DF500

Disk Array Subsystem

Specifications

REV.6

Read this manual carefully and keep it.

- Before starting operation, read the safety instructions carefully and fully understand them.
- After reading this manual, keep it at hand for your reference.

HITACHI

Preface

• This document describes specifications of Disk Array Subsystem and its interface.

- Hitachi, Ltd. is not liable for any troubles or accidents which caused by operation performed according to information contained in this document only.
- For the operation or works concerning the subsystem, refer to the User's Guide.
- The DF500 is a 'class 1 laser system' which emits no hazardous laser beam. When handling it, be sure to follow the related manual.
- Hitachi, Ltd. owns the copyrights of this document. No part of this document may be reused or reproduced without permission of Hitachi, Ltd.
- This document may be revised without prior notice.
- Although the subsystem with a RAID configuration provides data reliability enhanced by means of redundancy^(‡1), a possibility remains that data is lost owing to an unexpected failure of a host computer or hardware/software of the subsystem itself. Therefore, users are requested to backup all data for restoration in case where the original data is lost.
- It is recommended to use the UPS (uninterruptible power supply) to provide against a sudden power failure, etc.

Guarantee

The term of guarantee for the DF500 is three years after the original date of purchase.

Trademark

HP is a company name of Hewlett Packard Company, in the U.S.A.

IBM, AIX is a registered trademark of International Business Machines Corp. in the U.S.A.

IRIX is a product name of Sillicon Graphics, Inc. in the U.S.A.

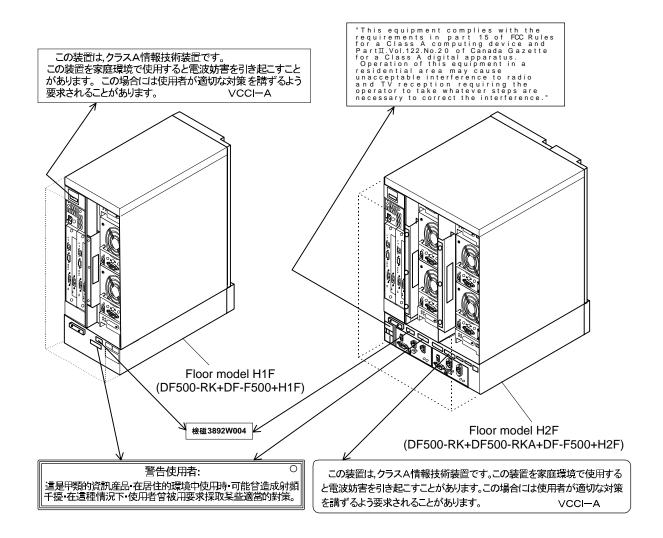
Solaris is a product name of Sun Microsystems, Inc. in the U.S.A.

Sun is a registered trademark of Sun Microsystems, Inc. in the U.S.A.

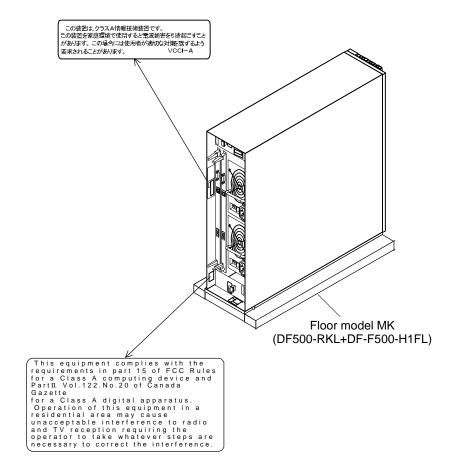
Windows is a registered trademark of Microsoft Corp, Inc. in the U.S.A. and other countries.

Other company names and trade names described in this manual are trademarks or registered trademarks of each respective company.

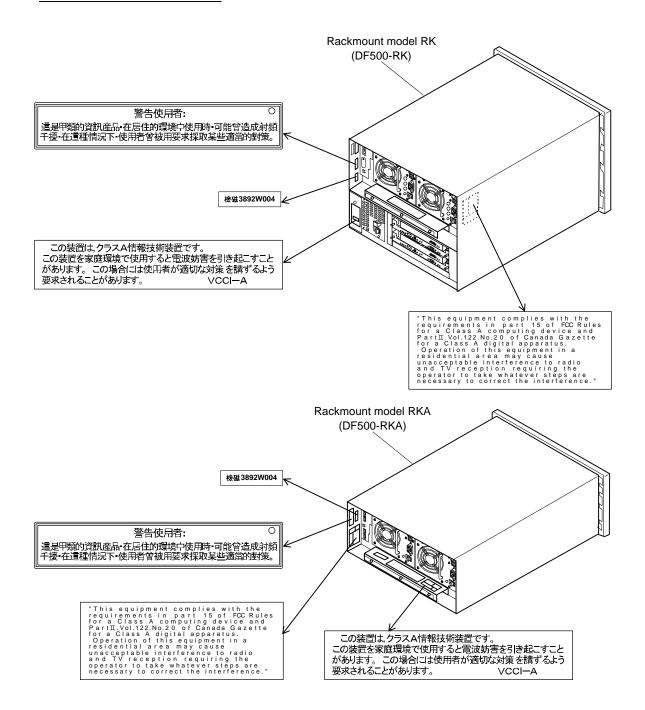
‡1 : However, RAID 0 has no redundancy.

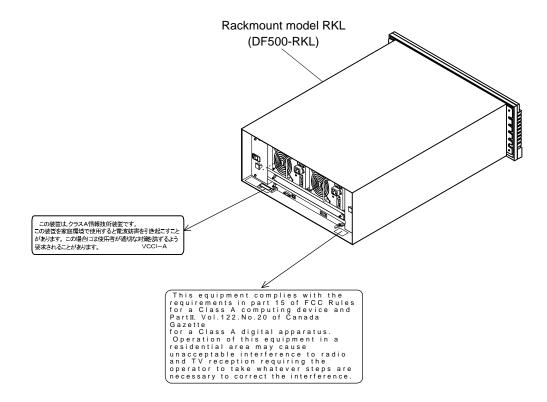

Note

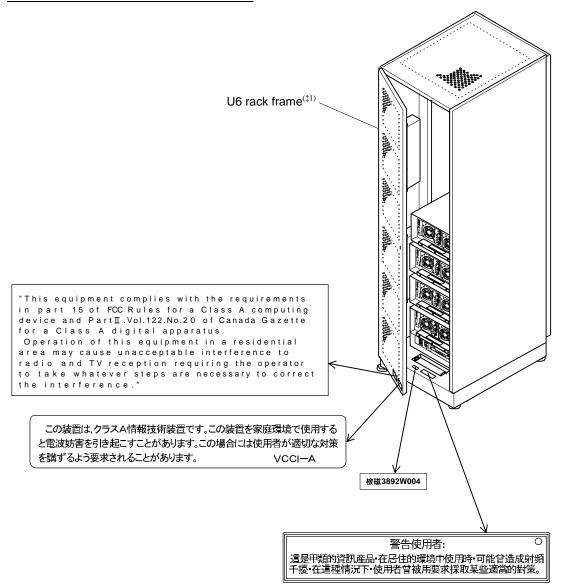
EMI Regulation


This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference in which case the user will be required to correct the interference at his own expense. Testing was done with shielded cables. Therefore, in order to comply with the FCC regulations, you must use shielded cables with you installation.

EMI Regulation Labels Affixed on the Subsystem.


Floor model H1F/H2F


Floor model MK


Rackmount model RK/RKA

Rackmount model RKL

Rackmount model with U6 rack frame

‡1 : The illustration shows an example of the disk array subsystem in which the DF500-RK/RKA is installed.

Model Name Conversion

The model name which is used in this document	The model name replace to DF500	Туре
DF500-xxx	A-6542-xxx	Rackmount model (DF500-RK) Rackmount model (DF500-RKA) Rackmount model (DF500-RKL) Floor model H1F (DF500-RK + DF-F500-H1F) Floor model H2F (DF500-RK + DF500-RKA + DF-F500-H2F) Floor model MK (DF500-RKL + DF-F500-H1FL)
DF-F500-xxx	A-F6542-xxx	Optional component Accessory component

Throughout this document, product model name is written as "DF500". When you want to use this document for the A-6542 series, please replace the model name "DF500" with "A-6542".

Specification

All values of storage capacity shown in this document are calculated as 1 G bytes = 1,000,000,000 bytes.

This definition is different from that (1 k bytes = 1,024 bytes) shown on PCs you are using.

Contents

Chapter 1 Outline	0110
1.1 Outline of Functions	0130
1.2 System Configuration	0200
Chapter 2 Basic Specifications	0220
2.1 Basic Specifications of the Subsystem	0220
2.2 External Appearances	0300
2.2.1 External appearances of the rackmount model	0300
2.2.2 External appearances of the floor model	0320
2.2.3 Rackmount model with U6 rack frame	0340
2.2.4 Rackmount model with U4 rack frame	0350
2.3 Installation	0360
2.3.1 Installation area and maintenance area	0370
2.4 Environmental Specifications and Reliability	0390
2.4.1 Environmental specifications	
2.4.2 Reliability	0400
2.5 Handling and Maintenance Service	0410
2.5.1 Handling	
2.5.2 Periodical replacement parts and	
parts with limited lives	0420
Chapter 3 System Configurations	0430
3.1 System Configurations	0430
3.1.1 System configurations of the rackmount model	0450
3.1.2 System configurations of the floor model	0470
3.1.3 Configuration of rackmount model	
with U6 rack frame	0500
3.1.4 Configuration of rackmount model	
with U4 rack frame	0510
3.2 Components and Optional Parts of DF500	
3.2.1 DF500-RK	0520
3.2.2 DF500-RKA	
3.2.3 DF500-RKL	0560
3.3 Accessory Parts of the RK,RKA and RKL	0580
3.4 Accessory Parts	0590
3.5 Software of DF500	0610

Chapter 4	Interfa	ce	0640
4.1	1 Fibre	Channel Connection Specifications	0640
	4.1.1	System configuration	
	4.1.2	Cable	0670
	4.1.3	Connector on the subsystem side	0670
	4.1.4	Ordered Set	0680
	4.1.5	Frames	0720
	4.1.6	Link service	0760
	4.1.7	FCP	0770
	4.1.8	FC-4 device data frame/name	
		server request commands	
	4.1.9	Initialization process	
	4.1.10	Fibre Channel sequence example	0850
4.2	2 SCSI	Connection Specifications	0910
	4.2.1	Interface cables (for daisy chain connection)	0910
	4.2.2	System configurations	
	4.2.3	SCSI interface connector on the subsystem side	
	4.2.4	SCSI cables	
	4.2.5	SCSI cable connectors	
	4.2.6	Pin arrangements of connectors	
	4.2.7	SCSI bus signals	
	4.2.8	Bus phases	
	4.2.9	Outline of software of supported commands	
		Messages	
	4.2.11	Status's	1060
Chapter 5	RS232	C Cables	1080
5.1	l Pin A	rrangement of Connector	1080
		d S2	
		and SH3	
5.4	4 SS2 a	nd SS3	1110
5.5	5 SR2 a	and SR3	1120
Chantar C	Dower	Cables	4420
•		Cables	
6.2	2 J2F		1130
63	3 I/I and	1 15	1130

ppendix 7000
Appendix A List of Storage Capacities Corresponding
to RAID Levels and Configurations7000
Appendix A.1-1 RAID 0 and RAID 1
with 8.7 G bytes Disk drives7000
Appendix A.1-2 RAID 5 with 8.7 G bytes Disk drives7010
Appendix A.1-3 RAID 0+1 with 8.7 G bytes Disk drives7020
Appendix A.2-1 RAID 0 and RAID 1
with 17.8 G bytes Disk drives7030
Appendix A.2-2 RAID 5 with 17.8 G bytes Disk drives7040
Appendix A.2-3 RAID 0+1 with 17.8 G bytes Disk drives7050
Appendix A.3-1 RAID 0 and RAID 1
with 35.6 G bytes Disk drives7060
Appendix A.3-2 RAID 5 with 35.6 G bytes Disk drives7070
Appendix A.3-3 RAID 0+1 with 35.6 G bytes Disk drives7080
Appendix A.4-1 RAID 0 and RAID 1
with 71.6 G bytes Disk drives7090
Appendix A.4-2 RAID 5 with 71.6 G bytes Disk drives7100
Appendix A.4-3 RAID 0+1 with 71.6 G bytes Disk drives7110
lossary 8000

Chapter 1 Outline

DF500 subsystem has two models: floor model and rackmouunt model.

There are three types of the floor model: one is a combination of the RK and the floor standing kit (hereafter referred to as floor model H1F) and one is a combination of the RK, the RKA, and the floor standing kit (hereafter referred to as floor model H2F) and the other is a combination of the RKL and the floor standing kit (hereafter referred to as floor model MK).

The rackmount model is a subsystem which is used in the form of a combination of the DF500-RK (hereafter referred to as RK) and the DF500-RKA (hereafter referred to as RKA) and the DF500-RKL (hereafter referred to as RKL).

Features of the subsystem are explained below.

- The floor model H1F mounts up to ten Disk drives and controls them as RAID by a Controller.
- The floor model H2F mounts up to twenty Disk drives and controls them as RAID by a Controller.
- The floor model MK mounts up to twelve Disk drives and controls them as RAID by a Controller.
- The RK mounts up to ten Disk drives and controls them as RAID by a Controller.
- The RKA mounts up to ten Disk drives and can be used being connected with the RK.
- The RKL mounts up to twelve Disk drives and controls them as RAID by a Controller.
- The subsystem uses either Fibre Channel (1 G bps/2 G bps, Non-OFC) or SCSI (LVD, Wide-differential, or Single-ended) as an interface with a host computer.
- The RK, RKA and RKL are models to be mounted on the 19-type rack frame, however, they can also be used as floor models when combined with the optional kits.
- Up to nine RKAs can be connected with a single RK using special cables so that you can configure a system with a set of 100 Disk drives using the controller of the RK^(‡1).
- A special rack frame (DF-F500-U6) is provided, which can mount a various combination of the RK(s) (6 EIA units high) and RKA(s) (3.5 EIA units high) up to a height of 38 EIA units.
- A special rack frame (DF-F500-U4) is provided, which can mount a various combination of the RK(s) and RKA(s) up to a height of 32 EIA units.
- Up to the nine and five^(‡1) RKL(s) (4 EIA units high each) can be mounted on the rack frames for exclusive use, that is, DF-F500-U6 and DF-F500-U4, respectively.

^{‡1:} Up to the seven RKLs can be mounted through an addition of the UPDU (optional).

• The 2 G bps Fibre Channel interface board of DF500 (DF-F500-DF2G2) has downward compatibility with the 1 G bps Fibre Channel Interface board (DF-F500-DFMM5 or DF-F500-DFFM6).

• The 1 G bps Fibre Channel Interface board of DF500 (DF-F500-DFFM6) is an Interface board that supports the F-Port and has downward compatibility with the DF-F500-DFFM5.

1.1 Outline of Functions

Functions of DF500 are explained below.

(1) Scalability(RK/RKA/H1F/H2F)

- You can construct any system that meets wide variety of demands, from a system with ten Disk drives by using a single RK to a system with the maximum of 100 Disk drives expanded by connecting up to nine RKAs to the RK.
- By using special rack frame (U6), you can construct a system conforming to your demand such as one RK and nine RKAs, and four RKs and four RKAs.
- By using special rack frame (U4), you can construct a system conforming to your demand such as one RK and five RKAs, and three RKS and three RKAs.
- Spare disk(s), up to five of which can be set up, can be mounted in any location(s). (\$\frac{1}{2}\$) You can use the system effectively by mounting each Spare disk in a Disk drive slot left unused as a result of a system construction.
- From the host computer, the subsystem can be used not only as a single large scale Disk drive but also as 64 logical disks (LUs) at the maximum.
- The subsystem enables you to construct a system which can connect up to 126 Fibre Channel devices by using the Fibre Channel interface and connecting the HUB and switch (hereafter, referred to as "SW".).

(2) Scalability(RKL/MK)

- Spare disk(s), up to five of which can be set up, can be mounted in any location(s). You can use the system effectively by mounting each spare disk in a Disk drive slot left unused as a result of a system construction.
- From the host computer, the subsystem can be used not only as a single large scale Disk drive but also as 64 logical disks (LUs) at the maximum.
- The subsystem enables you to construct a system which can connect up to 126 Fibre Channel devices by using the Fibre Channel interface and connecting the FC-AL and FC-SW.

(3) Multi-RAID configuration

To put RAID to practical use, some techniques such as striping, mirroring, and parity disk are used.

Striping

It means to store data spreading it on several Disk drives. Since a datum is written on several Disk drives, time required to access each Disk drive is shortened and thus, time required for reading or writing is shortened.

Mirroring

It means to copy all the contents of one Disk drive to one or more Disk drives at the same time in order to enhance reliability.

^{‡1 :} Some Disk drive slots cannot b used for the installation of the Spare disk because of restriction of the system configuration. For the details of it, please inquire at us.

• Parity disk

It is a data writing method used when configure RAID with three or more Disk drives. Parity of data in the corresponding positions of two or more Disk drives is generated and stored on another Disk drive.

It is necessary to understand the nature of each RAID level to make the environment most suitable for the intended system.

Four RAID levels, that is, RAID 0 (2D to 16D), RAID 1, RAID 5 (2D+1P to 15D+1P), and RAID 0+1 (2D+2P to 8D+8P) can be set up. When the RKL and MK, that is, RAID 0 (2D to 12D), RAID 1, RAID 5 (2D+1P to 11D+1P), and RAID 0+1 (2D+2P to 6D+6P) can be set up(For the outline of each RAID level, see Table 1.1.1.).

Configuration Level Characteristics RAID 0 Outline RAID 0 stripes data across Disk drives (five Disk drives Data block in the DF500) to attain higher throughput. ABCDEFGHIJ Controller Advantages Because Disk drives having redundant data is not needed, Disk drives can be used efficiently. D Е В С Α F G Н J Disadvantage Data is lost in any failure of the Disk drive. Data disk RAID 1 Outline RAID 1 provides data redundancy by copying all the contents of two Disk drive to another (mirroring). Data block Read/write performance is a little better than the A B C D E F G H I J individual Disk drive. Advantages Data is not lost even if a failure occurs in any Disk Controller drive. Performance is not lowered even when a Disk drive fails В B' Disadvantage RAID 1 is expensive because it requires twice the Disk capacity. Data disk Mirror disk RAID 5 Outline RAID 5 consists of three or more Disk drives. Data block It uses one of them as a parity disk and writes divided data on the other Disk drives. Recovery from a failure ABCDEFGHIJ of a data is possible by utilizing the parity data. Controller Since the parity data is stored on all the Disk drives, a bottleneck of the parity disk does not occur. Α В С D (A-D)F Advantages When reading data, RAID 5 stripes data across Disk Ε F G Н drives in the same way as that in RAID 0 to attain (EH)P higher throughput. : When writing data, since parity data is required to be Disadvantage updated, performance of writing small random data is Data disk + Parity disk lowered although there is no problem regarding writing :Parity of continuous data. The performance is also lowered when a Disk drive fails. *1 : Only the RAID levels supported by DF500 are explained. *1: RKL is six sets.

Table 1.1.1 Outline of RAID Levels (*1)

Level	Configuration		Characteristics
RAID 0+1	Data block A B C D E F G H I J Controller V V V V A A' B B' C C' D D' E E' F F' G G' H H' I I' J J' Data Mirror Data Mirror disk disk disk disk	Outline Advantages Disadvantage	RAID 0+1 provides data redundancy like RAID 1 by copying all the contents of two Disk drive to another. Different from RAID 1, data striping is performed over two to eight (6) ^(*1) sets of two Disk drives. Data is not lost even if any Disk drive fails. Besides, since RAID 0+1 stripes data, it can make the performance of dealing with small size random accesses higher comparing with RAID 1. Performance is not lowered even when a Disk drive fails. RAID 0+1 is expensive because it requires twice the disk capacity.
	*1 : RKL is six sets.		

- (4) High-speed data transfer
 - The subsystem can read and write data at a high-speed by activating Disk drives in parallel.
 - With the Fibre Channel connection, the subsystem can transfer data between the host computer and the subsystem at a maximum speed of 100 M bytes/s. Enough throughput can be got even when connecting devices and making a multiple access.
 - With the 2 G bps Fibre Channel connection, the subsystem can transfer data at a maximum speed of 200 M bytes/s.
 - With the Ultra_2-Wide SCSI (LVD) connection, the subsystem can transfer data at a maximum speed of 80 M bytes/s.
 - By using a non volatile large-capacity cache memory (256 M bytes to 2 G bytes/CTL, RKL and MK is 256 M bytes/CTL), speed-up of command execution at the time of read/write hit was achieved.

(5) Large capacity

- The maximum capacity of 716 G bytes^(‡1) can be realized with the system consisting of the only one RK.
- The maximum capacity of 859.2 G bytes^(‡1) can be realized with the system consisting of the RKL or MK.
- The maximum capacity of 7.1 T bytes^(‡1) can be realized with the system consisting of the one RK connected with the nine RKAs.
- The number of blocks for each RAID level can be calculated using the following formula.

For conversion into the storage capacity, multiply the number of blocks by 512.

- ① RAID 0 (nD n=2 to 16) Number of blocks = $m \times n \times Number$ of RAID group
- ② RAID 1
 - Number of blocks = $m \times (number of mounted Disk drives/2)^{(\ddagger 2)}$
- ③ RAID 5 (nD+1P n=2 to 15) Number of blocks = $m \times n \times Number$ of RAID group
- \P RAID 0+1 (nD+nP n=2 to 8) Number of blocks = m × n × Number of RAID group

^{‡1:} The Disk drive use of 71.6 G bytes. The time of RAID 0 configuration.

^{‡2:} Number of less than one is to be omitted.

For the number of blocks (m) per Disk drive, see Table 1.1.2.

Table 1.1.2 Number of Blocks (m) and Capacity per Disk Drive

Disk drive mode	el name	DF-F500-AAF8	DF-F500-AAF18 DF-F500-AAH18 DF-F500-ACF18 DF-F500-ACH18	DF-F500-AAF36 DF-F500-ACF36	DF-F500-AAF72 DF-F500-ACF72
Capacity	Capacity		17.8 G bytes	35.6 G bytes	71.6 G bytes
Capacity (user area	Number of blocks (m)	17,017,088	34,756,224	69,689,344	139,912,192
size)per Disk drive	Capacity (G bytes)	8.712	17.795	35.681	71.635

Relations between the configurations of Disk drives and the storage capacities are shown in Table 1.1.3 and Table 1.1.4. Details of the storage capacities depending on the RAID level and subsystem configuration are shown in Appendix A.

Table 1.1.3 Configuration Example with Disk Drive Capacity (RK/RKA)

Туре			4.1	RK	4 DK -	1 DKA	1 RK + 9 RKA	
		()	1 1	Τ Λ	1 RK + 1 RKA		(mounted on U6 rack model)	
Configuration	RAI	D level ^(*1)	Capacity (G bytes)	Number of the Disk drive unit	Capacity (G bytes)	Number of the Disk drive unit	Capacity (G bytes)	Number of the Disk drive unit
		2D	17.4	2	17.4	2	17.4	2
	0	5D	43.6	5	43.6	5	43.6	5
	U	10D	87.2	10	87.2	10	87.2	10
		16D	_	_	139.4	16	139.4	16
Minimum		1	8.7	2	8.7	2	8.7	2
configuration		2D+1P	17.4	3	17.4	3	17.4	3
(with 8.7-G byte	5	4D+1P	34.8	5	34.8	5	34.8	5
Disk drive)	5	9D+1P	78.4	10	78.4	10	78.4	10
		15D+1P	_		130.6	16	130.6	16
	0+1	2D+2P	17.4	4	17.4	4	17.4	4
		5D+5P	43.6	10	43.6	10	43.6	10
		8D+8P	_	_	70.0	16	70.0	16
		2D	716	10	1,433	20	7,164	100
	0	5D	716	10	1,433	20	7,164	100
	U	10D	716	10	1,433	20	7,164	100
		16D		_	1,146	16 ^(*2)	6,877	96 ^(*2)
Maximum		1	358	10	716	20	3,582	100
configuration		2D+1P	430	9 ^(*2)	860	18 ^(*2)	4,728	99 ^(*1)
(with 71.6-G byte	5	4D+1P	573	10	1,146	20	5,731	100
Disk drive)	э	9D+1P	645	10	1,289	20	6,447	100
		15D+1P	_	_	1,075	16 ^(*2)	6,447	96 ^(*2)
		2D+2P	287	8 ^(*2)	716	20	3,582	100
	0+1	5D+5P	358	10	716	20	3,582	100
		8D+8P	_	_	573	16 ^(*2)	3,438	96 ^(*2)

^{*1 :} D : Data disk

P : Parity disk

^{*2}: This is not the maximum configuration of the subsystem.

The maximum capacity can be increased when the subsystem uses other RAID level.

Туре 1 RKL RAID level^(*1) Number of Capacity the Disk (G bytes) Configuration drive unit 2D 35.5 2 5D 88.9 5 10D 177.9 10 12D 213.5 12 Minimum 17.7 2 configuration 2D+1P 3 35.5 (with 17.8-G byte 4D+1P 71.1 5 Disk drive) 9D+1P 160.1 10 11D+1P 195.7 12 2D+2P 35.5 4 0+1 5D+5P 88.9 10 6D+6P 106.7 12 12 2D 859 12 6D 859 0 12D 12 859 429 12 Maximum configuration 2D+1P 573 12 $10^{(*2)}$ (with 71.6-G byte 4D+1P 573 9D+1P 10^(*2) 644 Disk drive) 11D+1P 787 12 2D+2P 429 12 10(*2) 0+1 5D+5P 358 6D+6P 429 *1: D: Data disk P: Parity disk *2: This is not the maximum configuration of the subsystem. The maximum capacity can be increased when the subsystem uses other RAID level.

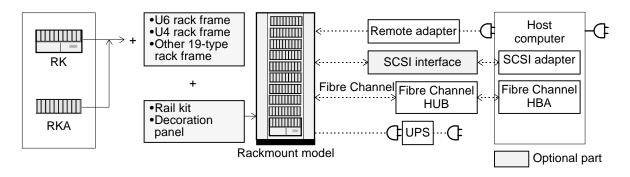
Table 1.1.4 Configuration Example with Disk Drive Capacity (RKL)

(6) High data availability

• With the RAID configuration^(‡1), even when a Disk drive failed, the subsystem can continuously read or write data without shutting down the subsystem by using the parity and mirror disks.

(7) High data reliability

- The Controller of the DF500 adds the original 8-byte data assurance codes to data from a host computer by automatically generating them, writes them in the Disk drive together with the data, and checks them when reading the data, and thus the data reliability is improved.
- •On the data bus in the controller, the automatic generation of the data assurance codes and the check are executed to enhance data reliability in data distribution/concentration control which is peculiar to the disk array.


^{‡1:} However, RAID 0 has no redundancy.

- (8) Diagnostic and maintenance functions
 - Diagnosis and maintenance of the subsystem can be done on a screen of a PC connected to the subsystem via a LAN.
 - Status of the subsystem can be checked and a faulty part can be identified by the Disk Array management program.
 - Diagnosis of the subsystem can be done from a distant place by using the remote maintenance function (SNMP).

1.2 System Configuration

System outlines of DF500 rackmount and floor models are shown in Figures 1.2.1 and 1.2.2 respectively.

(1) Rackmount model RK/RKA/RKL

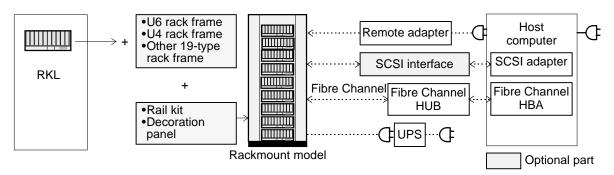
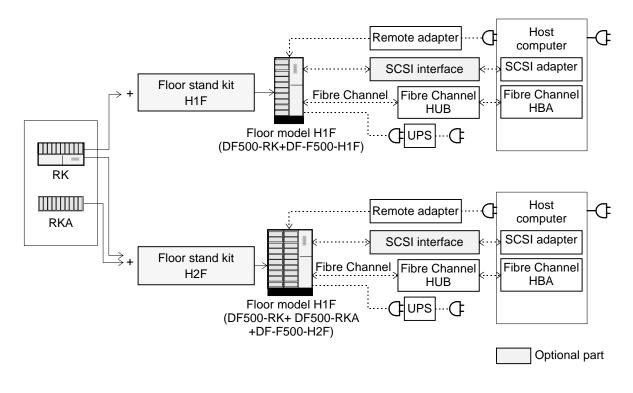



Figure 1.2.1 System Outline (Rackmount Model)

(2) Floor model H1F/H2F/MK

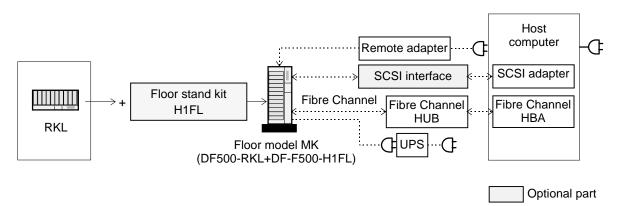


Figure 1.2.2 System Outline (Floor Model)

Chapter 2 Basic Specifications

Basic specifications of DF500 disk array subsystem and its optional devices are shown in this chapter.

2.1 Basic Specifications of the Subsystem

(1) RK/RKA/ H1F/H2F

Model			Rackmou	Floor model					
Item		RK	RKA	With U6 rack frame	With U4 rack frame	H1F	H2F		
Confi- guration	Configuration	1 RK	1 RKA	1 RK + RKA (9units) (Maximum configuration) + U6 rack frame (Optional)	1 RK + RKA (5units) (Maximum configuration) + U4 rack frame (Optional)	1 RK + H1F Floor stand kit (Optional)	1 RK + 1 RKA + H2F Floor stand kit (Optional)		
	Subsystem appearance								
Disk drive used	Disk drive size (W×D×H) (mm)				1.6×146.1×25.4				
uocu	Data capacity (G byte)		Thick type: 101.6×146.1×41.5 8.7/17.8/35.7/71.6						
	Rotational speed (min ⁻¹)								
	Maximum mountable quantity (unit)	10	10	100	60	10	20		
Host interface	Interface type	Q G bps Fibre Channel Optical (Non-OFC) Fibre Channel Optical (Non-OFC) Ultra_2-Wide low voltage differential (LVD) SCSI Ultra-Wide single-ended/differential SCSI	_	•Fibre (•Ultra_2 •Ultra-V	G bps Fibre Channel Optical (Non-OFC) ibre Channel Optical (Non-OFC) iltra_2-Wide low voltage differential (LVD) SCSI iltra-Wide single-ended/differential SCSI				
	Data transfer speed (i.e. maximum speed for transfer to host)	•200 M bytes/s (Fibre Channel) •100 M bytes/s (Fibre Channel) •80 M bytes/s (Ultra_2-Wide SCSI) •40 M bytes/s (Ultra-Wide SCSI)	_	•100 M • 80 M	bytes/s (Fibre C bytes/s (Fibre C bytes/s (Ultra_2 bytes/s (Ultra-W	hannel) -Wide SCSI)			

	Mode			Rackmou	ınt model		Floor model	
Item			RK	RKA	With U6 rack frame	With U4 rack frame	H1F	H2F
Host interface		Single controller	Fibre Channel : 1 to 2 SCSI : 1	_	Fibre Channel :1 to 2 SCSI : 1			
		Dual controller	Fibre Channel : 2 to 4 SCSI : 2	_		Fibre Channe SCSI : 2	el : 2 to 4	
	Transferr size	ed block (bytes)			51	12		
RAID	RAID leve				0/1/5	5/0+1		
specifi-	RAID con-		2D to 10D	_	2D to 16D		2D to 10D	2D to 16D
cations	figuration	RAID 1	1D+1P	_		1D-	+1P	
(*1, *2)	(unit of addition)	RAID 5	2D+1P to 9D+1P	_	2D+1P to 1	15D+1P	2D+1P to 9D+1P	2D+1P to 15D+1P
		RAID 0+1	2D+2P to 5D+5P	_	2D+2P to 8	8D+8P	2D+2P to 5D+5P	2D+2P to 8D+8P
Internal logic	Control C	-	MPC750e (300 MHz)	_		MPC750e	,	
specifi-	Control C	S	VxWorks	_		VxW	orks orks	
cations	S Control memory		•Flash memory : 2 M bytes •L2 Cache memory : 512 k bytes •SRAM : 64 M bytes	_	•Flash memory : 2 M bytes •L2 Cache memory : 512 k bytes •SRAM : 64 M bytes			rtes
	Data bus performa	nce	Cache access : 610 M bytes/s	_			: 610 M bytes/s	
	Data assi method	urance	Data bus: Through-parity Cache memory: ECC (1 bit for correction, 2 bits for detection) Disk drive: Data assurance code		Data bus : Through-parity Cache memory : ECC (1 bit for cor 2 bits for detection Disk drive : Data assurance of		tion)	
Physical	Start-up t		Standard: 3(*8)	_		Standa	rd : 3 ^(*8)	
Specifi- cations	Chassis s (W×D×H)		482.6×656×262	482.6×656×152	610×813×1,880	596×996×1,606	262×737×600	417×737×600
<u> </u>	Mass ^(*4)	(kg)	65 approx.	40 approx.	620 approx.	400 approx.	85 approx.	140 approx.
	Required	noise ^(*5) (dB) height		r less 3.5	65 or Max. 38	less Max. 32	60 or less	65 or less
	(El	A unit) ^(*6) (* ⁷⁾		5.5	IVIAA. JU	IVIAN. JZ	_	_

- *1 : D : Data disk
 - P: Parity disk
- *2 : For the details of the available minimum or maximum storage capacity, refer to Appendix A, "List of Storage Capacities Corresponding to RAID Levels and Configurations (7000)".
- *3: Although the subsystem with a configuration of RAID 5, RAID 1, or RAID 0+1 provides data reliability enhanced by means of redundancy, a possibility remains that user data is lost owing to an unexpected failure of a host computer or hardware/software of the subsystem itself. Therefore, users are requested to back up all data for restoration in case where the original data is lost.
- *4: Value of maximum configuration (in the case where all the mountable Disk drives and Controller are mounted).
- *5 : A noise emitted at the time of start is not included.
- *6 : Can be mounted on the Hitachi special rack frame (U6). For the mounting, special rails for the rack frame and decoration panel(s) are required separately depending on the number of the mounted subsystem(s).
- *7 : Can be mounted on the Hitachi special rack frame (U4). For the mounting, special rails for the rack frame are required separately depending on the number of the mounted subsystem(s).
- *8 : The start-up time may be longer than three minutes depending on the configuration.

Model			Rackmou	ınt model		Floor	Floor model	
Item			RK	RKA	With U6 rack frame	With U4 rack frame	H1F	H2F
Input power	Input volta	age (V)	AC 10 (89 to 127/		_	200 o 254)	AC 100/200 (89 to 127/178 to 254)	
specifi- cations	Frequenc	y (Hz)			50/6	0 ± 1		
	Number of cabling	of phases,		Sin	gle-phase with p	rotective ground	ding	
	Steady-st current ^(*1)		3.5×2/1.8×2 /When the one power supply is connected : (5.8/2.9)	2.8×2/1.4×2 /When the one power supply is connected : (4.4/2.2)	-/16.0 (One PDB)	-/16.0 (One PDU)	3.5×2/1.8×2 When the one power supply is connected : (5.8/2.9)	6.7×2/3.4×2
	Breaking	current (A)	20.0	15.0	20.0			
	Required power	Steady state (VA)	700 /When the one power supply is connected : (580)	550 (When the one) power supply is connected : (450)	3,200 (One PDB)	3,200 (One PDU)	700 /When the one power supply is connected : (580)	1,250
		Starting state ^(*2) (VA)	800 /When the one power supply is connected : (700)	650 When the one power supply is connected : (550)	3,200 (One PDB)	3,200 (One PDU)	800 /When the one power supply is connected : (700)	1,450
Cache specifi-	Capacity (M	l bytes/CTL)	256 to 2,048	_		256 to	2,048	
cations	Control m		Read LRU /Write after	_		Read LRU	/Write after	
	Battery ba	ackup	Provided	_	Provided			
	Backup duration ^(*3) (h)		48 (When cache of 4,096 M bytes/ subsystem is installed)	_	48 (When cache of 4,096 M bytes/subsystem is installed)			installed)

- *1 : For the both systems, plan the facilities for supplying power to the subsystem according to the specifications for the single power supply because when a failure occurs, only the one power supply operates.
- *2 : Power requirement in the case of the maximum configuration is shown. When planning facilities such as the uninterrupted power supply (UPS), specify the power factor as 100% for calculation. Value at 100 V/200 V is shown. (Example : 300 W=300 VA)

The actual required power may exceed the value shown in the table when the tolerance is included.

- *3: Non-volatility of data in the cache memory is ensured against power trouble such as a sudden power failure. It transfers data in the Cache memory to Disk drives by turning off the power normally, and prevents the battery charge from being wasted.
 - When the subsystem enters the Cache Backup mode, a warning (lighting of the orange LED) informing of a voltage drop of the battery may be issued when the subsystem is started. It shows that the remaining capacity of the battery is not sufficient, and in this state, the subsystem operates disabling the Write Cache function automatically.
 - When the battery is charged, the warning indication disappears, and the subsystem continues the operation enabling the Write Cache function.
 - The warning indication disappears within 24 hours at the latest. Even when the warning is being indicated, normal functional operation is assured although the operation is performed in the Write-Through mode and the R/W performance is lowered because the Write Cache function is disabled.
 - If the subsystem is not energized for more than a month, the over discharging of the battery occurs and it may cause the battery an unrecoverable damage. In this case, the battery must be energized more than 24 hours at least once a month, or store the subsystem with the switch of the battery turned off. Even when the switch is turned off, the battery discharges naturally. Even in this case, however, charge the battery once per three months for longer than 24 hours because spontaneous discharge is done.

Model							model	
Item		RK	RKA	With U6 rack	With U4 rack	H1F	H2F	
Mainte- nance specifi- cations/ anti-fault specifi- cations	Parts to which hot replacement is applicable (*1)	Controller Disk drive AC/DC power supply (RK) Interface board Cache memory Fan unit Battery unit ENC (RK) board	Disk drive AC/DC power supply (RKA) ENC (RKA) board	frame •Controller •Disk drive •AC/DC power supply (RK) •AC/DC power supply (RKA) •Interface board •Cache memory •Fan unit •Battery unit(*2) •ENC (RK) board •ENC (RKA) board •PDB	frame •Controller •Disk drive •AC/DC power supply (RK) •AC/DC power supply (RKA) •Interface board •Cache memory •Fan unit •Battery unit(*2) •ENC (RK) board •ENC (RKA) board •PDU	*Controller *Disk drive *AC/DC power supply (RK) *Interface board *Cache memory *Fan unit *Battery unit *Battery ur *BNC (RK) board *Battery ur *Battery ur *BNC (RK) *Battery ur *BNC (RK) *Battery ur *BNC (RK) *BATTEN *BATTEN		
	Microprogram installation method	Flash memory/ Disk drive (resident)	_	F	Flash memory/Di	sk drive (resider	nt)	
	SVP (built-in exclusive tool) function	Failure information logging/Power control Controlling microprogram patching Disk drive controlling microprogram down loading Configuration information change Disk drive recovery initiating process (This process is automatically executed when Disk drive is replaced.)		Controlling mid Disk drive cont Configuration i Disk drive reco (This process replaced.)	ation logging/Poveroprogram patch trolling microprog nformation chan overy initiating priss automatically of	ning gram down loadi ge ocess executed when I		
	Spare disk	, ,	Up to five of		ives can be set t			
	Floppy Disk drive	Failure and statistics information logging Controlling program patching/Disk drive down load	_		atistics informatic gram patching/D		oading	
	Display function			/, WARNING, ar	nd ALARM)			
Insulation perfor- mance	Insulation withstand voltage Insulation resistance		10 mA, 1 min)	AC 1,500 V (100 mA, 1 min)	AC 1,500 V (10 mA, 1 min)	AC 1,500 V (100 mA, 1 min)	
,	*1 : Only the trained serv *2 : The battery in the Ba			•	O THE OF THOSE			

(2) RKL/MK

Model			Floor model Rackmount model					
				RKL	With U6 rack	With U4 rack		
Item					frame	frame		
Confi-	Configura	tion	1 RKL	1 RKL	RKL	RKL (*1)		
guration			+		(1 to 9 units)	(1 to 5 units) ^(*1)		
			H1FL Floor stand kit		+ U6 rack frame	+ U4 rack frame		
			(Optional)		(Optional)	(Optional)		
	Subsyster	n	(Optional)		(Optional)	(Optional)		
	appearand							
Disk drive used	Disk drive (W×D×H)	size (mm)	-	Thin type : 101.6	6×146.1×25.4			
	Data capa	city (G byte)		17.8/35	5.7/71.6			
	Rotationa			10,000	/15,000			
	Maximum quantity	mountable (unit)	1	2	108	60		
Host	Interface t	уре		annel Optical (No				
interface					differential (LVD) SCSI		
				de single-ended/				
	Data trans			0 M bytes/s (Fib	,			
		num speed			ra_2-Wide SCSI)			
	for transfe	,	• 4	0 M bytes/s (Ultr				
Host	Number				annel : 1 SCSI : 1			
interface		controller Dual			annel : 2			
	1	controller			SCSI: 2			
	Transferre		0001.2					
	size	(bytes)	512					
RAID	RAID leve	(*4)	0/1/5/0+1					
specifi-	RAID con-	RAID 0	2D to 12D					
cations	figuration			1D-	+1P			
(*2, *3)	(unit of	RAID 5			11D+1P			
I	addition)	RAID 0+1		2D+2P t	o 6D+6P			

- *1: Up to the seven RKLs can be mounted through an addition of the UPDU (optional).
- *2 : D : Data disk
 - P : Parity disk
- *3 : For the data capacity of each configuration unit, refer to "Appendix A List of Storage Capacities Corresponding to RAID Levels and Configurations" on page 7000.
- *4: Although the subsystem with a configuration of RAID 5, RAID 1, or RAID 0+1 provides data reliability enhanced by means of redundancy, a possibility remains that user data is lost owing to an unexpected failure of a host computer or hardware/software of the subsystem itself.

 Therefore, users are requested to back up all data for restoration in case where the original data is lost.

Model		Floor model Rackmount model			el		
			MK	RKL	With U6 rack	With U4 rack	
Item			IVIK		frame	frame	
Internal	Control C		MPC750e (300 MHz)				
logic	Control O	_	VxWorks				
specifi-	Control m	emory	•Flash memory : 2 M bytes				
cations			•L2 Cache memory : 512 k bytes				
	Data bus		•SRAM : 64 M bytes				
	performance		Cache access : 610 M bytes/s				
	Data assurance		•Data bus : Through-parity				
	method		Cache memory: ECC (1 bit for correction, 2 bits for detection) Disk drive: Data assurance code				
Physical	Start-up ti	ime (min)	Standard : 3(*8)				
Specifi-	Chassis s			010.100			
cations	$(W\times D\times H)$	(mm)	260×657×540	482.6×656×174	610×813×1,880	596×996×1,606	
	Mass ^(*1)	(kg)	70 approx.	60 approx.	670 approx.	400 approx. (*2)	
	Acoustic noise ^(*3) (dB)		60 or less		65 or less		
		height ^(*4) (*5) (EIA unit)	_	4	Max. 36	Max. 20	
Input	Input voltage (V)		AC 100/200		AC 200		
power	- "		(89 to 127/178 to 254) (178 to 254)				
specifi-	. ,		50/60 ± 1				
cations	Number of phases, cabling		Single-phase with protective grounding			ing	
	Steady-state			2×2/1.6×2			
	current(*6)	(A)	When the one		-/16.0	-/16.0	
			power supply is connected : (5.8/2.9)		,	(One PDU)	
						, , , , , , , , , , , , , , , , , , ,	
	Breaking current				20.0		
	(A)				20.0		
	Required power	Steady state (VA)		40			
			(When the one) power supply is connected:		3,200 (One PDB)	3,200	
						(One PDU)	
		Ot a set in as		00) /			
		Starting state ^(*7) (VA)		20 the one			
			When the one power supply is		3,200	3,200	
			conne	nected: (One PDB) (One P		(One PDU)	
			\ (5	80) /			

- *1 : Value of maximum configuration (in the case where all the mountable Disk drives and Controller are mounted).
- *2 : Approximately 510 kg when the seven RKLs are installed.
- *3 : A noise emitted at the time of start is not included.
- *4: Can be mounted on the Hitachi special rack frame (U6). For the mounting, special rails for the rack frame and decoration panel(s) are required separately depending on the number of the mounted subsystem(s).
- *5 : Can be mounted on the Hitachi special rack frame (U4). For the mounting, special rails for the rack frame are required separately depending on the number of the mounted subsystem(s).
- *6: For the both systems, plan the facilities for supplying power to the subsystem according to the specifications for the single power supply because when a failure occurs, only the one power supply operates.
- *7: Power requirement in the case of the maximum configuration is shown. When planning facilities such as the uninterrupted power supply (UPS), specify the power factor as 100% for calculation. Value at 100 V/200 V is shown. (Example: 300 W=300 VA)

 The actual required power may exceed the value shown in the table when the tolerance is included.
- *8: The start-up time may be longer than three minutes depending on the configuration.

Model		Floor model Rackmount model			el	
		MK	RKL	With U6 rack	With U4 rack	
Item		IVIT	KKL	frame	frame	
Cache	Capacity	256				
specifi-	(M bytes/CTL)	230				
cations	Control method	Read LRU/Write after				
	Battery backup	Provided				
	Backup duration(*1)	48				
	(h)	(When cache of 512 M bytes/subsystem is installed)				
Mainte- nance specifi- cations/ anti-fault specifi- cations	Parts to which hot replacement is applicable (*2)	•Disk drive •AC/DC power supply (RKL) •Fan unit •Battery unit(*3) •ENC (RKL) board •Disk drive •AC/DC power supply (RKL) •Fan unit •Battery unit(*3) •ENC (RKL) board		Controller Contr		
	Microprogram installation method	Flash memory/Disk drive (resident)				
	SVP (built-in exclusive tool)	Failure information logging/Power control Controlling microprogram patching				
	function	Disk drive controlling microprogram down loading				
		Configuration information change				
		 Disk drive recovery initiating process (This process is automatically executed when Disk drive is replaced.) 				
	Spare disk	Up to five of mounted Disk drives can be set to Spare disks				
	Floppy Disk drive	Failure and statistics information logging Controlling program patching/Disk drive down loading				
	Display function	Status LEDs (POWER, READY, WARNING, and ALARM) LED of maintenance part				

- *1:• Non-volatility of data in the cache memory is ensured against power trouble such as a sudden power failure. It transfers data in the Cache memory to Disk drives by turning off the power normally, and prevents the battery charge from being wasted.
 - When the subsystem enters the Cache Backup mode, a warning (lighting of the orange LED) informing of a voltage drop of the battery may be issued when the subsystem is started. It shows that the remaining capacity of the battery is not sufficient, and in this state, the subsystem operates disabling the Write Cache function automatically.
 When the battery is charged, the warning indication disappears, and the subsystem continues the operation enabling the Write Cache function.
 - The warning indication disappears within 24 hours at the latest. Even when the warning is being indicated, normal functional operation is assured although the operation is performed in the Write-Through mode and the R/W performance is lowered because the Write Cache function is disabled.
 - If the subsystem is not energized for more than a month, the over discharging of the battery occurs and it may cause the battery an unrecoverable damage. In this case, the battery must be energized more than 24 hours at least once a month, or store the subsystem with the switch of the battery turned off. Even when the switch is turned off, the battery discharges naturally. Even in this case, however, charge the battery once per three months for longer than 24 hours because spontaneous discharge is done.
- *2 : Only the trained service personnel can perform a hot replacement.
- *3 : The battery in the Battery unit is a part to be recycled.

Model		Floor model	Rackmount model		l
Item		MK	RKL	With U6 rack frame	With U4 rack frame
Insulation perfor-	Insulation withstand voltage	AC 1,500 V (10 mA, 1 min)	AC 1,500 V (100 mA, 1 min)	AC 1,500 V (10 mA, 1 min)
mance	Insulation resistance	DC 500 V, 10 MΩ or more			

2.2 External Appearances

2.2.1 External appearances of the rackmouunt model

(1) Rackmouunt model RK and RKA

Figure 2.2.1 shows the external appearances and dimensions of the RK and RKA, and Figure 2.2.2 shows major components of them.

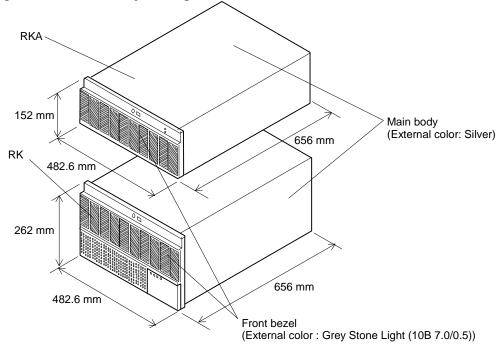


Figure 2.2.1 Appearances and Dimensions of the RK and RKA

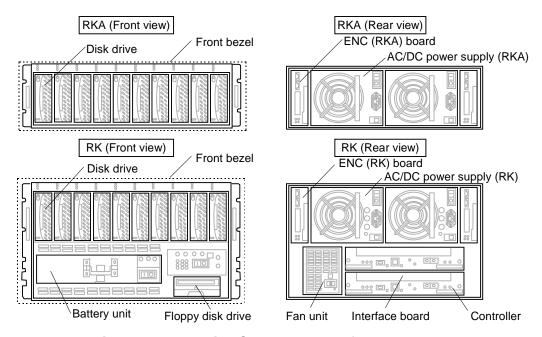


Figure 2.2.2 Major Components of the RK and RKA

(2) Rackmouunt model RKL

Figure 2.2.3 shows the external appearances and dimensions of the RKL, and Figure 2.2.4 shows major components of them.

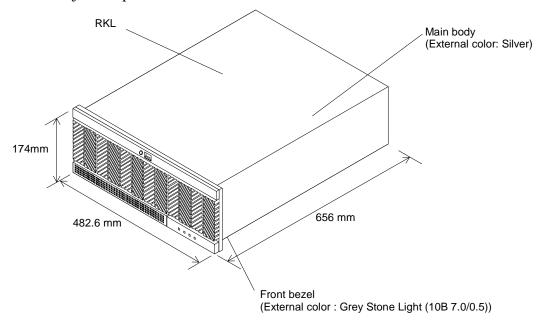
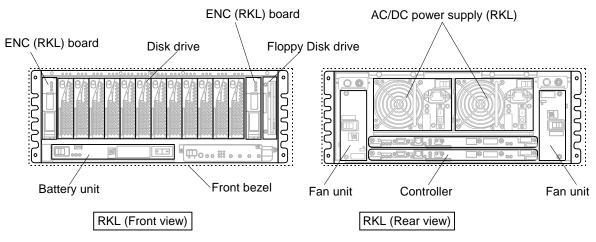
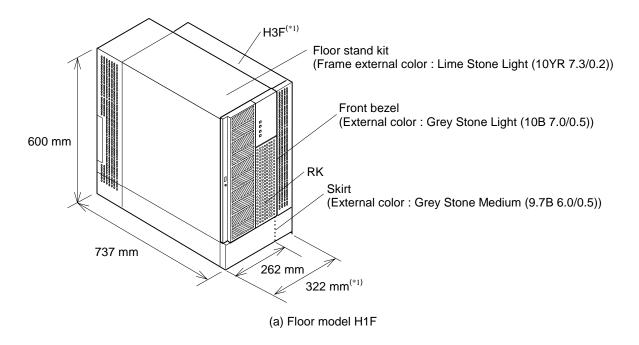
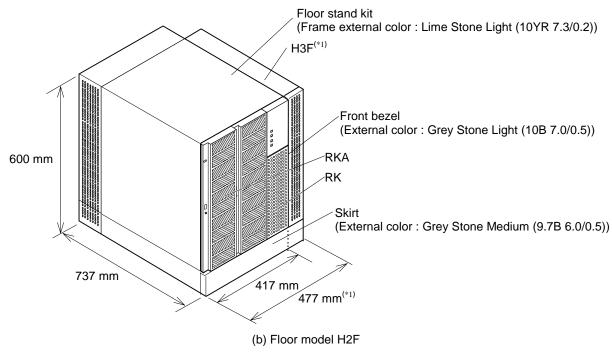


Figure 2.2.3 Appearances and Dimensions of the RKL


Figure 2.2.4 Major Components of the RKL

2.2.2 External appearances of the floor model

(1) Floor models H1F and H2F

Figure 2.2.5 shows the external appearances and dimensions of the floor models H1F and H2F.

*1: The H3F is a frame kit which can be joined as an accessory.

Figure 2.2.5 Appearances and Dimensions of the Floor Models

(2) Floor model MK

Figure 2.2.6 shows the external appearances and dimensions of the floor model MK.

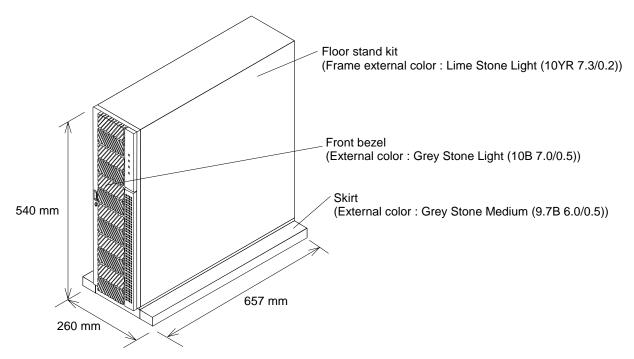
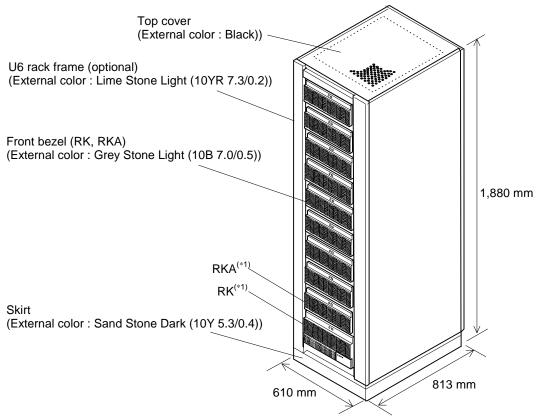
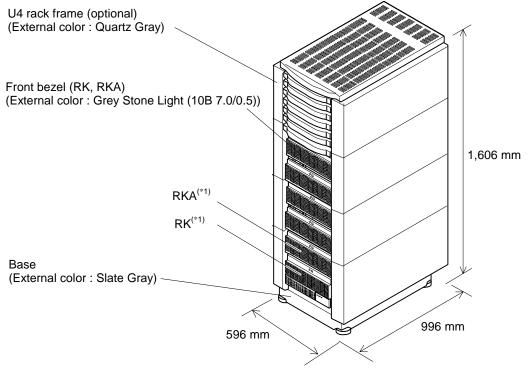



Figure 2.2.6 Appearances and Dimensions of the Floor Model

2.2.3 Rackmount model with U6 rack frame

Figure 2.2.7 shows the external appearance and dimensions of the rackmount model with U6 rack frame.



^{*1 :} This figure shows an example of a subsystem with the one RK and nine RKAs.

Figure 2.2.7 Appearances and Dimensions
of the Rackmount Model with U6 Rack Frame

2.2.4 Rackmount model with U4 rack frame

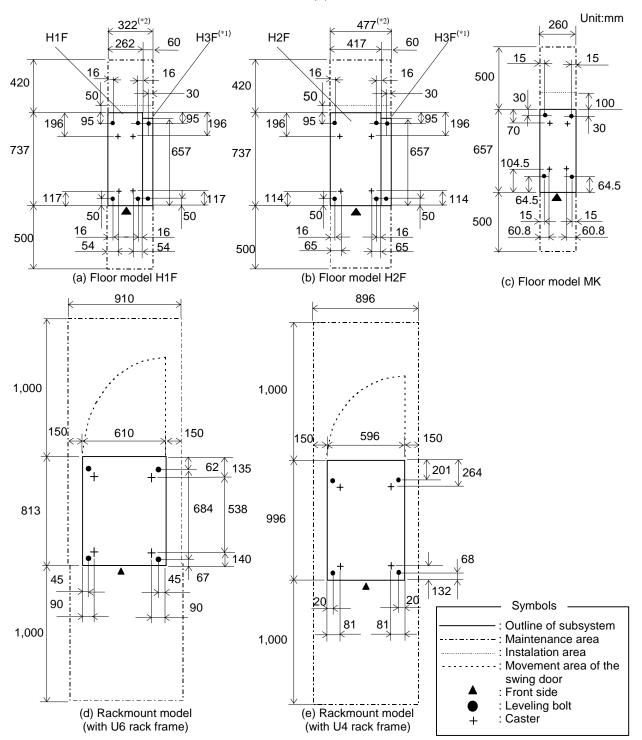
Figure 2.2.8 shows the external appearance and dimensions of the rackmount model with U4 rack frame.

^{*1 :} This figure shows an example of a subsystem with the one RK and five RKAs.

Figure 2.2.8 Appearances and Dimensions of the Rackmount Model with U4 Rack Frame

2.3 Installation

In this section, installation and maintenance areas of DF500 are shown.


External dimensions of the subsystem are those of the rackmount model and the floor model composed of the RK(s), RKA(s).and RKL(s).

The installation area is that required to ensure a space for ventilation.

The maintenance area is that required for maintenance of the subsystem.

2.3.1 Installation area and maintenance area

Installation and maintenance areas of the subsystem are shown in Figure 2.3.1. Notes on installation are shown in Item (1).

^{*1:} The H3F is a frame kit which can be joined as an accessory.

Figure 2.3.1 Installation Area and Maintenance Area

^{*2 :} This shows a dimension of the area required for installation and maintenance when the H3F kit is joined to the floor model H1F or floor model H2F.

- (1) Notes on installation
 - The subsystem is provided with ventilating holes on external covers in order to prevent overheating. Therefore, be sure to secure spaces of more than 5 cm in front and rear of the subsystem not block those holes. The subsystem will be overheated and a fire or failure may be caused.
 - Use specified optional parts, cables, and connectors. Otherwise, a fire, a personal injury, or a failure of the subsystem may be caused as well as the deterioration of the performance.
 - If an abnormal odor, generation of heat, or smoke is sensed, turn off the power supplied to the subsystem from the distribution panel immediately and contact your service personnel.
 - Continuous use of the subsystem can cause a fire or an electric shock.
 - Do not sit on the subsystem nor put anything heavy on it. Otherwise, the subsystem may fall and cause personal injury.
 - Do not put containers with water or metal articles on top of the subsystem.

 They can cause a fire, an electric shock, or a failure of the subsystem if the water spills and gets in the subsystem.

2.4 Environmental Specifications and Reliability

2.4.1 Environmental specifications

An appropriate environment and handling are necessary to use the subsystem for a long period of time without its functions being deteriorated. Do not install the subsystem in any of places shown below. Otherwise, the life of the subsystem may be shortened or the subsystem may become out of order.

- A place exposed to direct sunlight
- A place where the temperature and /or humidity change rapidly (A place close to an air-conditioner for example.)
- A place close to a device which generates electrical noises such as an ungrounded motors of an air conditioner and washing machine
- Close to a device which generates a strong magnetic field (Do not bring a magnet close to the subsystem.)
- A dusty or dirty place
- A place where vibration is transmitted

Table 2.4.1 are shows of Environmental Specifications the DF500.

Table 2.4.1 Environmental Specifications

		Model		Rackmo	unt model		Floor	model	
Item		/	RK/RKL	RKA	With U6 rack frame	With U4 rack frame	H1F/MK	H2F	Remarks
Temperature	In operation	(°C)			10 to	o 40		•	
	In non-operat	tion (°C)			-10 t	to 50			
	In transport/s	torage (°C)			-30 t	to 60			
	Temperature change rate	(°C/h)				0			
Humidity	In operation	(%)			8 to	80			
	In non-operat	tion (%)			8 to	90			
	Maximum we temperature	t bulb (°C)			2	9			No dew condensation is allowed.
Vibration	In operation ((m/s^2)			2.5 o	r less			
	In non-operat	tion (m/s²)		5.0 or less					
	In transport (packed)	(m/s ²)		5.0 or less					
Impact	In operation	(m/s ²)			20 or	·less			10 ms, half sine wave impact.
	In non-operat	tion (m/s²)	50 or less						
	In transport (packed)	(m/s ²)		80 or less					
Angle at which the subsystem will turn over		15° or more				To be measured when installed on leveling bolts.			
Atmosphere			No corros	ive gas and s	salty air must	be found.			
Acoustic nois	e (dB)		60 oi		65 or		60 or less	65 or less	Measured in the A scale at the position one meter away from the front end of the subsystem and one meter high.

2.4.2 Reliability

Reliability of DF500 is shown in Figure 2.4.2.

Table 2.4.2 Reliability

Model		Rackmou	unt model		Floor	model	
Item	RK/RKL	RKA	With U6 rack frame	With U4 rack frame	H1F/MK	H2F	Remarks
MTBF ^(*1)	N	MTBF of longer than 50,000 hours is expected.					
MTBDL ^(*2)	(-	n(n–1) ^(*4) :	(MTBF of th	RAID group	× MTTR ^(*3)		
	N. 1 12		Is		20 million ho		
Drop in package (JIS Z 0200- 1994)	No abnormalit caused by a fr of level IV.	•	No abnorma caused by a level IV. (on dropped wh end is suppo	drop of e end is ile another	abnormality must be caused by a free drop	No abnormality must be caused by a drop of level IV. (one end is dropped while another end is supported.)	
Radio frequency radiation		Cor	nforms to VC	CI Class A () dB	<u> </u>	
Instantaneous power failure			10 ms (1	00% dip)			
*1 : Mean Time Between Failure							

RAID 5: n(n-1) RAID $0: n^2$

RAID 1 and RAID 0+1: $\frac{n^2}{2}$

 $^{*2: \}underline{M}$ ean \underline{T} ime \underline{B} etween \underline{D} ata \underline{L} ost

^{*3 :} Mean Time To Repair

^{*4:} n = Number of mounted Disk drives

2.5 Handling and Maintenance Service

The subsystem is sensitive to vibration, shock, and dust. In addition, take care not to apply static electricity or an excessive force to it.

2.5.1 Handling

(1) Packing

- (a) Take care of the environment of the packing shop not to give the subsystem rapid temperature change. Apply moisture-proof packing to the subsystem.
- (b) When packing the subsystem, use the inner, outer, and shock absorbing materials used when it was delivered from the factory, or use another shock absorbing package that can protect the subsystem from direct shock.
- (c) Mark the "UP" indication clearly on the outer surface of the package, and show the instruction not to put the package upside down.

(2) Transport

During transport, do not allow any shock and vibration higher than specified values to be applied to the subsystem.

(3) Storage

Store the subsystem in the specified storage environment applying moisture-proof packing to it.

2.5.2 Periodical replacement parts and parts with limited lives

it. For details, please consult us.

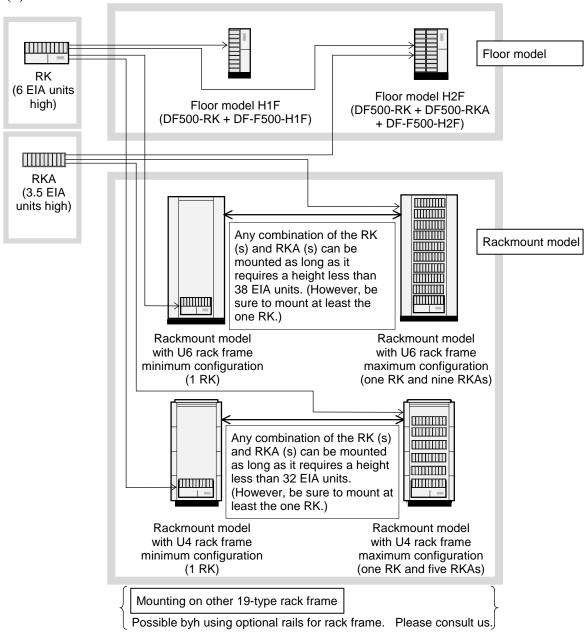
In the subsystem, periodical replacement parts and parts with limited lives are used. Periodical part replacement is required to maintain high-quality operation performance.

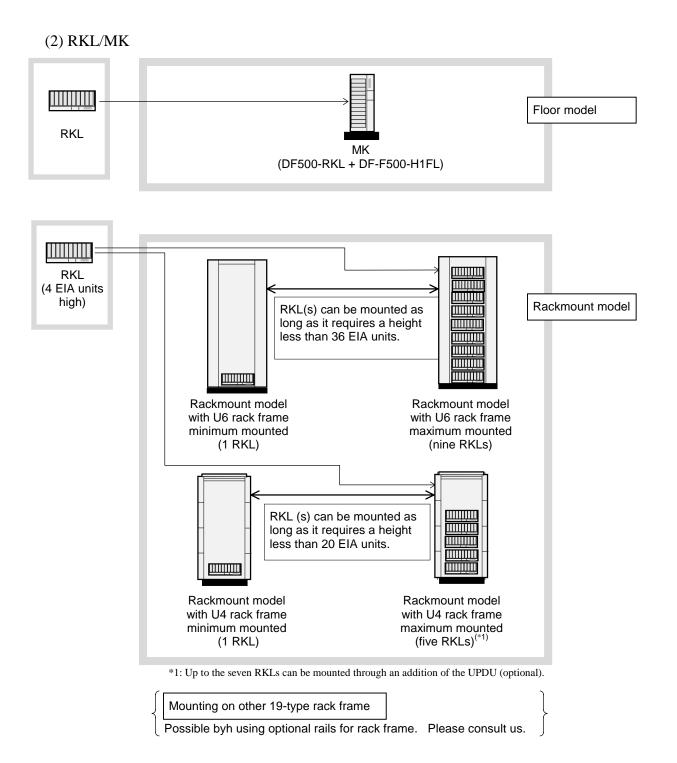
- Periodical replacement of the parts concerned is basically covered by the maintenance service contract. Otherwise, customer is requested to purchase the genuine replacement parts periodically and to replace the parts by them selves.
- Concerning the parts with limited lives, it is required to apply the special maintenance (overhaul) to the subsystem to replace them.
- The battery mounted in the subsystem is a periodical replacement part with an indication of part to be recycled.

Classification	Part name	Life	Treatment
Periodical replacement part	Battery unit	Two years	 When the maintenance service contract is made, the periodical replacement is performed as a part of maintenance service. If not, the periodical replacement must be performed basically by the user. The genuine parts must be used.
Part with limited life	Disk drive	Five years	maintenance when its life is expires. (After the time limit, possibility of failure occurrence will be higher and it is feared that data may be lost.) Life of the subsystem main body is eight years after the shipping from the factory even though the special maintenance is performed.
*1 : The ex	spected useful life	of the Disk dri	ve varies depending on the environment in which the customer uses

Copyright © 2000, 2001, Hitachi, Ltd.

Chapter 3 System Configurations


3.1 System Configurations


DF500 is composed of a combination of the RK(s) ,RKA(s) and RKL(s).

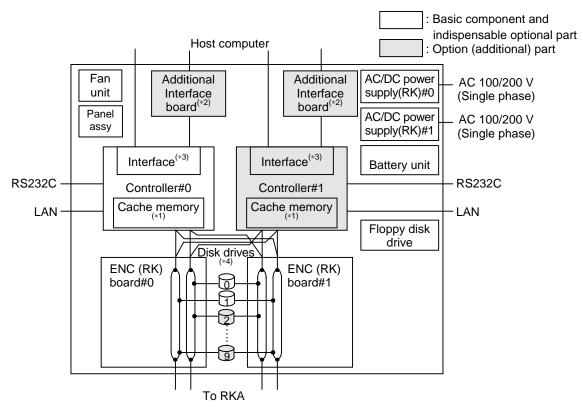
The floor model subsystem has three models, that is, a model configured with the one RK and configured with the one RK and one RKA, and another model one RKL.

When using an U6 rack frame which is an optional component, a system with one RK and up to nine RKAs (with 100 Disk drives at the maximum) can be configured.

(1) RK/RKA/H1F/H2F

3.1.1 System configurations of the rackmount model

Configuration block diagram of the RK, RKA and RKL are shown below.


The RK, RKA, and RKL can mount up to 10, 10, and 12 Disk drives respectively.

(The RK has a Controller that can control up to 100 Disk drives as RAID.)

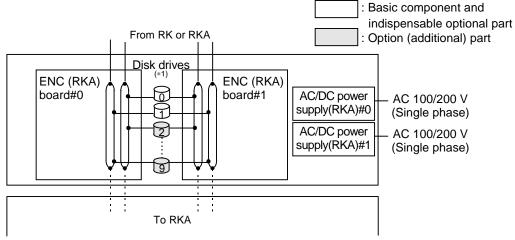
The Disk drives can be assigned to data disk(s), parity disk(s) (mirror disk(s)) depending on the RAID level. The RK is equipped with a controller which can control up to 100 Disk drives.

Up to five Spare disks can be mounted in any locations within the configuration. Figure 3.1.1 and 3.1.2 shows configuration block diagrams of the RK and RKA respectively.

(1) Rackmount model RK

- *1 : Cache memory :
 - DF-F500-C256, DF-F500-C512, or DF-F500-C1G
- *2 : Interface board (for extension) :

 $DF-F500-DFFM5,\, DF-F500-DFFM6,\, DF-F500-DF2G2,\, DF-F500-DFUDS,\, or\, DF-F500-DFU2S$

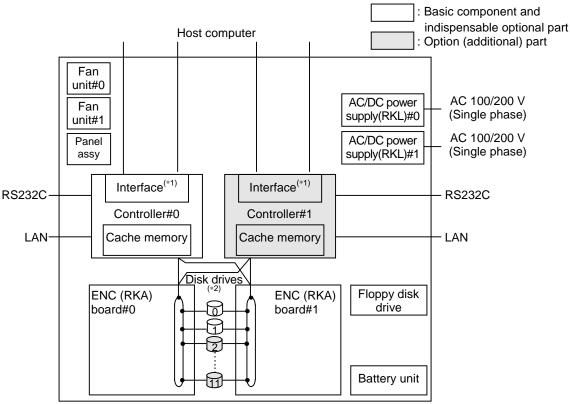

- *3: Interface (mounted in the controller): 1 Gbps Fibre Channel (Non-OFC)

 However, when the DF2G2, DFUDS or DFU2S board are selected for an additional Interface board, the 1 G bps Fibre Channel cannot be used.
- *4: Disk drive:

DF-F500-AAF8, DF-F500-AAF18, DF-F500-AAH18, DF-F500-AAF36, or DF-F500-AAF72

Figure 3.1.1 System Configuration of the RK

(2) Rackmount model RKA



*1 : Disk drive:

DF-F500-AAF8, DF-F500-AAF18, DF-F500-AAH18, DF-F500-AAF36, or DF-F500-AAF72

Figure 3.1.2 System Configurations of the RKA

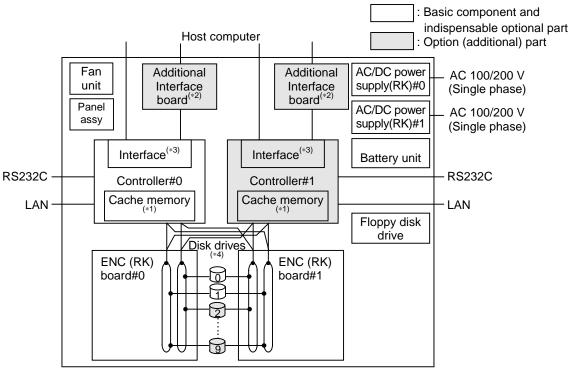
(3) Rackmount model RKL

^{*1 :} Interface (mounted in the controller) : Fibre Channel (Non-OFC) and SCSI(LVD/Single-ended, HVD) DF-F500-F1FL, DF-F500-F2FL, or DF-F500-F3FL

Figure 3.1.3 System Configuration of the RKL

 $^{*2:} Disk\ drive: DF-F500-ACF18,\ DF-F500-ACH18,\ DF-F500-ACF36,\ or\ DF-F500-ACF72$

3.1.2 System configurations of the floor model


Configuration block diagram of the H1F, H2F and MK are shown below.

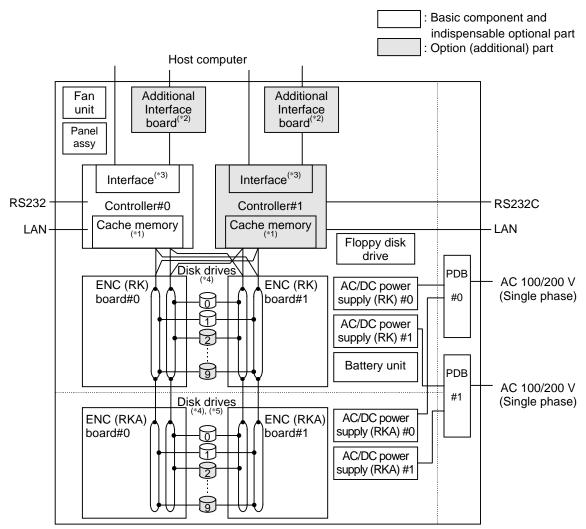
The H1F, H2F, and MK can mount up 10, 20, and 12 Disk drives respectively and each of them kas a controller that can control the Disk drives as RAID.

The Disk drives can be assigned to data disk(s), parity disk(s) (mirror disk(s)) depending on the RAID level. The RK is equipped with a controller which can control up to 100 Disk drives.

Up to five Spare disks can be mounted in any locations within the configuration. Figure 3.1.4, 3.1.5 and 3.1.6 shows configuration block diagrams of the H1F, H2F and MK respectively.

(1) Floor model H1F

- *1 : Cache memory :
 - DF-F500-C256, DF-F500-C512, or DF-F500-C1G
- *2: Interface board (for extension):
 - DF-F500-DFFM5, DF-F500-DFFM6, DF-F500-DF2G2, DF-F500-DFUDS, or DF-F500-DFU2S
- *3: Interface (mounted in the controller): 1 Gbps Fibre Channel (Non-OFC)

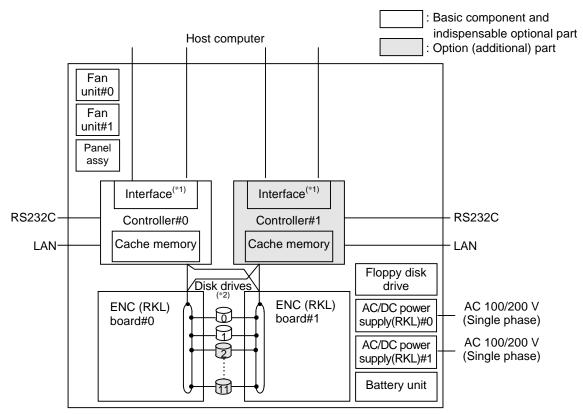

 However, when the DF2G2, DFUDS or DFU2S board are selected for an additional Interface board, the 1 G bps Fibre Channel cannot be used.
- *4 : Disk drive :

DF-F500-AAF8, DF-F500-AAF18, DF-F500-AAH18, DF-F500-AAF36, or DF-F500-AAF72

Figure 3.1.4 System Configuration of the H1F

‡1: No Spare disk can be set for the Disk drives #0 and #1 of the RK, RKA, and RKL.

(2) Floor model H2F


*1 : Cache memory :

DF-F500-C256, DF-F500-C512, or DF-F500-C1G

- *2: Interface board (for extension):
 - DF-F500-DFFM5, DF-F500-DFFM6, DF-F500-DF2G2, DF-F500-DFUDS, or DF-F500-DFU2S
- *3: Interface (mounted in the controller): 1 Gbps Fibre Channel (Non-OFC) However, when the DF2G2, DFUDS or DFU2S board are selected for an additional Interface board, the 1 G bps Fibre Channel cannot be used.
- *4 : Disk drive :
 - DF-F500-AAF8, DF-F500-AAF18, DF-F500-AAH18, DF-F500-AAF36, or DF-F500-AAF72
- *5: When no additional Disk drive is installed, turn off the power supplied to the AC/DC power supply (RKA)'s.

Figure 3.1.5 System Configuration of the H2F

(3) Floor model MK

 $^{*1:} Interface \ (mounted \ in \ the \ controller): Fibre \ Channel \ (Non-OFC) \ and \ SCSI(LVD/Single-ended, \ HVD) \\ DF-F500-F1FL, \ DF-F500-F2FL, \ or \ DF-F500-F3FL$

Figure 3.1.6 System Configuration of the MK

 $^{*2:} Disk\ drive: DF-F500-ACF18,\ DF-F500-ACH18,\ DF-F500-ACF36,\ or\ DF-F500-ACF72$

3.1.3 Configuration of rackmount model with U6 rack frame

The DF-F500-U6 is an exclusive rack frame use for mounting a combination of the RK(s) (6 EIA units high) and the RKA(s) (3.5 EIA units high) up to a height of 38 EIA units (‡1), (‡2). It can mount up to nine RKLs (4 EIA units high each), that is, up to a height of 36 EIA units.

It consists of a rack frame main body and PDBs to be used to supply AC power to power supply units of the mounted RK(s), RKA(s) and RKL(s). The four PDBs are installed to allow the power system to be duplicated.

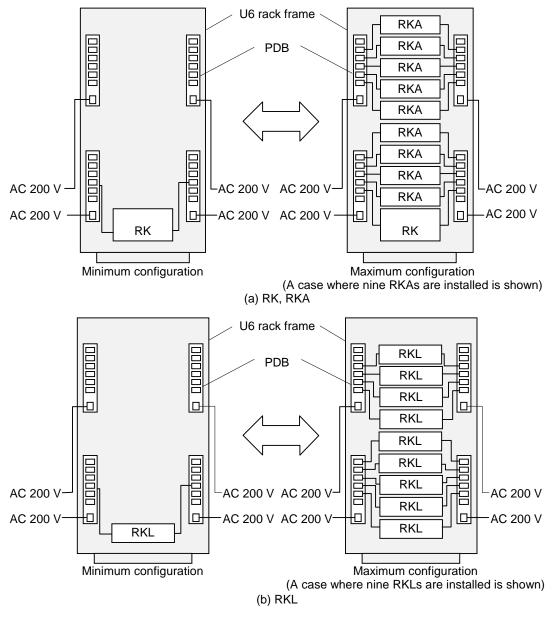


Figure 3.1.7 System Configuration of Rackmount Model with U6 Rack Frame

^{‡1 :} At least one RK is required per system.

^{‡2:} Install the RK and RKL in the bottom position of the rack frame. When connecting the RKAs, install them above the RK adjacently to each other.

3.1.4 Configuration of rackmount model with U4 rack frame

The DF-F500-U4 is an exclusive rack frame use for mounting a combination of the RK(s) (6 EIA units high) and the RKA(s) (3.5 EIA units high) up to a height of 32 EIA units (‡1), (‡2). It can mount up to five(‡3) RKLs (4 EIA units high each), that is, up to a height of 20 EIA units.

It consists of a rack frame main body and PDUs to be used to supply AC power to power supply units of the mounted RK(s), RKA(s) and RKL(s). The two PDUs are installed to allow the power system to be duplicated.

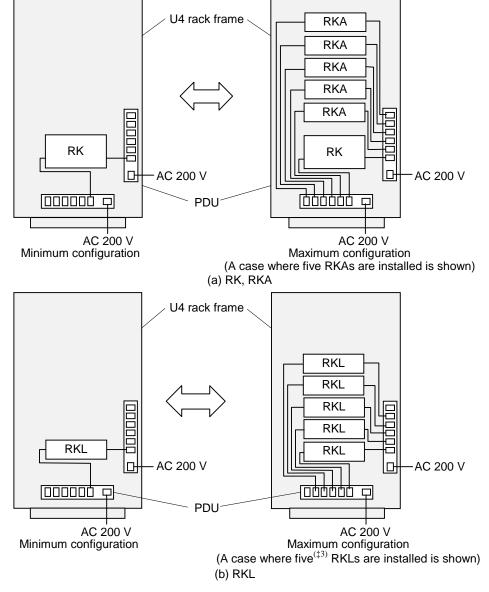


Figure 3.1.8 System Configuration of Rackmount Model with U4 rack frame

- ‡1: At least one RK is required per system.
- ‡2 : Install the RK and RKL in the bottom position of the rack frame. When connecting the RKAs, install them above the RK adjacently to each other.
- ‡3: Up to the seven RKLs can be mounted through an addition of the UPDU (optional).

3.2 Components and Optional Parts of DF500

3.2.1 DF500-RK

(1) Configuration of the RK Components and indispensable optional parts are shown below.

Table 3.2.1 Components and Indispensable Optional Parts of the RK

Classification	Model	Name	Configuration and specification	Selection
RK	DF500-RK	Disk array system	Frame (1), Controller (including Fibre Channel interface) (1), AC/DC power supply (RK) (2), Battery unit (1), Fan unit (1), Floppy disk drive (1), ENC (RK) board (2), Key (2), J2F power cable (2)	_
Disk drive (Indispensable option)	DF-F500-AAF8	3.5-type Disk drive (8.7 G bytes)	3.5-type Disk drive (8.7 G bytes) installed in a canister. (Disk rotational speed : 10,000 min ⁻¹)	Refer to Table 3.2.2. • Select a necessary number of Disk drives
	DF-F500-AAF18	3.5-type Disk drive (17.8 G bytes)	3.5-type Disk drive (17.8 G bytes) installed in a canister. (Disk rotational speed: 10,000 min ⁻¹)	from the models shown on the left according to required
	DF-F500-AAH18	3.5-type Disk drive (17.8 G bytes)	3.5-type Disk drive (17.8 G bytes) installed in a canister. (Disk rotational speed : 15,000 min ⁻¹)	storage the capacity.
	DF-F500-AAF36	3.5-type Disk drive (35.6 G bytes)	3.5-type Disk drive (35.6 G bytes) installed in a canister. (Disk rotational speed : 10,000 min ⁻¹)	
	DF-F500-AAF72	3.5-type Disk drive (71.6 G bytes)	3.5-type Disk drive (71.6 G bytes) installed in a canister. (Disk rotational speed : 10,000 min ⁻¹)	
Cache memory (Indispensable option)	DF-F500-C256	Cache memory (256 M bytes)	Cache memory of 256 M bytes (128 M bytes×2)	Select a Cache memory to be installed in the Controller from
	DF-F500-C512	Cache memory (512 M bytes)	Cache memory of 512 M bytes (256 M bytes×2)	the models shown on the left. •Install any one model
	DF-F500-C1G	Cache memory (1,024 M bytes)	Cache memory of 1,024 M bytes (512 M bytes×2)	of Cache memory.

Table 3.2.2 Configuration Unit of Disk Drive

		Configuration	Number of Disk drives contained in unit of configuration			
RAID le	vel (*1)		Minimum configuration(*2)	Unit of additional Disk drive		
0	n	(n=2 to 16)	2	2 to 16 ^(*3)		
1	1D+1P		2	2		
5	nD+1P	(n=2 to 15)	3	3 to 16 ^(*3)		
0+1	nD+nP	(n=2 to 8)	4	4, 8, 12 ^(*3) , 16 ^(*3)		

 $^{*1:}D:Data\;disk$

P : Parity disk

^{*2 :} For the data capacity of each configuration unit, refer to "Appendix A List of Storage Capacities Corresponding to RAID Levels and Configurations" on page 7000.

^{*3:} Only when the RKA is connected to the RK.

(2) Optional parts of RK Optional parts of the RK are shown below.

Table 3.2.3 Optional Parts of the RK

Classification	Model	Name	Configuration and specification	Selection				
Disk drive	DF-F500-AAF8	(8.7 G bytes)	3.5-type Disk drive (8.7 G bytes) installed in a canister. (Rotational speed : 10,000 min ⁻¹)	Refer to Table 3.2.2. Select a necessary number of Disk drive each of which has a				
		3.5-type Disk drive (17.8 G bytes)	3.5-type Disk drive (17.8 G bytes) installed in a canister. (Rotational speed : 10,000 min ⁻¹)	capacity within a range of 8.7 to 71.6 G bytes according to the total capacity you want to				
	DF-F500-AAH18	(17.8 G bytes)	3.5-type Disk drive (17.8 G bytes) installed in a canister. (Rotational speed : 15,000 min ⁻¹)	provide. Spare disks: Up to five Spare disks can be set for a				
	DF-F500-AAF36	3.5-type Disk drive (35.6 G bytes)	3.5-type Disk drive (35.6 G bytes) installed in a canister. (Rotational speed : 10,000 min ⁻¹)	subsystem. The Spare disk requires no power supply. Use Disk drive(s) with a				
	DF-F500-AAF72	3.5-type Disk drive (71.6 G bytes)	3.5-type Disk drive (71.6 G bytes) installed in a canister. (Rotational speed : 10,000 min ⁻¹)	capacity as large as the maximum one that the installed Disk drives have.				
Cache memory	DF-F500-C256	Cache memory (256 M bytes)	Cache memory of 256 M bytes (128 M bytes×2)	Select a Cache memory to be installed				
	DF-F500-C512	Cache memory (512 M bytes)	Cache memory of 512 M bytes (256 M bytes×2)	in the Controller from the models shown				
	DF-F500-C1G	Cache memory (1,024 M bytes)	Cache memory of 1,024 M bytes (512 M bytes×2)	on the left.				
Interface board	DF-F500-DFFM5	Interface 1 G bps Fibre Channel (Optical) Non-OFC	1 G bps Fibre Channel optical (Non- OFC) 100-M5-SN-I, DC connector For additional port	Select any one board from the models shown on the left according to the interface to be				
	DF-F500-DFFM6 (*1)	Interface 1 G bps Fibre Channel (Optical) Non-OFC	1 G bps Fibre Channel optical (Non- OFC) 100-M5-SN-I, DC connector For additional port	used.				
	DF-F500-DF2G2 (*2)	Interface 2 G bps Fibre Channel ×2 port (Optical) Non-OFC	2 G bps Fibre Channel optical (Non- OFC) 200-M5-SN-I, LC connector For additional port					
	DF-F500-DFUDS (*2)		Wide differential, 68-pin, pin-type, screw-locked (with built in terminator)					
	DF-F500-DFU2S	Interface U/2	LVD, 68-pin, pin-type, screw-locked (with built in terminator)					
Controller	DF-F500-F1F	Controller for duplicating the system	Array Controller for duplicating the system. For Fibre Channel interface.	The Controller can be duplicated. Install a Cache memory with the same capacity as that of the Cache memory installed in the basic Controller.				
	*1 : This is an Interface board that supports the F-Port and has downward compatibility with the DF-F500-DFFM5. *2 : When installing DF2G2 DELIDS or DELI2S 1 G has Fibra Channel interface on the Controller can not be used							

^{*2:} When installing DF2G2, DFUDS or DFU2S, 1 G bps Fibre Channel interface on the Controller can not be used.

3.2.2 DF500-RKA

(1) Configuration of the RKA Components and indispensable optional parts are shown below.

Table 3.2.4 Components and Indispensable Optional Parts of the RKA

Classification	Model	Name	Configuration and specification	Selection
RKA	DF500-RKA	Additional disk array	Frame (1), AC/DC power supply (RKA) (2), ENC (RKA) board (2), J2F Power cable (2), ENC cable (4)	_
Disk drive (Indispensable option)	DF-F500-AAF8	3.5-type Disk drive (8.7 G bytes)	3.5-type Disk drive (8.7 G bytes) installed in a canister. (Rotational speed : 10,000 min ⁻¹)	Select a necessary number of Disk drives each of which has a capacity within a range of 8.7 to 71.6 G bytes
	DF-F500-AAF18	3.5-type Disk drive (17.8 G bytes)	3.5-type Disk drive (17.8 G bytes) installed in a canister. (Rotational speed : 10,000 min ⁻¹)	according to the total capacity you want to provide. Spare disks: •Up to five Spare disks
	DF-F500-AAH18	3.5-type Disk drive (17.8 G bytes)	3.5-type Disk drive (17.8 G bytes) installed in a canister. (Rotational speed : 15,000 min ⁻¹)	can be set for a subsystem. The Spare disk requires no power supply.
	DF-F500-AAF36	3.5-type Disk drive (35.6 G bytes)	3.5-type Disk drive (35.6 G bytes) installed in a canister. (Rotational speed : 10,000 min ⁻¹)	 Use Disk drive(s) with a capacity as large as the maximum one that the installed Disk
	DF-F500-AAF72	3.5-type Disk drive (71.6 G bytes)	3.5-type Disk drive (71.6 G bytes) installed in a canister. (Rotational speed : 10,000 min ⁻¹)	drives have.

(2) Optional parts of RKA Optional parts of the RKA are shown below.

Table 3.2.5 Optional Parts of the RKA

Classification	Model	Name	Configuration and specification	Selection
Disk drive	DF-F500-AAF8	3.5-type Disk drive (8.7 G bytes)	3.5-type Disk drive (8.7 G bytes) installed in a canister. (Rotational speed : 10,000 min ⁻¹)	Select a necessary number of Disk drive each of which has a capacity within a range
	DF-F500-AAF18	3.5-type Disk drive (17.8 G bytes)	3.5-type Disk drive (17.8 G bytes) installed in a canister. (Rotational speed : 10,000 min ⁻¹)	of 8.7 to 71.6 G bytes according to the total capacity you want to provide.
	DF-F500-AAH18	3.5-type Disk drive (17.8 G bytes)	3.5-type Disk drive (17.8 G bytes) installed in a canister. (Rotational speed : 15,000 min ⁻¹)	Spare disks: Up to five Spare disks can be set for a subsystem. The Spare disk requires no power supply. Use Disk drive(s) with
	DF-F500-AAF36	3.5-type Disk drive (35.6 G bytes)	3.5-type Disk drive (35.6 G bytes) installed in a canister. (Rotational speed : 10,000 min ⁻¹)	
	DF-F500-AAF72	3.5-type Disk drive (71.6 G bytes)	3.5-type Disk drive (71.6 G bytes) installed in a canister. (Rotational speed : 10,000 min ⁻¹)	a capacity as large as the maximum one that the installed Disk drives have.

3.2.3 DF500-RKL

(1) Configuration of the RKL

Components and indispensable optional parts are shown below.

Table 3.2.6 Components and Indispensable Optional Parts of the RKL

Classification	Model	Name	Configuration and specification	Selection
RKL	DF500-RKL	Disk array system	Frame (1), AC/DC power supply (RKL) (2), Battery unit (1), Fan unit (2), Floppy disk drive (1), ENC (RKL) board (2), Key (2), J2F power cable (2)	_
Disk drive (Indispensable option)	DF-F500-ACF18		3.5-type Disk drive (17.8 G bytes) installed in a canister. (Disk rotational speed : 10,000 min ⁻¹)	Refer to Table 3.2.6. • Select a necessary number of Disk drives
	DF-F500-ACH18		3.5-type Disk drive (17.8 G bytes) installed in a canister. (Disk rotational speed : 15,000 min ⁻¹)	from the models shown on the left according to the
	DF-F500-ACF36		3.5-type Disk drive (35.6 G bytes) installed in a canister. (Disk rotational speed: 10,000 min ⁻¹)	required storage capacity.
	DF-F500-ACF72		3.5-type Disk drive (71.6 G bytes) installed in a canister. (Disk rotational speed: 10,000 min ⁻¹)	
Controller	DF-F500-F1FL	Controller	Array Controller (Including Fibre Channel interface)	 Select any one board from the models
	DF-F500-F2FL	Controller	Array Controller (Including SCSI LVD/single-ended interface)	shown on the left according to the interface to be used.
	DF-F500-F3FL	Controller	Array Controller (Including SCSI Wide differential interface)	

Table 3.2.7 Configuration Unit of Disk Drive

Configuration			Number of Disk drives contained in unit of configuration		
RAID le	vel ^(*1)		Minimum configuration (*2)	Unit of additional Disk drive	
0	n	(n=2 to 12)	2	2 to 10	
1	1D+1P		2	2	
5	nD+1P	(n=2 to 11)	3	3 to 9	
0+1	nD+nP	(n=2 to 6)	4	2, 4, 6, 8	

^{*1 :} D : Data disk

P : Parity disk

^{*2 :} For the data capacity of each configuration unit, refer to "Appendix A List of Storage Capacities Corresponding to RAID Levels and Configurations" on page 7000.

(2) Optional parts of RKL Optional parts of the RKL are shown below.

Table 3.2.8 Optional Parts of the RKL

Classification	Model	Name	Configuration and specification	Selection
Disk drive	DF-F500-ACF18	3.5-type Disk drive (17.8 G bytes)	3.5-type Disk drive (17.8 G bytes) installed in a canister. (Disk rotational speed : 10,000 min ⁻¹)	Select a necessary number of Disk drive each of which has a capacity within a range of 17.8 to 71.6 G bytes
	DF-F500-ACH18	3.5-type Disk drive (17.8 G bytes)	3.5-type Disk drive (17.8 G bytes) installed in a canister. (Disk rotational speed : 15,000 min ⁻¹)	according to the total capacity you want to provide. Spare disks: •Up to five Spare disks
	DF-F500-ACF36	3.5-type Disk drive (17.8 G bytes)	3.5-type Disk drive (35.6 G bytes) installed in a canister. (Disk rotational speed : 10,000 min ⁻¹)	can be set for a subsystem. The Spare disk requires no power supply.
	DF-F500-ACF72	3.5-type Disk drive (17.8 G bytes)	3.5-type Disk drive (71.6 G bytes) installed in a canister. (Disk rotational speed : 10,000 min ⁻¹)	 Use Disk drive(s) with a capacity as large as the maximum one that the installed Disk drives have.
Controller	DF-F500-F1FL	Controller for duplicating the system	Array Controller for duplicating the system. For Fibre Channel interface.	•The Controller can be duplicated.
	DF-F500-F2FL	Controller for duplicating the system	Array Controller for duplicating the system. For SCSI LVD/single-ended interface.	
	DF-F500-F3FL	Controller for duplicating the system	Array Controller for duplicating the system. For SCSI Wide differential interface.	

3.3 Accessory Parts of the RK, RKA and RKL

Accessory parts of the RK, RKA and RKL are shown below.

The optional parts of the RK , RKA and RKL are shown in Section 3.2, "Components and Optional Parts of DF500" on page 0520.

Table 3.3.1 Accessory Parts of the RK, RKA and RKL

Classification	Model	Name	Usage	Remarks
Floor stand kit	DF-F500-H1F	Floor stand kit	Kit for remaking the RK to floor	
	DE ESOS LIGE	(for one RK)	model.	
	DF-F500-H2F	Floor stand kit (for one RK + one	Kit for connecting the RK and RKA and remaking them to floor model.	
		ŘKA)	-	
	DF-F500-H3F	Additional slot kit	A frame unit to be joined to the floor	
			model H1F or floor model H2F in order to install an accessory device	
			such as a Remote adapter.	
	DF-F500-H1FL	Floor stand kit	Kit for remaking the RKL to floor	
		(for one RKL)	model.	
Rack frame	DF-F500-U4	U4 rack frame	Exclusive rack frame for mount ing an RK and RKA(s), and RKL(s).	
			Supplied with two AC power cables.	
			• Can mount the RK(s) and RKA(s)	
			up to a height of 32 EIA units.	
			• Can mount the RKL(s) up to a	
	DF-F500-U6	U6 rack frame	height of 20 EIA units. Exclusive rack frame for mounting	
	DF-F300-06	Ob rack frame	an RK and RKA(s), and RKL(s).	
			Supplied with four AC power cables.	
			• Can mount the RK(s) and RKA(s)	
			up to a height of 38 EIA units.	
			• Can mount the RKL(s) up to a	
Rack rail	DF-F500-URHT5	Dack rails for the	height of 36 EIA units. Rail kit for mounting the RK(s) and	As many kits as the
IXACK TAII	DI -1 300-01(1113	U6	RKA(s) on the U6 rack frame.	subsystems to be
				added are required.
	DF-F500-URHP5	Rack rails for the	Rail kit for mounting the RK(s),	
		HP	RKA(s) and .RKL(s) on the U4 or HP	
	DE EEOC LIBBAT	D-01144-	rack frame.	
	DF-F500-URRA5	Rail kit for mounting the	Rails for mounting the RK(s), RKA(s) and RKLs) on the Hitachi common	
		Hitachi common	rack frame. (for 3500, HA8000, and	
		rack frame (for	FLORA)	
		3500, HA8000,	,	
		FLORA)		
	DF-F500-URSU5		Rails for mounting the RK(s), RKA(s)	
		Sun	and RKL(s) on the Sun StorEdge rack frame.	
Decoration	DF-F500-U10D	Decoration panel	Panel to cover vacant space (1U) of	
panel	2. 1000 0100	(1U) for the U6	the U6 rack frame.	
ľ	DF-F500-U05D	Decoration panel	Panel to cover vacant space (0.5U)	
		(0.5U)	of the rack frame.	
PDU	DF-F500-UPDU	For U4	PDU for U4 rack frame.	

3.4 Accessory Parts

Model names and specifications of accessory parts are shown below.

Table 3.4.1 Accessory Parts

Classification	Model	Name	Specification	Remarks
Power cable	DF-F500-J1F	Power cable	2.5 m, 2-pole power cable with grounding terminal (AC 125 V, 13 A)	Plug : 5-15P of NEMA standard (Refer to page 1130)
	DF-F500-J2F	Power cable	2.5 m, 2-pole power cable with grounding terminal (AC 250 V, 10 A)	Refer to page 1130.
	DF-F500-J4	Power cable	5.0 m, 2-pole power cable with grounding terminal (AC 250 V, 10 A)	Cable clamps cannot be used.
	DF-F500-J5	Power cable	10.0 m, 2-pole power cable with grounding terminal (AC 250 V, 10 A)	(Refer to page 1130.)
Interface cable (Fibre Channel)	DF-F500-K1OP	Fibre Channel cable	For optical, 5 m	Refer to page 0670.
	DF-F500-K2OP	Fibre Channel cable	For Optical, 10 m	
	DF-F500-K3OP	Fibre Channel cable	For Optical, 20 m	
	DF-F500-K4OP	Fibre Channel cable	For Optical, 50 m	
	DF-F500-K5OP	Fibre Channel cable	For Optical, 100 m	
	DF-F500-KB1P	LC-SC ^(*1) conversion cable	For optical, 5 m	
	DF-F500-KB2P	LC-SC ^(*1) conversion cable	For optical, 10 m	
	DF-F500-KB3P	LC-SC ^(*1) conversion cable	For optical, 20 m	
	DF-F500-KB4P	LC-SC ^(*1) conversion cable	For optical, 50 m	
	DF-F500-KB5P	LC-SC ^(*1) conversion cable	For optical, 100 m	
	DF-F500-KC1P	LC-LC ^(*1) cable	For optical, 5 m	
	DF-F500-KC2P	LC-LC ^(*1) cable	For optical, 10 m	
	DF-F500-KC3P	LC-LC ^(*1) cable	For optical, 20 m	
	DF-F500-KC4P	LC-LC ^(*1) cable	For optical, 50 m	1
	DF-F500-KC5P	LC-LC ^(*1) cable	For optical, 100 m	
	DF-F500-K1B	Fibre Channel cable for additional	FC cable 0.5 m × 2	ENC cable
Interface cable (SCSI)	DF-F500-K350L	SCSI cable	5 m, 50-pin, pin/latch type	Refer to page 0940.
(3001)	DF-F500-K450L	SCSI cable	5 m, 50-pin, bellows/latch type	

^{*1 :} General specifications for connectors are shown below.

¹ G bps (100 M bytes/s) Fibre Channel connectors : SC or LC connectors are to be used. (For the DF500, SC connectors are to be used.)

² G bps (200 M bytes/s) Fibre Channel connectors: LC connectors are to be used. (For the DF500, LC connectors are to be used also.)

Classification	Model	Name	Specification	Remarks
Interface cable (SCSI)	DF-F500-K550L	SCSI cable	1.5 m, 50-pin, pin/latch type	Refer to page 0940.
	DF-F500-K650L	SCSI cable	3 m, 50-pin, pin/latch type	
	DF-F500-K750L	SCSI cable	1.5 m, 50-pin, bellows/latch type	
	DF-F500-K850L	SCSI cable	3 m, 50-pin, bellows/latch type	
	DF-F500-K068L	SCSI cable	1.5 m, 68-pin, bellows/latch type	
	DF-F500-K168L	SCSI cable	3 m, 68-pin, bellows/latch type	
	DF-F500-K268L	SCSI cable	5 m, 68-pin, bellows/latch type	
	DF-F500-K568L	SCSI cable	20 m, 68-pin, bellows/latch type	
	DF-F500-K068M	SCSI cable	1.5 m, 68-pin, mini bellows/screw-locked type	
	DF-F500-K168M	SCSI cable	3 m, 68-pin, mini bellows/screw- locked type	
	DF-F500-K268M	SCSI cable	5 m, 68-pin, mini bellows/screw-locked type	
	DF-F500-K368M	SCSI cable	15 m, 68-pin, mini bellows/screw- locked type	
	DF-F500-K468M	SCSI cable	10 m, 68-pin, mini bellows/screw-locked type	
	DF-F500-K068S	SCSI cable	1.5 m, 68-pin, pin/screw-locked type	
	DF-F500-K168S	SCSI cable	5 m, 68-pin, pin/screw-locked type	
	DF-F500-K268S	SCSI cable	3 m, 68-pin, pin/screw-locked type	
	DF-F500-K368S	SCSI cable	10 m, 68-pin, pin/screw-locked type	
	DF-F500-K468S	SCSI cable	15 m, 68-pin, pin/screw-locked type	
	DF-F500-K568S	SCSI cable	0.5 m, 68-pin, pin/screw-locked type	
RS232C cable	DF-F500-S1	RS232C cable	9 pins - 9 pins, 5 m	Refer to page 1090.
	DF-F500-S2	RS232C cable	9 pins - 9 pins, 10 m	
	DF-F500-SH2	RS232C cable	9 pins - 25 pins, 5 m	Refer to page 1100.
	DF-F500-SH3	RS232C cable	9 pins - 25 pins, 10 m	
	DF-F500-SS2	RS232C cable	9 pins - 25 pins, 5 m	Refer to page 1110.
	DF-F500-SS3	RS232C cable	9 pins - 25 pins, 10 m	
	DF-F500-SR2	RS232C cable	9 pins - 25 pins, 5 m	Refer to page 1120.
	DF-F500-SR3	RS232C cable	9 pins - 25 pins, 10 m	

3.5 Software of DF500

Model names and specifications of function enhancement software and application software of DF500 are shown below.

(1) Function enhancement software

Table 3.5.1 List of Function Enhancement Software

Classification	Model	Name	Specification	Remarks
Turbo LU residence function	DF-F500-WLU	Turbo LU residence function	Turbo LU residence function	
Fibre security function	DF-F500-WSEC	Fibre security control function	Fibre security control function for supporting SAN system (Port, LUN security)	
ID take-over function	DF-F500-WD	ID take-over control function	SCSI ID/Port ID take-over control function (SCSI Hot Standby + FC Port ID Dual Active ID Succession)	
SNMP support function	DF-F500-WS	SNMP support control function	SNMP support control function	
Password protection function	DF-F500-WSPS	Password protection control function	Password protection control function	
MRCF-Lite function	DF-F500-WCFL	MRCF-Lite control function	MRCF-Lite function	

(2) The application software

Table 3.5.2 List of Application software

Classification	Model	Name	Specification	Remarks
71 3	P-242Z-J101	Utility program for supporting Web	Utility program for Windows	
	P-242Z-J102	Disk Array management	GUI for Windows	
	P-242Z-J103	program /Disk Array	CLI for Windows	
	P-242Z-J104	management program 2 (*1)	GUI + CLI for Windows	
	P-242Z-J105		GUI + CLI for Windows	A version in cooperation and integrates with the network management software.
	P-9D2Z-J301		GUI for Solaris	
	P-9D2Z-J302	1	CLI for Solaris	
	P-9D2Z-J303	-	GUI + CLI for Solaris	
	P-9H2Z-J000	-	GUI for IRIX	
	P-9H2Z-J001	-	CLI for IRIX	
	P-9H2Z-J002	-	GUI + CLI for IRIX	
	P-922Z-J002	-	CLI for HP-UX	
Failure notifica- tion program	P-9Z2S-J001	Failure notification program	For Hitachi 9000V series server (using HP-UX10.01 or later) Medium : DAT	 Hitachi 9000V series workstations are not supported. RS232C cable is required separately.
	P-9Z2S-J002	Failure notification program	For SUN SPARC Station (using Sun OS4.1.3 or later) Medium : CD-R	Solaris version of the program cannot operate on Sun OS. RS232C cable ordered separately is required.
	P-9Z2S-J003	Failure notification program	For SUN SPARC Station (using Solaris 2.4 or later) Medium : 3.5-inch FD	Sun OS version of the program cannot operates on Solaris. RS232C cable is required separately.
	P-9Z2S-J004	Failure notification program	(using AIX3.2.5 or later) Medium : 3.5-inch FD	RS232C cable ordered separately is required.
	P-222Z-J001	Failure notification program	Failure monitoring program needed for the failure monitoring service (SD-5110-2601) by means of LAN configuration with PC and TCP/IP	
*1 : The	Disk Array manageme	ent program 2 is provided	l by Disk Array management program Ver.5.10	or later.

Classification	Model	Name	Specification	Remarks
Path manager	P-242Z-J013	Path manager	Path Manager (for Windows NT) with	 These are for SCSI.
		-	alternative path function only	For the Fibre Channel
	P-912Z-J013		Path Manager (for AIX entry	version, please
			machine) with alternative path	consult us.
			function only	
	P-912Z-J014	Path manager	Path Manager (for AIX enterprise	
			machine) with alternative path	
			function only	
	P-9D2Z-J113	Path manager	Path Manager (for Solaris) with	
			alternative path function only	

Chapter 4 Interface

There are two interfaces with a host computer available, that is, Fibre Channel (Non-OFC) and SCSI. The Fibre Channel interface as the standard by RK, H1F and H2F, however, the subsystem can support the SCSI interface by using the optional Interface board.

4.1 Fibre Channel Connection Specifications

4.1.1 System configuration

The maximum number of devices connectable to the FC-AL or FC-SW is 126 including DF500, host computers, and other Fibre Channel devices. However, the number of host computers which can access subsystem at the same time is limited to 15.

When constructing a system with the FC-AL or AC-SW, take the following in consideration.

- Use the HUB which conforms to the FC-AL standard.
- If you use the least Fibre Channel devices connected when loop the Fibre Channel, you can get higher performance.
- Since high-speed serial data transfer is performed via Fibre Channel, use high-quality Fibre Channel cables which conform to the FC-PH standard.
- (1) Notes on the case of the Fibre Channel configuration
 - (a) Setting of the 1 G bps mode or 2 G bps mode for the DF2G2
 - (i) The auto-negotiation for a selection of the 1 G bps mode or 2 G bps mode cannot be done.
 - A selection of the 1 G bps mode or 2 G bps mode must be done manually because specifications for the case of the Fibre Channel configuration are cot fixed yet.
 - (ii) A switching between the 1 G bps and 2 G bps modes performed with the subsystem power on.
 - A switching between the 1 G bps and 2 G bps modes can be done while the subsystem power is on.

DF500

(b) The dual CTL configuration

(i) In the mode other than the ID Take-Over No restrictions are placed (the 1 G bps and 2 G bps modes can coexist). For the details, refer to Table 4.1.1.

Table 4.1.1 Possibility for Setting I/F Port in the Mode Other than the ID Take-Over

				CTL1	
			DFFM5/DFFM6	DF2	2G2
			1 G bps	1 G bps mode	2 G bps mode
	DFFM5/DFFM6	1 G bps	0	0	0
CTL0	DF2G2	1 G bps mode	0	0	0
		2 G bps mode	0	0	0

(ii) In the ID Take-Over mode

The CTL0 and CTL1 must have the same hardware configuration. For the details, refer to Table 4.1.2.

Table 4.1.2 Possibility for Setting I/F Port in the ID Take-Over Mode

				CTL1 ^(*1)	
			DFFM5/DFFM6	DF2	2G2
			1 G bps	1 G bps mode	2 G bps mode
	DFFM5/DFFM6	1 G bps	0	×	×
CTL0 ^(*1)	DF2G2	1 G bps mode	×	0	×
		2 G bps mode	×	×	0
*1 : A different mode setting can be made for each of the A and B ports. However, the same setting must					
b	e made for the corresp	ponding ports of the	e CTL0 and CTL1 (0	A and 1A ports and	0B and 1B ports).

(c) Usability of FL and F ports

Table 4.1.3 shows whether the ports are supported or not.

Table 4.1.3 Scope of Support for FL and F Ports

		1 G bps	1 G bps mode
DFFM5	1G bps	0	×
DFFM6	1G bps	0	0
DF2G2	1 G bps mode	0	0
	2 G bps mode	0	0

(d) ID take-over in the Quick Loop mode (for the DF2G2 only)

A take-over can be done with the DF2G2 (in the 1 G bps mode) in the Quick Loop mode.

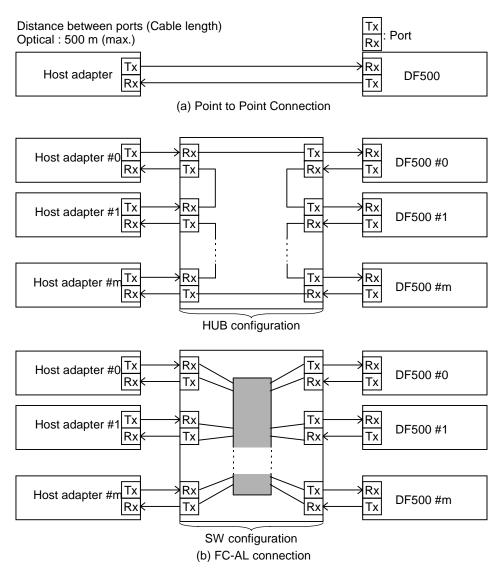


Figure 4.1.1 Fibre Channel Connection Specifications

4.1.2 Cable

Table 4.1.4 shows specifications of the Fibre Channel interface cable. Figure 4.1.2 shows the type of connector for the optical interface on the cable side.

Coblo	Interface			Nominal	
Cable type	type	Cable mode name	Cable	Conr	nector
typo	typo		Cable	one side	other side
SC-SC cable	Optical	Equivalent to sumitomo 3M 170AA-11A1-XXX	50/125 μm Multimode Wavelength : 780 nm	SC connector (JIS C 5973) (Figure 4.1.2 (a))	SC connector (JIS C 5973) (Figure 4.1.2 (a))
SC-LC cable		Equivalent to sumitomo 3M 170AC-AAAA-XXX	50/125 μm Multimode Wavelength : 850 nm	SC connector (JIS C 5973) (Figure 4.1.2 (a))	LC connector (Figure 4.1.2 (b))
LC-LC cable				LC connector (Figure 4.1.2 (b))	LC connector (Figure 4.1.2 (b))

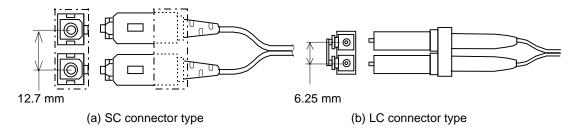


Figure 4.1.2 Cable side Connector

4.1.3 Connector on the subsystem side

Figure 4.1.3 shows the type of connector for the optical interface on the subsystem side.

(1) SC connector type (for DF-F500-DFFM5/DF-F500-DFFM6/DF-F500-F1F)

Connector type: SC duplex receptacle connector (JIS C 5973-1994)

Interval : 12.7 mm flat type, two rows

(2) LC connector type (for DF-F500-DF2G2)

Connector type: LC duplex receptacle connector Interval: 6.25 mm flat type, two rows

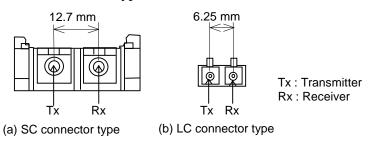


Figure 4.1.3 Shape of Connector on DF500

4.1.4 Ordered set

The Table 4.1.5 shows the Ordered Sets defined by the Fibre Channel interface.

Table 4.1.5 Ordered Set

No.	Classification	Name	Remarks
1	Frame Delimiters	SOF (Start of Frame)	
2		EOF (End of Frame)	
3	Primitive Signals	IDLE	
4		R_RDY (Receiver_Ready)	
5		ARBx (Arbitrate)	
6		OPNyx (Open full-duplex)	
7		OPNyy (Open half-duplex)	
8		OPNfr (Open broadcast replicate)	
9		OPNyr (Open selective replicate)	
10		CLS (Close)	
11		MRKtx (Mark)	
12	Primitive Sequence	NOS (Not Operational)	
13		OLS (Off-line)	
14		LR (Link Reset)	
15		LRR (Link Reset Response)	
16		LIP (Loop Initialization)	
17		LPEyx (Loop Port Enable)	
18		LPEfx (Loop Port Enable all)	
19		LPByx (Loop Port Bypass)	

(1) Frame Delimiters

The Frame Delimiter is an Ordered Sets that immediately precedes or follows a frame context, and consists of the SOF (Start of Frame) and the EOF (End of Frame).

(a) SOF (Start of Frame)

The SOF delimiter is an Ordered Set that immediately precedes the context of a frame. There are following SOF delimiters, shown in the Table 4.1.6, based on the service class, etc.

Table 4.1.6 SOF Delimiters

No.	Name	Meaning	Remarks
1	SOFc1	A frame delimiter to be used to require the exclusive connection of the Class 1 service.	
		Since the subsystem does not support the Class 1 service yet, it responds with R_RJT (Class not Supported) as to the frame.	
2	SOFi1	A frame delimiter to be used when starting the sequence following the exclusive connection of the Class 1 service. Since the subsystem does not support the Class 1 service yet, it responds with R_RJT (Class not Supported) as to the frame.	
3	SOFi2	This is used for the first frame that starts the sequence of the Class 2 service. Since the subsystem does not support the Class 2 service yet, it responds with R_RJT (Class not Supported) as to the frame.	
4	SOFi3	This is used for the first frame that starts the sequence of the Class 3 service.	
5	SOFn1	This is used for frames other than the first frame of the sequence of the Class 1 service. Since the subsystem does not support the Class 1 service yet, it responds with R_RJT (Class not Supported) as to the frame.	
6	SOFn2	This is used for frames other than the first frame of the sequence of the Class 2 service. Since the subsystem does not support the Class 2 service yet, it responds with R_RJT (Class not Supported) as to the frame.	
7	SOFn3	This is used for frames other than the first frame of the sequence of the Class 3 service.	

(b) EOF (End of Frame)

The EOF delimiter is an Ordered Set that immediately follows the context of a frame. There are following EOF delimiters, shown in the Table 4.1.7, based on the service class, etc.

Table 4.1.7 EOF Delimiters

No.	Name	Meanings	Remarks
1	EOFt	This shows that the sequence of the SEQ_ID which is owned by	
		a frame.	
2	EOFdt	This is used to cancel the exclusive connection. This identifies	Class 1 is not
		the final ACK of the sequence and shows that the sequence of	supported.
		the SEQ_ID owned by a frame has completed.	
3	EOFn	This is used when no other EOF delimiter (EOFt or EOFdt)	
		which shows valid frame contents is required.	
4	EOFdti	When the EOFdt has illegal contents, it is replaced with the	
		EOFdti.	
5	EOFni	When the EOFt or EOFn has illegal contents, it is replaced with	
		the EOFni.	
6	EOFa	This is used to terminate a partial frame owing to an error	
		occurred during a transfer. A receiver must abandon the frame	
		without making any response.	

(2) Primitive Signals

A Primitive Signal a signal that has special meaning. The following Primitive Signals are defined.

(a) IDLE

An IDLE is a Primitive Signal transmitted on the link to indicate an operational Port facility is ready for frame transmission and reception. The IDLE is transferred when no frame, R_RDY, or primitive sequence is being transferred on a link.

(b) R_RDY(Receiver Ready)

The R_RDY indicates that a single Class 1 connect-request (SOFc1), Class 2, or Class 3 frame was received and that the interface buffer which received the frame is available for further frame reception.

- (c) ARBx (Arbitrate) --- FC-AL
 - An ARBx is a Primitive Signal transmitted on a Loop by a participating L_Port to request access to the Loop. It may be sent instead of the IDLE when DF500 is connected to the FC-AL.
- (d) OPNyx (Open full-duplex) --- FC-AL
 An OPNyx is a Primitive Signal transmitted on a Loop by a participating L_Port to indicate that it is ready for Data and Link Control frame transmission and reception.
- (e) OPNyy (Open half-duplex) --- FC-AL
 An OPNyy is a Primitive Signal transmitted on a Loop by a participating N_Port to indicate that it is ready for Data and Link Control frame transmission and Link Control frame reception.
- (f) OPNfr (Open broadcast replicate) --- FC-AL An OPNyy is a Primitive Signal transmitted on a Loop by a participating L_Port which desires to communicate with all participating L_Ports on the Loop.
- (g) OPNyr (Open selective replicate) --- FC-AL
 An OPNyr is a Primitive Signal transmitted on a Loop by a participating L_Port which desires to communicate with a subset of L_Ports on the Loop.
- (h) CLS (Close) --- FC-AL

A CLS is sent by the L_Port . When the L_Port sends the CLS , it does not transfer the frame and the R_RDY to the current circuit.

The CLS shows that the control of the loop is ready to be abandoned or has already been abandoned.

(i) MRKtx (Mark) --- FC-AL

A MRKtx is a Primitive Signal transmitting on a Loop by a master control point to synchronize other Nodes.

(3) Primitive Sequences

A Primitive sequences form an ordered set and they are transferred repeatedly and continuously while the certain condition exists. Types of the primitive sequence are shown below.

(a) NOS (Not Operational)

The NOS Primitive Sequence is transmitted to indicate that the Port transmitting this Sequence has detected a Link Failure condition or is Off-line, waiting for OLS to be received.

(b) OLS (Off-line)

The OLS Primitive Sequence is transmitted to indicate that the port transmitting this Sequence is:

- initiating the Link Initialization Protocol,
- receiving and recognizing NOS, or
- entering the Off-line State
- (c) LR (Link Reset)

The LR Primitive Sequence is transmitted by a Port to initiate the Link Reset Protocol or to recover from a Link Time-out. Besides, the LR is possible to be sent when the N_Port which supports the Class 1 service becomes unable to decide the connection status.

(d) LRR (Link Reset Response)

The LRR Primitive Sequence is transmitted by a Port to indicate that it is receiving and recognizes the LR Primitive Sequence.

- (e) LIP (Loop Initialization) --- FC-AL
 - The LIP Primitive Sequence is used by an L_Port to detect if it is part of a Loop or to recover from certain Loop errors.
- (f) LPEyx (Loop Port Enable) ---FC-AL
 - The LPEyx is sent on the loop to reset the bypass circuit of the L_Port which was bypassed before and to put the L_Port in the enabled status.
- (g) LPEfx (Loop Port Enable all) --- FC-AL
 - The LPEfx Primitive Sequence is transmitted on a Loop to reset all Bypass Circuit(s) that may have been previously set and enable all L_Port to participate on the Loop.
- (h) LPByx (Loop Port Bypass) --- FC-AL
 - The LPByx Primitive Sequence is transmitted on a Loop to set the Bypass Circuit and to bypass an L_Port.

4.1.5 Frames

(1) Frame Format

The Table 4.1.8 shows the frame format used with the Fibre Channel.

Table 4.1.8 Frame format

Start of Frame (SOF)	Frame Header	Data File	CRC	End of Frame (EOF)
4 bytes	24 bytes	0 to 2112 bytes	4 bytes	4 bytes

(a) Start of Frame

The Start of Frame (SOF) delimiter is an Ordered Set that immediately precedes the frame context.

For the types of the SOF, refer to "Subsection 4.1.4, Ordered Set" on page 0680.

(b) Frame Header

The Frame Header is used by the link control facility to control link operations, control device protocol transfers, and detect missing or out of order frames.

For the Frame Header, refer to "Section 4.1.5 (2) Header" on page 0730.

(c) Data Field

This field can take the following size depending on the frame type $(^{\ddagger 1})$.

- Link control frame : Data Field length = 0
- Data frame : Data Field length = 0 to 2112

The optional header (\$\frac{1}{2}\$) may be supplied at the top of the Data Field of the data frame.

The data described in the data frame is Data Field excluding the option header.

This portion is called payload.

(d) CRC

The CRC is the Cyclic Redundancy Check code for checking data in the Frame Header and Data Field.

(e) End of Frame

The End of Frame (EOF) is a frame delimiter for identifying the end of a frame. For the types of the EOF, refer to "Subsection 4.1.4, Ordered Set" on page 0680.

^{‡1:} The frame type and presence or absence of the optional header are prescribed by the Frame Header. For details, refer to "Subsection 4.1.5 (2) Header" (0730).

(2) Header

(a) Frame Header

The format of the Frame Header is shown in the Table 4.1.9.

Table 4.1.9 Frame format

Bits Word	31 to 24	23 to 16	15 to 08	07 to 00
0	R_CTL	D_ID		
1	Reserved	S_ID		
2	TYPE		F_CTL	
3	SEQ_ID	DF_CTL	SEQ	_CNT
4	OX	Z_ID RX_ID		
5	Parameter			

(i) R_CTL (Routing Control)

The R_CTL field is used to categorize the frame function. Classification into the link control frame and data frame is done by the R_CTL.

(ii) D_ID (Destination ID)

The D_ID field contains the address identifier of an N_Port or F_Port within the destination entity.

(iii) S_ID (Source ID)

The S_ID field contains the address identifier of an N_Port or F_Port within the source entity.

(iv) TYPE (Data Structure Type)

The TYPE field identifies the protocol of the frame content for Data Frames.

(v) F CTL (Frame Control)

The F_CTL field contains control information relating to the frame contents. The control information includes the Exchange Context, Sequence Context, etc.

(vi) SEQ_ID (Sequence ID)

The SEQ_ID field contains the SEQ_ID assigned by the Sequence Initiator, and it shall be unique for a specific D_ID and S_ID pair while the Sequence is Open.

(vii) DF_CTL (Data Field Control)

The DF_CTL field specifies the presence of optional headers at the beginning of the Data Field.

(viii) SEQ_CNT

The SEQ_CNT field indicates the sequential order of Data Frame transmission within a single sequence or multiple consecutive sequences for the same Exchange.

(ix) OX_ID (Originator Exchange ID)

The OX_ID field identifies the Exchange ID assigned by the Originator of the Exchange.

Each Exchange shall be assigned an identifier unique to the Originator or Originator-Responder Pair.

(x) RX_ID (Responder Exchange ID)

The RX_ID is an identifier of the exchange assigned by the responder of the exchange. It is unique and locally significant for the responder.

(xi) Parameter

In the link control frame, the parameter is used to transmit original information of the individual link control frame and in the data frame, it is used for the relative offset.

(b) Optional Headers

No.

The presence of the Optional Headers is indicated by the DF_CTL field. The treatment of the Optional Headers with the DF500 is shown in the Table 4.1.10.

Name	Usage	Treatment with the Disk Array	Remarks
Expiration_Security	Used to specify the expiration	Ignores this header and processes	16 bytes
Header	time, etc. of the frame.	the command.	
Network Header	Used by a bridge or a gateway	Ignores this header and processes	16 bytes

the command.

Table 4.1.10 Optional Headers

		external Network.						
3	Association Header	Used to identify the process or	Ignores this header and processes	32 bytes				
		process group.	the command.					
4	Device Header	Used by the upper level	Ignores this header and processes	16 bytes				
		protocol.	the command.	32 bytes				
				64 bytes				
	DF500 does not add Optional Headers in a Data frame to be sent to other N_Ports.							

node which interfaces to an

The host computer shall not add Optional Headers in a frame sent to the DF500. If the Optional Headers are added in the Data frames sent to the subsystem, correct operation in DF500 is not guaranteed.

(3) Link Control Frames

The Table 4.1.11 shown the defined Link Control frames (FT-0) and supported Link Control frames. DF500 supports link control frames shown in Table 4.1.12 on page 0760.

Table 4.1.11 Link Control Frames

No.	Name	Meaning	Support ^(*1)	Remarks	
1	ACK_1	Indicates that a single Data frame is being	O ^(*2)		
	(Acknowledge_1)	acknowledged.	O		
2	ACK_0	Indicates that all Data frames of a Sequence are	×		
	(Acknowledge_0)	being acknowledged.			
3	ACK_N	Indicates that N consecutive Data frames of a	×		
	(Acknowledge_N)	Sequence are being acknowledged.			
4	P_RJT	Indicates that delivery of a frame is being denied.	0		
	(N_Port Reject)	A four byte reject action and reason code is			
		contained in the Parameter field.			
5	F_RJT	Indicates that delivery of a frame is being denied.	0		
	(Fabric Reject)	A four byte reject action and reason code is			
		contained in the Parameter field.			
6	P_BSY	Indicates that the responding N_Port is temporarily	0		
	(N_Port Busy)	occupied with other link activity and is not able to			
		accept the frame. A reason code is contained in			
L_	E DOV	the Parameter field.			
7	F_BSY	Indicates that the fabric or the destination N_Port is	0		
	(Fabric Busy)	temporarily occupied with other link activity and the fabric is unable to deliver the frame. A reason			
8	LCR	code is contained in bits 31-28 of the TYPE field.	0		
l °		Indicates that the N_Port specified by the S_ID requests that the N_Port specified by the D_ID	O		
	(Link Credit Reset)	reset any buffers containing Data frames from the			
		S_ID in order to allow the S_ID to reset its end-to-			
		end Credit to its Login value.			
	*1 : O : Supported	Total Ordan to its Login value.			
1. O. Supported					

^{× :} Not Supported

(4) Data Frames

The Data frames defined include:

- FC-4 Device Data
- FC-4 Video_Data
- Link_Data

FC-4 Device_Data is a frame which is used by the protocol prescribed by upper levels.

(FCP Information Unit, etc.) (For details on FCP Information Unit, refer to Section 4.4.)

FC-4 Video_Data is not supported by this equipment.

Link_Data defines link services. For link services, refer to Subsection 4.1.6 "Link Service" on page 0760.

^{*2 :} Support for the ACK_1 is given in the limited case where the PLOGI of the Class 2 is used.

4.1.6 Link service

The Table 4.1.12 shows the Link Service frames supported by DF500.

Table 4.1.12 Link Service Frames

NΙα	Clossification	Norse	Supp	ort ^(*1)	Domarks
No.	Classification	Name	Issue	Receive	Remarks
1	Basic Link Service	ABTS (Abort Sequence)	×	0	
2		BA_ACC (Basic_Accept)	0	0	
3		BA_RJT (Basic_Reject)	0	0	
4		NOP (No Operation)	×	0	
5		RMC (Remove Connection)	×	×	
6	Extended Link Service	ABTX (Abort_Exchange)	×	0	
7		ACC (Accept)	0	0	
8		ADVC (Advice Credit)	×	×	
9		ECHO (Echo)	×	×	
10		ESTC (Estimate Credit)	×	×	
11		PLOGI (N_Port Login)	0	0	
12		LOGO (Logout)	0	0	
13		LS_RJT (Link Service Reject)	0	0	
14		FLOGI (Fabric Login)	0	×	
15		RCS (Read Connection Status)	×	×	
16		RES (Read Exchange Status Block)	×	×	
17		RLS (Read Link Status)	×	×	
18		RRQ (Reinstate Recovery Qualifier)	×	0	
19		RSI (Request Sequence Initiative)	×	×	
20		RSS (Read Sequence Status Block)	×	×	
21		RTV (Read Time-out Value)	×	×	
22		TEST (Test)	×	×	
23		SCR (State Change Registration)	0	×	
24		RSCN (Registered Status Change Notification)	0	0	
25		FAN	×	0	
	Extended Link	PRLI (Process Login)	×	0	
27	Service- Proc.	PRLO (Process Logout)	×	0	
28		SCN (State Change Notification)	×	×	
29		TPLS (Test Process Login State)	×	×	
	Extended Link	GAID (Get Alias_ID)	×	×	
31	Service - Alias	FACT (Fabric Activate Alias_ID)	×	×	
32		FDACT (Fabric Deactivate Alias_ID)	×	×	
33		NACT (N_Port Activate Alias_ID)	×	×	
34		NDACT (N_Port Deactivate Alias_ID)	×	×	
35	Extended Link	QoSR (Quality of Service Request)	×	×	
36	Service - Class 4	RVCS (Read Virtual Circuit Status)	×	×	
37	Extended Link Service	PDISC (Discover N_Port Service Parm)	×	0	
38	- FC-AL	FDISC (Discover F_Port Service Parm)	×	×	
39		ADISC (Discover Address)	×	0	
40		TPRLO (Third Party Process Logout)	×	0	
	*1 : O : Supported	, ,		ı l	
1	× : Not Supported				

 \times : Not Supported

4.1.7 FCP

(1) Frame format

DF500 supports the 6 Information Units (IU) shown in the following table.

Table 4.1.13 Information Unit

No.	Information Unit Name	Function	Support (*1)	Remarks	
1	FCP_CMND	Transfers SCSI Command or Task Management	0		
2	FCP_XFER_READY	Notifies FCP_DATA will be transferred.	0		
3	FCP_DATA	Transfers Data.	0		
4	FCP_RSP	Transfers Status Information	0		
5	FCP_CMND+FCP_DATA	Transfers SCSI Command and the first Data	×		
		within a single Information Unit.			
		(Write Type Command)			
6	FCP_DATA+FCP_RSP	Transfers last Data and the Status Information	×		
		within a single Information Unit.			
		(Read Type Command)			
*1 : O : Supported					
	× : Not Supported				

The format of the standard frame header used in the FCP is shown in Table 4.1.14.

Table 4.1.14 Frame Header Format

Bits Word	31 to 24	23 to 16	15 to 08	07 to 00	
0	R_CTL	D_ID			
1	Reserved	S_ID			
2	TYPE		F_CTL		
3	SEQ_ID	DF_CTL	SEQ_	CNT	
4	OX	_ID	RX_ID		
5	RLTV_OFF				

(a) R_CTL (Routing control)

This is used to identify the information category of the FCP frame.

- 1 : FCP_DATA (Data In action, Data Out action)
- 5 : FCP_XFER_RDY (Data delivery request)
- 6 : FCP_CMND (Command/Task Management Request)
- 7 : FCP_RSP (Command/Task Management Response)

(b) D_ID (Destination ID)

This indicates the transmission destination of a frame. D_ID of the frame from the SCSI command issuer side (Exchange originator) is the target ID of SCSI-3.

(c) S_ID

This indicates the transmission destination of a frame. S_ID of the frame from the SCSI command issuer side (Exchange originator) is the initiator ID of SCSI-3.

(d) TYPE (Data structure type)

In the TYPE field of all frames of the FCP sequence, 0x08 is set.

(e) F_CTL (Frame control)

This consists of fields for controlling start of the sequence and exchange, and normal and abnormal terminations. For further details, refer to the FC-PH standard.

(f) SEQ_ID (Sequence ID)

This indicates an order of the frames in the sequence. For further details, refer to the FC-PH standard.

(g) DF_CTL (Data field control)

This indicates whether there is an optional header or not. The FCP requires no optional header.

(h) OX_ID (Originator exchange ID)

This indicates the exchange ID on the starting side of the exchange (initiator) and corresponds to the tag number of SCSI-3. (OxFFFF cannot be specified.)

(i) RX_ID (Responder exchange ID)

This indicates the exchange ID on the responding side of the exchange (target). Any value may be given to this. The responding side of the exchange can assign a unique value to OX_ID (tag).

(j) RLTV_OFF (Relative offset)

In the FCP-DATA IU, the offset (offset on the buffer allocated by the host) of the top byte of the payload of each frame is set. In other IU frames, 0 is set.

(2) FCP_CMND

The FCP_CMND is sent from a host and is used for the task management instruction such as SCSI command issue and target reset.

The payload of FCP_CMND is shown in table 4.1.15.

Table 4.1.15 FCP_CMND Payload

Field Name	Definition	Size
FCP_LUN	Logical Unit Number	8 bytes
FCP_CNTL	byte 0 : Reserved	4 bytes
	byte 1 : Task Codes	
	bit 7 to 3 : Reserved	
	bit 2 to 0 : Task Attribute	
	000 : SIMPLE_Q	
	001 : HEAD_OF_Q	
	001 : ORDERED_Q	
	100 : ACA_Q (Not Supported)	
	101 : UNTAGGED	
	byte 2 : Task Management Flags	
	bit 7 : TERMINATE TASK (Not Supported)	
	bit 6 : CLEAR ACA	
	bit 5 : TARGET RESET	
	bit 4 to 3 : Reserved	
	bit 2 : CLEAR TASK SET	
	bit 1 : ABORT TASK SET	
	bit 0 : Reserved	_
	byte 3: Execution Management Codes	
	bit 7 to 2 : Reserved	
	bit 1 : READ DATA	
	bit 0 : WRITE DATA	
FCP_CDB	SCSI Command Descriptor Block	16 bytes
FCP_DL	Data Length	4 bytes

(a) FCP_LUN

The FCP_LUN field specifies the Logical Unit Number in which the issued SCSI Command is executed.

The Table 4.1.16 shows the format of the FCP_LUN field.

Table 4.1.16 FCP_LUN Format

Ī	Byte	0	1	2	3	4	5	6	7
	Logical unit number	0x00	LUN	0x00	0x00	0x00	0x00	0x00	0x00

(b) FCP CNTL

The FCP_CNTL field contains the following control information.

(i) Task Codes

One of the following task attributes can be specified.

SIMPLE_QUEUE

The SIMPLE_QUEUE attribute is specified when the task can be executed with the order that the array controller determines.

• HEAD_OF_QUEUE

The HEAD_OF_QUEUE attribute is specified when the task should be executed with the highest priority.

• ORDERED_QUEUE

The HEAD_OF_QUEUE attribute is specified when the task should be executed with the order of the task is issued.

• ACA_QUEUE

This attribute is not supported by the DF500.

UNTAGGED

This attribute shows that a command has no tag.

(ii) Task Management Flags

One of the following Task Management Flags can be specified.

• TERMINATE TASK

This Task Management Flag is not supported by the DF500.

• CLEAR ACA

This Task Management Flag is not supported by the DF500.

TARGET RESET

The TARGET RESET is used to clear all tasks in the DF500.

(Same as the SCSI-2 Bus Device Reset message)

• CLEAR TASK SET

The CLEAR TASK SET is used to clear all tasks in the specified Logical Unit. (Same as the SCSI-2 Clear Queue message)

ABORT TASK SET

The ABORT TASK SET is used to clear all tasks in the specified Logical Unit for the Initiator. (Same as the SCSI-2 Abort message)

The ABORT TASK (Same as the SCSI-2 Abort Tag message) is specified by the ABTS Link Service.

(iii) Execution Management

The direction of the SCSI data transfer is specified in the Execution Management. The direction depends on the SCSI Command.

(c) FCP_CDB

The SCSI CDB (Command Descriptor Block) is contained in the FCP_CDB field. The NACA (Normal Auto Contingent Allegiance) bit defined in the Control Byte of the CDB is not supported by the DF500. The NACA bit of 0 shall be specified. And the Command Link is not supported by the array controller. The Link bit shall be set to 0.

When one of these bits is set to 1, the array controller terminates the command with a CHECK ONDITION status (Sense Key = ILLEGAL REQUEST).

(d) FCP_DL

The total length bytes of the SCSI data is set in the FCP_DL field. Data described with the number of bytes according to the data length set in the FCP_CDB is transferred irrespective of the value set in this field. The value in this field is checked when the status is sent, and the check result is reflected on the FCP_RSP.

4.1.8 FC-4 device data frame/name server request commands

Table 4.1.17 shows the FC-4 Device Data Frame/Name Server Request commands that the subsystem supports.

Table 4.1.17 FC-4 Device Data Frame

No.	Name
1	FS_ACC
2	FS_RJT
3	RFT_ID (Register FC-4 TYPE)
4	RCS_ID (Register Class of Service)
5	RPT_ID (Register Port TYPE)
6	GPN_ID (Get Port Name)

4.1.9 Initialization process

(1) Link Initialization

When the array unit is turned on and becomes ready, the DF500 performs the Link Initialization process. The LR, LRR, NOS, OLS, and IDLE are exchanged between subsystem and the connected N_Port, and frames cannot be transmitted until the Active state.

The details of the Link Initialization process is shown in the Table 4.1.18. At the beginning, the DF500 becomes OLS Transmit state, and the Link Initialization process continues until the Active state.

Table 4.1.18 Link Initialization Process

	Input and Next State							
Current State	LR	LRR	NOS	OLS	IDLE	Los of Sync, Timeout		
(OLS Transmit) Transmits OLS for min. 5 ms	(LR Receive)	-	(NOS Receive)	(OLS Receive)	-	(Wait for OLS)		
(LR Receive) Transmits LRR	-	(LRR Receive)	(NOS Receive)	(OLS Receive)	(Active)	(NOS Transmit)		
(OLS Receive) Transmits LR	(LR Receive)	(LRR Receive)	(NOS Receive)	-	-	(Wait for OLS)		
(LRR Receive) Transmits IDLE	(LR Receive)	-	(NOS Receive)	(OLS Receive)	(Active)	(NOS Transmit)		
(NOS Receive) Transmits OLS	(LR Receive)	-	-	(OLS Receive)	-	(NOS Transmit)		
(Wait for OLS) Transmits NOS	(NOS Transmit)	(NOS Transmit)	(NOS Receive)	(OLS Receive)	-	_		
(NOS Transmit) Transmits NOS	-	-	(NOS Receive)	(OLS Receive)	-	(NOS Transmit)		
(Active)	(LR Receive)	(LRR Receive)	(NOS Receive)	(OLS Receive)	-	_		
-: State	-: State is not changed.							

(2) Loop Initialization

When the array unit is turned on and becomes ready and the Arbitrated Loop is detected, the DF500 performs the Loop Initialization process.

The Loop Initialization is performed by ARBx (Arbitrate), LIP (Loop Initialization), CLS (Close), and the following Loop Initialization frames.

LISM: Select Master based on 8-byte Port_Name

LIFA: Fabric Assign AL_PA bit map

LIPA: Previously Acquired AL_PA bit map

LIHA: Hard Assigned AL_PA bit map

LISA: Soft Assigned AL_PA bit map

LIRP: Report AL_PA position map

LILP: Loop AL_PA position map

The DF500 transmits LIP at first. When s LIP is detected by the DF500, then the array controller transmits LISM.

When the same LISM as the DF500 has transmitted is received at the array controller, the subsystem becomes a Loop Master, and the subsystem transmits and receives ARBx, LIFA, LIPA, LIHA, LISA, LIRP, and LILP with address map, and determines the AL_PA of each L Port.

At the end of the Loop Initialization, the subsystem transmits and receives CLS.

When the DF500 does not become a Loop Master, the transmission of LIFA, LIHA, LISA, LIRP, and LILP are initiated by the Loop Master. DF500 receives bit map information, and may add own AL_PA, and transmits it to the next L_Port. At the end of the Loop Initialization, the subsystem receives and transmits CLS.

4.1.10 Fibre Channel sequence example

- (1) FCP information unit
 - (a) Read commands

Sending all data with the one FCP_DATA

Initiator IU	Direction	Target IU
FCP_CMND	>	
		FCP_XFER_READY FCP_DATA
	<	FCP_RSP

Sending all data dividing them into the two or more FCP DATAs

	d dividing them into the two or more i er_	D111110
Initiator IU	Direction	Target IU
FCP_CMND	>	
	<	FCP_XFER_READY FCP_DATA
	<	FCP_XFER_READY FCP_DATA
	<	FCP_XFER_READY FCP_DATA
	<	FCP_RSP

At the time of the Read Xfer Ready Disabled

	110 110 110 110 110 110 110 110 110 110	
Initiator IU	Direction	Target IU
FCP_CMND	>	
		FCP_XFER_DATA FCP_XFER_DATA
	<	FCP_RSP

The FCP_XFER_RDY is not sent before sending the FCP_XFER_DATA.

(b) Write commands

Sending all data with the one FCP_DATA.

Initiator IU	Direction	Target IU
FCP_CMND	>	
FCP_DATA		FCP_XFER_READY
	<	FCP_RSP

Sending all data with the two or more FCP_DATAs

Initiator IU	Direction	Target IU
FCP_CMND	>	
FCP_DATA	<>	FCP_XFER_READY
FCP_DATA	<>	FCP_XFER_READY
FCP_DATA	<>	FCP_XFER_READY
	<	FCP_RSP

At the time of the Xfer Ready Disabled (not supported)

Initiator IU	Direction	Target IU
FCP_CMND	>	
FCP_DATA	>	
FCP_DATA	<>	FCP_XFER_READY
FCP_DATA	<>	FCP_XFER_READY
	<	FCP_RSP

The FCP_XFER_RDY is not sent before sending the first FCP_DATA.

(c) Control commands (with no data transfer)

Initiator IU	Direction	Target IU
FCP_CMND	>	
	<	FCP_RSP

(d) Queue Full, Busy, and Check Condition (before data transfer)

I	Initiator IU	Direction	Target IU
	FCP_CMND	>	
			EOD DOD
		<	FCP_RSP

Status such as the Queue Full and Busy are stored in the FCP_RSP.

(e) Task management FCP_CMND (Target, Reset, Clear Task Set, and Abort Task Set)

Initiator IU	Direction	Target IU
FCP_CMND	>	
	<	FCP_RSP

(2) Link service

(a) FLOGI, PLOGI, LOGO, PRLI, and PRLO

When the command is accepted normally

LS_Command	Direction	LS_Command
Host	>	
Login (PLOGI)		
-	<	Accept (ACC)

When the command is rejected

LS_Command	Direction	LS_Command
Host	>	
Login (PLOGI)		
	<	Link Service Reject
		(LS_RJT)

(3) Loop initialization

(a) When the subsystem becomes the loop master

Subsystem	Direction	
LIP, LIP	>	
(*1)	<	LIP, LIP
LISM, LISM ^(*1)	>	
ADD (50) ADD (50)	<	LISM, LISM
ARB (F0), ARB (F0)	>	ADD (E0) ADD (E0)
1.154	<	ARB (F0), ARB (F0)
LIFA	>	LIFA
LIPA	<>	LIFA
	<	LIPA
LIHA	>	/ .
	<	LIHA
LISA	>	
	<	LISA
LIRP	>	
	<	LIRP
LILP	>	
01.0.(0)	<	LILP
CLS (Close)	>	

^{*1 :} The subsystem becomes the loop master when it sends the LISM with AL_PA = EF and the same LISM is returned. The AL_PA is decided by the LIFA, LIPA, LIHA, LISA, LIRP, and LILP frames and the initialization is completed by the CLS.

(b) The case where another loop master exists

Subsystem	Direction	
LIP, LIP	>	
	<	LIP, LIP
LISM, LISM	>	
	<	LISM, LISM
	<	ARB (F0), ARB (F0)
ARB (F0), ARB (F0)	>	
	<	LIFA
LIFA	>	
	<	LIPA
LIPA	>	
	<	LIHA
LIHA	>	
	<	LISA
LISA	>	
LIDD	<	LIRP
LIRP	>	
	<	LILP
LILP	>	01.0 (01)
	<	CLS (Close)

(4) Fabric connection

Table 4.1.19 shows the basic sequence of the frame at the time of start-up when the subsystem is in the fabric connection.

Table 4.1.19 Basic Sequence at the Time of Start-Up in the Fabric Connection

No	Opponent party	Frame	Direction	Frame	<df500></df500>
1	<fabric></fabric>	FAN	\rightarrow		Is monitoring the PR_TOV timer
	<fabric></fabric>		←	FLOGI	S_IDis issued with : PtoP=0x000000 FC_AL=0x0000AL_PA
		ACC	\rightarrow		
2	<name server=""></name>		←	PLOGI	Logs in the name server.
		ACC	\rightarrow		
3	<name server=""></name>		\leftarrow	RCS_ID	Registers the support class.
		FS_ACC	\rightarrow		
4	<name server=""></name>		\leftarrow	RFT_ID	Registers the FC-4 type.
		FS_ACC	\rightarrow		
5	<name server=""></name>		\leftarrow	RPT_ID	Registers the type of own port
		FS_ACC	\rightarrow		as the N/NL.
6	<fabric controller=""></fabric>		\leftarrow	SCR	Receives and registers the
		ACC	\rightarrow		RSCN. (=3 : Full Registration)
7	<fabric controller=""></fabric>		←	RSCN	Requires a host computer for an issue of RSCN again. (ADR format = 0
		ACC	\rightarrow		Affected N_Port ID = Own port address)

(5) Response when receiving the ELS without the PLOGI.

Table 4.1.20 shows the response made when receiving the ELS without the PLOGI.

Table 4.1.20 Response When Receiving ELS without PLOGI

Frame recived	Resp	onse	
Frame recived	In FC_AL	In point to point (fabric) connection	
FCP_CMND	No response (frame is abandoned.)	No response (frame is abandoned.)	
PLOGI	Usual operation	Usual operation	
	(Response in normal state : ACC	(Response in normal state : ACC	
	Response when an error occurs : LS_RJT)	Response when an error occurs : LS_RJT)	
FLOGI	Response with LS_RJT	Response with LS_RJT	
LOGO	Usual operation	Usual operation	
	(Response in normal state : ACC	(Response in normal state : ACC	
	Response when an error occurs : LS_RJT)	Response when an error occurs : LS_RJT)	
PRLI	Response with LOGO	Response with LOGO	
PRLO	Response with LOGO	Response with LOGO	
ADISC	Response with LOGO	Response with LOGO	
PDISC	Response with LOGO	Response with LOGO	
TPRLO	Response with LOGO	Response with LOGO	
Other	Response with LOGO	Response with LOGO	

The following response is made while the basic sequence (FLOGI to RSCN) of the frame is being executed when the subsystem starts up in the fabric connection described in Item (4).

- When the received frame is the FAN, normal operation is done.
- When the received frame is the PLOGI, ADISC, or PDISC, a response is made with the LS_RJT.
- When the other frame is received, no response is made (the frame is abandoned).

4.2 SCSI Connection Specifications

4.2.1 Interface cables (for daisy chain connection)

The maximum number of devices connectable to the SCSI bus including DF500, host computers, and other SCSI devices is six in the case of differential SCSI and three in the cases of the LVD and single-ended SCSI.

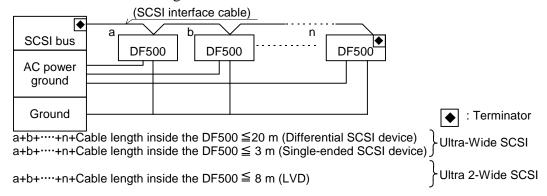


Figure 4.2.1 SCSI Connection Specifications

Since the required cable length inside the DF500 is approximately 1.0 m, pay attention to the cables length when connecting the SCSI cables. When connecting devices in a daisy chain, stability of the system operation is affected by connected devices and the cable type.

When constructing a system, take the following in consideration.

- The least Disk drives connected will result in higher performance.
- Make the total cable length as shorter as possible.
- Make the cable lengths the same as far as possible.
- Use cables with the same characteristics.

DF500 cannot respond with a selection to a command issued by a host computer for about three seconds after it has been started. Therefore, the initiator must suspend the command issue or connect the host computer after confirming that the subsystem becomes ready.

Incidentally, until the subsystem becomes ready, a reading/writing from/to it cannot be done.

When the main switch is turned off (or when the SCSI terminator power becomes low level in the Remote mode), all data, remaining in the cache memory and not yet reflected on the disk, is written onto the Disk drive (i.e. de-staging process). It takes a few seconds to ten odd minutes until this process completes, and then the subsystem is powered off. When the power is turned off directly with the breaker, the de-staging process is not allowed to be performed.

Therefore, the Cache memory enters the Cache Backup mode. In this case, the data assurance time is the cache backup time shown in Chapter 2, "Basic Specifications" (0220). Normally, to power off the subsystem, be sure to turn off the main switch (or set the SCSI terminator power to low level in the Remote mode) and turn off the breaker after making sure that the POWER LED goes out. When performing a maintenance work such as a part replacement, turn the power off following this procedure.

4.2.2 System configurations

Attach a terminator to the terminal one of the connected SCSI devices. When the DF500 is a terminal device, because it has a built-in terminator, make it effective by setting a jumper on the interface board^(‡1).

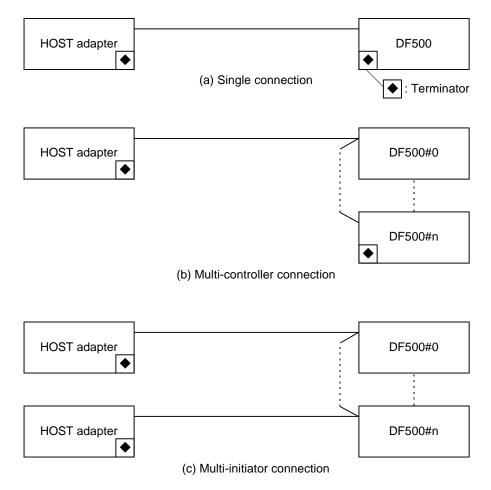


Figure 4.2.2 System Configuration

^{‡1 :} The terminator which is built in the initiator board of DF500 is automatically validated when no SCSI cable is connected to the connector on the OUT side and the "automatic setting" (default) is set.

4.2.3 SCSI interface connector on the subsystem side

Table 4.2.1 Subsystem-Side Connector specifications

Connector name	Number of pins	Manufacturer's model name	Interface specification	Connector form
Half pitch pin-type connector	68	750737-7		See Figure 4.2.3. Pin-type connector

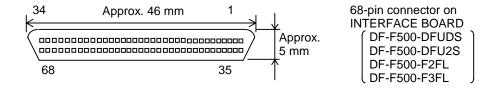


Figure 4.2.3 Form of Subsystem-Side Interface Signal Connector

4.2.4 SCSI cables

Table 4.2.2 Cable Specifications

Cable name	Cable type/rating		
Control signal cable	50-pin Shielded cable 34P × 30 AWG.		
	68-pin	Cable impedance : 90 \pm 10 Ω at TDR or equivalent	

4.2.5 SCSI cable connectors

Table 4.2.3 Cable side connector

Connector name	Number of pins	Manufacturer's model name	Interface specification
Half pitch pin-type connector	68	AMP Connector: 749111-6	Wide SCSI Single-ended
pin-type connector		Cover : 750752-1	Differential
			Low Voltage Differential

Select the SCSI interface cable after making sure of the shape of the connector on the host computerized shown in Table 4.2.4.

DF500

Table 4.2.4 SCSI Cable-Connector Forms

	Model ^(*1)	Cable length	SCSI cable con	nector shape (*1)	
No.	O. (DF-F500-) (Number of pins)		Host computer side	INTERFACE BOARD side	Remarks
1	K350L K550L K650L	5 m 1.5 m 3 m		0 (************************************	
		(50 pins)	50-pin type /latch-locked	68-pin type /screw-locked	
2	K450L K750L K850L	5 m 1.5 m 3 m		0 (
		(50 pins)	50-bellows type / latch-locked	68-pin type /screw-locked	
3	K068L K168L K268L K568L	1.5 m 3 m 5 m 20 m		o (company la dia d	
4	K068M	(68 pins) 1.5 m	68-bellows type / latch-locked	68-pin type /screw-locked	
-	K168M K268M K368M	3 m 5 m 15 m	0	0 (************************************	
	K468M	10 m (68 pins)	68-mini bellows type / screw- locked	68-pin type /screw-locked	
5	K068S K168S K268S K368S K468S K568S	1.5 m 5 m 3 m 10 m 15 m 0.5 m (68 pins)	68-pin type /screw-locked	68-pin type /screw-locked	
	K468S K568S	15 m 0.5 m (68 pins)	68-pin type /screw-locked	68-pin type /screw-locked	

4.2.6 Pin arrangements of connectors

(1) Differential

Table 4.2.5 SCSI Connector Pin Arrangement (Differential)

04	Signal name	Signal name	Pin No.
01	+ DB12	- DB12	35
02	+ DB13	- DB13	36
03	+ DB14	- DB14	37
04	+ DB15	- DB15	38
05	+ DBP1	- DBP1	39
06	GND	GND	40
07	+ DB0	- DB0	41
80	+ DB1	- DB1	42
09	+ DB2	- DB2	43
10	+ DB3	- DB3	44
11	+ DB4	- DB4	45
12	+ DB5	- DB5	46
13	+ DB6	- DB6	47
14	+ DB7	- DB7	48
15	+ DBP	- DBP	49
16	DIFFSENS	GND	50
17	TERMPWR ^(*1, 2)	TERMPWR ^(*1, 2)	51
18	TERMPWR ^(*1)	TERMPWR ^(*1)	52
19	OPEN	OPEN	53
20	+ ATN	- ATN	54
21	GND	GND	55
22	+ BSY	- BSY	56
23	+ ACK	- ACK	57
24	+ RST	- RST	58
25	+ MSG	- MSG	59
26	+ SEL	- SEL	60
27	+ C/D	- C/D	61
28	+ REQ	- REQ	62
29	+ I/O	- I/O	63
30	GND	GND	64
31	+ DB8	- DB8	65
32	+ DB9	- DB9	66
33	+ DB10	- DB10	67
34	+ DB11	- DB11	68

^{*1 :} When TERMPWR is not to be used, select OPEN (not used).

 $[\]ast 2$: When connecting pins 06 to 30 and 40 to 64 to a Narrow SCSI device, do not connect pins 17 and 51.

(2) Single-ended (Wide SCSI)

Table 4.2.6 SCSI Connector Pin Arrangement (Single-ended)

Pin No.	Signal name	Signal name	Pin No.
01	GND	- DB12	35
02	GND	- DB13	36
03	GND	- DB14	37
04	GND	- DB15	38
05	GND	- DBP1	39
06	GND	- DB0	40
07	GND	- DB1	41
08	GND	- DB2	42
09	GND	- DB3	43
10	GND	- DB4	44
11	GND	- DB5	45
12	GND	- DB6	46
13	GND	- DB7	47
14	GND	- DBP	48
15	GND	GND	49
16	GND	GND	50
17	TERMPWR ^(*1, 2)	TERMPWR ^(*1, 2)	51
18	TERMPWR ^(*1)	TERMPWR ^(*1)	52
19	OPEN	OPEN	53
20	GND	GND	54
21	GND	- ATN	55
22	GND	GND	56
23	GND	- BSY	57
24	GND	- ACK	58
25	GND	- RST	59
26	GND	- MSG	60
27	GND	- SEL	61
28	GND	- C/D	62
29	GND	- REQ	63
30	GND	- I/O	64
31	GND	- DB8	65
32	GND	- DB9	66
33	GND	- DB10	67
34	GND	- DB11	68

^{*1 :} When TERMPWR is not to be used, select OPEN (not used).

 $[\]ast 2$: When connecting pins 06 to 30 and 40 to 64 to a Narrow SCSI device, do not connect pins 17 and 51.

(3) Ultra 2 (LVD)

Table 4.2.7 SCSI Connector Pin Arrangement (Ultra 2)

Pin No.	Signal name	Signal name	Pin No.
01	+ DB12	- DB12	35
02	+ DB13	- DB13	36
03	+ DB14	- DB14	37
04	+ DB15	- DB15	38
05	+ DBP1	- DBP1	39
06	+ DB0	- DB0	40
07	+ DB1	- DB1	41
08	+ DB2	- DB2	42
09	+ DB3	- DB3	43
10	+ DB4	- DB4	44
11	+ DB5	- DB5	45
12	+ DB6	- DB6	46
13	+ DB7	- DB7	47
14	+ DBP	- DBP	48
15	GND	GND	49
16	DIFFSENS	GND	50
17	TERMPWR	TERMPWR	51
18	TERMPWR	TERMPWR	52
19	OPEN	OPEN	53
20	GND	GND	54
21	+ ATN	- ATN	55
22	GND	GND	56
23	+ BSY	- BSY	57
24	+ ACK	- ACK	58
25	+ RST	- RST	59
26	+ MSG	- MSG	60
27	+ SEL	- SEL	61
28	+ C/D	- C/D	62
29	+ REQ	- REQ	63
30	+ I/O	- I/O	64
31	+ DB8	- DB8	65
32	+ DB9	- DB9	66
33	+ DB10	- DB10	67
34	+ DB11	- DB11	68

4.2.7 SCSI bus signals

The initiator and the target are connected via the SCSI-2 bus interface (ANSI standard X3T9.2/86-109, REV10E). Figure 4.2.4 shows the Wide SCSI bus signal conductors. Table 4.2.8 shows meaning of each signal.

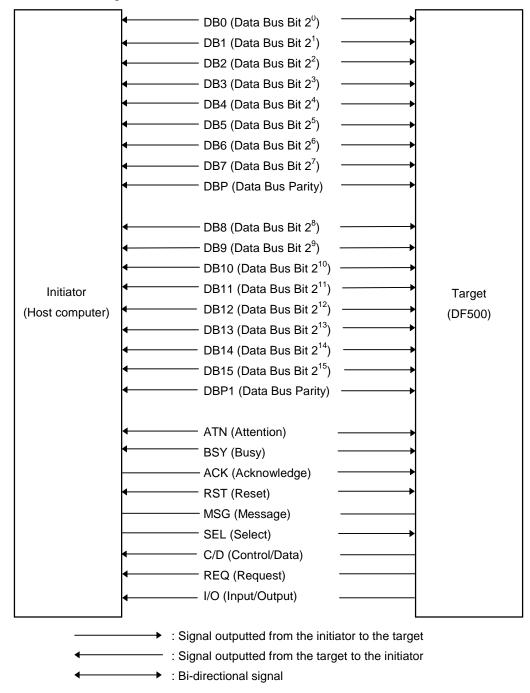


Figure 4.2.4 Wide SCSI Bus Signal Conductors

Table 4.2.8 Meanings of SCSI Bus Signals

Classification	Signal name	Description
Signal controlled by	I/O	Shows information flow direction on the data bus.
the target	(Input/Output)	I/O=1: From the target to the initiator
Ŭ	, ,	I/O=0: From the initiator to the target
		Differentiates the target from initiator.
		I/O=1: Re-selection (i.e. the target re-connects the initiator.)
		I/O=0: Selection (i.e. the initiator selects the target.)
	C/D	Shows the type of information on the data bus.
	(Control/Data)	C/D=1: Command, status, or message
	,	C/D=0: Data
	MSG	When MSG=1, the SCSI bus is in the message phase.
	(Message)	
Signal controlled by	BSY	When BSY=1, the SCSI bus is in use.
the initiator and	(Busy)	
target	SEL	Selection control signal for selection/re-selection.
	(Select)	-
Handshake signal	REQ	Used for information transfer on the data bus along with ACK.
between the initiator and target	(Request)	The target sets REQ=1 for each data byte for data transfer with the initiator.
	ACK	Used for information transfer on the data bus along with REQ.
	(Acknowledge)	When data sending/receiving is ready, the initiator sets ACK=1 in response to REQ.
		To complete handshaking, the initiator should set ACK=0 in
		response to REQ=0.
Signal controlled by	RST	• Target resetting signal. When RST=1, the target is initialized.
the initiator	(Reset)	
	ATN	• If ATN=1, the initiator has a message to be sent to the target.
	(Attention)	
Data bus signal	DB15 ~ DB0	(Wide SCSI bus)
	(Data Bus Bit2 ¹⁵)	8-bit data bus
		Becomes SCSI ID bit used to determine the priority in arbitration.
	(Data Bus Bit2 ⁰)	ID bit priority order is (<msb> DB7 to DB0, DB15 to DB8 = <lsb>).</lsb></msb>
	DBP, DBP1	(Wide SCSI Bus)
	(Data Bus Parity)	Data bus parity bit
		Odd parity

4.2.8 Bus phases

The SCSI bus states are classified into eight phases according to operations of the initiator and target shown below:

(1) Bus free phase

The SCSI bus is free and the initiator can start a new operation or the target can reconnect the initiator.

In the bus free phase, all signals on the SCSI bus are "0".

(2) Arbitration phase

In this phase, the initiator or target acquires the right to use the SCSI bus.

(3) Selection phase

In this phase, the initiator selects the target.

(4) Re-selection phase

In this phase, the target re-selects the initiator.

(5) Command phase

In this phase, the target receives a command from the initiator via the data bus.

(6) Data transfer phase

In this phase, data transfer with the initiator via the data bus is performed.

This phase is skipped when the command is not accompanied by data transfer.

(7) Status phase

In this phase, the status byte after command execution is transferred from the target to the initiator via the data bus.

(8) Message phase

In this phase, message bytes are transferred from the target to the initiator or from the initiator to the target via the data bus.

By following the above eight phase (steps) for a command, a series of operations such as command receiving, execution, and completion report are executed.

For information transfer phases (i.e. command, data transfer, status, and message phases), the target informs the initiator of which phase is currently in progress with a combination of three signals: I/O, C/D, and MSG.

Table 4.2.9 shows the correspondence between the signal combinations and phases.

Table 4.2.9 Information Transfer Phases

Si	Signal name		Phase	
MSG	C/D	I/O	Filase	
0	0	0	Data transfer phase (Data is sent from the initiator to the target.)	
0	0	1	Data transfer phase (Data is sent from the target to the initiator.)	
0	1	0	Command phase (A command is received from the initiator.)	
0	1	1	Status phase (A status is sent to the initiator.)	
1	0	0	Unused	
1	0	1	• Unused	
1	1	0	Message phase (A message is sent from the initiator to the target.)	
1	1	1	Message phase A message is sent from the target to the initiator.)	

A typical phase transition is shown in Figure 4.2.5.

Solid lines show normal sequence.

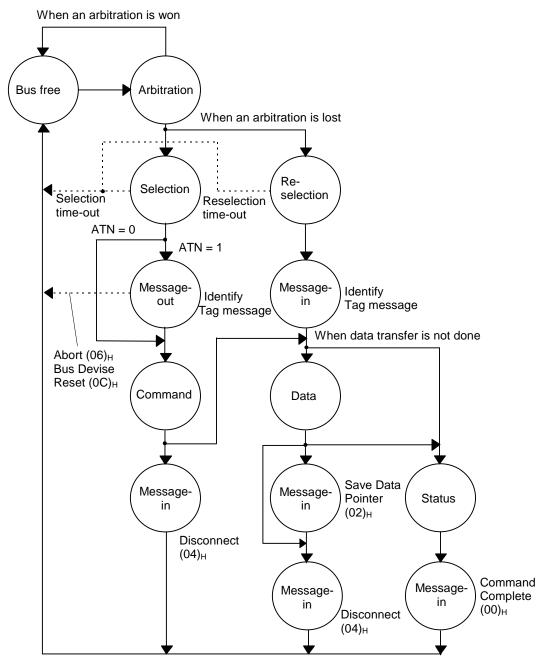


Figure 4.2.5 Phase Transition (in the System Having Arbitration)

- The convention on the Wide Bus transfer and synchronous transfer is implemented in the message after the selection when necessary.
- After resetting, any phase goes to the bus free phase.
- For details of messages, refer to "Hitachi Disk Array Subsystem SCSI Interface Specifications".

4.2.9 Outline of software of supported commands

The controller supports the commands in groups 0 to 2, 5, and 7 shown in Table 4.2.10.

Table 4.2.10 Supported Commands

Group name	Operation code	Command name
	00 _H	TEST UNIT READY
	01 _H	REZERO UNIT
	03н	REQUEST SENSE
	04 _H	FORMAT UNIT
	07н	REASSIGN BLOCKS
	08 _H	READ
Group 0	0A _H	WRITE
	0B _H	SEEK
	12 _H	INQUIRY
	15 _H	MODE SELECT(6)
	16 _H	RESERVE
	17 _H	RELEASE
	1A _H	MODE SENSE(6)
	1B _H	START/STOP UNIT
	1C _H	RECEIVE DIAGNOSTIC RESULTS
	1D _H	SEND DIAGNOSTIC
	25 _H	READ CAPACITY
	28 _H	READ (EXTEND)
	2A _H	WRITE (EXTEND)
	2B _H	SEEK (EXTEND)
Group 1	2E _H	WRITE AND VERIFY
	2F _H	VERIFY
	35 _H	SYNCHRONIZE CACHE
	37 _H	READ DEFECT DATA
	3B _H	WRITE BUFFER
	3C _H	READ BUFFER
	55 _H	MODE SELECT (10)
Group 2	56н	RESERVE(10)
	57 _H	RELEASE(10)
	5A _H	MODE SENSE (10)
Group 5	A0 _H	REPORT LUNS
	E4 _H	FORCED RESERVE
Group 7	E8 _H	READ WITH SKIP MASK
	EA _H	WRITE WITH SKIP MASK

Table 4.2.11 lists the commands for direct access devices defined in the ANSI's SCSI standard (SCSI-2) but not supported by the controller.

DF500

Table 4.2.11 List of Unsupported Commands

Operation code	Command name (in alphabetical order)	Remarks
40 _H	CHANGE DEFINITION	
39 _H	COMPARE	
18 _H	COPY	
3A _H	COPY AND VERIFY	
36 _H	LOCK-UNLOCK-CACHE	
4C _H	LOG SELECT	
4D _H	LOG SENSE	
34 _H	PRE-FETCH	
1E _H	PREVENT-ALLOW MEDIUM REMOVAL	
3E _н	READ LONG	
31 _H	SEARCH DATA EQUAL	
30 _H	SEARCH DATA HIGH	
32 _H	SEARCH DATA LOW	
33 _H	SET LIMITS	
3F _H	WRITE LONG	
41 _H	WRITE SAME	

4.2.10 Messages

Table 4.2.12 lists messages supported by the controller.

Table 4.2.12 Message Codes

Code	Description	Dire	ection ^(*1)	Remarks
00 _H	COMMAND COMPLETE	In		
01 _H	EXTENDED MESSAGE	In	Out	
02 _H	SAVE DATA POINTER	In		
03н	RESTORE POINTERS	In		
04 _H	DISCONNECT	In		
05 _H	INITIATOR DETECTED ERROR		Out	
06 _H	ABORT		Out	
07 _H	MESSAGE REJECT	In	Out	
08 _H	NO OPERATION		Out	
09 _H	MESSAGE PARITY ERROR		Out	
0A _H	LINKED COMMAND COMPLETE	In		
0B _H	LINKED COMMAND COMPLETE (WITH FLAG)	In		
0Сн	BUS DEVICE RESET		Out	
0D _H	ABORT TAG		Out	
0E _H	CLEAR QUEUE		Out	
0F _H - 1F _H	Reserved Code			
20 _H	SIMPLE QUEUE TAG	In	Out	2 bytes message
21 _H	HEAD OF QUEUE TAG		Out	2 bytes message
22 _H	ORDERED QUEUE TAG		Out	2 bytes message
23н	IGNORE WIDE RESIDUE	In		2 bytes message
	Reserved Code			
80 _н - FF _н	IDENTIFY	In	Out	
*1	: In : Controller to host computer			
	Out: Host computer to controller			

4.2.11 Status's

Status bytes are defined as shown in Tables 4.2.13 and 4.2.14. It the status byte is reported from the controller to a host computer in the Status phase when each command is completed.

However, this operation is not performed when the command is cleared by the ABORT message, ABORT TAG message, CLEAR QUEUE message, BUS DEVICE RESET message, or RESET status (including POWER ON RESET).

Table 4.2.13 Status Byte

Reserved Reserved Status Byte Code	Byte	it 7	6	5	4	3	2	1	0
	0	Reserved	Reserved	Status Byte Code				Reserved	

Table 4.2.14 Status Byte Codes

Bit				Status	
5	4	3	2	1	Status
0	0	0	0	0	GOOD
0	0	0	0	1	CHECK CONDITION
0	0	1	0	0	BUSY
0	1	0	0	0	INTERMEDIATE/GOOD
0	1	1	0	0	RESERVATION CONFLICT
1	0	1	0	0	QUEUE FULL

Status byte codes are defined as follows:

GOOD:

This status indicates that the controller has completed the command execution successfully.

CHECK CONDITION:

This status indicates that the command execution has terminated abnormally owing to an error, exception, or abnormal state resulting in setting of the sense data.

The host computer can acquire the detailed information on the error by issuing the REQUEST SENSE command after this status is reported.

After the CHECK CONDITION status is returned to a host computer and before the REQUEST SENSE command is issued, activation from another host computer may result in the BUSY status. Therefore, the REQUEST SENSE command^(‡1) must be issued.

BUSY:

This status indicates that the controller is busy.

The controller reports this status when it cannot accept a command from a host computer.

In this case, retry the command issue after a while.

INTERMEDIATE/GOOD:

This status indicates that each command execution (excluding the last one) in the link has completed successfully.

If this status is not reported, the link command chain is disconnected.

RESERVATION CONFLICT:

This status is reported when the host computer attempts to access the logical unit reserved by another host computer. However, this status is not reported for the INQUIRY, REQUEST, SENSE, RELEASE (6), RELEASE (16), and REPORT LUNS command. (Each command is updated with the current reservation not changed.)

QUEUE FULL:

This status indicates that the command queue is full and the command from the host computer cannot be accepted. In this case, retry the command issue after a while.

^{*1:} If a command ends with the CHECK CONDITION status, be sure to issue the REQUEST SENSE command without a tag.

The REQUEST SENSE command with a tag may result in incorrect reporting of the error.

Chapter 5 RS232C Cables

5.1 Pin Arrangement of Connector

The RS232C cable connector to be used on the subsystem side is shown in the Figure 5.1.1 below.

For pin numbers and corresponding signals, see the Table 5.1.1 below.

D-sub 9-pin male connector

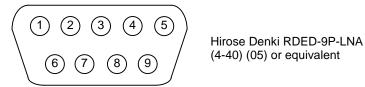
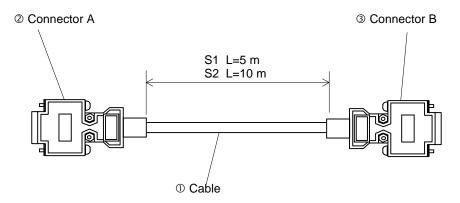
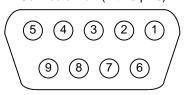


Figure 5.1.1 Pin Arrangement of R232C Cable Connector


Table 5.1.1 Pin and Signal Specification of R232C Connector

Pin No.	Signal name and description
1	_
2	RxD : Received Data
3	TxD : Transmitter Data
4	DTR: Data Terminal Ready
5	GND : Signal Ground
6	DSR: Data Set Ready
7	RTS: Request to Send
8	CTS: Clear to Send
9	_

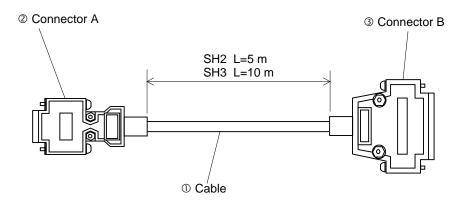
5.2 S1 and S2


(1) Cable

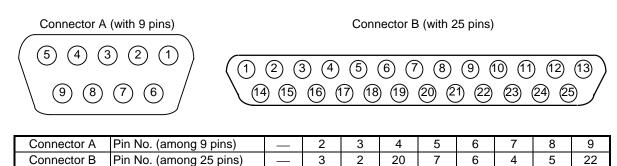
Cable name	Part No.	Name	Quantity	Part name					
Cable Harrie T art 140.		INAITIC	Quantity	Part specification/model	Manufacturer				
RS232C	1	Cable	_	UL20276 #28×8C	Furukawa Denko				
cable	2	Connector A	1	17JE-13090-02 (D8C)	Daiichi Denshi				
(S1/S2)	3	Connector B	1	17JE-13090-02 (D8C)	Kogyo				

(2) Pin arrangement and cabling of connectors

Connector A/B (with 9 pins)

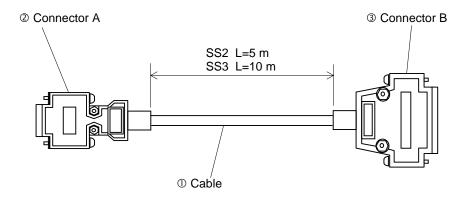


Connector A	Pin No. (among 9 pins)	_	2	3	4	5	6	7	8	
Connector B	Pin No. (among 9 pins)	_	3	2	6	5	4	8	7	_

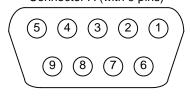

5.3 SH2 and SH3

(1) Cable

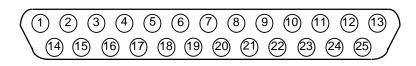
Cable name	Part No.	Name	Quantity	Part name					
Cable Harrie	r art ivo.	INAITIC	Quartity	Part specification/model	Manufacturer				
RS232C	1	Cable	_	UL20276 #28×8C	Furukawa Denko				
cable	2	Connector A	1	17JE-13090-02 (D8C)	Daiichi Denshi				
(SH2/SH3)	3	Connector B	1	17JE-23250-02 (D8C)	Kogyo				


(2) Pin arrangement and cabling of connectors

5.4 SS2 and SS3

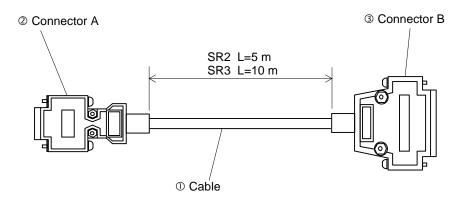

(1) Cable

Cable name	Part No.	Name	Quantity	Part name					
Cable Harrie	r art ivo.	INAITIC	Qualitity	Part specification/model	Manufacturer				
RS232C	1	Cable	_	UL20276 #28×8C	Furukawa Denko				
cable	2	Connector A	1	17JE-13090-02 (D8C)	Daiichi Denshi				
(SS2, SS3)	3	Connector B	1	17JE-23250-02 (D8C)	Kogyo				

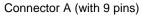


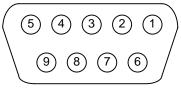
(2) Pin arrangement and cabling of connector

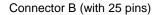
Connector A (with 9 pins)

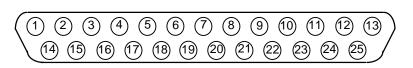


I	Connector A	Pin No. (among 9 pins)	1	2	3	4	5	6	7	8	
ı	Connector B	Pin No. (among 25 pins)	4, 5	2	3	6	7	20	8	8	_

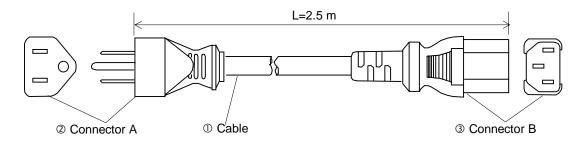

5.5 SR2 and SR3


(1) Cable


Cable name	Part No.	Name	Quantity	Part name					
Cable Harrie	Cable Hame I alt No. I van		Quantity	Part specification/model	Manufacturer				
RS232C	1	Cable	_	UL20276 #28×8C	Furukawa Denko				
cable	2	Connector A	1	17JE-13090-02 (D8C)	Daiichi Denshi				
(SR2, SR3)	3	Connector B	1	17JE-23250-02 (D8C)	Kogyo				

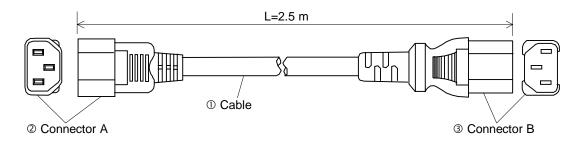


(2) Pin arrangement and cabling of connectors

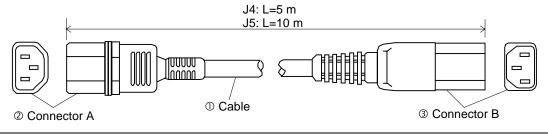


Connector A	Pin No. (among 9 pins)	1	2	3	4	5	6	7	8	
Connector B	Pin No. (among 25 pins)	4, 5	2	3	6	7	20	8	8	_

Chapter 6 Power Cables


6.1 J1F

Cable name	Part No.	Name	Quantity	Model	Applicable safety standard / rating
DF-F500-J1F	1	Cable	_	PVC code	UL and CSA
Power cable	2	Connector A	1	NEMA Standard 5-15P	For AC125 V (13 A)
	3	Connector B	1	EN60320-C13	For standard use


6.2 J2F

Cable name	Part No.	Name	Quantity	Model	Applicable safety standard / rating
DF-F500-J2F	1	Cable	_	PVC code	UL and CSA
Power cable	2	Connector A	1	EN60324-C14	AC250 V(10 A)
	3	Connector B	1	EN60324-C13	For rack frame

6.3 J4 and J5

Cable name	Part No.	Name	Quantity	Model	Applicable safety standard / rating
DF-F500-J4	1	Cable	_	CENELEC	VDE
DF-F500-J5	2	Connector A	1	EN60320-C14	AC250 V(10 A)
Power cable	3	Connector B	1	EN60320-C13	For rack frame

Appendix

Appendix A List of Storage Capacities Corresponding to RAID Levels and Configurations

Appendix A.1-1 RAID 0 and RAID 1 with 8.7 G bytes Disk Drives

The maximum disk capacity of each configuration in the case where a combination of the one RK and the one to nine RKAs is configured in RAID 0 or RAID 1 is shown below. The upper and lower values in each cell show number of mounted Disk drives and disk capacity respectively. No spare disk is included.

Appendix A.1-1 List of Capacities Corresponding to RAID 0 and RAID 1 (8.7 G bytes)

Die	lk oor	o o o itu						3.7 G bytes					
		oacity						of compone					
Con	npone	ent unit	ь	K			Detail	or compone	RKA				
	Rang	ne	18		1	2	3	4	5	6	7	8	9
Tot		nge of		10			·					•	
	isk dr		Min.	(Max.)	20	30	40	50	60	70	80	90	100
			2	10	20	30	40	50	60	70	80	90	100
		2D	17.4	87.1	174.2	261.3	348.5	435.6	522.7	609.8	697.0	784.1	871.2
		3D	3	9	18	30	39	48	60	69	78	90	99
		3D	26.1	78.4	156.8	261.3	339.7	418.2	522.7	601.1	679.5	784.1	862.5
		4D	4	8	20	28	40	48	60	68	80	88	100
		40	34.8	69.7	174.2	243.9	348.5	418.2	522.7	592.4	697.0	766.7	871.2
		5D	5	10	20	30	40	50	60	70	80	90	100
		- 05	43.5	87.1	174.2	261.3	348.5	435.6	522.7	609.8	697.0	784.1	871.2
		6D	6 52.2	6 52.2	18 156.8	30 261.3	36 313.6	48 418.2	60 522.7	66 575.0	78 679.5	90 784.1	96 836.4
			52.2 7	52.2 7	156.8	28	313.6	418.2	522.7	70	77	84	98
		7D	60.9	60.9	121.9	28 243.9	304.9	49 426.9	487.9	609.8	670.8	731.8	98 853.8
			8	8	16	243.9	40	48	56	64	80	88	96
		8D	69.7	69.7	139.4	209.1	348.5	418.2	487.9	557.6	697.0	766.7	836.4
		0D	9	9	18	27	36	45	54	63	72	90	99
RAID		9D	78.4	78.4	156.8	235.2	313.6	392.0	470.4	548.8	627.3	705.6	862.5
level	0	10D	10	10	20	30	40	50	60	70	80	90	100
			87.1	87.1	174.2	261.3	348.5	435.6	522.7	609.8	697.0	784.1	871.2
		445			11	22	33	44	55	66	77	88	99
		11D	-	-	95.8	191.6	287.5	383.3	479.1	575.0	670.8	766.7	862.5
		12D	_	-	12	24	36	48	60	60	72	84	96
		120		-	104.5	209.1	313.6	418.2	522.7	522.7	627.3	731.8	836.4
		13D	_	_	13	26	39	39	52	65	78	78	91
		100			113.2	226.5	339.7	339.7	453.0	566.3	679.5	679.5	792.8
		14D	_	_	14 121.9	28 243.9	28 243.9	42 365.9	56 487.9	70 609.8	70 609.8	84 731.8	98 853.8
					15	30	30	45	60	60	75	90	90
		15D	-	-	130.6	261.3	261.3	392.0	522.7	522.7	653.4	784.1	784.1
					16	16	32	48	48	64	80	80	96
		16D	-	-	139.4	139.4	278.8	418.2	418.2	557.6	697.0	697.0	836.4
			2	10	20	30	40	50	60	70	80	90	100
	1	1D+1P	8.7	43.5	87.1	130.6	174.2	217.8	261.3	304.9	348.5	392.1	435.6

Appendix A.1-2 RAID 5 with 8.7 G bytes Disk drives

The maximum disk capacity of each configuration in the case where a combination of the one RK and the one to nine RKAs is configured in RAID 5 is shown below.

Appendix A.1-2 List of Capacities Corresponding to RAID 5 (8.7 G bytes)

Dis	sk cap	oacity					(3.7 G bytes	S				
Con	nnone	ent unit					Detail o	of compone	ent unit				
001	пропе	one anne	R	K					RKA				
	Rang		1		1	2	3	4	5	6	7	8	9
		nge of	Minimun	10	20	30	40	50	60	70	80	90	100
<u>U</u>	isk dr	ives	3	(Max.) 9	18	30	39	48	60	69	78	90	99
		2D+1P	17.4	9 52.2	104.5	30 174.2	226.5	48 278.8	348.5	400.7	453.0	522.7	99 575.0
			4	8	20	28	40	48	60	68	80	88	100
		3D+1P	26.1	52.2	130.6	182.9	261.2	313.6	392.0	444.3	522.7	575.0	653.4
			5	10	20	30	40	50	60	70	80	90	100
		4D+1P	34.8	69.7	139.4	209.1	278.8	348.5	418.2	487.9	557.6	627.3	697.0
			6	6	18	30	36	48	60	66	78	90	96
		5D+1P	43.5	43.5	130.6	217.8	261.3	348.5	435.6	479.1	566.3	653.4	697.0
		0D.4D	7	7	14	28	35	49	56	70	77	84	98
		6D+1P	52.2	52.2	104.5	209.1	261.3	365.9	418.2	522.7	575.0	627.3	731.8
		7D+1P	8	8	16	24	40	48	56	64	80	88	96
		7D+1P	60.9	60.9	121.9	182.9	304.9	365.9	426.9	487.9	609.8	670.8	731.8
		8D+1P	9	9	18	27	36	45	54	63	72	90	99
RAID		0D+1P	69.7	69.7	139.4	209.0	278.8	348.5	418.2	487.9	557.6	627.2	766.7
level		9D+1P	10	10	20	30	40	50	60	70	80	90	100
	5	3D+II	78.4	78.4	156.8	235.2	313.6	392.0	470.4	548.8	627.3	705.7	784.1
		10D+1P	_	_	11	22	33	44	55	66	77	88	99
		TODTIF	_		87.1	174.2	261.3	348.5	435.6	522.7	609.8	697.0	784.1
		11D+1P	_	_	12	24	36	48	60	60	72	84	96
					95.8	191.6	287.5	383.3	479.1	479.1	575.0	670.8	766.7
		12D+1P	_	_	13	26	39	39	52	65	65	78	91
					104.5 14	209.1 28	313.6 28	313.6 42	418.2 56	522.7 70	522.7 70	627.3 84	731.8 98
		13D+1P	-	-	113.2	226.5	226.5	339.7	453.0	566.3	566.3	679.5	792.8
					15.2	30	30	45	60	60	75	90	90
		14D+1P	-	-	121.9	243.9	243.9	365.9	487.9	487.9	609.8	731.8	731.8
					16	16	32	48	48	64	80	80	96
		15D+1P	-	-	130.6	130.6	261.3	392.0	392.0	522.7	653.4	653.4	784.1

Appendix A.1-3 RAID 0+1 with 8.7 G bytes Disk drives

The maximum disk capacity of each configuration in the case where a combination of the one RK and the one to nine RKAs is configured in RAID 0+1 is shown below.

Appendix A.1-3 List of Capacities Corresponding to RAID 0+1 (8.7 G bytes)

Dis	sk cap	acity						3.7 G bytes	3				
		ent unit					Detail	of compone	ent unit				
Con	пропе	ant unit	R	:K					RKA				
	Rang	ge	·	1	1	2	3	4	5	6	7	8	9
	al rar isk dr	ige of ives	Min.	10 (Max.)	20	30	40	50	60	70	80	90	100
		2D+2P	2 8.7	10 43.5	20 87.1	30 130.6	40 174.2	50 217.8	60 261.3	70 304.9	80 348.5	90 392.0	100 435.6
		3D+3P	6 26.1	6 26.1	18 78.4	30 130.6	36 156.8	48 209.1	60 261.3	66 287.5	78 339.7	90 392.0	96 418.2
		4D+4P	8 34.8	8 34.8	16 69.7	24 104.5	40 174.2	48 209.1	56 243.9	64 278.8	80 348.5	88 383.3	96 418.2
RAID level	0+1	5D+5P	10 43.5	10 43.5	20 87.1	30 130.6	40 174.2	50 217.8	60 261.3	70 304.9	80 348.5	90 392.0	100 435.6
		6D+6P	-	-	12 52.2	24 104.5	36 156.8	48 209.1	60 261.3	60 261.3	72 313.6	84 365.9	96 418.2
		7D+7P	-	-	14 60.9	28 121.9	28 121.9	42 182.9	56 243.9	70 304.9	70 304.9	84 365.9	98 426.9
		8D+8P	-	-	16 69.7	16 69.7	32 139.4	48 209.1	48 209.1	64 278.8	80 348.5	80 348.5	96 418.2

Appendix A.2-1 RAID 0 and RAID 1 with 17.8 G bytes Disk drives

The maximum disk capacity of each configuration in the case where a combination of the one RK and the one to nine RKAs is configured in RAID 0 or RAID 1 is shown below. The upper and lower values in each cell show number of mounted Disk drives and disk capacity respectively. No spare disk is included.

Appendix A.2-1 List of Capacities Corresponding to RAID 0 and RAID 1 (17.8 G bytes)

Compo	onen								7.8 G byte	JU					
'		t unit						Detail o	f compon	ent unit					
D.				K		•	•	•	RKA	•				RI	KL
	ange		1		1	2	3	4	5	6	7	8	9	,	1
Total Disk	rang driv		Min.	10 (Max.)	20	30	40	50	60	70	80	90	100	Min.	12 (Max.)
		2D	2 35.5	10 177.9	20 355.9	30 533.8	40 711.8	50 899.7	60 1067.7	70 1245.6	80 1423.6	90 1601.5	100 1779.5	2 35.5	12 213.5
		3D	3 53.3	9 160.1	18 320.3	30 533.8	39 694.0	48 854.1	60 1067.7	69 1227.8	78	90 1601.5	99 1761.7	3 53.3	12 213.5
		4D	4	8	20	28	40	48	60	68	80	88	100	4	12
		טד	71.1 5	142.3 10	355.9 20	498.2 30	711.8 40	854.1 50	1067.7 60	1210.0 70	1423.6 80	1565.9 90	1789.5 100	71.1 5	213.5 10
		5D	88.9	177.9	355.9	533.8	711.8	899.7	1067.7	1245.6	1423.6	1601.5	1789.5	88.9	177.9
		6D	6 106.7	6 106.7	18 320.3	30 533.8	36 640.6	48 854.1	60 1067.7	66 1174.4	78 1388.0	90 1601.5	96 1708.3	6 106.7	12 213.5
		7D	7 124.5	7 124.5	14 249.1	28 498.2	35 622.8	49 871.9	56 996.5	70 1245.6	77 1370.2	84 1494.7	98 1743.9	7 124.5	7 124.5
		8D	8	8	16	24	40	48	56	64	80	88	96	8	8
		0.5	142.3 9	142.3 9	284.7 18	427.0 27	711.8 36	854.1 45	996.5 54	1138.8 63	1423.6 72	1565.9 81	1708.3 99	142.3 9	142.3 9
RAID		9D	160.1	160.1	320.3	480.4	640.6	800.7	960.9	1121.0	1281.2	1441.5	1761.7	160.1	160.1
level	0	10D	10 177.9	10 177.9	20 355.9	30 533.8	40 711.8	50 899.7	60 1067.7	70 1245.6	80 1423.6	90 1601.5	100 1779.5	10 177.9	10 177.9
		11D	-	-	11	22	33	44	55	66	77	88	99	11	11
		יוו	_		195.7	391.4	587.2	782.9	978.7	1174.4	1370.2	1565.9	1761.7	195.7	195.7
		12D	-	-	12 213.5	24 427.0	36 640.6	48 854.1	60 1067.7	60 1067.7	72 1281.2	84 1494.7	96 1708.3	12 213.5	12 213.5
		13D	-	-	13 231.3	26 284.6	39 694.0	39 694.0	52 925.3	65 1156.6	78 1388.0	78 1388.0	91 1619.3	-	-
		14D	-	-	14 249.1	28 498.2	28 498.2	42 747.3	56 996.5	70 1245.6	70	84 1494.7	98 1743.9	-	-
		15D	-	-	15 266.9	30 533.8	30 533.8	45 800.7	60 1067.7	60 1067.7	75 1334.6	90 1601.5	90 1601.5	-	-
		16D	-	-	16 284.7	16 284.7	32 569.4	48 854.1	48 854.1	64 1138.8	80 1423.6	80 1423.6	96 1708.3	-	-
-	1	1D +1P	2 17.7	10 88.9	20 177.9	30 266.9	40 355.9	50 444.8	60 533.8	70 622.8	80 711.8	90	100 889.7	2 17.7	12 106.7

Appendix A.2-2 RAID 5 with 17.8 G bytes Disk drives

The maximum disk capacity of each configuration in the case where a combination of the one RK and the one to nine RKAs is configured in RAID 5 is shown below.

Appendix A.2-1 List of Capacities Corresponding to RAID 5 (17.8 G bytes)

Disk	сара	city						17	7.8 G byte	es					
Comp	onon	t unit						Detail o	f compor	ent unit					
Comp	onen	t unit	R	K.					RKA					RI	ΚL
F	Range	;	ì	1	1	2	3	4	5	6	7	8	9	•	1
	l rang k driv		Min.	10 (Max.)	20	30	40	50	60	70	80	90	100	Min.	12 (Max.)
		2D	3	9	18	30	39	48	60	69	78	90	99	3	12
		+1P	35.5	106.7	213.5	355.9	462.6	569.4	711.8	818.5	925.3	1067.7	1174.7	35.5	142.3
		3D	4	8	20	28	40	48	60	68	80	88	100	4	12
		+1P	53.3	106.7	266.9	373.6	533.8	640.6	800.7	907.5	1067.7	1174.4	1334.6	53.3	160.1
		4D	5	10	20	30	40	50	60	70	80	90	100	5	10
		+1P	71.1	142.3	284.7	427.0	569.4	711.8	854.1	996.5	1138.8	1281.2	1423.6	71.1	142.3
		5D	6	6	18	30	36	48	60	66	78	90	96	6	12
		+1P	88.9	88.9	266.9	444.8	533.8	711.8	899.7	978.7	1156.6	1334.6	1423.6	88.9	177.9
		6D	7	7	14	28	35	49	56	70	77	84	98	7	7
		+1P	106.7	106.7	213.5	427.0	533.8	747.3	854.1	1067.7	1174.4	1281.2	1494.7	106.7	106.7
		7D	8	8	16	24	40	48	56	64	80	88	96	8	8
		+1P	124.5	124.5	249.1	373.6	622.8	747.3	871.9	996.5	1245.6	1370.2	1494.7	124.5	124.5
	5	8D	9	9	18	27	36	45	54	63	72	90	99	9	9
RAID		+1P	142.3	142.3	284.7	427.0	569.4	711.8	854.1	996.5	1138.8	1281.2	1565.9	142.3	142.3
level		9D	10	10	20	30	40	50	60	70	80	90	100	10	10
		+1P	160.1	160.1	320.3	480.4	640.6	800.7	960.9	1121.0	1281.2	1441.4	1601.5	160.1	160.1
		10D			11	22	33	44	55	66	77	88	99	11	11
		+1P	-	-	177.9	355.9	533.8	711.8	899.7	1067.7	1245.6	1423.6	1601.5	177.9	177.9
		11D			12	24	36	48	60	60	72	84	96	12	12
		+1P	-	-	195.7	391.4	587.2	782.9	978.7	978.7	1174.4	1370.2	1565.9	195.7	195.7
		12D			13	26	39	39	52	65	78	78	91		
		+1P	-	-	213.5	427.0	640.6	640.6	854.4	1067.7	1281.2	1281.2	1494.7	-	-
		13D			14	28	28	42	56	70	70	84	98		
		+1P	-	-	231.3	462.6	462.6	694.0	925.3	1156.6	1156.6	1388.0	1619.3	-	-
		14D			15	30	30	45	60	60	75	90	90		
		+1P	-	-	249.1	498.2	498.2	747.3	996.5	996.5	1245.6	1494.7	1494.7	-	-
		15D			16	16	32	48	48	64	80	80	96		
		+1P			266.9	266.9	533.8	800.7	800.7	067.8	1334.6	1334.6	1601.5	-	-

Appendix A.2-3 RAID 0+1 with 17.8 G bytes Disk drives

The maximum disk capacity of each configuration in the case where a combination of the one RK and the one to nine RKAs is configured in RAID 0+1 is shown below.

Appendix A.2-3 List of Capacities Corresponding to RAID 0+1 (17.8 G bytes)

Disk	сара	city						17	7.8 G byte	es					
Comp	onen	t unit						Detail o	f compor	ent unit					
Comp	JOHICH	t dilit	R	:K					RKA					RI	ΚL
F	Range	;	,	1	1	2	3	4	5	6	7	8	9	•	1
	l rang k driv		Min.	10 (Max.)	20	30	40	50	60	70	80	90	100	Min.	12 (Max.)
		2D +2P	4 35.5	8 71.1	20 177.9	28 249.1	40 355.9	48 427.0	60 533.8	68 605.0	80 711.8	88 782.9	100 899.7	4 35.5	12 106.7
		3D +3P	6 53.3	6 53.3	18 160.1	30 266.9	36 320.3	48 427.0	60 533.8	66 587.2	78 694.0	90 800.7	96 854.1	6 53.3	12 106.7
		4D +4P	8 71.1	8 71.1	16 142.3	24 213.5	40 355.9	48 427.0	56 498.2	64 569.4	80 711.8	88 782.9	96 854.1	8 71.1	8 71.1
RAID level	0+1	5D +5P	10 88.9	10 88.9	20 177.9	30 266.9	40 355.9	50 444.8	60 533.8	70 622.8	80 711.8	90 800.7	100 889.7	10 88.9	10 88.9
		6D +6P	-	-	12 106.7	24 213.5	36 320.3	48 427.0	60 533.8	60 533.8	72 640.6	84 747.3	96 854.1	12 106.7	12 106.7
		7D +7P	-	-	14 124.5	28 249.1	28 249.1	42 373.6	56 498.2	70 622.8	70 622.8	84 747.3	98 871.9	-	-
		8D +8P	-	-	16 142.3	16 142.3	32 284.7	48 427.0	48 427.0	64 569.4	80 711.8	80 711.8	96 854.1	-	-

Appendix A.3-1 RAID 0 and RAID 1 with 35.6 G bytes Disk drives

The maximum disk capacity of each configuration in the case where a combination of the one RK and the one to nine RKAs is configured in RAID 0 or RAID 1 is shown below. The upper and lower values in each cell show number of mounted Disk drives and disk capacity respectively. No spare disk is included.

Appendix A.3-1 List of Capacities Corresponding to RAID 0 and RAID 1 (35.6 G bytes)

Disk	capa	city						35	.6 G byte	es					
Comp	onen	t unit						Detail o	f compor	ent unit					
Оотпр	OHIGH	· arm	R	K					RKA					RI	ΚL
	Range		1		1	2	3	4	5	6	7	8	9	•	1
	l rang k driv		Min.	10 (Max.)	20	30	40	50	60	70	80	90	100	Min.	12 (Max.)
		2D	2	10	20	30	40	50	60	70	80	90	100	2	12
		20	71.3	356.8	713.6	1070.4	1427.2	1784.0	2140.8	2497.6		3211.1	3568.0	71.3	428.1
		3D	3 107.0	9 321.1	18 642.2	30 1070.4	39 1391.5	48 1712.6	60 2140.8	69 2461.9	78 2783.1	90 3211.2	99 3532.4	3 107.0	12 428.1
			4	8	20	28	40	48	60	68	80	88	100	4	12
		4D	142.7	285.4	713.6	999.0	1427.2	1712.6		2426.3	2854.4		35680.0	142.7	428.1
			5	10	20	30	40	50	60	70	80	90	100	5	10
		5D	178.4	356.8	713.6	1070.4	1427.2	1784.0	2140.8	2497.6	2854.4	3211.2	3568.0	178.4	356.8
			6	6	18	30	36	48	60	66	78	90	96	6	12
		6D	214.0	214.0	642.2	1070.4	1284.5	1712.6	2140.8	2354.9	2783.1	3211.2	3425.3	214.0	428.1
			7	7	14	28	35	49	56	70	77	84	98	7	7
		7D	249.7	249.7	499.5	999.0	1248.8	1748.3	1998.1	2497.6	2747.4	2997.1	3496.7	249.7	249.7
			8	8	16	24	40	48	56	64	80	88	96	8	8
		8D	285.4	285.4	570.8	856.3	1427.2	1712.6	1998.1	2283.5	2854.4	3139.9	3425.3	285.4	285.4
		0.0	9	9	18	27	36	45	54	63	72	90	99	9	9
RAID	0	9D	321.1	321.1	642.2	963.3	1284.5	1605.6	1926.7	2247.8	2569.0	3211.2	3532.4	321.1	321.1
level		400	10	10	20	30	40	50	60	70	80	90	100	10	10
		10D	356.8	356.8	713.6	1070.4	1427.2	1784.0		2497.6		3211.2	3568.0	356.8	356.8
		445			11	22	33	44	55	66	77	88	99	11	11
		11D	-	-	392.4	784.9	1177.4	1569.9	1962.4	2354.9	2747.4	3139.9	3532.4	392.4	392.4
		12D	_		12	24	36	48	60	60	72	84	96	12	12
		120	-	•	428.1	856.3	1284.5	1712.6	2140.8	2140.8		2997.1	3425.3	428.1	428.1
		13D	_	_	13	26	39	39	52	65	78	78	91		
		130	-	-	463.8	927.7	1391.5	1391.5	1855.4	2319.2		2783.1	3246.9	-	
		14D	_	_	14	28	28	42	56	70	70	84	98	_	_
		טדו			499.5	999.0	999.0	1498.5	1998.1	2497.6		2997.1	3496.7		
		15D	_	_	15	30	30	45	60	60	75	90	90	_	_
		100	_	_	535.2	1070.4	1070.4	1605.6		2140.8	2676.0	3211.1	3211.1	_	_
		16D	-	-	16 570.8	16 570.8	32 1141.7	48 1712.6	48 1712.6	64 2283.5	80 2854.4	80 2854.4	96 3425.3	-	-
 		1D	2	10	20	30	40	50	60	70	80	90	100	2	12
	1	+1P	35.6	178.4	356.8	535.2	713.6	892.0	1070.4	1248.8		1605.6	1784.0	35.6	214.0
		TIF	33.0	170.4	550.0	JJJ.Z	110.0	032.0	1070.4	1240.0	1441.2	1000.0	1704.0	55.0	214.0

Appendix A.3-2 RAID 5 with 35.6 G bytes Disk drives

The maximum disk capacity of each configuration in the case where a combination of the one RK and the one to nine RKAs is configured in RAID 5 is shown below.

Appendix A.3-2 List of Capacities Corresponding to RAID 5 (35.6 G bytes)

Disk	capa	city						35	.6 G byte	es					
Comp	onen	t unit						Detail o	f compor	ent unit					
ООПР	JOHICH	t dilit	R	K					RKA					RI	ΚL
F	Range		`		1	2	3	4	5	6	7	8	9	•	1
	l rang k driv		Min.	10 (Max.)	20	30	40	50	60	70	80	90	100	Min.	12 (Max.)
		2D	3	9	18	30	39	48	60	69	78	90	99	3	12
		+1P	71.3	214.0	428.1	713.6	927.7	1141.7	1427.2	1641.3	1855.4	2140.3	2354.9	71.3	285.4
		3D	4	8	20	28	40	48	60	68	80	88	100	4	12
		+1P	107.0	214.0	535.2	749.2	1070.4	1284.5	1605.6	1819.7	2140.8	2354.9	2676.0	107.0	321.1
		4D +1P	5 142.7	10 285.4	20 570.8	30 856.3	40 1141.7	50 1427.2	60 1712.6	70 1998.1	80 2283.5	90 2569.0	100 2854.4	5 142.7	10 285.4
		5D	6	6	18	30	36	48	60	66	78	90	96	6	12
		+1P	178.4	178.4	535.2	892.0	1071.4	1427.2	1784.0	1962.4		2676.0	2854.4	178.4	356.8
		6D	7	7	14	28	35	49	56	70	77	84	98	7	7
		+1P	214.0	214.0	428.1	856.3	1070.4	1498.5	1712.6	2140.8	2354.9	2569.0	2997.1	214.0	214.0
		7D	8	8	16	24	40	48	56	64	80	88	96	8	8
		+1P	249.7	249.7	499.5	749.2	1248.8	1498.5	1748.3	1998.1	2497.6	2747.4	2997.1	249.7	249.7
		8D	9	9	18	27	36	45	54	63	72	81	99	9	9
RAID		+1P	285.4	285.4	570.8	856.3	1141.7	1427.2	1712.6	1998.1	2283.5	2569.0	3139.9	285.4	285.4
level	5	9D	10	10	20	30	40	50	60	70	80	90	100	10	10
		+1P	321.1	321.1	642.2	963.3	1284.5	1605.6	1926.7	2247.8	2569.0	2890.1	3211.2	321.1	321.1
		10D+			11	22	33	44	55	66	77	88	99	11	11
		1P	-	-	356.8	713.6	1070.4	1427.2	1784.0	2140.8		2854.4	3211.2	356.8	356.8
		11D			12	24	36	48	60	60	72	84	96	12	12
		+1P	-	-	392.4	784.9	1177.4	1569.9	1962.4	1962.4	2354.9	2747.4	3139.9	392.4	392.4
		12D		_	13	26	39	39	52	65	78	78	91		
		+1P	•	-	428.1	856.3	1284.5	1284.5	1712.6	2140.8	2569.0	2569.0	2997.1	•	-
		13D	_	_	14	28	28	42	56	70	70	84	98	_	
		+1P	-		463.8	927.7	927.7	1391.5	1855.4	2319.2	2319.2	2783.1	3246.9	-	-
		14D	_	_	15	30	30	45	60	60	75	90	90	_	_
		+1P			499.5	999.0	999.0	1498.5	1998.1	1998.1	2497.6	2997.1	2997.1	-	
		15D	_	_	16	16	32	48	48	64	80	80	96	_	_
		+1P	_	_	535.2	535.2	1070.4	1605.6	1605.6	2140.8	26/6.0	2676.0	3211.2	_	_

Appendix A.3-3 RAID 0+1 with 35.6 G bytes Disk drives

The maximum disk capacity of each configuration in the case where a combination of the one RK and the one to nine RKAs is configured in RAID 0+1 is shown below.

Appendix A.3-3 List of Capacities Corresponding to RAID 0+1 (35.6 G bytes)

Disk	сара	city						35	.6 G byte	es					
Comp	onen	tunit						Detail o	f compor	ent unit					
Comp	onen	t driit	R	:K					RKA					RI	K L
F	Range)	,	1	1	2	3	4	5	6	7	8	9	,	1
	I rang k driv		Min.	10 (Max.)	20	30	40	50	60	70	80	90	100	Min.	12 (Max.)
		2D	4	8	20	28	40	48	60	68	80	88	100	4	12
		+2P	71.3	142.7	356.8	499.5	713.6	856.3	1070.4	1213.1	1427.2	1569.9	1784.0	71.3	214.0
		3D	6	6	18	30	36	48	60	66	78	90	96	6	12
		+3P	107.0	107.0	321.1	535.2	642.2	856.3	1070.4	1177.4	1391.5	1605.6	1712.6	107.0	214.0
		4D	8	8	16	24	40	48	56	64	80	88	96	8	8
		+4P	142.7	142.7	285.4	428.1	713.6	856.3	999.0	1141.7	1427.2	1569.9	1712.6	142.7	142.7
RAID	0+1	5D	10	10	20	30	40	50	60	70	80	90	100	10	10
level		+5P	178.4	178.4	356.8	535.2	713.6	892.0	1070.4	1248.8	1427.2	1605.6	1784.0	178.4	178.4
		6D			12	24	36	48	60	60	72	84	96	12	12
		+6P	-	-	214.0	428.1	642.2	856.3	1070.4	1070.4	1284.5	1498.5	1712.6	214.0	214.0
		7D			14	28	28	42	56	70	70	84	98		
		+7P	-	-	249.7	499.5	499.5	749.2	999.0	1248.8	1248.8	1498.5	1748.3	-	-
		8D			16	16	32	48	48	64	80	80	96		
		+8P	•	-	285.4	285.4	570.8	856.3	856.3	1141.7	1427.2	1427.2	1712.6	•	-

Appendix A.4-1 RAID 0 and RAID 1 with 71.6 G bytes Disk drives

The maximum disk capacity of each configuration in the case where a combination of the one RK and the one to nine RKAs is configured in RAID 0 or RAID 1 is shown below. The upper and lower values in each cell show number of mounted Disk drives and disk capacity respectively. No spare disk is included.

Appendix A.4-1 List of Capacities Corresponding to RAID 0 and RAID 1 (71.6 G bytes)

Disk	capa	city						71	I.6 G byte	es					
Comp	onen	t unit						Detail o	f compor	ent unit					
				K					RKA					RI	KL
	Range		1		1	2	3	4	5	6	7	8	9	•	1
	l rang k driv		Min.	10 (Max.)	20	30	40	50	60	70	80	90	100	Min.	12 (Max.)
		2D	2 143.2	10 716.3	20 1432.7	30 2149.0	40 2865.4	50 3581.7	60 4298.1	70 5014.4	80 5730.8	90 6447.1	100 7163.5	2 143.2	12 859.6
		3D	3	9	18	30	39	48	60	69	78	90	99	3	12
		30	214.9	644.7	1289.4 20	2149.0 28	2793.7 40	3438.4 48	4298.1 60	4942.8 68	5587.5 80	6447.1 88	7091.8	214.9	859.6
		4D	4 286.5	8 573.0	1432.7	2005.7	2865.4	48 3438.4	4298.1	4871.1	5730.8	6303.8	100 7163.5	4 286.5	12 859.6
		5D	5 358.1	10 716.3	20	30	40 2865.4	50	60 4298.1	70	80	90 6447.1	100	5 358.1	10
			6	6	1432.7 18	2149.0 30	36	3581.7 48	4298.1 60	5014.4 66	5730.8 78	90	7163.5 96	6	716.3 12
		6D	429.8	429.8	1289.4	2149.0	2578.8	3438.4	4298.1	4727.9	5587.5	6447.1	6876.9	429.8	859.6
		7D	7 501.4	7 501.4	14 1002.8	28 2005.7	35 2507.2	49 3510.1	56 4011.5	70 5014.4	77 5515.8	84 6017.3	98 7020.2	7 501.4	7 501.4
		8D	8	8	16	24	40	48	56	64	80	88	96	8	8
		00	573.0 9	573.0 9	1146.1 18	1719.2 27	2865.4 36	3438.4 45	4011.5 54	4584.6 63	5730.8 72	6303.8 90	6876.9 99	573.0 9	573.0 9
RAID		9D	644.7	644.7	1289.4	1934.1	2578.8	3223.5	3868.2	4513.0	5157.7	6447.1	7091.8	644.7	644.7
level	0	10D	10	10	20	30	40	50	60	70	80	90	100	10	10
		100	716.3	716.3	1432.7 11	2149.0 22	2865.4 33	3581.7 44	4298.1 55	5014.4 66	5730.8 77	6447.1 88	7163.5 99	716.3	716.3 11
		11D	-	-	787.9	1575.9	2363.9	3151.9	3939.9	4727.9	5515.8	6303.8	7091.8	787.9	787.9
		12D	-	-	12 859.6	24 1719.2	36 2578.8	48 3438.4	60 4298.1	60 4298.1	72 5157.7	84 6017.3	96 6876.9	12 859.6	12 859.6
		13D	_	_	13	26	39	39	52	65	78	78	91	-	-
		100	_		931.2 14	1862.5 28	2793.7 28	2793.7 42	3725.0 56	4656.2 70	5587.5 70	5587.5 84	6518.7 98	_	_
		14D	-	-	1002.8	2005.7	2005.7	3008.6		5014.4	-	6017.3	7020.3	-	-
		15D	-	-	15 1074.5	30 2149.0	30 2149.0	45 3223.5	60 4298.1	60 4298.1	75 5372.6	90 6447.1	90 6447.1	-	-
		16D	-	-	16 1146.1	16 1146.1	32 2292.3	48 3438.4	48 3438.4	64 4584.6	80 5730.8	80 5730.8	96 6876.9	-	-
	1	1D	2	10	20	30	40	50	60	70	80	90	100	2	12
		+1P	71.6	358.1	716.3	1074.5	1432.7	1790.8	2149.0	2507.2	2865.4	3223.5	3581.7	71.6	429.8

Appendix A.4-2 RAID 5 with 71.6 G bytes Disk drives

The maximum disk capacity of each configuration in the case where a combination of the one RK and the one to nine RKAs is configured in RAID 5 is shown below.

Appendix A.4-2 List of Capacities Corresponding to RAID 5 (71.6 G bytes)

Disk	сара	city						71	.6 G byte	es					
Comp	onen	t unit						Detail o	f compor	ent unit					
Оотгр	OHEH	· arm	R	K.					RKA					RI	ΚL
F	Range)	1	1	1	2	3	4	5	6	7	8	9	,	1
	l rang k driv		Min.	10 (Max.)	20	30	40	50	60	70	80	90	100	Min.	12 (Max.)
		2D	3	9	18	30	39	48	60	69	78	90	99	3	12
		+1P	143.2	429.8	859.6	1432.7	1862.5	2292.3	2865.4	3295.2	3725.0	4298.1	4727.9	143.2	573.0
		3D	4	8	20	28	40	48	60	68	80	88	100	4	12
		+1P	214.9	429.8	1074.5	1504.3	2149.0	2578.8	3223.5	3653.3	4298.1	4727.9	5372.6	214.9	644.7
		4D	5	10	20	30	40	50	60	70	80	90	100	5	10
		+1P	286.5	573.0	1146.1	1719.2	2292.3	2865.4	3438.4	4011.5	4584.6	5157.7	5730.8	286.5	573.0
		5D	6	6	18	30	36	48	60	66	78	90	96	6	12
		+1P	358.1	358.1	1074.5	1790.8	2149.0	2865.4	3581.7	3939.9	4656.2	5372.6	5730.8	358.1	716.3
		6D	7	7	14	28	35	49	56	70	77	84	98	7	7
		+1P	429.8	429.8	859.6	1719.2	2149.0	3008.6	3438.4	4298.1	4727.9	5157.7	6017.3	429.8	429.8
		7D	8	8	16	24	40	48	56	64	80	88	96	8	8
		+1P	501.4	501.4	1002.8	1504.3	2507.2	3008.6	3510.1	4011.5		5515.8	6017.3	501.4	501.4
l		8D	9	9	18	27	36	45	54	63	72	90	99	9	9
RAID		+1P	573.0	573.0	1146.1		2292.3	2865.4	3438.4	4011.5		5157.7	6303.8	573.0	573.0
level	5	9D	10	10	20	30	40	50	60	70	80	90	100	10	10
		+1P	644.7	644.7	1289.4	1934.1	2578.8	3223.5	3868.2	4513.0		5802.4	6447.1	644.7	644.7
		10D	_		11	22	33	44	55	66	77	88	99	11	11
		+1P	-	-	716.3	1432.7	2149.0	2865.4	3581.7	4298.1	5014.4	5730.8	6447.1	716.3	716.3
		11D	_	_	12	24	36	48	60	60	72	84	96	12	12
		+1P		-	787.9	1575.9	2363.9	3151.9	3939.9	3939.9	4727.9	5515.8	6303.8	787.9	787.9
		12D	_	_	13	26	39	39	52	65	78	78	91	_	_
		+1P		_	859.6		2578.8	2578.8		4298.1	5157.7	5157.7	6017.3		
		13D	_	_	14	28	28	42	56	70	70	84	98	_	_
		+1P			931.2	1862.5	1861.6	2793.7	3725.0	4656.2	4656.2	5587.5	6518.7	-	
		14D	_	_	15	30	30	45	60	60	75	90	90	_	_
		+1P			1002.8	2005.7	2005.7	3008.6		4011.5	5014.4	6017.3	6017.3		
		15D	_	_	16	16	32	48	48	64	80	80	96	_	_
		+1P	_	_	1074.5	1074.5	2149.0	3223.5	3223.5	4298.1	5372.6	5372.6	6447.1	_	_

Appendix A.4-3 RAID 0+1 with 71.6 G bytes Disk drives

The maximum disk capacity of each configuration in the case where a combination of the one RK and the one to nine RKAs is configured in RAID 0+1 is shown below.

Appendix A.4-3 List of Capacities Corresponding to RAID 0+1 (71.6 G bytes)

Disk	сара	city						7′	.6 G byte	es					
Comp	onen	tunit						Detail o	f compor	ent unit					
Comp	onen	t driit	R	:K					RKA					RI	K L
F	Range)	,	1	1	2	3	4	5	6	7	8	9	,	1
	I rang k driv		Min.	10 (Max.)	20	30	40	50	60	70	80	90	100	Min.	12 (Max.)
		2D	4	8	20	28	40	48	60	68	80	88	100	4	12
		+2P	143.2	286.5	716.3	1002.8	1432.7	1719.2	2149.0	2435.5	2865.4	3151.9	3581.7	143.2	429.8
		3D	6	6	18	30	36	48	60	66	78	90	96	6	12
		+3P	214.9	214.9	644.7	1074.5	1289.4	1719.2	2149.0	2363.9	2793.7	3223.5	3438.4	214.9	429.8
		4D	8	8	16	24	40	48	56	64	80	88	96	8	8
		+4P	286.5	286.5	573.0	859.6	1432.7	1719.2	2005.7	2292.3	2865.4	3151.9	3438.4	286.5	286.5
RAID	0+1	5D	10	10	20	30	40	50	60	70	80	90	100	10	10
level		+5P	358.1	358.1	716.3	1074.5	1432.7	1790.8	2149.0	2507.2	2865.4	3223.5	3581.7	358.1	358.1
		6D			12	24	36	48	60	60	72	84	96	12	12
		+6P	-	-	429.8	859.6	1289.4	1719.2	2149.0	2149.0	2578.8	3008.6	3438.4	429.8	429.8
		7D			14	28	28	42	56	70	70	84	98		
		+7P	-	-	501.4	1002.8	1002.8	1504.3	2005.7	2507.2	2507.2	3008.6	3510.1	-	-
		8D			16	16	32	48	48	64	80	80	96		
		+8P	•	-	573.0	573.0	1146.1	1719.2	1719.2	2292.3	2865.4	2865.4	3438.4	•	-

Glossary

Cache backup:

Because a cache memory uses DRAM, information stored in it is lost when the subsystem power is shut off. To provide against unexpected power failure, the subsystem has an setup to maintain data in the cache memory by batteries. Cache backup is a state in which the data is protected by the batteries.

Canister:

A mechanical part for mounting disk drives in order to allow the Disk drives to be installed/removed in/from the subsystem easily.

EIA : Electronic Industries Alliance

EIA standard 1 EIA unit = 44.45 mm

FC-AL: Fibre Channel Arbitrated Loop

Fibre Channel HBA: Figre Channel Host bus Adapter

Fibre Channel HUB:

An apparatus to connect and relay Fibre Channel cables each connected to a Fibre Channel device in order to form an arbitrated loop of the Fibre Channel.

FC-SW: Fibre Channel-SWitch Topology

GBIC : GigaBit Interface Converter

Host computer:

A computer which manages devices. In the case of the disk array, a computer which makes the disk array store data is applicable to the term.

Hot replacement:

To replace an installed part with the subsystem power on. Usually, the major part is duplicated so that when one of the parts fails, the subsystem function is maintained by another part.

Mirror disk:

A slave disk on which the same data as that on the master disk, which is used to read/write data, is written in the RAID 1 configuration. When a failure occurs in the master Disk drive, reading/writing is done from/on the mirror disk.

MTBF: Mean Time Between Failure

MTBDL : Mean Time Between Data Lost

LVD: Low Voltage Differential

Parity disk:

When configuring RAID 5, one disk drive in a RAID group is designated as the parity disk and the other disk drives as data disks. On the parity disk, parity data calculated from those of data disks is stored. Even when one of the Disk drives in a RAID group fails, the subsystem can be used with its data not damaged by virtue of the parity data.

PDB : Power Distribution Box

PDU: Power Distribution Unit

Rack frame:

A frame on which electronic equipment are mounted like a bookshelf using rails, etc. Most of them have a width of 19 inches, and called 19-inch rack frame. Height of the equipment to be mounted is regulated by the EIA standard (1 EIA unit = 44.45 mm).

The rack frame has screw holes to fasten equipment with bolts, etc.

RAID: Redundant Array of Independent (Inexpensive) Disks

The RAID technology, which was proposed by a research group in the University of California at Berkeley in 1987, is to realize high-speed, large capacity, and highly reliable storage device by scattering accesses using several disk drives. RAID levels proposed by the University of California are classified into six levels, that is, RAID 0 to RAID 5, and they are selected according to user's demand taking their costs and speeds in consideration.

Remote maintenance function (SNMP):

SNMP agent support function reports an occurrence of a failure to the workstation for monitoring the network via the SNMP of the open platform.

It also reports the operating condition, such as numbers of command reception and cache hits, of the disk array subsystem.

It enables the command executing condition, which corresponds to the type of access from host computers, to be referred to, and such information aids performance tuneup of the subsystem.

To use the SNMP agent support function, LAN facility and a workstation in which SNMP Manager is installed are required.

SNNP : Simple Network Management Protocol

Spare disk:

A Disk drive installed separately from disk drives used for usual reading and writing.

When one of the latter Disk drives fails, the subsystem keeps in service as before by copying data stored in the failed Disk drive to the spare disk.

UPS : <u>Uninterrupted Power Supply</u>

Write cache:

When data is written from a host computer onto a disk array subsystem, it is not written directly on the Disk drive but written on a cache memory. In this way, the disk array subsystem can return a writing completion report promptly. This writing method using a cache memory is called write cache.

Write through mode:

A method to write data directly on a Disk drive without using the write cache.

DF500Disk Array Subsystem **Specifications**

Sixth edition: March, 2001

HITACHI