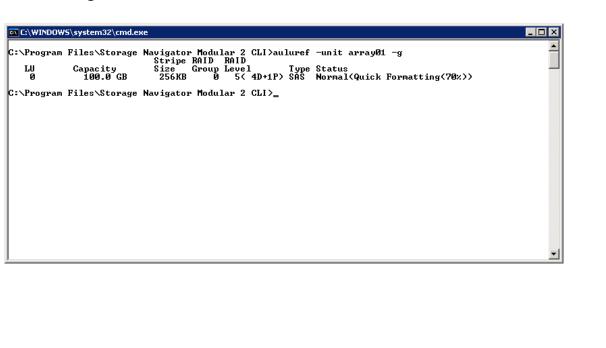

auformat -unit unit_name -lu lun...

- Description

This command formats a specified LUN or a group of LUNs

- Example:

auformat -unit array01 -lu 0


Referencing LUs

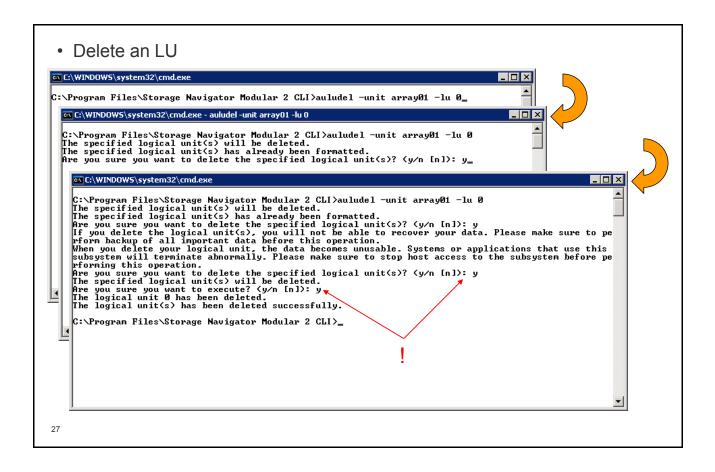
- Referencing the LUs
 - Format
 auluref -unit unit_name [-m | -g] [-lu lun ...]
 - Description

This command displays information of existing LUs (capacity, status, current controller number, default controller number, RAID group number of a RAID group and its RAID level).

Example:auluref –unit array01 -g

• Referencing the LUs

Deleting LUs


- · Delete an LU
 - Format

auludel -unit unit_name -lu lun

- Description

This command deletes a single LU or a group of LUs

Example:auludel –unit array01 –lu 0

Display Help

- Display Help
 - Format

auman [-en | -jp] command_name

- Description

This command displays the help information in English (-en) or Japanese (-jp) for a command.

Lab Project 8: SNM2 CLI

- Timing and Organization
 - Time allotted to complete the project: **60 minutes**
 - The lab project contains **two** sections:
 - Section 1 is the lab activity
 - Section 2 contains the review questions
 - Time allotted to go over the review questions: 15 minutes
 - The class will be split into lab groups.
 - The lab groups will perform the lab project on the lab equipment assigned to them by their instructor.

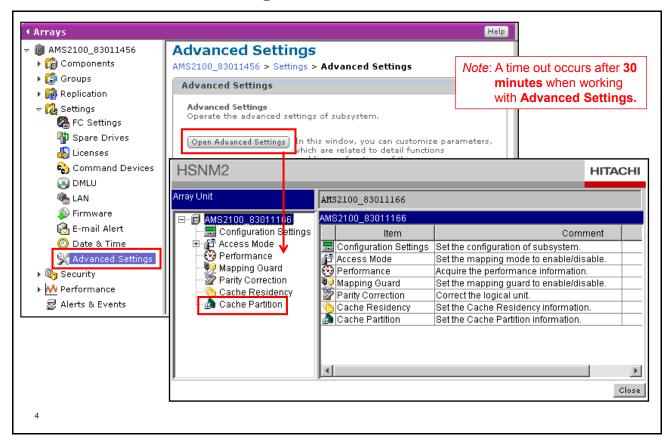
Lab Project 8: Objectives

- Upon completion of the lab project, the learner should be able to:
 - Install the Storage Navigator Command Line Interface on a host system
 - Verify CLI system variables
 - Register an Adaptable Modular Storage 2000 system with the CLI
 - Create a Management Mode password
 - Collect status of existing RAID Groups and LUNs
 - Create and delete a RAID Group
 - Create a LUN
 - Format a LUN

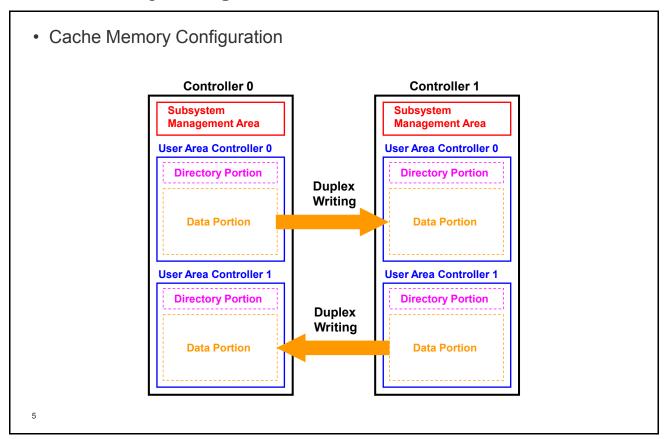
10. Software FeatureOverview

Module Objectives

- Upon completion of this module, the learner should be able to:
 - List the software features that are included with the Adaptable Modular Storage 2000 Family
 - Describe what Program products can be accessed only with Storage Navigator Modular 2 Advanced Setting applet
 - Describe, enable, and configure Cache Partition Manager feature
 - Load a specific internal LUN into cache as a cache-resident LUN using Cache Residency Manager feature
 - State the purpose of the Performance Monitor feature and identify the types of performance data that can be collected
 - Load, configure, and launch HDLM
 - Use Iometer to generate I/O activity to specific DF800 LUNs
 - Launch Performance Monitor and collect and display specific performance metrics

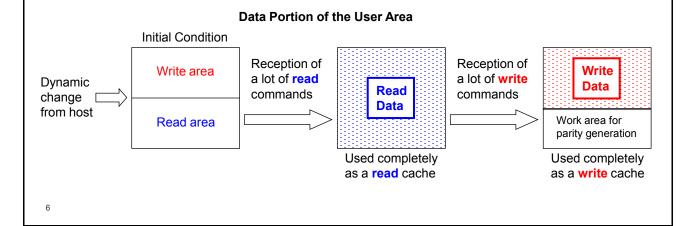

Features and Usage

Product or Feature	Usage		
LUN Manager/LUN Expansion	Host Groups	All	
Cache Residency Manager	Increase LUN access performance		
Cache Partition Manager	Increase host access performance		
SNMP Agent Support Function	Report events and status		
Account Authorization	Robust security for restricting access		
Audit Logging	Audit logging of all changes performed in AA		
Performance Monitor	Monitor and collect utilization statistics		
LUN Grow/Shrink	Expand or reduce the capacity of an LU		
Online Raid Group Expansion	Expand the capacity on an Raid Group		
Data Retention Utility	Protect LUNs		
Data Shredding – (future)	Parity group /LU data erase		
Power Saving	Power down of RAID groups that are not used	All	
Hitachi Shadowlmage Replication software	Create local copies of production LUNs	All	
Hitachi TrueCopy Synchronous software	Create remote copies of production LUNs		
Hitachi TrueCopy Extended Distance Software	Create remote copies of production LUNs		
Hitachi Copy-on-Write Snapshot software	Create point-in-time copies of production LUNs		


3

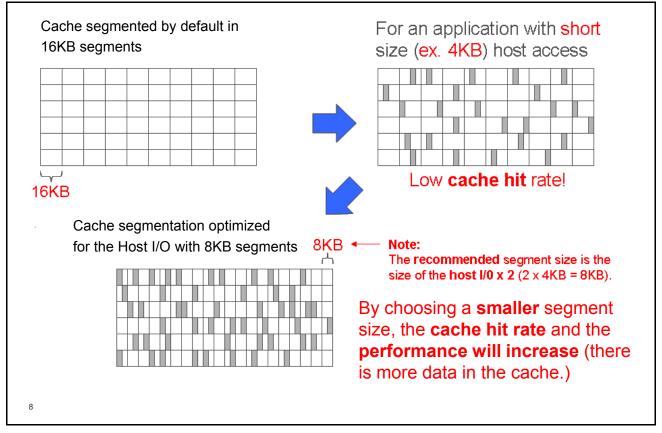
Note: Highlighted features on this slide are optional software features, not included in BOS-M, and there is additional cost and the features require a key.

Launch Advanced Settings

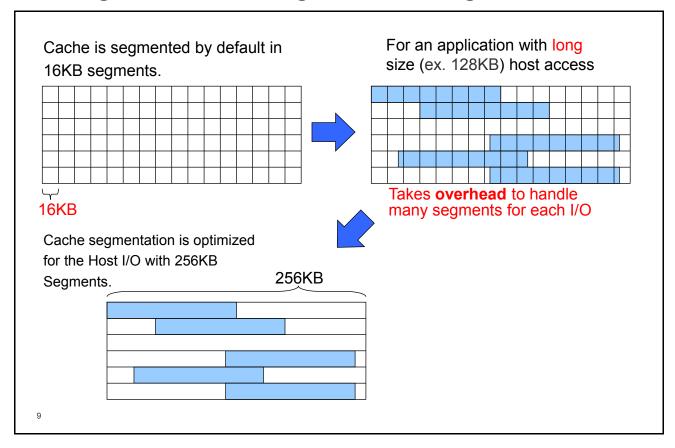


Cache Memory Configuration

Basic Operation of Cache Control


- Dynamic Optimizing is performed on the cache per the following
 - Read / Write cache area assignment:
 - The read and write cache areas are not fixed but are dynamically assigned according to the type of I/O from the host.
 - Destaging algorithm:
 - This is selected automatically according to the write pattern occurring from the host.
 - Staging algorithm:
 - This is selected automatically through a study of the read commands from the host.

Cache Partition Manager Feature

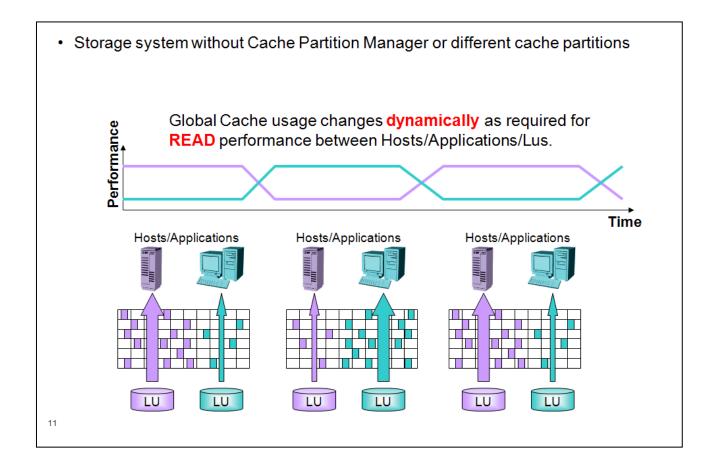

- Cache Partition Manager (CPM) allows for the segregation of workloads within the system.
- It includes the following:
 - Selectable segment size
 Customize the cache segment size for a user application
 - Partitioning of cache memory
 Separate workloads by dividing cache into individually managed, multiple partitions
 - A partition can then be customized to best match the I/O characteristics of its assigned Lus.
 - Selectable stripe size
 To increase performance by customizing the disk access size

Advantage of Selectable Segment Size – Small I/O

- Recommended segment size is the host I/O size times two.
- Setting the segment size in this example to 4KB indicates that up to two segments will be used for cache processing overhead.

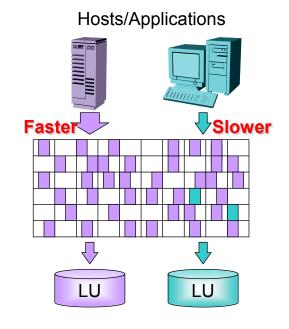
Advantage of Selectable Segment Size - Large I/O

Advantage of Global Cache

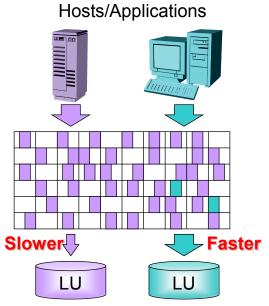

- For **READ** access:
 - Cache memory is used on demand by multiple applications.
 - Therefore:
 - Faster hosts (applications) do not have a negative effect on slower hosts (applications).
 - A faster LU does not have a negative effect on a slower LU.

Model 2000 system without Cache Partition
Manager or different cache partitions

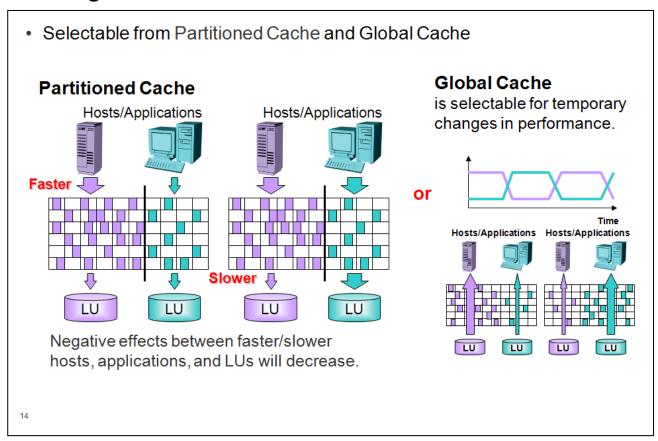
Hosts/Applications


Faster

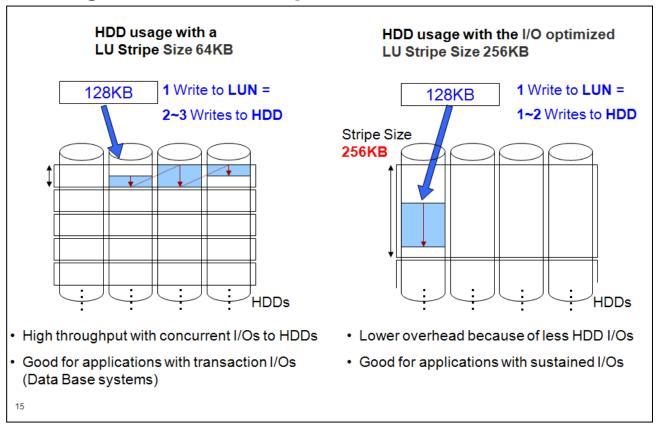
Slower


Disadvantage of Global Cache

• Storage system without Cache Partition Manager or different cache partitions


- High-intensity WRITE access from faster/slower hosts (applications):
 - Faster hosts (applications) use much more cache than slower hosts (applications), and fill almost all the cache memory.
 - Faster hosts (applications) have a negative effect on slower hosts (applications).

• Storage system without Cache Partition Manager or different Cache Partitions


- High-intensity WRITE access to faster/slower LUs:
 - Hosts (applications) use same amount of cache memory, but data for slower LUs remains longer in cache memory.
 - Slower LUs have **negative** effects on faster LUs.
 - Faster/slower LUs can be caused by:
 - SAS/SATA HDD
 - · RAID level
 - The Parity Group

Advantage of Partitioned Cache

Configuring the cache for partitions is a **static adjustment** that will not dynamically change afterwards.

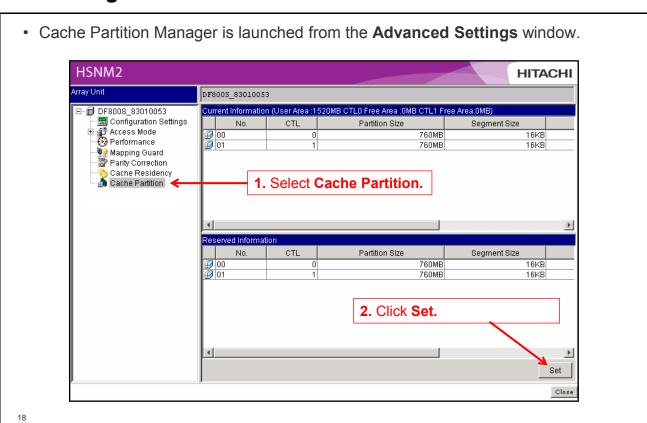
Advantage of Selectable Stripe Size

By selecting the most appropriate Stripe Size, the number of HDD I/Os can be brought back to the minimum which will improve the performance.

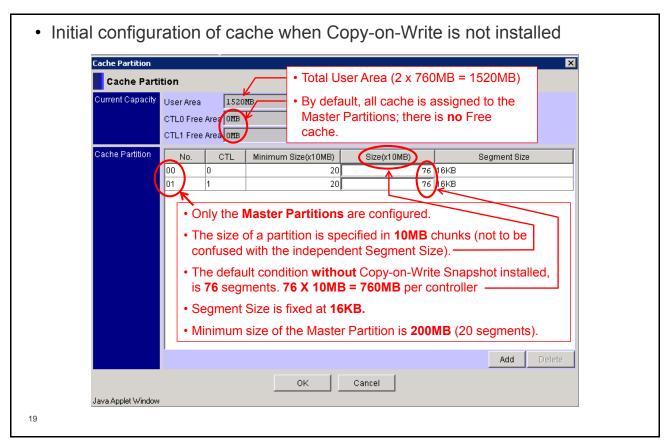
Partitioning Cache

- Cache can be divided into partitions that can be exclusively used by assigned LUNs.
 - Maximum number of partitions:

Model 2100: 16Model 2300: 16Model 2500: 32

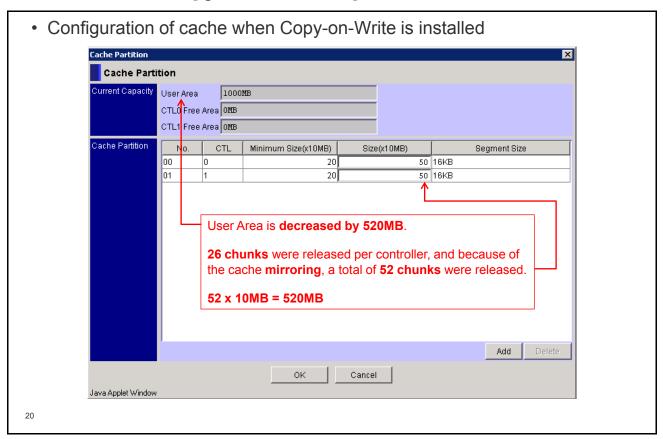

- Partition 0/1 are the master partitions (fixed at16KB only).
- Partition 2 to n have selectable-size segments of: 4, 8, 16, 64, 256 and 512K.
- Partition sizes are flexible (each partition has a certain minimum).

- Although proper use of the Cache Partition Manager can contribute to improving an application's performance, an incorrect configuration can easily achieve the opposite effect.
- One partition can be used by **one or more** LUNs.

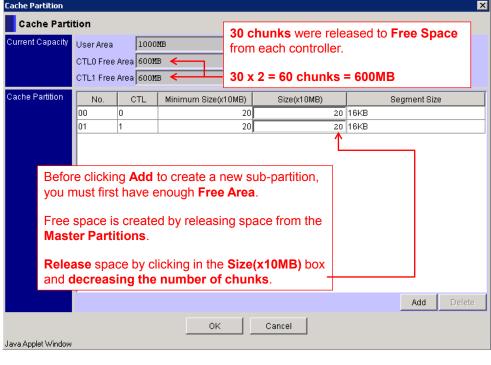

• Relationship between segment size and stripe size

Segment Size		Stripe Size				
		16KB	64KB	256KB (default)	512KB	
	4KB	Available	Available	N/A	N/A	
	8KB	Available	Available	Available	N/A	
	16KB (Default)	Available	Available	Available	Available	
	64KB	N/A	Available	Available	Available	
	256KB	N/A	N/A	Available	Available	
	512KB	N/A	N/A	N/A	Available	

Partitioning Cache Feature



User Area


The DF800 used to create this screen shot the following screen shots had **2GB** of cache per controller.

User Area with Copy-on-Write SnapShot Installed

Create Cache Free Space

• Example shows the release of **30 chunks** from the **Master Partitions**.

Create Sub-partitions Example

• This is an example of the creation (Add) of two new sub-partitions. Cache Partition Cache Partition Current Capacity User Area 1000MB 1.1 Select the cache CTLO Free Area 600MB Segment Size. CTL1 Free Area 600MB Cache Partition Minimum Size(x10MB) Segment Size Size(x10MB) 00 0 20 16KB 20 20 16KB 0 20 20 64KB 20 256KB 1.2 Select the owning controller. Add Delete οк Cancel Java Applet Window 2. Click **OK** to apply the additions. 1. Click Add to create and then This causes a reboot of the array. configure a new sub-partition.

Lab Project 9: Cache Partition Manager

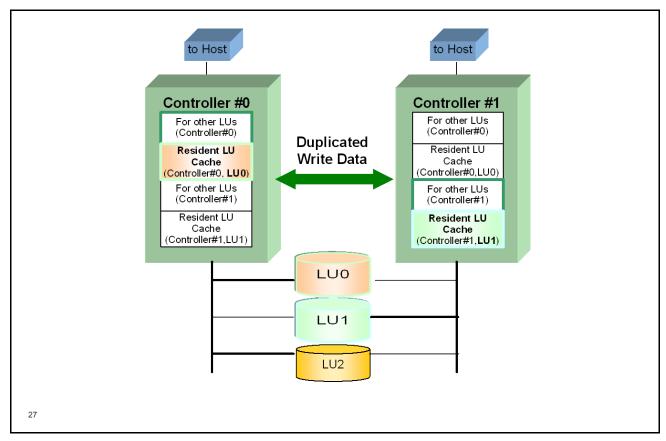
- Timing and Organization
 - Time allotted to complete the project: **60 minutes**
 - The lab project contains **two** sections:
 - Section 1 is the lab activity
 - Section 2 contains the review questions
 - Time allotted to go over the review questions: 15 minutes
 - The class will be split into lab groups.
 - The lab groups will perform the lab project on the lab equipment assigned to them by their instructor.

Lab Project 9: Objectives

- Upon completion of the lab project, the learner will be able to do the following:
 - Release cache space from the two Master Partitions (0 and 1), releasing it to Free Space for each controller
 - Create two new partitions, one in each controller
 - Assign a different cache segment size to each of the new partitions
 - Create two new LUNs, assigning each to one of the new partitions

Cache Residency Manager Overview

- · User-specified LUN resident in the Cache Memory
 - 100% hit ratio for the resident LUN
 - Improve system throughput
 - Apply to a LUN that contains data being accessed frequently


Required conditions for Cache Residency Manager Feature

Item	Specification
Controller Configuration	Dual Controller
RAID level	RAID 1+0, 5, 6
Max number of LUNs	1 per Controller

Installing Cache Residency Manager Feature

- Cache Residency Manager feature must be installed or uninstalled using a software license key.
- The storage system must be rebooted in order for the Cache Residency Manager changes to take effect, including installing, uninstalling, enabling, or disabling.

Functionality

Conditions that Terminate Cache Residency Manager

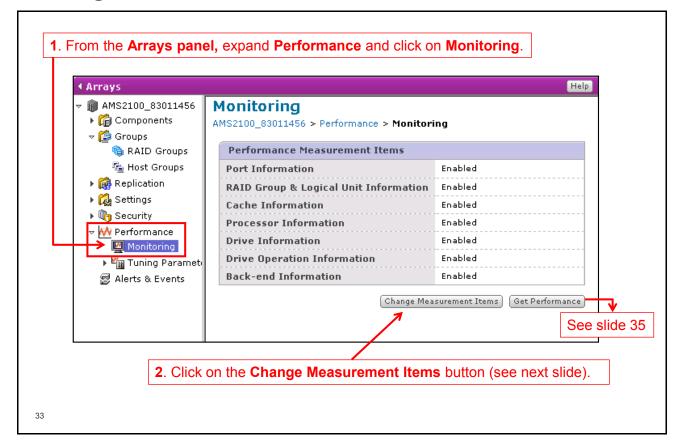
No	Conditions	Remarks	
1	When the setting of Cache Residency Manager is cleared.		
2	When Cache Residency Manager is disabled or uninstalled	All of these conditions are caused by the operator.	
3	When the LUN used for Cache Residency Manager is deleted or the RAID group in which the LUN is created is deleted		

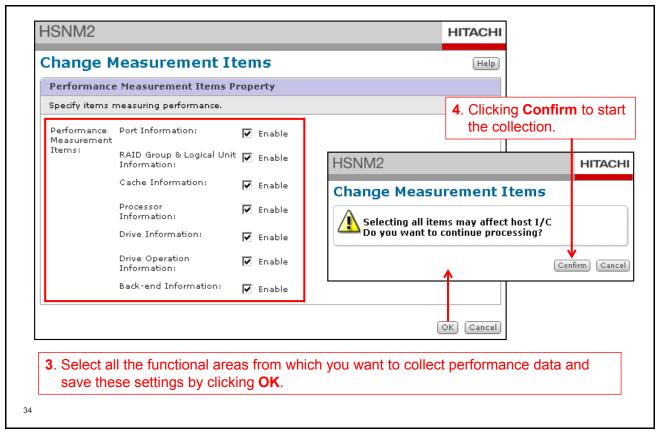
Maximum LUN Size for Cache Residency Manager

•	The maximum size of a LUN that is used for the Cache Residency
	Manager feature depends on the capacity of the installed cache memory.

•	Cache Residency	y Manager	feature uses	part of the	cache memory	/
---	-----------------	-----------	--------------	-------------	--------------	---

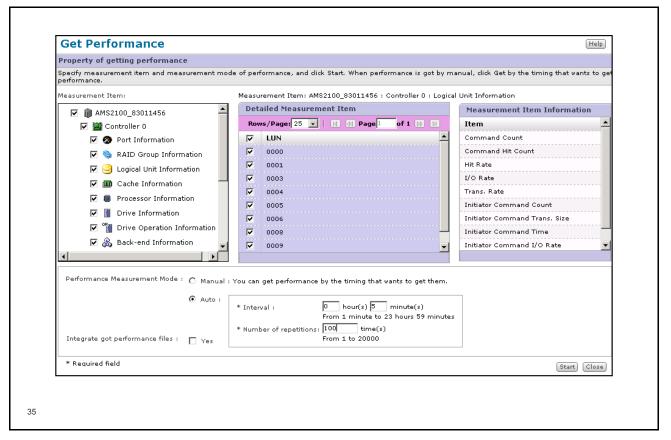
Performance Monitor Feature Overview

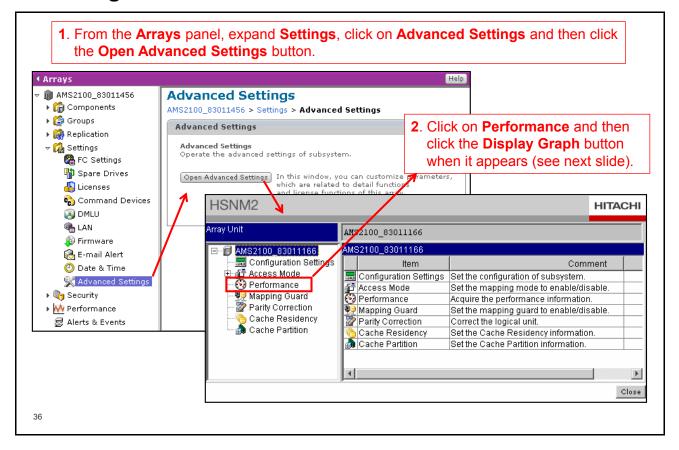

- The Performance Monitor feature enables the user to collect and analyze performance information from the following functional areas:
 - Port information
 - RAID group / Logical Unit information
 - Cache information
 - Processor information
 - Drive information
 - Drive operating information
 - Back end information
- Performance Monitor presents the information in chart or table format (.txt file).
 - Chart gives a real-time 2-dimensional view of the system in graph format.
 - Table format gives snapshots over a specified period of time.
 - Set an interval from 1 minute to 23 hours 59 minutes
 - Set number of repetitions from 1 to 20,000
 - Snapshots can be concatenated into a single, compressed into a ZIP file
- · Requires a license.


Monitored Statistics

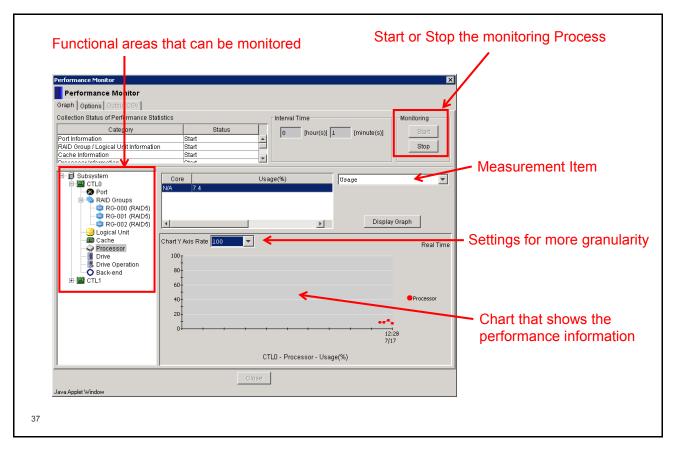
Functional Area	Measurement Item
Port Information	Command Count
Logical Unit Information	Command Hit Count
	Hit Rate
	I/O Rate
	Transfer Rate
	Initiator Command Count
	Initiator Command Transfer Size
	Initiator Command Time
	Initiator Command I/O Rate
	Initiator Command Transfer Rate
RAID Group Information	Command Count
	Command Hit Count
	Hit Rate
	I/O Rate
	Transfer Rate

Functional Area	Measurement Item
Cache Information	Cache Write Pending Rate
	Cache Usage Rate
Processor Information	Processor Operating Rate
Drive Information	Command Count
Back end Information	I/O Rate
	Transfer Rate
	Online Verify Command Count
Drive Operation Information	Drive Operating Rate
	Drive Loading Information


Enabling Performance Data Collection


By default, performance data will be collected from all seven functional areas.

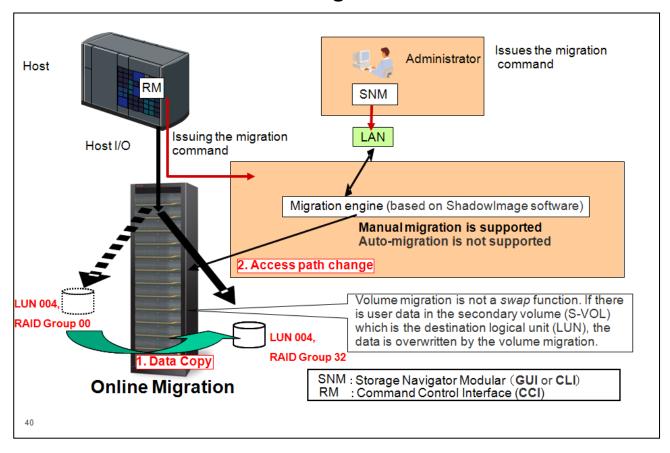
Get Performance Function



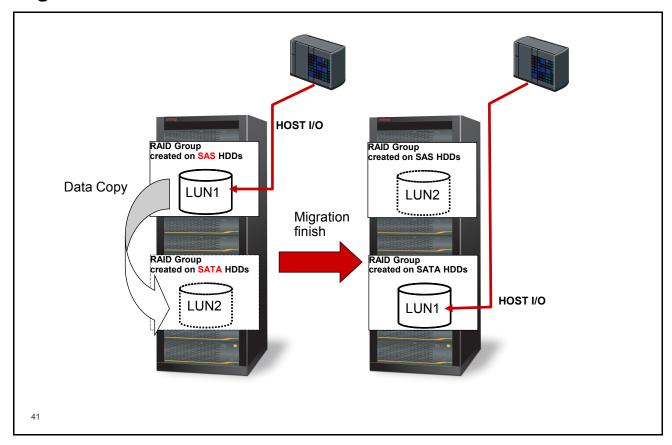
Note: The **Get Performance** function would allow you to configure a plan that would collect the data a specified number of times over a defined period of time. In class you will skip this function.

Reviewing Performance Data

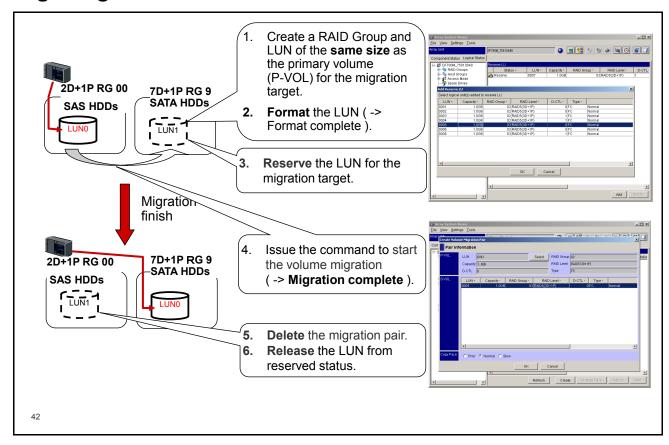
Performance Monitor Window


Lab Project 10: Performance Monitor

- Timing and Organization
 - Time allotted to complete the project: 60 minutes
 - The lab project contains **two** sections:
 - Section 1 is the lab activity
 - Section 2 contains the review questions
 - Time allotted to go over the review questions: 15 minutes
 - The class will be split into lab groups.
 - The lab groups will perform the lab project on the lab equipment assigned to them by their instructor.


Lab Project 10: Objectives

- Upon completion of the lab project, the learner will be able to do the following:
 - Install, launch, and configure the Hitachi Dynamic Link Manager (HDLM) GUI on the Windows host system
 - Using HDLM, display I/O activity and status of the managed paths
 - Launch and configure lometer to generate Write and Read I/O for four hypothetical workers (users) to specific DF800 LUNs
 - Launch and configure the SNM2 Performance Monitor to collect all categories of performance metrics
 - Launch the SNM2 Performance Monitor Graph and display individual metrics as I/O flows into the array


Overview of Modular Volume Migration

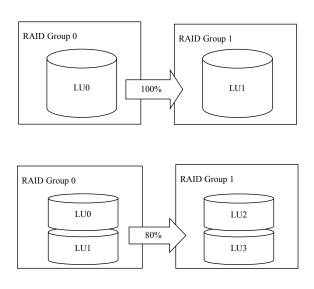
Migration From SAS Drives to SATA Drives

Migrating Volumes for Performance

Internal Mapping of Internal Mapping of the LUN after the LUN before Available from SNM, RM, Web. SNM/Web/CCI SNM/Web/CCI SNM/Web/CCI HOS HLUN#25 HLUN#25 Host LUN HLUN# Host LUN LU#2 Absolute LUN# LU#0 Absolute LUN# LU#2 Unavailable from SNM, RM, Web LU#1 LU#2 LUN (2) Internal Real mapping data of changes the LU (1) Data copy 43

Internal Mapping and I-LUNs

Volume Migration can move LUNs online by changing the internal mapping.


• Internal LUN = I-LUN

The LUN# available from Storage Navigator Modular (SNM), Web or command control interface (CCI) does not change before or after a volume migration.

Performance Considerations

- The recommended Copy Pace is Normal, but when the host I/O load is heavy, performance may deteriorate considerably. In that case, select Slow to maintain performance levels.
 - For example, the LUN is migrated from a SAS disk drive to a SAS disk drive:
 - 1. Random Read I/O declines from 65% to 45% when the Copy Pace is **Normal**.
 - 2. Random read I/O declines from 80% to 60% when the Copy Pace is **Slow**.
- Not only does the RAID structure of the P-VOL affect the performance of the host I/O, but it also affects the performance of the S-VOL.
 - For example, when a LUN is migrated from a SAS disk drive to a SATA disk drive, the random write I/O declines from 60% to 40% when the Copy Pace is **Normal**.

- Do not execute a volume migration to multiple LUNs in the same RAID Group at the same time.
 - For example, when the LUN is migrated from SAS disk drives to SAS disk drives, copy performance declines to 80%.

- Do not execute a volume migration when the LUNs upon which the migration will be executed are in a COPY status from ShadowImage software and are included in the same RAID Group. Either:
 - Schedule a volume migration operation to be executed when the Shadowlmage pairs are in a PSUS status.
 - Stop the Shadowlmage software data copy operation before the volume migration is executed.

Volume Migration Setup

- To use Modular Volume Migration software, some preparations are needed. (These are similar to ShadowImage software.)
 - Install the Modular Volume Migration key
 - Set the differential management LUNs
- To operate with the command control interface (CCI Raid Manager), additional preparations are needed.
 - Set the command devices
 - Set the Target ID (LUN mapping)

Note: Target ID for migration cannot be set through Storage Navigator Modular 2. Use Storage Navigator Modular original version.

Set the environment variables