Critical Release Notice

Publication number: 297-8021-543 Publication release: Preliminary 17.01

The content of this customer NTP supports the SN09 (DMS) software release.

Bookmarks used in this NTP highlight the changes between the NA015 baseline and the current release. The bookmarks provided are color-coded to identify release-specific content changes. NTP volumes that do not contain bookmarks indicate that the NA015 baseline remains unchanged and is valid for the current release.

Bookmark Color Legend

Black: Applies to content for the NA015 baseline that is valid through the current release.

Red: Applies to new or modified content for NA017 that is valid through the current release.

Blue: Applies to new or modified content for NA018 (SN05 DMS) that is valid through the current release.

Green: Applies to new or modified content for SN06 (DMS) that is valid through the current release.

Purple: Applies to new or modified content for SN07 (DMS) that is valid through the current release.

Pink: Applies to new or modified content for SN08 (DMS) that is valid through the current release.

Orange: Applies to new or modified content for SN09 (DMS) that is valid through the current release.

Attention!

Adobe ® Acrobat ® Reader TM 5.0 or higher is required to view bookmarks in color.

Publication History

Note: Refer to the NA015 baseline document for Publication History prior to the NA017 release.

September 2005

Preliminary release 17.01 or software release SN09 (DMS). Updates made for this release are shown below:

Volume 1

Corrected paragraph on page 4-36 according to CR Q01117454

Volume 2 - 4

No changes

March 2004

Standard release 16.03 for software release SN06 (DMS). Updates made for this release are shown below:

Volume 1

No changes

Volume 2

New alarm – Lns CR C critical – according to CR Q00720148.

Volume 3 - 4

No changes

September 2003

Standard release 16.02 for software release SN06 (DMS). Updates made for this release are shown below:

Volume 1 - 4

No changes

June 2003

Preliminary release 16.01 for software release SN06 (DMS). Updates for this release are shown below:

Volume 1 - 4

No changes

297-8021-543

DMS-100 Family

North American DMS-100

Alarm Clearing and Performance Monitoring Procedures Volume 2 of 4

LET0015 and up Standard 14.02 May 2001

DMS-100 Family

North American DMS-100

Alarm Clearing and Performance Monitoring Procedures Volume 2 of 4

Publication number: 297-8021-543 Product release: LET0015 and up Document release: Standard 14.02

Date: May 2001

Copyright © 1996-2001 Nortel Networks, All Rights Reserved

Printed in the United States of America

NORTEL NETWORKS CONFIDENTIAL: The information contained herein is the property of Nortel Networks and is strictly confidential. Except as expressly authorized in writing by Nortel Networks, the holder shall keep all information contained herein confidential, shall disclose the information only to its employees with a need to know, and shall protect the information, in whole or in part, from disclosure and dissemination to third parties with the same degree of care it uses to protect its own confidential information, but with no less than reasonable care. Except as expressly authorized in writing by Nortel Networks, the holder is granted no rights to use the information contained herein.

Information is subject to change without notice. Nortel Networks reserves the right to make changes in design or components as progress in engineering and manufacturing may warrant. Changes or modification to the DMS-100 without the express consent of Nortel Networks may void its warranty and void the user's authority to operate the equipment.

Nortel Networks, the Nortel Networks logo, the Globemark, How the World Shares Ideas, Unified Networks, DMS, DMS-100, Helmsman, MAP, Meridian, Nortel, Northern Telecom, NT, SuperNode, and TOPS are trademarks of Nortel Networks.

Contents

Alarm Clearing and Performance Monitoring Procedures Volume 2 of 4

NT	TP Summary Contents	Vii
1	Procedures to clear an Input/output device alarm	1-1
	Introduction 1-1	
	Alarm display 1-1	
	Indication 1-1	
	Meaning 1-1	
	Results 1-1	
	Common procedures 1-1	
	Action 1-2	
	IOD 2MPCOS CSS SPM minor 1-3	
	IOD 2MPCOS CV SPM minor 1-9	
	IOD 2MPCOS CVFE SPM minor 1-16	
	IOD 2MPCOS ES SPM minor 1-23	
	IOD 2MPCOS ESFE SPM minor 1-31	
	IOD 2MPCOS SEFS SPM minor 1-38	
	IOD 2MPCOS SES SPM minor 1-46	
	IOD 2MPCOS SESFE SPM minor 1-54	
	IOD 2MPCOS UAS SPM minor 1-62	
	IOD 2MPCOS UASFE SPM minor 1-69	
	IOD DEVBnn critical, major, or minor 1-76	
	IOD DMNTnn minor 1-79	
	IOD HOLDnn minor 1-85	
	IOD ITOC critical 1-88	
	IOD ITOC minor 1-95	
	IOD KEEPn minor 1-103	
	IOD MPCLNK minor 1-106	
	IOD MPCLNK on an IOM minor 1-115	
	IOD nCKEr minor 1-126	
	IOD nCKEr on an IOM minor 1-133	
	IOD nCKOS major or minor 1-142	
	IOD nCKOS on an IOM major or minor 1-151	
	IOD nDDUOS major or minor 1-164	
	IOD nDDUOS on an IOM major or minor 1-178	
	IOD nDPCOS minor 1-191	

IOD nIOCOS major or minor 1-196 IOD nIOCOS on an IOM major or minor 1-204 IOD nMPCOS in an IOC major or minor 1-211 IOD nMPCOS on an IOM major or minor 1-222 IOD nMTDOS in an IOC minor 1-235 IOD nMTDOS on an IOM minor 1-245 IOD nnAMA critical, major, or minor 1-260 IOD nnJF critical, major, or minor 1-264 IOD nnOM critical, major, or minor 1-268 IOD NO AMA on device type DISK critical 1-272 IOD NO AMA on device type TAPE critical 1-281 IOD NOssys on device type DISK critical, major, or minor 1-295 IOD NOssys on device type TAPE critical 1-304 IOD nSVC critical 1-317 IOD PnnVnn minor 1-323 IOD POOLnn minor 1-333 IOD SCAX25 major 1-339 IOD SENDn minor 1-344 IOD SLMbsy minor 1-367 IOD SLMoff minor 1-367 IOD SLMoff minor 1-367 IOD ssys B critical 1-373 IOD ssys B minor 1-377 IOD ssys F minor 1-381 IOD ssys I minor 1-384 IOD ssys I minor 1-384 IOD ssys MP or ssys P critical 1-389 IOD XMITn minor 1-398	
Lines alarm clearing procedures Introduction 2-1 Alarm display 2-1 Indication 2-1 Meaning 2-1 Result 2-1 Common procedures 2-1 Action 2-2 Lns DF Major 2-3 Lns DIAG critical, major, or minor 2-7 Lns FAC major 2-11 Lns HZD major 2-15 Lns IMAJ major 2-19 Lns IMIN major 2-23 Lns LCARD major 2-27 Lns LSET major 2-31 Lns MCARD critical, major, or minor 2-35 Lns MSET major 2-39 Lns NDIAG major 2-43 Lns OMAJ critical, major, or minor 2-47	2-1

2

Lns OMIN critical, major, or minor 2-51

Meaning 4-1

Result 4-1

Common procedures 4-1

Action 4-2

Net Bsy minor 4-3

Net CBsy major 4-9

Net CdPr critical 4-22

Net CSLk minor 4-27

Net ISTb in ENET minor 4-37

Net ISTb in JNET minor 4-40

Net ISTb on a crosspoint card minor 4-46

Net ISTb on a link minor 4-51

Net ISTb on a system card minor 4-58

Net JcTr minor 4-63

Net Link minor 4-71

Net LOAD minor 4-82

Net MBCd minor 4-94

Net MBsy minor 4-100

Net Pair critical 4-105

Net PSLk minor 4-111

Net REx minor 4-122

Net RexByp 4-125

Net RExOff minor 4-128

Net RExSch minor 4-131

Net SBCd major 4-137

Net SBsy major 4-143

Net Shlv critical 4-148

Net SysB major 4-152

NTP Summary Contents

Alarm Clearing and Performance Monitoring Procedures Volume 2 of 4

About this document

Vol. 1, xix

How to check the version and issue of this document Vol. 1, xix
References in this document Vol. 1, xix
What precautionary messages mean Vol. 1, xx
How commands, parameters, and responses are represented Vol. 1, xxi
Input prompt (>) Vol. 1, xxi
Commands and fixed parameters Vol. 1, xxi
Variables Vol. 1, xxi
Responses Vol. 1, xxii

1 Procedures to clear application alarms

Vol. 1, 1-1

Introduction Vol. 1, 1-1
Alarm display Vol. 1, 1-1
Indication Vol. 1, 1-1
Meaning Vol. 1, 1-1
Result Vol. 1, 1-1
Common procedures Vol. 1, 1-2
Action Vol. 1, 1-2
APPL CallP major Vol. 1, 1-3
APPL SDM critical Vol. 1, 1-5
APPL SDM minor Vol. 1, 1-6
OCDL OCSysB critical Vol. 1, 1-7
OCDL OCSysB major Vol. 1, 1-11

2 Common channel signaling alarm clearing procedures

Vol. 1, 2-1

Introduction Vol. 1, 2-1
Alarm display Vol. 1, 2-1
Indication Vol. 1, 2-1
Meaning Vol. 1, 2-1
Result Vol. 1, 2-1
Common procedures Vol. 1, 2-2
Action Vol. 1, 2-2
CCS 2RS LBC SPM critical Vol. 1, 2-3
CCS 2RS OPR SPM critical Vol. 1, 2-9

CCS 2RS OPT SPM critical Vol. 1, 2-16 CCS LK minor Vol. 1, 2-24 CCS LK minor in a DPNSS Vol. 1, 2-43 CCS LKM major Vol. 1, 2-52 CCS LSSC critical Vol. 1, 2-70 CCS LSSM major Vol. 1, 2-78 CCS PC minor Vol. 1, 2-87 CCS PCC critical Vol. 1, 2-91 CCS RS critical Vol. 1, 2-95 CCS RS major Vol. 1, 2-101 CCS RSSC critical Vol. 1, 2-106 CCS RTRC critical Vol. 1, 2-115

Vol. 1, 3-1

3 Computing module alarm clearing procedures Introduction Vol. 1, 3-1 Alarm display Vol. 1, 3-1 Indication Vol. 1, 3-1 Meaning Vol. 1, 3-1 Result Vol. 1, 3-1 Common procedures Vol. 1, 3-2 Action Vol. 1, 3-2 CM AutoLd minor Vol. 1, 3-3 CM CBsyMC major Vol. 1, 3-6 CM ClkFlt major Vol. 1, 3-14 CM CMFlt major Vol. 1, 3-21 CM CMTrap major Vol. 1, 3-34 CM E2A minor Vol. 1, 3-37 CM EccOn minor Vol. 1, 3-41 CM IMAGE critical Vol. 1, 3-46

CCS RTRM major Vol. 1, 2-124

CM LowMem critical Vol. 1, 3-52 CM LowSpr major Vol. 1, 3-60 CM LowSpr minor Vol. 1, 3-68

CM JInact minor Vol. 1, 3-49

CM MBsyMC major Vol. 1, 3-76

CM MC Tbl minor Vol. 1, 3-84 CM MemCfg minor Vol. 1, 3-96

CM MemCor major Vol. 1, 3-109

CM MemCor minor Vol. 1, 3-115

CM MemFlt minor Vol. 1, 3-118 CM MemLim minor Vol. 1, 3-123

CM MMnoSy major Vol. 1, 3-126

CM MMsync major Vol. 1, 3-136

CM NoBrst minor Vol. 1, 3-139 CM NoOvr minor Vol. 1, 3-146

CM NoSYNC major Vol. 1, 3-153

CM NoTOD critical Vol. 1, 3-159

CM PMCFlt major Vol. 1, 3-166

CM PMCTbl minor Vol. 1, 3-176

CM PrcOpt major Vol. 1, 3-185

CM RExFlt major Vol. 1, 3-188 CM RExSch minor Vol. 1, 3-191 CM RExTst minor Vol. 1, 3-197 CM SBsyMC major Vol. 1, 3-202 CM SLMLIM major Vol. 1, 3-213 CM SLMLim minor Vol. 1, 3-216 CM SRAMFL major Vol. 1, 3-219 CM SramFl minor Vol. 1, 3-226 CM StrAlc critical Vol. 1, 3-229

4 Procedures to clear an external alarm

Vol. 1, 4-1

Introduction Vol. 1, 4-1 Alarm display Vol. 1, 4-1 Indication Vol. 1, 4-1 Meaning Vol. 1, 4-1 Result Vol. 1, 4-1 Common procedures Vol. 1, 4-1 Action Vol. 1, 4-2 Ext Crit critical Vol. 1, 4-3 Ext Maj major Vol. 1, 4-12 Ext Min minor Vol. 1, 4-34 Ext CPPOOL critical Vol. 1, 4-42 Ext CPPOOL major Vol. 1, 4-47 Ext CPPOOL minor Vol. 1, 4-52 Ext E911_ALI major Vol. 1, 4-57 Ext E911_ALI minor Vol. 1, 4-62 Ext E911 LDT critical Vol. 1, 4-67 Ext E911_LDT major Vol. 1, 4-71 Ext E911_LDT minor Vol. 1, 4-75 Ext E911_OFBSR critical Vol. 1, 4-79 Ext E911_OFBSR major Vol. 1, 4-84 Ext E911 OFBSR minor Vol. 1, 4-89 Ext E911_PSAP_OFFHK minor Vol. 1, 4-93 Ext E911_RCER major Vol. 1, 4-100 Ext E911_RCER minor Vol. 1, 4-105 Ext E911_SRDB_MEMORY minor Vol. 1, 4-110 Ext ESR minor Vol. 1, 4-117 Ext ESR TIME ALARM minor Vol. 1, 4-121 Ext FSP major Vol. 1, 4-125 Ext FSP APC cabinet major Vol. 1, 4-128 Ext FSP CCC frame major Vol. 1, 4-137 Ext FSP CDSN cabinet with an MSP shelf major Vol. 1, 4-146 Ext FSP CIOE cabinet with an MSP shelf major Vol. 1, 4-153 Ext FSP CIPE cabinet with an MSP shelf major Vol. 1, 4-160 Ext FSP CISM, CMTA, and CTME cabinet with an MSP shelf major Vol. 1, 4-167 Ext FSP CPDC cabinet major Vol. 1, 4-174 Ext FSP DCE frame major Vol. 1, 4-182 Ext FSP DPCC cabinet major Vol. 1, 4-191 Ext FSP DSNE frame or CDSN cabinet major Vol. 1, 4-201

Ext FSP DTE or IDTE frame major Vol. 1, 4-210 Ext FSP IOE frame and CIOE cabinet major Vol. 1, 4-219 Ext FSP LME frame (with fuses only) major Vol. 1, 4-228 Ext FSP LPP cabinet major Vol. 1, 4-242 Ext FSP MEX frame major Vol. 1, 4-250 Ext FSP MS7E frame major Vol. 1, 4-265 Ext FSP NET0 or NET1 frame (circuit breakers and fuses) major Vol. 1, 4-274 Ext FSP NET0 or NET1 frame (with fuses only) major Vol. 1, 4-283 Ext FSP NETC frame major Vol. 1, 4-292 Ext FSP PDC frame major Vol. 1, 4-301 Ext FSP RLCE frame major Vol. 1, 4-310 Ext FSP RLM frame (with fuses only) major Vol. 1, 4-328 Ext FSP TME frame or CTME cabinet with FSP shelf major Vol. 1, 4-341 Ext JESCALL minor Vol. 1, 4-353 Ext JESUNANS minor Vol. 1, 4-357 Ext MALO Major Vol. 1, 4-361 Ext MALT Major Vol. 1, 4-365

Alarm Clearing and Performance Monitoring Procedures Volume 2 of 4

1 Procedures to clear an Input/output device alarm

Vol. 2, 1-1

Introduction Vol. 2, 1-1 Alarm display Vol. 2, 1-1 Indication Vol. 2, 1-1 Meaning Vol. 2, 1-1 Results Vol. 2, 1-1 Common procedures Vol. 2, 1-1 Action Vol. 2, 1-2 IOD 2MPCOS CSS SPM minor Vol. 2, 1-3 IOD 2MPCOS CV SPM minor Vol. 2, 1-9 IOD 2MPCOS CVFE SPM minor Vol. 2, 1-16 IOD 2MPCOS ES SPM minor Vol. 2, 1-23 IOD 2MPCOS ESFE SPM minor Vol. 2, 1-31 IOD 2MPCOS SEFS SPM minor Vol. 2, 1-38 IOD 2MPCOS SES SPM minor Vol. 2, 1-46 IOD 2MPCOS SESFE SPM minor Vol. 2, 1-54 IOD 2MPCOS UAS SPM minor Vol. 2, 1-62 IOD 2MPCOS UASFE SPM minor Vol. 2, 1-69 IOD DEVBnn critical, major, or minor Vol. 2, 1-76 IOD DMNTnn minor Vol. 2, 1-79 IOD HOLDnn minor Vol. 2, 1-85 IOD ITOC critical Vol. 2, 1-88 IOD ITOC minor Vol. 2, 1-95 IOD KEEPn minor Vol. 2, 1-103 IOD MPCLNK minor Vol. 2, 1-106

```
IOD MPCLNK on an IOM minor Vol. 2, 1-115
IOD nCKEr minor Vol. 2, 1-126
IOD nCKEr on an IOM minor Vol. 2, 1-133
IOD nCKOS major or minor Vol. 2, 1-142
IOD nCKOS on an IOM major or minor Vol. 2, 1-151
IOD nDDUOS major or minor Vol. 2, 1-164
IOD nDDUOS on an IOM major or minor Vol. 2, 1-178
IOD nDPCOS minor Vol. 2, 1-191
IOD nIOCOS major or minor Vol. 2, 1-196
IOD nIOCOS on an IOM major or minor Vol. 2, 1-204
IOD nMPCOS in an IOC major or minor Vol. 2, 1-211
IOD nMPCOS on an IOM major or minor Vol. 2, 1-222
IOD nMTDOS in an IOC minor Vol. 2, 1-235
IOD nMTDOS on an IOM minor Vol. 2, 1-245
IOD nnAMA critical, major, or minor Vol. 2, 1-260
IOD nnJF critical, major, or minor Vol. 2, 1-264
IOD nnOM critical, major, or minor Vol. 2, 1-268
IOD NO AMA on device type DISK critical Vol. 2, 1-272
IOD NO AMA on device type TAPE critical Vol. 2, 1-281
IOD NOssys on device type DISK critical, major, or minor Vol. 2, 1-295
IOD NOssys on device type TAPE critical Vol. 2, 1-304
IOD nSVC critical Vol. 2, 1-317
IOD PnnVnn minor Vol. 2, 1-323
IOD POOLnn minor Vol. 2, 1-333
IOD SCAX25 major Vol. 2, 1-339
IOD SENDn minor Vol. 2, 1-344
IOD SLMbsy major Vol. 2, 1-349
IOD SLMbsy minor Vol. 2, 1-355
IOD SLMoff minor Vol. 2, 1-361
IOD SLMtbl minor Vol. 2, 1-367
IOD ssys B critical Vol. 2, 1-373
IOD ssys B minor Vol. 2, 1-374
IOD ssys E minor Vol. 2, 1-377
IOD ssys F minor Vol. 2, 1-381
IOD ssys I minor Vol. 2, 1-384
IOD ssys MP or ssys P critical Vol. 2, 1-389
IOD XMITn minor Vol. 2, 1-398
```

2 Lines alarm clearing procedures

Vol. 2, 2-1

Introduction Vol. 2, 2-1 Alarm display Vol. 2, 2-1 Indication Vol. 2, 2-1

Meaning Vol. 2, 2-1

Result Vol. 2, 2-1

Common procedures Vol. 2, 2-1

Action Vol. 2, 2-2

Lns DF Major Vol. 2, 2-3

Lns DIAG critical, major, or minor Vol. 2, 2-7

Lns FAC major Vol. 2, 2-11

Lns HZD major Vol. 2, 2-15

Lns IMAJ major Vol. 2, 2-19
Lns IMIN major Vol. 2, 2-23
Lns LCARD major Vol. 2, 2-27
Lns LSET major Vol. 2, 2-31
Lns MCARD critical, major, or minor Vol. 2, 2-35
Lns MSET major Vol. 2, 2-39
Lns NDIAG major Vol. 2, 2-43
Lns OMAJ critical, major, or minor Vol. 2, 2-47
Lns OMIN critical, major, or minor Vol. 2, 2-51
Lns PSDF critical, major, or minor Vol. 2, 2-55
Lns PSPD major Vol. 2, 2-59
Lns QDIAG major Vol. 2, 2-63
Lns SDIAG major Vol. 2, 2-67
Lns TCM major Vol. 2, 2-71

3 Message Switch alarm clearing procedures

Vol. 2, 3-1

Introduction Vol. 2, 3-1 Alarm display Vol. 2, 3-1 Indication Vol. 2, 3-1 Meaning Vol. 2, 3-1 Result Vol. 2, 3-1 Common procedures Vol. 2, 3-1 Action Vol. 2, 3-2 MS CCFB minor Vol. 2, 3-3 MS CLOCK major Vol. 2, 3-8 MS CMIC minor Vol. 2, 3-11 MS DDM major Vol. 2, 3-24 MS FCFB minor Vol. 2, 3-30 MS IMSL minor Vol. 2, 3-35 MS Istb minor Vol. 2, 3-43 MS ManB major Vol. 2, 3-57 MS MaxPt minor Vol. 2, 3-61 MS MBCD minor Vol. 2, 3-64 MS MBCH minor Vol. 2, 3-73 MS MBCL minor Vol. 2, 3-82 MS MbFb minor Vol. 2, 3-91 MS MBPT minor Vol. 2, 3-96 MS MbTp minor Vol. 2, 3-101 MS NOIMSL major Vol. 2, 3-106 MS pair critical Vol. 2, 3-114 MS REx minor Vol. 2, 3-117 MS RExByp minor Vol. 2, 3-121 MS RExFlt minor Vol. 2, 3-134 MS SBCD minor Vol. 2, 3-141 MS SBCH minor Vol. 2, 3-150 MS SBCL minor Vol. 2, 3-158 MS SbFb major Vol. 2, 3-168 MS SBPT minor Vol. 2, 3-173 MS SbTp major Vol. 2, 3-182

MS SPAN minor Vol. 2, 3-187

MS SysB major Vol. 2, 3-191 MS TRIstb minor Vol. 2, 3-203 MS TROOS major Vol. 2, 3-206

4 Network alarm clearing procedures

Vol. 2, 4-1

Introduction Vol. 2, 4-1 Alarm display Vol. 2, 4-1 Indication Vol. 2, 4-1 Meaning Vol. 2, 4-1 Result Vol. 2, 4-1 Common procedures Vol. 2, 4-1 Action Vol. 2, 4-2 Net Bsy minor Vol. 2, 4-3 Net CBsy major Vol. 2, 4-9 Net CdPr critical Vol. 2, 4-22 Net CSLk minor Vol. 2, 4-27 Net ISTb in ENET minor Vol. 2, 4-37 Net ISTb in JNET minor Vol. 2, 4-40 Net ISTb on a crosspoint card minor Vol. 2, 4-46 Net ISTb on a link minor Vol. 2, 4-51 Net ISTb on a system card minor Vol. 2, 4-58 Net JcTr minor Vol. 2, 4-63 Net Link minor Vol. 2, 4-71 Net LOAD minor Vol. 2, 4-82 Net MBCd minor Vol. 2, 4-94 Net MBsy minor Vol. 2, 4-100 Net Pair critical Vol. 2, 4-105 Net PSLk minor Vol. 2, 4-111 Net REx minor Vol. 2, 4-122 Net RexByp Vol. 2, 4-125 Net RExOff minor Vol. 2, 4-128 Net RExSch minor Vol. 2, 4-131 Net SBCd major Vol. 2, 4-137 Net SBsy major Vol. 2, 4-143 Net Shlv critical Vol. 2, 4-148

Alarm Clearing and Performance Monitoring Procedures Volume 3 of 4

Net SysB major Vol. 2, 4-152

1 Peripheral module alarm clearing procedures Vol. 3, 1-1

Introduction Vol. 3, 1-1
Alarm display Vol. 3, 1-1
Indication Vol. 3, 1-1
Meaning Vol. 3, 1-1
Result Vol. 3, 1-1
Common procedures Vol. 3, 1-1
Action Vol. 3, 1-2

PM 1SPM CLKOOS SPM major Vol. 3, 1-3 PM 1SPM COTLOW SPM minor Vol. 3, 1-13 PM 1SPM DTMFLOW SPM minor Vol. 3, 1-18 PM 1SPM ECANLOW SPM minor Vol. 3, 1-23 PM 1SPM HLDOVR SPM major Vol. 3, 1-28 PM 1SPM HLDOVR24 SPM major Vol. 3, 1-34 PM 1SPM ISTB SPM minor Vol. 3, 1-40 PM 1SPM MANB SPM major Vol. 3, 1-48 PM 1SPM MANBNA SPM major Vol. 3, 1-54 PM 1SPM MFLOW SPM minor Vol. 3, 1-62 PM 1SPM NOSPARE SPM major Vol. 3, 1-67 PM 1SPM PROTFAIL SPM critical Vol. 3, 1-74 PM 1SPM SYSB SPM critical Vol. 3, 1-82 PM 1SPM SYSBNA SPM critical Vol. 3, 1-88 PM 1SPM TONESLOW SPM minor Vol. 3, 1-96 PM 1SPM VCXO70 SPM minor Vol. 3, 1-101 PM 1SPM VCXO90 SPM major Vol. 3, 1-106 PM APU critical Vol. 3, 1-111 PM APU major Vol. 3, 1-134 PM APU minor Vol. 3, 1-153 PM CBSY major Vol. 3, 1-178 PM DCH major Vol. 3, 1-182 PM DCH minor Vol. 3, 1-192 PM DCH (in a TMS) major Vol. 3, 1-211 PM DCH (in a TMS) minor Vol. 3, 1-220 PM DTC critical Vol. 3, 1-229 PM DTC major Vol. 3, 1-249 PM DTC minor Vol. 3, 1-270 PM EIU critical Vol. 3, 1-283 PM EIU major Vol. 3, 1-310 PM EIU minor Vol. 3, 1-334 PM EXND minor Vol. 3, 1-360 PM FP critical Vol. 3, 1-365 PM FP major Vol. 3, 1-371 PM FP minor Vol. 3, 1-376 PM FP CPUFIt minor Vol. 3, 1-380 PM FP device-related fault minor Vol. 3, 1-387 PM FP JInact minor Vol. 3, 1-402 PM FP LowMem minor Vol. 3, 1-405 PM FP MemCor minor Vol. 3, 1-413 PM FP MemFlt minor Vol. 3, 1-419 PM FP MMThrs minor Vol. 3, 1-425 PM FP NoOvr minor Vol. 3, 1-428 PM FP NoSync minor Vol. 3, 1-434 PM FP PrtFlt minor Vol. 3, 1-440 PM FP PrtTbl minor Vol. 3, 1-445 PM FP Trap minor Vol. 3, 1-454 PM FRIU critical (on an LPP) Vol. 3, 1-457 PM FRIU major on an LPP Vol. 3, 1-470 PM FRIU minor on an LPP Vol. 3, 1-482

PM FRIU critical (on an SSLPP) Vol. 3, 1-498

```
PM FRIU major on an SSLPP Vol. 3, 1-508
PM FRIU minor (on an SSLPP) Vol. 3, 1-517
PM HLIU critical Vol. 3, 1-528
PM HSLR critical Vol. 3, 1-542
PM IPGW Major Vol. 3, 1-555
PM IPML major or minor Vol. 3, 1-560
PM ISTb minor Vol. 3, 1-568
PM ISTb (OSNM) minor Vol. 3, 1-579
PM LCM critical Vol. 3, 1-585
PM LCM major Vol. 3, 1-600
PM LCM minor Vol. 3, 1-613
PM LCM ringing generator (LRG) critical Vol. 3, 1-623
PM LCME major Vol. 3, 1-633
PM LCME minor Vol. 3, 1-645
PM LGC critical Vol. 3, 1-656
PM LGC major Vol. 3, 1-676
PM LGC minor Vol. 3, 1-698
PM LIM critical Vol. 3, 1-713
PM LIM major Vol. 3, 1-725
PM LIM minor Vol. 3, 1-739
PM LIMF critical Vol. 3, 1-749
PM LIMF major Vol. 3, 1-758
PM LIMREX minor Vol. 3, 1-766
PM LIU7 critical Vol. 3, 1-767
PM LIU7 major Vol. 3, 1-783
PM LIU7 minor Vol. 3, 1-797
PM LMDrwr major or minor Vol. 3, 1-816
PM LMPr critical Vol. 3, 1-821
PM LMRex minor Vol. 3, 1-830
PM LMRGen major or minor Vol. 3, 1-834
PM LTC critical Vol. 3, 1-838
PM LTC major Vol. 3, 1-858
PM LTC minor Vol. 3, 1-879
PM LTCl critical, major, or minor Vol. 3, 1-892
```

Alarm Clearing and Performance Monitoring Procedures Volume 4 of 4

1 Vol. 4, 1-1 Peripheral module alarm clearing procedures

```
Introduction Vol. 4, 1-1
     Alarm display Vol. 4, 1-1
     Indication Vol. 4, 1-1
     Meaning Vol. 4, 1-1
     Result Vol. 4, 1-1
     Common procedures Vol. 4, 1-1
     Action Vol. 4, 1-2
PM MLIU critical Vol. 4, 1-3
PM MLIU major Vol. 4, 1-19
```

PM MLIU minor Vol. 4, 1-33 PM MSB6, MSB7 critical, major, or minor Vol. 4, 1-52 PM NIU critical Vol. 4, 1-82 PM NIU major Vol. 4, 1-101 PM NIU minor Vol. 4, 1-116 PM PMLOAD minor Vol. 4, 1-145 PM STC major or minor Vol. 4, 1-156 PM SysB major Vol. 4, 1-168 PM SysB (OSNM) major Vol. 4, 1-182 PM talk battery critical Vol. 4, 1-186 PM talk battery minor Vol. 4, 1-198 PM TMS critical Vol. 4, 1-209 PM TMS major Vol. 4, 1-227 PM TMS minor Vol. 4, 1-240 PM TMS (ETMS OCDL OOS) major Vol. 4, 1-251 PM TPC critical Vol. 4, 1-267 PM TPC (for MP) critical Vol. 4, 1-292 PM TPC (for MP and IWS) major Vol. 4, 1-310 PM TPC (for MP and IWS) minor Vol. 4, 1-332 PM UEN critical Vol. 4, 1-339 PM UEN major Vol. 4, 1-354 PM UEN minor Vol. 4, 1-367 PM VLCM critical Vol. 4, 1-375 PM VLCM minor Vol. 4, 1-381 PM VPU critical Vol. 4, 1-385 PM VPU major Vol. 4, 1-410 PM VPU minor Vol. 4, 1-432 PM XLIU critical Vol. 4, 1-458 PM XLIU major Vol. 4, 1-472 PM XLIU minor Vol. 4, 1-485

2 Trunks alarm clearing procedures

Vol. 4, 2-1

Introduction Vol. 4, 2-1

Alarm display Vol. 4, 2-1

Indication Vol. 4, 2-1

Meaning Vol. 4, 2-1

Result Vol. 4, 2-1

Common procedures Vol. 4, 2-1

Action Vol. 4, 2-2

TRKS 62CG AIS SPM minor Vol. 4, 2-3

TRKS 62G BERSF SPM minor Vol. 4, 2-10

TRKS 62GC LOS SPM critical Vol. 4, 2-16

TRKS 62TG BERSD SPM minor Vol. 4, 2-22

TRKS 62TG LOP SPM minor Vol. 4, 2-28

TRKS 62TG RAI SPM minor Vol. 4, 2-35

TRKS 62TG RFI SPM minor Vol. 4, 2-42

Trks C minor Vol. 4, 2-49

Trks CB critical, major, or minor Vol. 4, 2-55

Trks CC critical Vol. 4, 2-61

Trks CE critical, major, or minor Vol. 4, 2-69

Trks CG minor Vol. 4, 2-74

Trks CM major Vol. 4, 2-81

Trks CR C and CR M critical Vol. 4, 2-88

Trks CS critical, major, or minor Vol. 4, 2-96

Trks EX critical, major, or minor Vol. 4, 2-102

Trks GC, GM, and G critical, major, or minor Vol. 4, 2-106

Trks MB critical, major, or minor Vol. 4, 2-115

Trks MJ C and MJ M critical or major Vol. 4, 2-120

Trks MN C and MN M critical or major Vol. 4, 2-128

Trks SB critical, major, or minor Vol. 4, 2-137

3 XAC alarm clearing procedures

Vol. 4, 3-1

Introduction Vol. 4, 3-1

Alarm display Vol. 4, 3-1

Indication Vol. 4, 3-1

Meaning Vol. 4, 3-1

Result Vol. 4, 3-1

Common procedures Vol. 4, 3-1

Action Vol. 4, 3-2

FWsoak minor Vol. 4, 3-3

FWvers major Vol. 4, 3-4

4 Alarm clearing common procedures

Vol. 4, 4-1

Introduction to alarm clearing common procedures Vol. 4, 4-1

Application Vol. 4, 4-1

Action Vol. 4, 4-1

Accessing SPM alarms DMS-Spectrum Peripheral Module Vol. 4, 4-2

Activating CCS7 links Vol. 4, 4-16

Activity switch with memory match Vol. 4, 4-26

Allocating a volume Vol. 4, 4-34

Checking the electronic fuse unit in an LME or RLM frame Vol. 4, 4-38

Clearing lines alarms Vol. 4, 4-43

Clearing PM C-side faults Vol. 4, 4-47

Clearing ringing generator faults LCM Vol. 4, 4-63

Connecting temporary fiber cable between MS and SSLPP Vol. 4, 4-69

Connecting temporary fiber cable from an ENET to a PM Vol. 4, 4-80

Connecting temporary fiber cable from an ENET to an MS Vol. 4, 4-91

Correcting a load mismatch Vol. 4, 4-103

Deallocating a volume Vol. 4, 4-118

Failure to switch clock mastership Vol. 4, 4-122

Loading a PM Vol. 4, 4-131

Monitoring system maintenance PM Vol. 4, 4-139

Moving an XSG to a spare XLIU Vol. 4, 4-144

Resetting a volume Vol. 4, 4-150

Restoring LIM unit cross-links Vol. 4, 4-154

Returning LIM-to-MS links to service Vol. 4, 4-167

Returning LIM-to-MS links to service for an ELPP Vol. 4, 4-189

Running a C7BERT Vol. 4, 4-211

Running a C7BERT for high-speed links Vol. 4, 4-244

1 Procedures to clear an Input/output device alarm

Introduction

This chapter provides alarm clearing procedures for the input/output device. Input/output device alarms appear under the IOD header of the alarm banner in the MAP. All procedures contain the following sections:

- Alarm display
- Indication
- Meaning
- Result
- Common procedures
- Action

Alarm display

This section indicates how the MAP terminal displays the alarm.

Indication

This section indicates the location of the alarm indication, the design of the alarm, the affected subsystem, and the alarm condition.

Meaning

This section indicates the cause of the alarm.

Results

This section describes the results of the alarm condition.

Common procedures

This section lists common procedures used during the alarm clearing procedure. A common procedure is a series of steps repeated within maintenance procedures. The removal and replacement of a card are examples of a common procedure. The common procedures chapter in this NTP contains common procedures.

Do not use common procedures unless the step-action procedure directs you.

Action

This section provides a summary flowchart of the alarm clearing procedure. A detailed step-action procedure follows the flowchart.

IOD 2MPCOS CSS SPM minor

Alarm display

Indication

At the performance level of the MAP display, a carrier type preceded by a number appears under the IOD header of the alarm banner and a minor alarm indicator appears beneath it.

Meaning

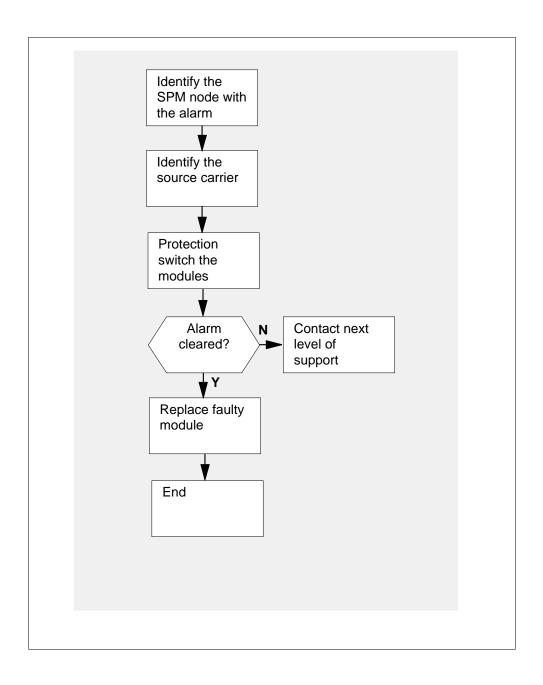
The DMS-Spectrum Peripheral Module (SPM) alarm system detects a threshold crossing alert (TCA) for the controlled slip seconds (CSS) performance parameter. The alarm system counts the number of DS-1 frames replicated or deleted because of timing differences between the SPM and the received signal. A TCA occurs when the CSS parameter count is greater than 4. The SPM clears the alarm when the parameter count is less than 1.

Log CARR811 relates to the CSS alarm. Table MNHSCARR contains the datafill related to the CSS alarm.

Impact

Service is not affected. The CSS alarm applies to the DS-1P carrier type.

Common procedures


See "Accessing SPM alarms."

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of clearing a CSS alarm

minor (continued)

minor (continued)

Clearing a CSS alarm

At the MAP terminal

- Access the carrier level of the MAP screen by typing
 - > MAPCI; MTC; TRKS; CARRIER

and pressing the Enter key.

Example of a MAP screen:

CLASS	ML	OS	ALRM	SYSB	MANB	UNEQ	OFFL	CBSY	PBSY	INSV
TRUNKS	1	0	28	28	0	0	0	0	0	50
TIMING	0	0	0	0	0	0	0	0	0	2
HSCARR	0	0	0	1	3	0	1	0	0	180

MTC: TRKS: CARRIER:

2 Display all carrier alarms by typing

>DISP ALARM

and pressing the Enter key.

Example of a MAP screen:

PM	NO	CKT									
DTC	0	13	DTC	0	14	DTC	0	15	DTC	0	18
SPM	20	29	SPM	20	30	SPM	20	31	SPM	20	32

```
DISPLAYED BY CONDITION : ALARM
DISP:
MORE...
```

- 3 Record the SPM number (NO) and circuit (CKT) number combinations.
- Post each SPM carrier circuit with an alarm by typing

```
>POST SPM spm_no ckt_no
and pressing the Enter key.
where
   spm no
```

is the number of the SPM (0 to 63)

ckt_no

is the number of the circuit (0 to 181)

minor (continued)

Example of a MAP screen:

```
STS1P

N CLASS SITE SPM STS1P DS3P VT15P DS1P CKT STATE MA

0 HSCARR HOST 20 2 - - - 33 Insv --

SIZE OF POSTED SET : 30 MORE...
```

Access the PM level of the MAP screen by typing

>MAPCI;MTC;PM

and pressing the Enter key.

Example of a MAP screen:

Post the SPMs by typing

>POST SPM spm_no

and pressing the Enter key.

where

spm_no

refers to number of the SPM (0 to 63)

Example of a MAP screen:

	SysB	ManB	OffL	CBsy	ISTb	InSv	
PM	7	2	2	2	9	16	
SPM	0	2	1	0	0	0	
SPM	20 InSv	Loc: Site	HOST Fl	oor 1	Row A FrE	os 13	
Shlf0	SL A Stat	Shlf0 SL	A Stat	Shlf1	SL A Stat	Shlf1 S	SL A Stat
	1	CEM 1 8	I InSv		1		8
	2	OC3 0 9	A InSv		2		9
DSP 3	3 I InSv	OC3 1 10	I InSv		3	1	LO
	4	11			4	1	L1
	5	DSP12 12	A InSv		5	1	L2
	6	DSP13 13	A InSv		6	1	L3
CEM 0	7 A InSv	14	A InSv		7	1	L4

minor (continued)

7 Select the active OC3 module by typing

>SELECT OC3 module_no

and pressing the Enter key.

where

module no

is the number of the OC-3 module (0 to 1)

Example of a MAP screen:

SPM 20 OC3 1 Act InSv

Loc : Row E FrPos 8 ShPos 24 ShId 0 Slot 10 Prot Grp : 1 Default Load: SPMLOAD Prot Role: Spare

8 Access the protection level of the MAP screen by typing

>PROT

and pressing the Enter key.

9 Do a manual protection switch with a module in the same protection group by typing

>MANUAL from_unit_no to_unit_no

and pressing the Enter key.

where

from unit no

is the number (0 to 27) of the module with the alarm

to unit no

is the number (0 to 27) of the inactive module in the same protection group

Example of a MAP screen:

```
SPM 20 OC3 1 Manual: Request has been submitted.
SPM 20 OC3 0 Manual: Command completed.
```

10 Return to the carrier level of the MAP screen and list the alarms on the carrier by typing

>LISTALM carrier_no

and pressing the Enter key.

minor (end)

11 Determine whether the alarm has cleared.

If the alarm list shows	Do
CSS	step 13
None	step 12

- Replace the OC3 module. For detailed instructions, see "SPM NTLX71AA OC3 card" in the appropriate *Card Replacement Procedures*. When you complete the card replacement procedure, go to step 14.
- For further assistance, contact the personnel responsible for the next level of support.
- You have completed this procedure. Return to the CI level of the MAP screen by typing

>QUIT ALL

and pressing the Enter key.

IOD 2MPCOS CV SPM minor

Alarm display

Indication

At the performance level of the MAP display, a carrier preceded by a number appears under the IOD header of the alarm banner and a minor alarm indicator appears beneath it.

Meaning

The DMS-Spectrum Peripheral Module (SPM) alarm system detects a threshold crossing alert (TCA) for the coding violations (CV) and code violations far end (CVFE) performance parameter. The number of CVs detected has exceeded the daily limit. A TCA occurs when the CVs exceed 4430. The SPM clears the alarm when the CV parameter returns to 1732.

Log CARR811 relates to the CV and CVFE alarms. Table MNHSCARR contains the datafill related to the CV and CVFE alarms.

Impact

Service is not affected.

The CV alarm applies to the following carrier classes:

- OC3P
- STS-3P
- STS-1P (near- and far-end)
- DS-3P
- VT-1.5P
- DS-1P

Common procedures


See "Accessing SPM alarms."

minor (continued)

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of clearing a CV alarm

minor (continued)

Clearing a CV alarm

At the MAP terminal

Access the carrier level of the MAP screen by typing

> MAPCI; MTC; TRKS; CARRIER

and pressing the Enter key.

Example of a MAP screen:

CLASS	ML	OS	ALRM	SYSB	MANB	UNEQ	OFFL	CBSY	PBSY	INSV
TRUNKS	1	0	28	28	0	0	0	0	0	50
TIMING	0	0	0	0	0	0	0	0	0	2
HSCARR	0	0	0	1	3	0	1	0	0	180

MTC: TRKS: CARRIER:

2 Display all carrier alarms by typing

>DISP ALARM

and pressing the Enter key.

Example of a MAP screen:

PM	NO	CKT									
DTC	0	13	DTC	0	14	DTC	0	15	DTC	0	18
SPM	20	29	SPM	20	30	SPM	20	31	SPM	20	32

DISPLAYED BY CONDITION : ALARM DISP: MORE...

- Record the SPM number (NO) and circuit (CKT) number combinations. 3
- 4 Post each SPM carrier circuit with an alarm by typing

>POST SPM spm_no ckt_no and pressing the Enter key. where

minor (continued)

spm_no

is the number of the SPM (0 to 63)

ckt no

is the number of the circuit (0 to 181)

Example of a MAP screen:

```
STS1P
N CLASS SITE SPM STS1P DS3P VT15P DS1P CKT STATE MA
0 HSCARR HOST 20 2 - - - 33 Insv --
SIZE OF POSTED SET : 30 MORE...
```

5 Test the carrier by typing

```
>TST carrier_no and pressing the Enter key.
```

where

carrier_no

is the number of the carrier (0 to 4)

6 Determine whether the carrier signal is valid.

If the test result shows	Do
test passed	step 9
test failed	step 7

7 Troubleshoot the carrier circuit according to your company procedures. When you have completed the procedure, return to this point.

Note: Contact your next level of support if you are not familiar with the procedures required to troubleshoot carrier circuits.

At the MAP terminal

8 List the alarms on the carrier by typing

```
>LISTALM carrier_no and pressing the Enter key. where
```

minor (continued)

carrier no

is the number of the carrier (0 to 4)

If the alarm list shows	Do		
None	step 18		
CV	step 9		

9 Access the PM level of the MAP screen by typing

>MAPCI; MTC; PM

and pressing the Enter key. Example of a MAP screen:

10 Post the SPMs by typing

>POST SPM spm_no

and pressing the Enter key.

where

refers to number of the SPM (0 to 63)

Example of a MAP screen:

	SysB	ManB	OffL	CBsy	ISTb	InSv
PM	7	2	2	2	9	16
SPM	0	2	1	0	0	0
SPM 20	InSv	Loc: Site	HOST Fl	oor 1	Row A FrP	os 13
Shlf0 SL	A Stat	Shlf0 SL	A Stat	Shlf1	SL A Stat	Shlf1 SL A Stat
1		CEM 1 8	I InSv		1	8
2		OC3 0 9	A InSv		2	9
DSP 3 3	I InSv	OC3 1 10	I InSv		3	10
4		11			4	11
5		DSP12 12	A InSv		5	12
6		DSP13 13	A InSv		6	13
CEM 0 7	A InSv	14	A InSv		7	14

minor (continued)

11 Select the active OC3 module by typing

```
>SELECT OC3 module_no and pressing the Enter key. where
```

module_no

is the number of the OC3 module (0 to 27)

Example of a MAP screen:

```
SPM 20 OC3 1 Act InSv

Loc: Row E FrPos 8 ShPos 24 ShId 0 Slot 10 Prot Grp: 1

Default Load: SPMLOAD Prot Role: Spare
```

12 Access the protection level of the MAP screen by typing

>PROT

and pressing the Enter key.

Do a manual protection switch with a module in the same protection group by typing

```
>MANUAL from_unit_no to_unit_no and pressing the Enter key.

where
```

from_unit_no

is the number (0 to 27) of the module with the alarm.

to unit no

is the number (0 to 27) of the inactive module in the same protection group

Example of a MAP screen:

```
SPM 20 OC3 1 Manual: Request has been submitted. SPM 20 OC3 0 Manual: Command completed.
```

Return to the carrier level of the MAP screen and list the alarms on the carrier by typing

>LISTALM carrier_no

IOD 2MPCOS CV SPM minor (end)

and pressing the Enter key.

Determine whether the alarm has cleared. 15

If the alarm list shows	Do
CV	step 17
None	step 16

- Replace the OC3 module. For detailed instructions, see "SPM NTLX71AA OC3 card" in the appropriate *Card Replacement Procedures*. When you have completed the procedure, go to Step 18. 16
- 17 For further assistance, contact the personnel responsible for the next level of support.
- You have completed this procedure. Return to the CI level of the MAP screen 18 by typing

>QUIT ALL

and pressing the Enter key.

IOD 2MPCOS CVFE SPM minor

Alarm display

Indication

At the performance level of the MAP display, a carrier preceded by a number appears under the IOD header of the alarm banner and a minor alarm indicator appears beneath it.

Meaning

The DMS-Spectrum Peripheral Module (SPM) alarm system detects a threshold crossing alert (TCA) for the coding violations (CV) and code violations far end (CVFE) performance parameter. The number of CVs detected has exceeded the daily limit. A TCA occurs when the CVs exceed 4430. The SPM clears the alarm when the CV parameter returns to 1732.

Log CARR811 relates to the CV and CVFE alarms. Table MNHSCARR contains the datafill related to the CV and CVFE alarms.

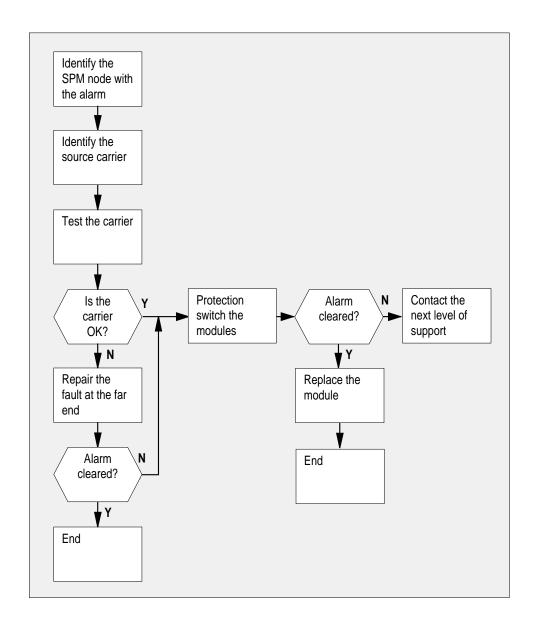
Impact

Service is not affected.

The CV alarm applies to the following carrier classes:

- OC3P
- STS-3P
- STS-1P (near- and far-end)
- DS-3P
- VT-1.5P
- DS-1P

Common procedures


See "Accessing SPM alarms."

minor (continued)

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of clearing a CVFE alarm

minor (continued)

Clearing a CVFE alarm

At the MAP terminal

1 Access the carrier level of the MAP screen by typing

> MAPCI; MTC; TRKS; CARRIER

and pressing the Enter key.

Example of a MAP screen:

CLASS	ML	OS	ALRM	SYSB	MANB	UNEQ	OFFL	CBSY	PBSY	INSV
TRUNKS	1	0	28	28	0	0	0	0	0	50
TIMING	0	0	0	0	0	0	0	0	0	2
HSCARR	0	0	0	1	3	0	1	0	0	180

MTC:
TRKS:
CARRIER:

2 Display all carrier alarms by typing

>DISP ALARM

and pressing the Enter key.

Example of a MAP screen:

PM	NO	CKT									
DTC	0	13	DTC	0	14	DTC	0	15	DTC	0	18
SPM	20	29	SPM	20	30	SPM	20	31	SPM	20	32

DISPLAYED BY CONDITION : ALARM DISP: MORE...

- 3 Record the SPM number (NO) and circuit (CKT) number combinations.
- 4 Post each SPM carrier circuit with an alarm by typing

>POST SPM spm_no ckt_no and pressing the Enter key. where

spm_no

is the number of the SPM (0 to 63)

minor (continued)

ckt no

is the number of the circuit (0 to 181)

Example of a MAP screen:

```
STS1P
N CLASS SITE SPM STS1P DS3P VT15P DS1P CKT STATE MA
0 HSCARR HOST 20

    33 InSv

SIZE OF POSTED SET : 30
                                           MORE...
```

5 Test the carrier by typing

```
>TST carrier_no
and pressing the Enter key.
where
```

carrier no

is the number of the carrier (0 to 4)

6 Determine whether the carrier signal is valid.

If the test result shows	Do
test passed	step 9
test failed	step 7

7 Troubleshoot the carrier circuit according to your company procedures. When you have completed the procedure, return to this point.

> **Note:** Contact your next level of support if you are not familiar with the procedures required to troubleshoot carrier circuits.

At the MAP terminal

List the alarms on the carrier by typing

```
>LISTALM carrier_no
and pressing the Enter key.
where
```

carrier_no

is the number of the carrier (0 to 4)

If the alarm list shows	Do
None	step 18

minor (continued)

If the alarm list shows	Do
CV	step 9

9 Access the PM level of the MAP screen by typing

>MAPCI;MTC;PM

and pressing the Enter key.

Example of a MAP screen:

	SysB	ManB	OffL	CBsy	ISTb	InSv
PM	1	1	1	3	2	12

10 Post the SPMs by typing

>POST SPM spm_no

and pressing the Enter key.

where

spm_no

refers to number of the SPM (0 to 63)

Example of a MAP screen:

	SysB	ManB	OffL	CBsy	ISTb	InSv	
PM	7	2	2	2	9	16	
SPM	0	2	1	0	0	0	
SPM	20 InSv	Loc: Site	HOST Fl	oor 1	Row A Fr	os 13	
Shlf0	SL A Stat	Shlf0 SL	A Stat	Shlf1	SL A Stat	Shlf1	SL A Stat
	1	CEM 1 8	I InSv		1		8
	2	OC3 0 9	A InSv		2		9
DSP 3	3 I Insv	OC3 1 10	I InSv		3		10
	4	11			4		11
	5	DSP12 12	A InSv		5		12
	6	DSP13 13	A InSv		6		13
CEM 0	7 A InSv	14	A InSv		7		14

11 Select the active OC3 module by typing

>SELECT OC3 module_no and pressing the Enter key.

minor (continued)

where

module no

is the number of the OC3 module (0 to 27)

Example of a MAP screen:

```
SPM 20
        OC3 1
                   Act InSv
Loc : Row E FrPos 8 ShPos 24 ShId 0 Slot 10 Prot Grp : 1
Default Load: SPMLOAD
                                             Prot Role: Spare
```

12 Access the protection level of the MAP screen by typing

>PROT

and pressing the Enter key.

13 Do a manual protection switch with a module in the same protection group by typing

```
>MANUAL from_unit_no to_unit_no
```

and pressing the Enter key.

where

from unit no

is the number (0 to 27) of the module with the alarm.

is the number (0 to 27) of the inactive module in the same protection group

Example of a MAP screen:

```
SPM 20 OC3 1 Manual: Request has been submitted.
SPM 20 OC3 0 Manual: Command completed.
```

Return to the carrier level of the MAP screen and list the alarms on the carrier 14 by typing

>LISTALM carrier no

and pressing the Enter key.

minor (end)

15 Determine whether the alarm has cleared.

If the alarm list shows	Do
CV	step 17
None	step 16

- Replace the OC3 module. For detailed instructions, see "SPM NTLX71AA OC3 card" in the appropriate *Card Replacement Procedures*. When you have completed the procedure, go to Step 18.
- For further assistance, contact the personnel responsible for the next level of support.
- You have completed this procedure. Return to the CI level of the MAP screen by typing

>QUIT ALL

and pressing the Enter key.

IOD 2MPCOS ES SPM minor

Alarm display

Indication

At the performance level of the MAP display, a carrier preceded by a number appears under the IOD header of the alarm banner and a minor alarm indicator appears beneath it.

Meaning

The DMS-Spectrum Peripheral Module (SPM) alarm system detects a threshold crossing alert (TCA) for the errored seconds (ES) and errored seconds far end (ESFE) performance parameters. The number of errored seconds detected has exceeded the daily limit. A TCA occurs when the errored seconds exceed 864. The SPM clears the alarm when the parameter returns to 346.

Log CARR811 relates to the ES and ESFE alarms. Table MNHSCARR contains the datafill related to the ES and ESFE alarms.

Impact

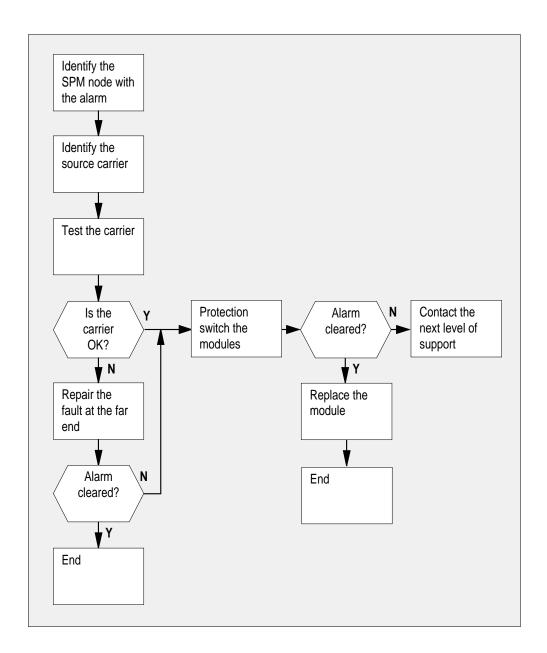
Service is not affected.

The ES alarm applies to the following carrier classes:

- OC3P
- STS-3P
- STS-1P (near- and far-end)
- DS-3P
- VT-1.5P
- DS-1P

Common procedures

See "Accessing SPM alarms."


minor (continued)

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of clearing an ES alarm

IOD 2MPCOS ES SPM minor (continued)

Clearing an ES alarm

At the MAP terminal

Access the carrier level of the MAP screen by typing

minor (continued)

> MAPCI; MTC; TRKS; CARRIER

and pressing the Enter key.

Example of a MAP screen:

CLASS	ML	OS	ALRM	SYSB	MANB	UNEQ	OFFL	CBSY	PBSY	INSV
TRUNKS	1	0	28	28	0	0	0	0	0	50
TIMING	0	0	0	0	0	0	0	0	0	2
HSCARR	0	0	0	1	3	0	1	0	0	180

MTC:
TRKS:
CARRIER:

2 Display all carrier alarms by typing

>DISP ALARM

and pressing the Enter key.

Example of a MAP screen:

PΜ	NO	CKT	PM	NO	CKT	PM	NO	CKT	PM	NO	CKT
DTC	0	13	DTC	0	14	DTC	0	15	DTC	0	18
SPM	20	29	SPM	20	30	SPM	20	31	SPM	20	32

```
DISPLAYED BY CONDITION : ALARM DISP: MORE...
```

- 3 Record the SPM number (NO) and circuit (CKT) number combinations.
- 4 Post each SPM carrier circuit with an alarm by typing

```
>POST SPM spm_no ckt_no
and pressing the Enter key.

where

spm_no
is the number of the SPM (0 to 63)

ckt_no
is the number of the circuit (0 to 181)
```

minor (continued)

5 Test the carrier by typing

>TST carrier_no

and pressing the Enter key.

where

carrier_no

is the number of the carrier (0 to 4)

6 Determine whether the carrier signal is valid.

If the test result shows	Do
test passed	step 9
test failed	step 7

7 Troubleshoot the carrier circuit according to your company procedures. When you have completed the procedure, return to this point.

> Note: Contact your next level of support if you are not familiar with the procedures required to troubleshoot carrier circuits.

At the MAP terminal

List the alarms on the carrier by typing

>LISTALM carrier_no

and pressing the Enter key.

where

carrier no

is the number of the carrier (0 to 4)

If the alarm list shows	Do
None	step 18
ES	step 9

Access the PM level of the MAP screen by typing

>MAPCI; MTC; PM

and pressing the Enter key.

minor (continued)

	SysB	ManB	OffL	CBsy	ISTb	InSv
ΡM	1	1	1	3	2	12

10 Post the SPMs by typing

>POST SPM spm_no and pressing the Enter key. where

 spm_no

refers to number of the SPM (0 to 63)

Example of a MAP screen:

	SysB	ManB	OffL	CBsy	ISTb	InSv
PM	7	2	2	2	9	16
SPM	0	2	1	0	0	0
SPM 20	InSv]	Loc: Site	HOST Flo	oor 1	Row A FrP	os 13
Shlf0 SL	A Stat	Shlf0 SL	A Stat	Shlf1	SL A Stat	Shlf1 SL A Stat
1		CEM 1 8	I InSv		1	8
2		OC3 0 9	A InSv		2	9
DSP 3 3	I InSv	OC3 1 10	I InSv		3	10
4		11			4	11
5		DSP12 12	A InSv		5	12
6		DSP13 13	A InSv		6	13
CEM 0 7	A InSv	14	A InSv		7	14

11 Select the active OC3 module by typing

>SELECT OC3 module_no and pressing the Enter key. where

module no

is the number of the OC3 module (0 to 27)

minor (continued)

SPM 20 OC3 1 Act InSv

Loc : Row E FrPos 8 ShPos 24 ShId 0 Slot 10 Prot Grp : 1 Default Load: SPMLOAD Prot Role: Spare

12 Access the protection level of the MAP screen by typing

>PROT

and pressing the Enter key.

13 Do a manual protection switch with a module in the same protection group by typing

>MANUAL from_unit_no to_unit_no

and pressing the Enter key.

where

from_unit_no

is the number (0 to 27) of the module with the alarm.

is the number (0 to 27) of the inactive module in the same protection group

Example of a MAP screen:

```
SPM 20 OC3 1 Manual: Request has been submitted.
SPM 20 OC3 0 Manual: Command completed.
```

14 Return to the carrier level of the MAP screen and list the alarms on the carrier by typing

>LISTALM carrier_no

and pressing the Enter key.

15 Determine whether the alarm has cleared.

If the alarm list shows	Do
ES	step 17
None	step 16

minor (end)

- Replace the OC3 module. For detailed instructions, see "SPM NTLX71AA OC3 card" in the appropriate *Card Replacement Procedures*. When you have completed the procedure, go to Step 18.
- For further assistance, contact the personnel responsible for the next level of support.
- You have completed this procedure. Return to the CI level of the MAP screen by typing

>QUIT ALL

and pressing the Enter key.

IOD 2MPCOS ESFE SPM minor

Alarm display

Indication

At the performance level of the MAP display, a carrier preceded by a number appears under the IOD header of the alarm banner and a minor alarm indicator appears beneath it.

Meaning

The DMS-Spectrum Peripheral Module (SPM) alarm system detects a threshold crossing alert (TCA) for the errored seconds (ES) and errored seconds far end (ESFE) performance parameters. The number of errored seconds detected has exceeded the daily limit. A TCA occurs when the errored seconds exceed 864. The SPM clears the alarm when the parameter returns to 346.

Log CARR811 relates to the ES and ESFE alarms. Table MNHSCARR contains the datafill related to the ES and ESFE alarms.

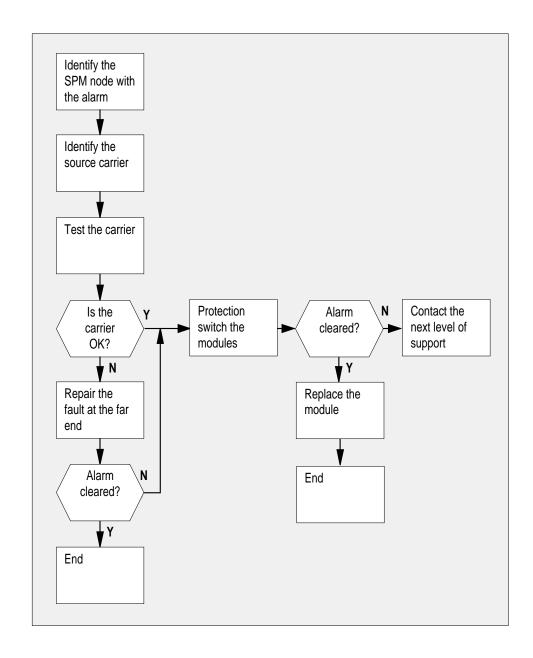
Impact

Service is not affected.

The ES alarm applies to the following carrier classes:

- OC₃P
- STS-3P
- STS-1P (near- and far-end)
- DS-3P
- VT-1.5P
- DS-1P

Common procedures


See "Accessing SPM alarms."

minor (continued)

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of clearing an ESFE alarm

minor (continued)

Clearing an ESFE alarm

At the MAP terminal

Access the carrier level of the MAP screen by typing

> MAPCI; MTC; TRKS; CARRIER

and pressing the Enter key.

Example of a MAP screen:

CLASS	ML	OS	ALRM	SYSB	MANB	UNEQ	OFFL	CBSY	PBSY	INSV
TRUNKS	1	0	28	28	0	0	0	0	0	50
TIMING	0	0	0	0	0	0	0	0	0	2
HSCARR	0	0	0	1	3	0	1	0	0	180

MTC: TRKS: CARRIER:

Display all carrier alarms by typing 2

>DISP ALARM

and pressing the Enter key.

Example of a MAP screen:

PM	NO	CKT									
DTC	0	13	DTC	0	14	DTC	0	15	DTC	0	18
SPM	20	29	SPM	20	30	SPM	20	31	SPM	20	32

DISPLAYED BY CONDITION : ALARM DISP: MORE...

- Record the SPM number (NO) and circuit (CKT) number combinations. 3
- 4 Post each SPM carrier circuit with an alarm by typing

>POST SPM spm_no ckt_no and pressing the Enter key. where

spm_no

is the number of the SPM (0 to 63)

minor (continued)

ckt no

is the number of the circuit (0 to 181)

Example of a MAP screen:

```
STS1P
N CLASS SITE SPM STS1P DS3P VT15P DS1P CKT STATE MA
0 HSCARR HOST 20 2 - - - 33 Insv --
SIZE OF POSTED SET : 30 MORE...
```

5 Test the carrier by typing

```
>TST carrier_no
and pressing the Enter key.
where
```

carrier_no

is the number of the carrier (0 to 4)

6 Determine whether the carrier signal is valid.

If the test result shows	Do
test passed	step 9
test failed	step 7

7 Troubleshoot the carrier circuit according to your company procedures. When you have completed the procedure, return to this point.

Note: Contact your next level of support if you are not familiar with the procedures required to troubleshoot carrier circuits.

At the MAP terminal

8 List the alarms on the carrier by typing

```
>LISTALM carrier_no and pressing the Enter key. where
```

carrier no

is the number of the carrier (0 to 4)

If the alarm list shows	Do
None	step 18

minor (continued)

If the alarm list shows	Do
ES	step 9

9 Access the PM level of the MAP screen by typing

>MAPCI;MTC;PM

and pressing the Enter key.

Example of a MAP screen:

	SysB	ManB	OffL	CBsy	ISTb	InSv
PM	1	1	1	3	2	12

10 Post the SPMs by typing

>POST SPM spm_no

and pressing the Enter key.

where

spm_no

refers to number of the SPM (0 to 63)

Example of a MAP screen:

	SysB	ManB	OffL	CBsy	ISTb	InSv
PM	7	2	2	2	9	16
SPM	0	2	1	0	0	0
SPM 20	InSv	Loc: Site	HOST Fl	oor 1	Row A FrE	os 13
Shlf0 SL	A Stat	Shlf0 SL	A Stat	Shlf1	SL A Stat	Shlf1 SL A Stat
1		CEM 1 8	I InSv		1	8
2		OC3 0 9	A InSv		2	9
DSP 3 3	I InSv	OC3 1 10	I InSv		3	10
4		11			4	11
5		DSP12 12	A InSv		5	12
6		DSP13 13	A InSv		6	13
CEM 0 7	A InSv	14	A InSv		7	14

11 Select the active OC3 module by typing

> >SELECT OC3 module_no and pressing the Enter key. where

minor (continued)

module no

is the number of the OC3 module (0 to 27)

Example of a MAP screen:

```
SPM 20 OC3 1 Act InSv

Loc: Row E FrPos 8 ShPos 24 ShId 0 Slot 10 Prot Grp: 1

Default Load: SPMLOAD Prot Role: Spare
```

12 Access the protection level of the MAP screen by typing

>PROT

and pressing the Enter key.

Do a manual protection switch with a module in the same protection group by typing

```
>MANUAL from_unit_no to_unit_no
```

and pressing the Enter key.

where

from unit no

is the number (0 to 27) of the module with the alarm.

to_unit_no

is the number (0 to 27) of the inactive module in the same protection group

Example of a MAP screen:

```
SPM 20 OC3 1 Manual: Request has been submitted. SPM 20 OC3 0 Manual: Command completed.
```

Return to the carrier level of the MAP screen and list the alarms on the carrier by typing

>LISTALM carrier_no

and pressing the Enter key.

15 Determine whether the alarm has cleared.

If the alarm list shows	Do
ES	step 17
None	step 16

minor (end)

- Replace the OC3 module. For detailed instructions, see "SPM NTLX71AA OC3 card" in the appropriate *Card Replacement Procedures*. When you have 16 completed the procedure, go to Step 18.
- 17 For further assistance, contact the personnel responsible for the next level of support.
- 18 You have completed this procedure. Return to the CI level of the MAP screen by typing

>QUIT ALL

and pressing the Enter key.

IOD 2MPCOS SEFS SPM minor

Alarm display

Indication

At the performance level of the MAP display, a carrier preceded by a number appears under the IOD header of the alarm banner and a minor alarm indicator appears beneath it.

Meaning

The DMS-Spectrum Peripheral Module (SPM) alarm system detects a threshold crossing alert (TCA) for the severely errored framing seconds (SEFS) performance parameter. The measured value for SEFS arriving at the OC3 module has exceeded the daily limit. A TCA occurs when the SEFS parameter exceeds a setting of 17. The SPM clears the alarm when the parameter returns to 7.

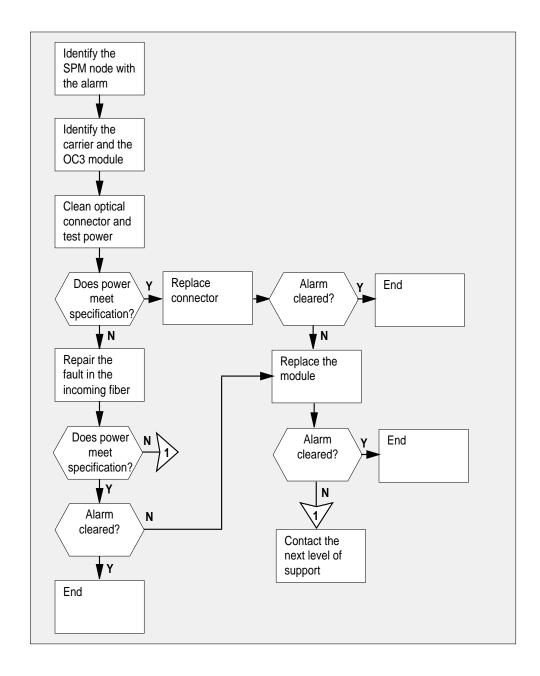
Log CARR811 relates to the SEFS alarm. Table MNHSCARR contains the datafill related to the SEFS alarm.

Impact

Service is not affected.

The SEFS alarm applies to the OC3 Section carrier type.

Common procedures


See "Accessing SPM alarms."

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD 2MPCOS SEFS SPM minor (continued)

Summary of clearing an SEFS alarm

minor (continued)

Clearing an SEFS alarm

At the MAP terminal

1 Access the carrier level of the MAP screen by typing

> MAPCI; MTC; TRKS; CARRIER

and pressing the Enter key.

Example of a MAP screen:

CLASS	ML	OS	ALRM	SYSB	MANB	UNEQ	OFFL	CBSY	PBSY	INSV
TRUNKS	1	0	28	28	0	0	0	0	0	50
TIMING	0	0	0	0	0	0	0	0	0	2
HSCARR	0	0	0	1	3	0	1	0	0	180

MTC: TRKS: CARRIER:

2 Display all carrier alarms by typing

>DISP ALARM

and pressing the Enter key.

Example of a MAP screen:

PM	NO	CKT									
DTC	0	13	DTC	0	14	DTC	0	15	DTC	0	18
SPM	20	29	SPM	20	30	SPM	20	31	SPM	20	32

```
DISPLAYED BY CONDITION : ALARM DISP: MORE...
```

- 3 Record the SPM number (NO) and circuit (CKT) number combinations.
- 4 Post the SPM OC3 carrier circuits by typing

```
>POST SPM spm_no OC3s and pressing the Enter key.

where
```

spm_no

is the number of the SPM (0 to 63)

IOD 2MPCOS SEFS SPM minor (continued)

Example of a MAP screen:

```
OC3S
N CLASS SITE SPM OC3RM OC3S STS3L CKT STATE TR MA
0 HSCARR HOST 20 0 0 - 1 Insv -- -- 1 HSCARR HOST 20 1 0 - 6 Insv -- --
SIZE OF POSTED SET : 2
                                               MORE...
```

5 List the alarms on each carrier by typing

```
>LISTALM carrier_no
and pressing the Enter key.
```

Identify the carrier with the SEFS alarm. Identify its respective OC3 module 6 by typing

```
>DETAIL carrier_no
and pressing the Enter key.
Example of a MAP screen:
```

```
SPM 20 Ckt 6 Name: SPM_0_OC3S_2
```

7 Access the PM level of the MAP screen by typing

>MAPCI; MTC; PM

and pressing the Enter key.

Example of a MAP screen:

	SysB	ManB	OffL	CBsy	ISTb	InSv
PM	1	1	1	3	2	12

8 Post the SPMs by typing

> >POST SPM spm_no and pressing the Enter key.

minor (continued)

where

spm_no

refers to number of the SPM (0 to 63)

Example of a MAP screen:

	SysB	ManB	OffL	CBsy	ISTb	InSv
PM	7	2	2	2		16
SPM	0	2	1	0	0	0
SPM 2) InSv	Loc: Site	HOST Fl	oor 1	Row A Fr	os 13
Shlf0 S	L A Stat	Shlf0 SL	A Stat	Shlf1	SL A Stat	Shlf1 SL A Stat
	1	CEM 1 8	I InSv		1	8
	2	OC3 0 9	A InSv		2	9
DSP 3	3 I InSv	OC3 1 10	I InSv		3	10
	4	11			4	11
	5	DSP12 12	A InSv		5	12
	6 – –––	DSP13 13	A InSv		6	13
CEM 0	7 A InSv	14	A InSv		7	14

9 Select the active OC3 module by typing

```
>SELECT OC3 module_no and pressing the Enter key. where
```

module no

is the number of the OC3 module (0 to 1)

Example of a MAP screen:

```
SPM 20 OC3 1 Act InSv

Loc: Row E FrPos 8 ShPos 24 ShId 0 Slot 10 Prot Grp: 1

Default Load: SPMLOAD Prot Role: Spare
```

10 Determine whether the alarm condition applies to the active OC3 module.

If the alarm applies to	Do
the active OC3	step 11
the inactive OC3	step 13

11 Access the protection level of the MAP screen by typing

minor (continued)

>PROT

and pressing the Enter key.

12 Do a manual protection switch with a module in the same protection group by typing

>MANUAL from_unit_no to_unit_no

and pressing the Enter key.

where

from_unit_no

is the number (0 to 27) of the module with the alarm

is the number (0 to 27) of the inactive module in the same protection group

Example of a MAP screen:

```
SPM 20 OC3 1 Manual: Request has been submitted.
SPM 20 OC3 0 Manual: Command completed.
```

13 Remove the fiber connector from the receiver socket on the OC3 module. Clean the socket and the connector with compressed air. Use an optical power meter to measure the power at the receiver connector.

If the power is	Do
above -34 dBm (for example, -30 dBm)	step 14
below -34 dBm	step 15

14 Plug the fiber optic connector into the receiver socket. Return to the carrier level of the MAP terminal and check if the alarm has cleared by typing

>LISTALM carrier_no

and pressing the Enter key.

If the alarm list shows	Do
SEFS	step 18
None	step 22

minor (continued)

Troubleshoot the incoming fiber optic cable and the network according to your company procedures. When you have completed the procedure, return to this point.

Note: Contact your next level of support if you are not familiar with the procedures required to troubleshoot fiber optic cables and network connections.

16 Use an optical power meter to measure the power at the receiver connector.

If the power is	Do
above -34 dBm (for example, -30 dBm)	step 17
below -34 dBm	step 21

Plug the fiber optic connector into the receiver socket. Return to the carrier level of the MAP terminal and check if the alarm has cleared by typing

>LISTALM carrier_no

and pressing the Enter key.

If the alarm list shows	Do
SEFS	step 18
None	step 22

- Replace the OC3 module. For detailed instructions, see "SPM NTLX71AA OC3 card" in the appropriate *Card Replacement Procedures*.
- 19 Return to the carrier level of the MAP screen and list the alarms on the carrier by typing

>LISTALM carrier_no

and pressing the Enter key.

20 Determine whether the alarm has cleared.

If the alarm list shows	Do
SEFS	step 21
None	step 22

For further assistance, contact the personnel responsible for the next level of support.

IOD 2MPCOS SEFS SPM minor (end)

You have completed this procedure. Return to the CI level of the MAP screen 22 by typing

>QUIT ALL and pressing the Enter key.

IOD 2MPCOS SES SPM minor

Alarm display

Indication

At the performance level of the MAP display, a carrier preceded by a number appears under the IOD header of the alarm banner and a minor alarm indicator appears beneath it.

Meaning

The DMS-Spectrum Peripheral Module (SPM) alarm system detects a threshold crossing alert (TCA) for the severely-errored seconds (SES) and severly-errored seconds far end (SESFE) performance parameters. The number of errored seconds detected has exceeded the daily limit. A TCA occurs when the errored seconds exceed the high level datafilled in table MNHSCARR for each carrier type. The SPM clears the alarm when the parameter returns to the low level datafilled in table MNHSCARR.

Log CARR811 relates to the SES and SESFE alarms. Table MNHSCARR contains the datafill related to the SES and SESFE alarms.

Impact

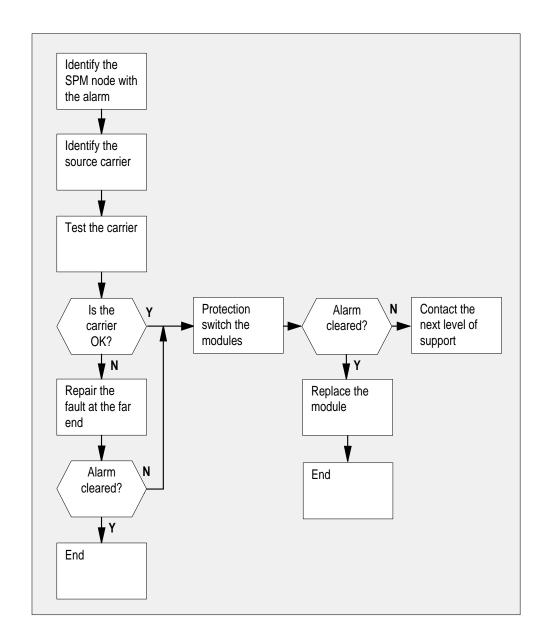
Service is not affected.

The ES alarm applies to the following carrier classes:

- OC3P
- STS-3P
- STS-1P (near end and far end)
- DS-3P
- VT-1.5P
- DS-1P

minor (continued)

Common procedures


See "Accessing SPM alarms."

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of clearing an SES alarm

minor (continued)

Clearing an SES alarm

At the MAP terminal

1 Access the carrier level of the MAP screen by typing

minor (continued)

> MAPCI; MTC; TRKS; CARRIER

and pressing the Enter key.

Example of a MAP screen:

CLASS	ML	OS	ALRM	SYSB	MANB	UNEQ	OFFL	CBSY	PBSY	INSV
TRUNKS	1	0	28	28	0	0	0	0	0	50
TIMING	0	0	0	0	0	0	0	0	0	2
HSCARR	0	0	0	1	3	0	1	0	0	180

MTC: TRKS: CARRIER:

2 Display all carrier alarms by typing

>DISP ALARM

and pressing the Enter key.

PM	NO	CKT									
DTC	0	13	DTC	0	14	DTC	0	15	DTC	0	18
SPM	20	29	SPM	20	30	SPM	20	31	SPM	20	32

```
DISPLAYED BY CONDITION : ALARM
DISP:
MORE...
```

- Record the SPM number (NO) and circuit (CKT) number combinations. 3
- Post each SPM carrier circuit with an alarm by typing

```
>POST SPM spm_no ckt_no
and pressing the Enter key.
where
   spm_no
      is the number of the SPM (0 to 63)
      is the number of the circuit (0 to 181)
Example of a MAP screen:
```

minor (continued)

```
STS1P
N CLASS SITE SPM STS1P DS3P VT15P DS1P CKT STATE MA
0 HSCARR HOST 20 2 - - - 33 Insv --
SIZE OF POSTED SET : 30 MORE...
```

5 Test the carrier by typing

```
>TST carrier_no
and pressing the Enter key.
where
```

carrier no

is the number of the carrier (0 to 4)

6 Determine whether the carrier signal is valid.

If the test result shows	Do
test passed	step 9
test failed	step 7

7 Troubleshoot the carrier circuit according to your company procedures. When you have completed the procedure, return to this point.

Note: Contact your next level of support if you are not familiar with the procedures required to troubleshoot carrier circuits.

At the MAP terminal

8 List the alarms on the carrier by typing

```
>LISTALM carrier_no and pressing the Enter key. where
```

carrier_no

is the number of the carrier (0 to 4)

If the alarm list shows	Do
None	step 18
SES or SESFE	step 9

minor (continued)

9 Access the PM level of the MAP screen by typing

>MAPCI;MTC;PM

and pressing the Enter key.

Example of a MAP screen:

	SysB	ManB	OffL	CBsy	ISTb	InSv
PM	1	1	1	3	2	12

10 Post the SPMs by typing

>POST SPM spm_no

and pressing the Enter key.

where

refers to number of the SPM (0 to 63)

Example of a MAP screen:

			SysB	Ma	anB		Of	fL	CE	Bsy		IS'	Tb	InSv			
PM			7		2			2		2			9	16			
SPM			0		2			1		0			0	0			
SPM	20]	nsv	Loc:	Si	te	HOS	T F	loor	1	Row	, A	FrP	os 13			
Shlf0	SL	Α	Stat	Shli	E0 :	SL.	A S	tat	Shl	.f1	SL	A	Stat	Shlf1	SL	Α	Stat
	1	_		CEM	1	8	I I	nsv			1				8	_	
	2	_		OC3	0	9 .	A I	nsv			2				9	_	
DSP 3	3	I	InSv	OC3	1 :	10	I I	nsv			3	_			10	_	
	4	_			:	11					4	_			11	_	
	5	_		DSP:	L2 :	12 .	A I	nsv			5				12	_	
	6	_		DSP:	L3 :	13 .	A I	nsv			6				13	_	
CEM 0	7	А	TnSv			14	A I	nSv			7				14	_	

11 Select the active OC3 module by typing

> >SELECT OC3 module_no and pressing the Enter key. where

module no

is the number of the OC3 module (0 to 27)

minor (continued)

Example of a MAP screen:

```
SPM 20 OC3 1 Act InSv

Loc: Row E FrPos 8 ShPos 24 ShId 0 Slot 10 Prot Grp: 1

Default Load: SPMLOAD Prot Role: Spare
```

12 Access the protection level of the MAP screen by typing

>PROT

and pressing the Enter key.

Do a manual protection switch with a module in the same protection group by typing

```
>MANUAL from_unit_no to_unit_no and pressing the Enter key.

where
```

from_unit_no

is the number (0 to 27) of the module with the alarm.

to unit no

is the number (0 to 27) of the inactive module in the same protection group

Example of a MAP screen:

```
SPM 20 OC3 1 Manual: Request has been submitted. SPM 20 OC3 0 Manual: Command completed.
```

Return to the carrier level of the MAP screen and list the alarms on the carrier by typing

>LISTALM carrier_no

and pressing the Enter key.

15 Determine whether the alarm has cleared.

If the alarm list shows	Do
SES or SESFE	step 17

IOD 2MPCOS SES SPM minor (end)

If the alarm list shows	Do
None	step 16

- 16 Replace the OC3 module. For detailed instructions, see "SPM NTLX71AA OC3 card" in the appropriate *Card Replacement Procedures*. When you have completed the procedure, go to Step 18.
- 17 For further assistance, contact the personnel responsible for the next level of support.
- 18 You have completed this procedure. Return to the CI level of the MAP screen by typing

>QUIT ALL

and pressing the Enter key.

IOD 2MPCOS SESFE SPM minor

Alarm display

Indication

At the performance level of the MAP display, a carrier preceded by a number appears under the IOD header of the alarm banner and a minor alarm indicator appears beneath it.

Meaning

The DMS-Spectrum Peripheral Module (SPM) alarm system detects a threshold crossing alert (TCA) for the severely-errored seconds (SES) and severly-errored seconds far end (SESFE) performance parameters. The number of errored seconds detected has exceeded the daily limit. A TCA occurs when the errored seconds exceed the high level datafilled in table MNHSCARR for each carrier type. The SPM clears the alarm when the parameter returns to the low level datafilled in table MNHSCARR.

Log CARR811 relates to the SES and SESFE alarms. Table MNHSCARR contains the datafill related to the SES and SESFE alarms.

Impact

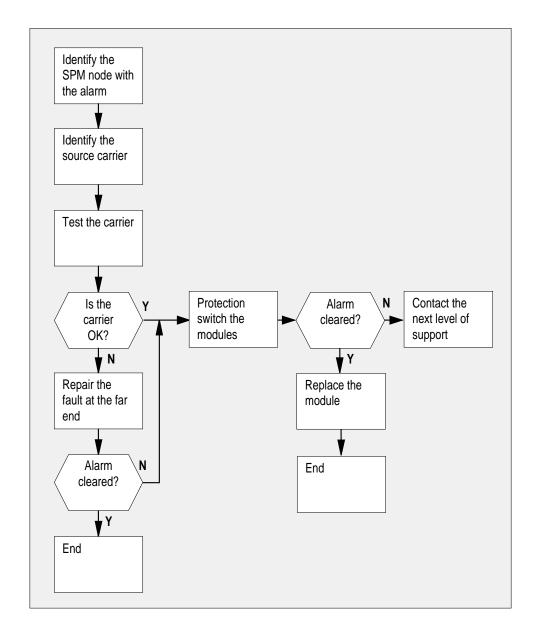
Service is not affected.

The ES alarm applies to the following carrier classes:

- OC3P
- STS-3P
- STS-1P (near end and far end)
- DS-3P
- VT-1.5P
- DS-1P

minor (continued)

Common procedures


See "Accessing SPM alarms."

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of clearing an SESFE alarm

minor (continued)

Clearing an SESFE alarm

At the MAP terminal

1 Access the carrier level of the MAP screen by typing

minor (continued)

> MAPCI; MTC; TRKS; CARRIER

and pressing the Enter key.

Example of a MAP screen:

CLASS	ML	OS	ALRM	SYSB	MANB	UNEQ	OFFL	CBSY	PBSY	INSV
TRUNKS	1	0	28	28	0	0	0	0	0	50
TIMING	0	0	0	0	0	0	0	0	0	2
HSCARR	0	0	0	1	3	0	1	0	0	180

MTC: TRKS: CARRIER:

2 Display all carrier alarms by typing

>DISP ALARM

and pressing the Enter key.

Example of a MAP screen:

PM	NO	CKT									
DTC	0	13	DTC	0	14	DTC	0	15	DTC	0	18
SPM	20	29	SPM	20	30	SPM	20	31	SPM	20	32

```
DISPLAYED BY CONDITION : ALARM
DISP:
MORE...
```

- Record the SPM number (NO) and circuit (CKT) number combinations. 3
- 4 Post each SPM carrier circuit with an alarm by typing

```
>POST SPM spm_no ckt_no
and pressing the Enter key.
where
   spm no
      is the number of the SPM (0 to 63)
      is the number of the circuit (0 to 181)
Example of a MAP screen:
```

minor (continued)

STS1P

N CLASS SITE SPM STS1P DS3P VT15P DS1P CKT STATE MA

0 HSCARR HOST 20 2 - - - 33 InSv -
SIZE OF POSTED SET : 30 MORE...

5 Test the carrier by typing

>TST carrier_no and pressing the Enter key. where

carrier_no

is the number of the carrier (0 to 4)

6 Determine whether the carrier signal is valid.

If the test result shows	Do
test passed	step 9
test failed	step 7

7 Troubleshoot the carrier circuit according to your company procedures. When you have completed the procedure, return to this point.

Note: Contact your next level of support if you are not familiar with the procedures required to troubleshoot carrier circuits.

8 List the alarms on the carrier by typing

>LISTALM carrier_no and pressing the Enter key. where

carrier_no

is the number of the carrier (0 to 4)

If the alarm list shows	Do
None	step 18
SES or SESFE	step 9

9 Access the PM level of the MAP screen by typing

minor (continued)

>MAPCI;MTC;PM

and pressing the Enter key. Example of a MAP screen:

	SysB	ManB	OffL	CBsy	ISTb	InSv
PM	1	1	1	3	2	12

10 Post the SPMs by typing

> >POST SPM spm_no and pressing the Enter key. where

spm_no

refers to number of the SPM (0 to 63)

Example of a MAP screen:

			SysB	Ma	anE	3	(OffL	CI	3sy		IS	Tb	InSv			
PM			7		2			2		2			9	16			
SPM			0		2			1		0			0	0			
SPM	20	3	InSv	Loc:	Si	te	Н	OST F	loor	1	Rov	νA	Fr	Pos 13			
Shlf0	SL	Α	Stat	Shl	E O	SL	Α	Stat	Sh.	Lf1	SL	А	Stat	Shlf1	SL	Α	Stat
	1	-		CEM	1	8	I	InSv			1	-			8	-	
	2	-		OC3	0	9	A	InSv			2	-			9	-	
DSP 3	3	I	InSv	OC3	1	10	I	InSv			3	-			10	-	
	4	-				11	-				4	-			11	-	
	5	_		DSP:	12	12	Α	InSv			5	-			12	_	
	6	_		DSP:	13	13	Α	InSv			6	-			13	_	
CEM 0	7	Α	InSv			14	Α	InSv			7	_			14	_	

11 Select the active OC3 module by typing

> >SELECT OC3 module_no and pressing the Enter key. where

module no

is the number of the OC3 module (0 to 27)

Example of a MAP screen:

minor (continued)

```
SPM 20 OC3 1 Act InSv

Loc: Row E FrPos 8 ShPos 24 ShId 0 Slot 10 Prot Grp: 1

Default Load: SPMLOAD Prot Role: Spare
```

12 Access the protection level of the MAP screen by typing

>PROT

and pressing the Enter key.

Do a manual protection switch with a module in the same protection group by typing

>MANUAL from_unit_no to_unit_no

and pressing the Enter key.

where

from unit no

is the number (0 to 27) of the module with the alarm.

to_unit_no

is the number (0 to 27) of the inactive module in the same protection group

Example of a MAP screen:

```
SPM 20 OC3 1 Manual: Request has been submitted. SPM 20 OC3 0 Manual: Command completed.
```

Return to the carrier level of the MAP screen and list the alarms on the carrier by typing

>LISTALM carrier_no

and pressing the Enter key.

15 Determine whether the alarm has cleared.

If the alarm list shows	Do
SES or SESFE	step 17
None	step 16

minor (end)

- Replace the OC3 module. For detailed instructions, see "SPM NTLX71AA OC3 card" in the appropriate *Card Replacement Procedures*. When you have 16 completed the procedure, go to Step 18.
- 17 For further assistance, contact the personnel responsible for the next level of support.
- 18 You have completed this procedure. Return to the CI level of the MAP screen by typing

>QUIT ALL

and pressing the Enter key.

minor

Alarm display

Indication

At the performance level of the MAP display, a carrier preceded by a number appears under the IOD header of the alarm banner and a minor alarm indicator appears beneath it.

Meaning

The DMS-Spectrum Peripheral Module (SPM) alarm system detects a threshold crossing alert (TCA) for the unavailable seconds (UAS) and unavailable seconds far end (UASFE) performance parameters. The number of errored seconds detected has exceeded the daily limit. A TCA occurs when the unavailable seconds exceed the high level datafilled in table MNHSCARR for each carrier type. The SPM system clears the alarm when the parameter returns to the low level datafilled in table MNHSCARR.

Log CARR811 relates to the UAS and UASFE alarms. Table MNHSCARR contains the datafill related to the UAS and UASFE alarms.

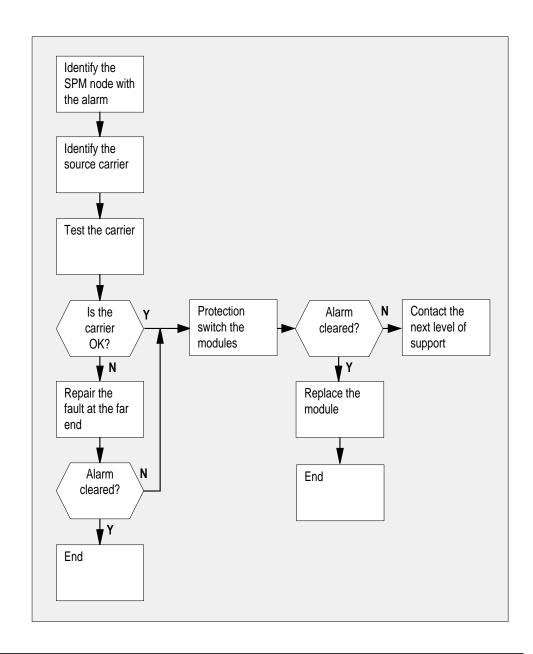
Impact

Service is not affected.

The ES alarm applies to the following carrier classes:

- OC3P
- STS-3P
- STS-1P (near end and far end)
- DS-3P
- VT-1.5P
- DS-1P

Common procedures


See "Accessing SPM alarms."

minor (continued)

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of clearing an UAS alarm

minor (continued)

Clearing a UAS alarm

At the MAP terminal

1 Access the carrier level of the MAP screen by typing

> MAPCI; MTC; TRKS; CARRIER

and pressing the Enter key.

Example of a MAP screen:

CLASS	ML	OS	ALRM	SYSB	MANB	UNEQ	OFFL	CBSY	PBSY	INSV
TRUNKS	1	0	28	28	0	0	0	0	0	50
TIMING	0	0	0	0	0	0	0	0	0	2
HSCARR	0	0	0	1	3	0	1	0	0	180

MTC: TRKS: CARRIER:

2 Display all carrier alarms by typing

>DISP ALARM

and pressing the Enter key.

Example of a MAP screen:

PM	NO	CKT									
DTC	0	13	DTC	0	14	DTC	0	15	DTC	0	18
SPM	20	29	SPM	20	30	SPM	20	31	SPM	20	32

```
DISPLAYED BY CONDITION : ALARM DISP: MORE...
```

- 3 Record the SPM number (NO) and circuit (CKT) number combinations.
- 4 Post each SPM carrier circuit with an alarm by typing

>POST SPM spm_no ckt_no and pressing the Enter key.

where

minor (continued)

spm no

is the number of the SPM (0 to 63)

is the number of the circuit (0 to 181)

Example of a MAP screen:

```
STS1P
N CLASS SITE SPM STS1P DS3P VT15P DS1P CKT STATE MA
0 HSCARR HOST 20 2 - -
                               - 33 InSv
SIZE OF POSTED SET : 30
                                      MORE...
```

5 Test the carrier by typing

>TST carrier_no

and pressing the Enter key.

where

is the number of the carrier (0 to 4)

6 Determine whether the carrier signal is valid.

If the test result shows	Do
test passed	step 9
test failed	step 7

7 Troubleshoot the carrier circuit according to your company procedures. When you have completed the procedure, return to this point.

> **Note:** Contact your next level of support if you are not familiar with the procedures required to troubleshoot carrier circuits.

8 List the alarms on the carrier by typing

>LISTALM carrier_no

and pressing the Enter key.

where

carrier_no

is the number of the carrier (0 to 4)

If the alarm list shows	Do
None	step 18

minor (continued)

If the alarm list shows	Do
UAS or UASFE	step 9

9 Access the PM level of the MAP screen by typing

>MAPCI;MTC;PM

and pressing the Enter key.

Example of a MAP screen:

10 Post the SPMs by typing

>POST SPM spm_no

and pressing the Enter key.

where

spm_no

refers to number of the SPM (0 to 63)

Example of a MAP screen:

PM SPM	7	2	2	2	ISTb 9 0	
					Row A Fri	
1		CEM 1 8	I InSv		SL A Stat 1	 8
					2	
					4	
5		DSP12 12	A InSv		5	 12
					6	
CEM 0 7	A InSv	14	A InSv		7	 14

11 Select the active OC3 module by typing

>SELECT OC3 module_no and pressing the Enter key.

minor (continued)

where

module no

is the number of the OC3 module (0 to 27)

Example of a MAP screen:

```
SPM 20 OC3 1
                 Act InSv
Loc : Row E FrPos 8 ShPos 24 ShId 0 Slot 10 Prot Grp : 1
Default Load: SPMLOAD
                                         Prot Role: Spare
```

12 Access the protection level of the MAP screen by typing

>PROT

and pressing the Enter key.

13 Do a manual protection switch with a module in the same protection group by typing

```
>MANUAL from_unit_no to_unit_no
```

and pressing the Enter key.

where

from unit no

is the number (0 to 27) of the module with the alarm.

is the number (0 to 27) of the inactive module in the same protection group

Example of a MAP screen:

```
SPM 20 OC3 1 Manual: Request has been submitted.
SPM 20 OC3 0 Manual: Command completed.
```

Return to the carrier level of the MAP screen and list the alarms on the carrier 14 by typing

>LISTALM carrier_no

and pressing the Enter key.

minor (end)

15 Determine whether the alarm has cleared.

If the alarm list shows	Do
UAS or UASFE	step 17
None	step 16

- Replace the OC3 module. For detailed instructions, see "SPM NTLX71AA OC3 card" in the appropriate *Card Replacement Procedures*. When you have completed the procedure, go to Step 18.
- For further assistance, contact the personnel responsible for the next level of support.
- You have completed this procedure. Return to the CI level of the MAP screen by typing

>QUIT ALL

and pressing the Enter key.

IOD 2MPCOS UASFE SPM minor

Alarm display

Indication

At the performance level of the MAP display, a carrier preceded by a number appears under the IOD header of the alarm banner and a minor alarm indicator appears beneath it.

Meaning

The DMS-Spectrum Peripheral Module (SPM) alarm system detects a threshold crossing alert (TCA) for the unavailable seconds (UAS) and unavailable seconds far end (UASFE) performance parameters. The number of errored seconds detected has exceeded the daily limit. A TCA occurs when the unavailable seconds exceed the high level datafilled in table MNHSCARR for each carrier type. The SPM system clears the alarm when the parameter returns to the low level datafilled in table MNHSCARR.

Log CARR811 relates to the UAS and UASFE alarms. Table MNHSCARR contains the datafill related to the UAS and UASFE alarms.

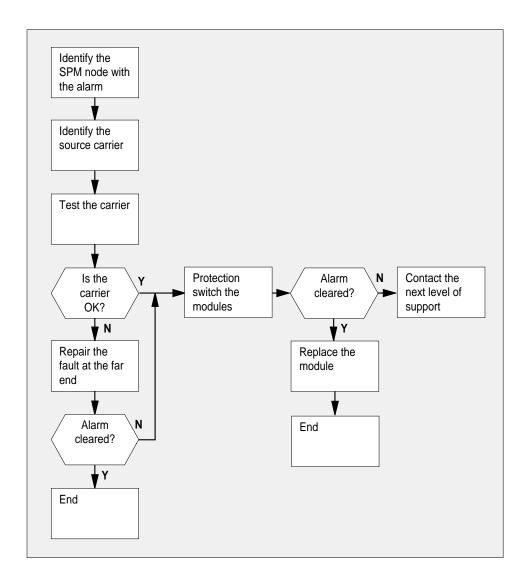
Impact

Service is not affected.

The ES alarm applies to the following carrier classes:

- OC3P
- STS-3P
- STS-1P (near end and far end)
- DS-3P
- VT-1.5P
- DS-1P

Common procedures


See "Accessing SPM alarms."

minor (continued)

Action

The following flowchart is only a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of clearing an UASFE alarm

minor (continued)

Clearing a UASFE alarm

At the MAP terminal

Access the carrier level of the MAP screen by typing

> MAPCI; MTC; TRKS; CARRIER

and pressing the Enter key.

Example of a MAP screen:

CLASS	ML	OS	ALRM	SYSB	MANB	UNEQ	OFFL	CBSY	PBSY	INSV
TRUNKS	1	0	28	28	0	0	0	0	0	50
TIMING	0	0	0	0	0	0	0	0	0	2
HSCARR	0	0	0	1	3	0	1	0	0	180

MTC: TRKS: CARRIER:

2 Display all carrier alarms by typing

>DISP ALARM

and pressing the Enter key.

Example of a MAP screen:

PM	NO	CKT									
DTC	0	13	DTC	0	14	DTC	0	15	DTC	0	18
SPM	20	29	SPM	20	30	SPM	20	31	SPM	20	32

```
DISPLAYED BY CONDITION : ALARM
DISP:
MORE...
```

- Record the SPM number (NO) and circuit (CKT) number combinations. 3
- 4 Post each SPM carrier circuit with an alarm by typing

>POST SPM spm_no ckt_no and pressing the Enter key. where

minor (continued)

spm_no

is the number of the SPM (0 to 63)

ckt no

is the number of the circuit (0 to 181)

Example of a MAP screen:

```
STS1P
N CLASS SITE SPM STS1P DS3P VT15P DS1P CKT STATE MA
0 HSCARR HOST 20 2 - - - 33 Insv --

SIZE OF POSTED SET : 30 MORE...
```

5 Test the carrier by typing

>TST carrier_no

and pressing the Enter key.

where

carrier no

is the number of the carrier (0 to 4)

6 Determine whether the carrier signal is valid.

If the test result shows	Do
test passed	step 9
test failed	step 7

7 Troubleshoot the carrier circuit according to your company procedures. When you have completed the procedure, return to this point.

Note: Contact your next level of support if you are not familiar with the procedures required to troubleshoot carrier circuits.

8 List the alarms on the carrier by typing

>LISTALM carrier_no

and pressing the Enter key.

where

carrier_no

is the number of the carrier (0 to 4)

If the alarm list shows	Do
None	step 18

minor (continued)

If the alarm list shows	Do
UAS or UASFE	step 9

9 Access the PM level of the MAP screen by typing

>MAPCI;MTC;PM

and pressing the Enter key.

Example of a MAP screen:

	SysB	ManB	OffL	CBsy	ISTb	InSv
PM	1	1	1	3	2	12

10 Post the SPMs by typing

>POST SPM spm_no

and pressing the Enter key.

where

spm_no

refers to number of the SPM (0 to 63)

Example of a MAP screen:

	SysB	ManB	OffL	CBsy	ISTb	InSv	
PM	7	2	2	2	9	16	
SPM	0	2	1	0	0	0	
SPM 2	0 Insv	Loc: Site	HOST Fl	oor 1	Row A Fri	Pos 13	
Shlf0 S	L A Stat	Shlf0 SL	A Stat	Shlf1	SL A Stat	Shlf1	SL A Stat
	1	CEM 1 8	I InSv		1		8
	2	OC3 0 9	A InSv		2		9
DSP 3	3 I InSv	OC3 1 10	I InSv		3		10
	4	11			4		11
	5	DSP12 12	A InSv		5		12
	6	DSP13 13	A InSv		6		13
CEM 0	7 A InSv	14	A InSv		7		14

11 Select the active OC3 module by typing

> >SELECT OC3 module_no and pressing the Enter key.

minor (continued)

where

module no

is the number of the OC3 module (0 to 27)

Example of a MAP screen:

```
SPM 20 OC3 1 Act InSv

Loc: Row E FrPos 8 ShPos 24 ShId 0 Slot 10 Prot Grp: 1

Default Load: SPMLOAD Prot Role: Spare
```

12 Access the protection level of the MAP screen by typing

>PROT

and pressing the Enter key.

Do a manual protection switch with a module in the same protection group by typing

```
>MANUAL from_unit_no to_unit_no and pressing the Enter key.
```

where

from_unit_no

is the number (0 to 27) of the module with the alarm.

to_unit_no

is the number (0 to 27) of the inactive module in the same protection group

Example of a MAP screen:

```
SPM 20 OC3 1 Manual: Request has been submitted. SPM 20 OC3 0 Manual: Command completed.
```

14 Return to the carrier level of the MAP screen and list the alarms on the carrier by typing

```
>LISTALM carrier_no and pressing the Enter key.
```

minor (end)

15 Determine whether the alarm has cleared.

If the alarm list shows	Do		
UAS or UASFE	step 17		
None	step 16		

- Replace the OC3 module. For detailed instructions, see "SPM NTLX71AA OC3 card" in the appropriate *Card Replacement Procedures*. When you have completed the procedure, go to Step 18. 16
- 17 For further assistance, contact the personnel responsible for the next level of support.
- You have completed this procedure. Return to the CI level of the MAP screen 18 by typing

>QUIT ALL

and pressing the Enter key.

IOD DEVBnn critical, major, or minor

Alarm display

Indication

At the MTC level of the MAP display, DEVB appears under the IOD header of the alarm banner. DEVB, followed by a number (nn), indicates a device driver critical, major, or minor alarm.

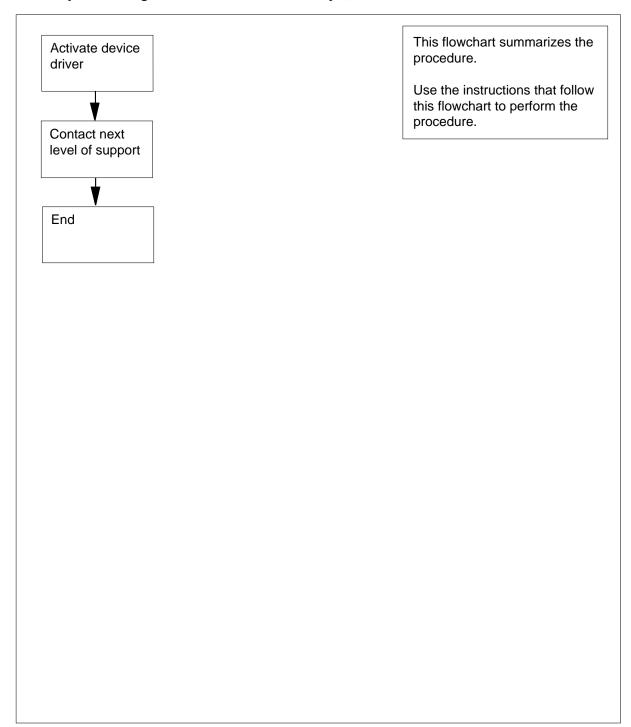
Meaning

The DIRP utility failed to identify the device driver, DIRPDSON or DIRPTSON. Another possibility is that the device driver does not run. These failures are a result of damaged software or hardware that the device driver depends on.

Result

If you repair the device driver immediately, the condition does not affect service. Failure to repair the device driver immediately results in loss of automatic message accounting (AMA) data.

Common procedures


There are no common procedures.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD DEVBnn critical, major, or minor (continued)

Summary of Clearing an IOD DEVBnn critical, major, or minor alarm

IOD DEVBnn critical, major, or minor (end)

Clearing a IOD DEVBnn critical, major, or minor alarm

At your current location

- Perform the correct procedure in *Recovery Procedures*. to activate the device driver. Complete the procedure and return to this point.
- **2** For additional help, contact the next level of support.
- 3 The procedure is complete.

IOD DMNTnn minor

Alarm display

Indication

At the MTC level of the MAP display, DMNT appears under the IOD header of the alarm banner. DMNT followed by a number (nn) indicates a demount minor alarm.

Meaning

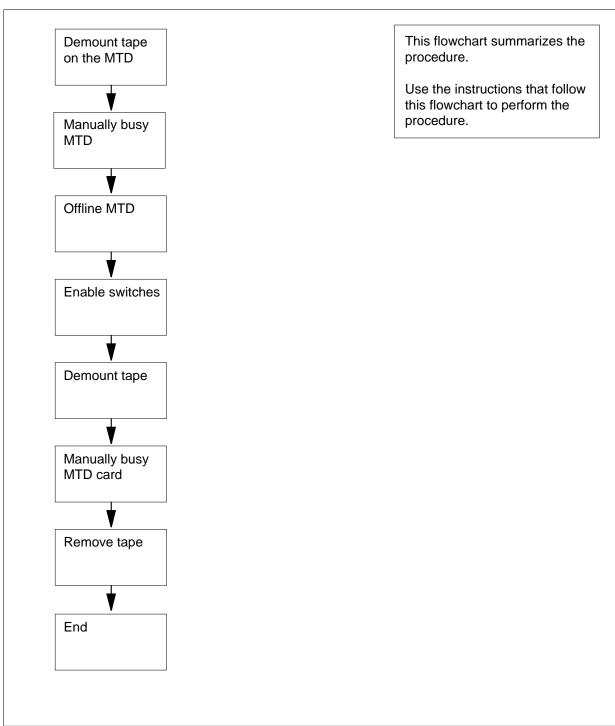
The transmission of a tape from a tape drive to a remote data center is complete. The number that follows DMNT represents the number of the tape drive with the tape.

Result

Service is not affected.

Common procedures

There are no common procedures.


Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD DMNTnn

minor (continued)

Summary of Clearing a IOD DMNTnn minor alarm

IOD DMNTnn minor (continued)

Clearing a IOD DMNTnn minor alarm

At the MAP terminal

To access the Xfer (transfer) level of the MAP terminal, type

```
>MAPCI;MTC;IOD;XFER
```

and press the Enter key.

Example of a MAP:

```
IOD
IOC 0 1 2
            3
STAT . . .
DIRP:
           XFER: DMNT74 SLM: . NPO:
                                         NX25: .
MLP :
           DPPP: . DPPU: .
                               SCAI :
```

2 To list the files that require demounting, type

```
>QUERY DMNT
```

and press the Enter key.

- 3 Record the number in the HOLDNO field of the MAP terminal. The volume name is in field FILE_LOCN. Match the two digits that appear in the alarm to the HOLDNO field.
- Determine from office records the magnetic tape drive (MTD) with the mounted tape.
- 5 To demount the tape, type

>DMNT

and press the Enter key.

where

is the number that appears in the alarm

To post the configured controller system, type 6

```
>IOC ioc_no
```

and press the Enter key.

where

ioc no

is the number of the affected IOC or IOM

Example of an IOC MAP display:

IOD DMNTnn

minor (continued)

```
DIRP: SMDR B XFER: . SLM: .
                               NPO: . NX25: .
MLP: . DPPP: . DPPU: .
                               SCAI :
IOC CARD
          0 1
                   2
                        3
                            4
                                5
                                    6
                                         7
    STAT .--- ...P ..-- ..-- ---
    TYPE MTD DDU CONS DLC CONS
 Example of an IOM MAP display:
                      SLM : . NPO: . NX25: .
DIRP: SMDR B XFER:
MLP: . DPPP: . DPPU: .
                                SCAI :
     PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
IOC
(IOM) STAT . . . - . . - - .
     TYPE C C C C M M
                                           S S
          0 0 0 T
                        P
                                           C C
          N N N N D
                        C
                                           S S
  If the controller
                          Do
  is IOC
                          step 7
  is IOM
                          step 8
 To post the affected MTD card, type
 >CARD card_no
 and press the Enter key.
 where
     is the number of the MTD card
 Example of a MAP display:
 Card 0
        Unit
               0
        User system Drive_state
        Status Ready
                        On line
 Go to step 9.
 To post the affected IOM MTD port, type
 >PORT port_no
 and press the Enter key.
```

where

port_no

is the number of the MTD port

7

IOD DMNTnn minor (continued)

Example of a MAP display:

Port 5 MTD

> User system Drive_state Status Ready On_line

9 To make the MTD manually busy, type

>BSY

and press the Enter key.

bsy OK

If the BSY command	Do
passed	step 10
failed	step 11

10 To place the MTD offline, type

>OFFL

and press the Enter key.

Go to step 14.

11 Determine from office logs or from operating company personnel why you cannot busy the MTD.

If Another user	Do	
uses the MTD	step 12	
does not use the MTD	step 19	

- 12 When you have permission, continue this procedure.
- 13 To enable the switches, type

>INHIBIT mtd no OFF

and press the Enter key.

where

mtd no

is the number of the available MTD

14 To demount the tape, type

>DEMOUNT tape_name

and press the Enter key.

where

IOD DMNTnn

minor (end)

tape_name

is the name of the tape

To make the MTD manually busy, type

>BSY

and press the Enter key.

bsy OK

If the BSY command	Do
passed	step 16
failed	step 19

At the switch

16 Remove the tape from the hub.

If the tape	Do
contains OM or AMA data	step 17
does not contain OM or AMA data	step 18

- Enter the tape volume serial number in the DIRPHOLD. Perform the correct procedure in the *Translations Guide*. Complete the procedure and return to this point.
- 18 Store the tape or prepare the tape for shipping.
- 19 For additional help, contact the next level of support.
- 20 The procedure is complete.

IOD HOLDnn minor

Alarm display

Indication

At the MTC level of the MAP display, HOLD appears under the IOD header of the alarm banner. HOLD followed by a number (nn) indicates a hold minor alarm.

Meaning

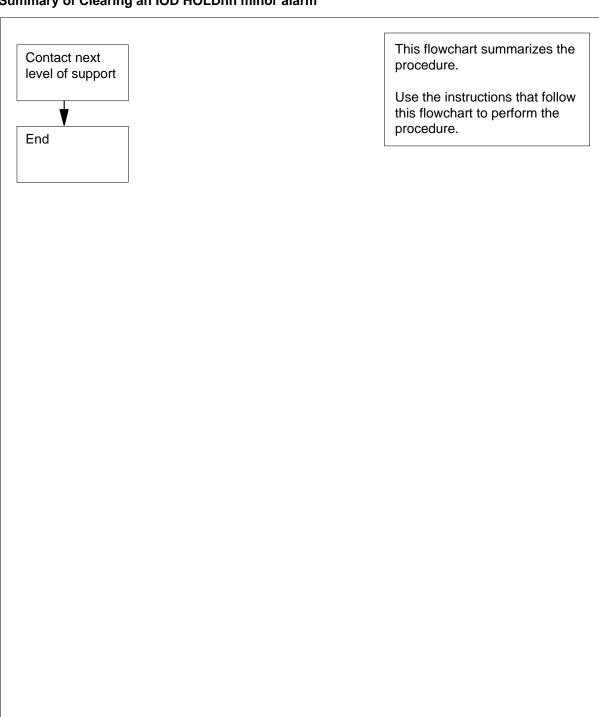
A number of slots (nn) out of a possible 100 slots are free in table DIRPHOLD.

Result

Service is not affected.

Common procedures

There are no common procedures.


Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD HOLDnn

minor (continued)

Summary of Clearing an IOD HOLDnn minor alarm

IOD HOLDnn minor (end)

Clearing an IOD HOLDnn minor alarm

At your Current Location

- For additional help, contact the next level of support.
- 2 The procedure is complete.

IOD ITOC critical

Alarm display

Indication

At the MTC level of the MAP display, ITOC appears under the IOD header of the alarm banner. The ITOC indicates an image table of contents (ITOC) critical alarm.

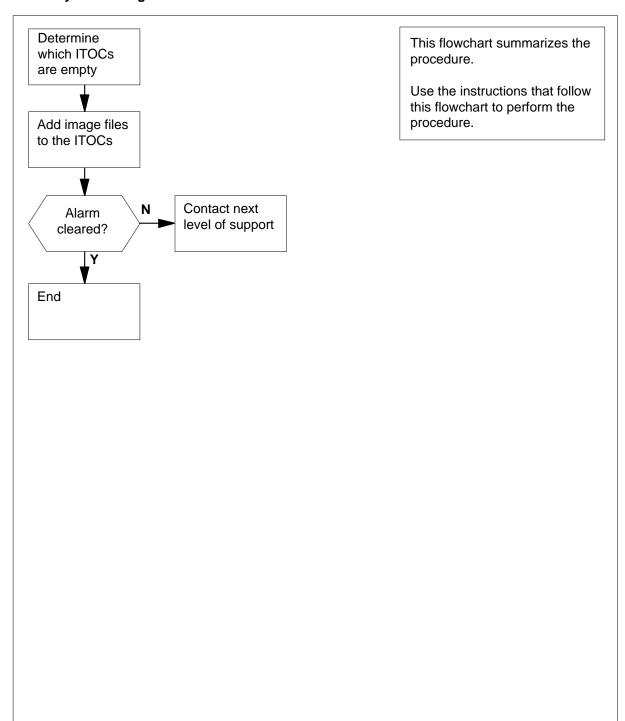
Meaning

Image files are not registered do not exist in the two computing module (CM) ITOCs. Image files are not registered in the two message switch (MS) ITOCs. Image files are not registered for both CM and for both MS ITOCs, of the system load module (SLM) disks.

Result

A reload initiated during an ITOC critical alarm can cause a loss of service.

Common procedures


There are no common procedures.

Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

critical (continued)

Summary of Clearing an IOD ITOC critical alarm

critical (continued)

Clearing an IOD ITOC alarm

At the MAP terminal

To ensure that you are at the CI level of the MAP display, type

>QUIT ALL

and press the Enter key.

2 To access the disk utility, type

>DISKUT

and press the Enter key.

3 To list the volumes on the SLM disks, type

>LISTVOLS CM

and press the Enter key.

Example of a MAP response:

Volumes found on the node CM:

NAME	TYPE	TOTAL	FREE BLOCKS	TOTAL FILES	OPEN FILES	ITOC FILES	LARGEST FREE SEGMENT
S00DIMAGE1 S00DPMLOADS S00DDLOG S01DIMAGE1 S00DPMLOADS S01DDLOG	STD STD STD STD STD STD	614389 614389 8185 614389 51189 8185	142554 137474 4995 29436 245 597	28 83 49 39 116	0 0 0 0 0	0 0 0 0 0	81715 82386 586 7320 78 134

Total number of volumes found on node CM : 6

- 4 Determine from office records the volumes that contain the CM and MS image files (one image volume for each disk).
- 5 List the file information for the image volume on the disk of SLM 0. Type

>LISTFL disk_volume_name

and press the Enter key.

where

disk volume name

is the name of the disk of SLM 0 (S00D) and the name of the volume on S00D that contains the CM and MS image files

Example input:

>LISTFL SOODIMAGE1

IOD ITOC critical (continued)

File information for volume S00DIMAGE1:

{NOTE: 1 BLOCK = 512 BYTES }

FILE NAME	O R	ΙO	0 0	FILE	MAX	NUM OF	FILE	LAST
	R E	ΤР	L L	CODE	REC	RECORDS	SIZE	MOFIFY
	G C	O E	D D		LEN	IN	IN	DATE
		C N				FILE	BLOCKS	
930215 CM	 I F			0	1020	6957	13914	930215
930215_MS	I F			0	1020	176542		930215
ERS35CG	O V			0	120	761	511	930212
APX35CG	0 V			0	120	52	511	930212
FPX35CG	0 V			0	120	3296	1023	930216
LRC35CG	0 V			0	120	4384	1535	930216
LCC35CG	0 V			0	120	83	511	930215
ASN1UI\$LD	0 V			0	120	37	511	930129
LRS35CD	0 V			0	120	493	511	920109
LPX35CG	0 F			0	120	80	511	930212
930212_CM	0 V			0	120	6908	13914	930212
930212_MS	0 V			0	120	174029	353084	920212

6 Determine if a registered CM image file exists in the ITOC for SLM 0.

> Note: The letter Y under the ITOC header confirms the file in the ITOC is registered. The area is blank if a registered file does not exist. The MAP response in step 5 does not contain an MS or CM image file in the ITOC.

If a CM image file	Do
is registered	step 9
is not registered	step 7

7 Record the file name of the current CM image file.

> **Note:** In the MAP response in step 5, the current CM image file is 930215 CM.

8 To add the current CM image file to the ITOC for SLM 0, type

> >SETBOOTFL disk volume name file name CM 1 ACTIVE and press the Enter key.

where

disk volume name

is the disk and volume name specified in step 5

is the name of the current CM image file

Example input:

>SETBOOTFL S00DIMAGE1 930215 CM CM 1 ACTIVE

critical (continued)

File 930215_CM in volume S00DIMAGE1 has been registered in the Image Table Of Contents for CM on SLM, unit 0 as entry number 1. It is also registered as the active boot file.

9 Determine if a registered MS image file exists in the ITOC for SLM 0.

If an MS image file	Do	
registered	step 12	
did not register	step 10	

10 Record the file name of the current MS image file.

Note: In the example of a MAP response in step 5, the current MS image file is 930215_MS.

11 To add the current MS image file to the ITOC for SLM 0, type

>SETBOOTFL disk_volume_name file_name MS 1 ACTIVE and press the Enter key.

where

disk_volume_name

is the disk and volume name specified in step 5

file name

is the name of the current MS image file

Example input:

>SETBOOTFL S00DIMAGE1 930215_MS MS 1 ACTIVE Example of a MAP response:

File 930215_MS in volume S00DIMAGE1 has been registered in the Image Table Of Contents for CM on SLM, unit 0 as entry number 1. It is also registered as the active boot file.

To list the file information for the image volume on the disk of SLM 1, type

>LISTFL disk_volume_name

and press the Enter key.

where

disk volume name

is the name of the disk of SLM 1 (S01D) and the name of the volume on S01D that contains the CM and MS image files

Example input:

>LISTFL S01DIMAGE1

IOD ITOC critical (continued)

File information for volume S01DIMAGE1: {NOTE: 1 BLOCK = 512 BYTES }

FILE NAME	ORIOOO	FILE	MAX	NUM OF	FILE LAST
	RETPLL	CODE	REC	RECORDS	SIZE MOFIFY
	GCOEDD		LEN	IN	IN DATE
	C N			FILE	BLOCKS
930215_CM	I F	0	1020	6957	13914 930215
930215_MS	I F	0	1020	176542	353084 930215
ERS35CG	O V	0	120	761	511 930212
APX35CG	0 V	0	120	52	511 930212
FPX35CG	0 V	0	120	3296	1023 930216
LRC35CG	0 V	0	120	4384	1535 930216
LCC35CG	0 V	0	120	83	511 930215
ASN1UI\$LD	0 V	0	120	37	511 930129
LRS35CD	0 V	0	120	493	511 920109
LPX35CG	0 F	0	120	80	511 930212
930212_CM	0 V	0	120	6908	13914 930212
930212_MS	0 V	0	120	174029	353084 920212

Determine if a registered CM image file exists in the ITOC for SLM 1. 13

> **Note:** The MAP response in step 12 does not contain an MS or CM image file in the ITOC.

If a CM image file	Do
registered	step 16
did not register	step 14

- 14 Record the file name of the current CM image file.
- 15 To add the current CM image file to the ITOC for SLM 1, type

>SETBOOTFL disk_volume_name file_name CM 1 ACTIVE and press the Enter key.

where

disk volume name

is the disk and volume name specified in step 12

is the name of the current CM image file

Example input:

>SETBOOTFL S01DIMAGE1 930215_CM CM 1 ACTIVE Example of a MAP response:

File 930215_CM in volume S01DIMAGE1 has been registered in the Image Table Of Contents for CM on SLM, unit 1 as entry number 1. It is also registered as the active boot file.

IOD ITOC critical (end)

Determine if an MS image file is registered in the ITOC for SLM 1.

If an MS image file	Do
is registered	step 19
is not registered	step 17

- 17 Record the file name of the current MS image file.
- 18 To add the current MS image file to the ITOC for SLM 1, type

>SETBOOTFL disk_volume_name file_name MS 1 ACTIVE and press the Enter key.

where

disk volume name

is the disk and volume name specified in step 12

file name

is the name of the current MS image file

Example input:

>SETBOOTFL S01DIMAGE1 930215_MS MS 1 ACTIVE Example of a MAP response:

File 930215_MS in volume S01DIMAGE1 has been registered in the Image Table Of Contents for MS on SLM, unit 1 as entry number 1. It is also registered as the active boot file.

19 Determine if the ITOC critical alarm did clear.

If the alarm	Do
cleared	step 21
did not clear	step 20

- **20** For additional help, contact the next level of support.
- 21 The procedure is complete.

IOD ITOC minor

Alarm display

Indication

At the MTC level of the MAP display, ITOC appears under the IOD header of the alarm banner. The ITOC indicates an image table of contents (ITOC) minor alarm.

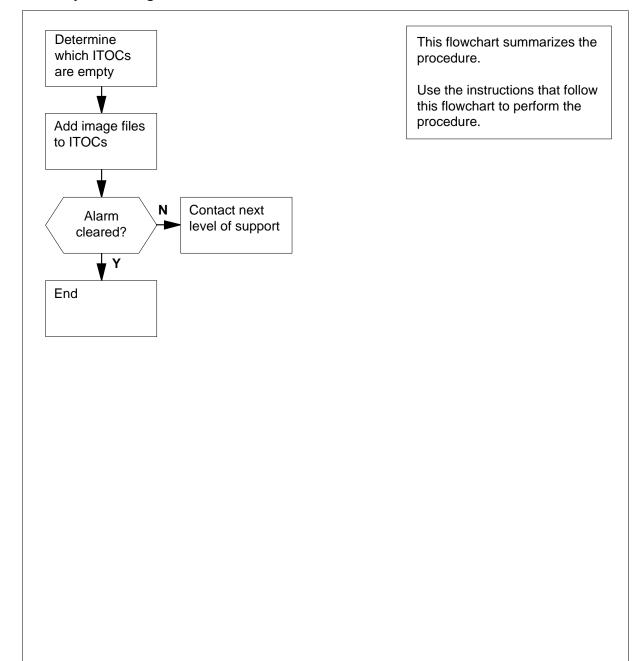
Meaning

Image files are registered in one of more computing module (CM) ITOC. Image files are also registered in one message switch (MS) ITOC. One of the two remaining ITOCs is empty.

Result

Service is not affected.

Common procedures


There are no common procedures.

Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

minor (continued)

Summary of Clearing an IOD ITOC minor alarm

minor (continued)

Clearing an IOD ITOC minor alarm

At the MAP terminal

To make sure that you are at the CI level of the MAP display, type

>QUIT ALL

and press the Enter key.

2 To access the disk utility, type

>DISKUT

and press the Enter key.

3 To list the volumes on the SLM disks, type

>LISTVOLS CM

and press the Enter key.

Example of a MAP response:

Volumes found on the node CM:

NAME	TYPE	TOTAL BLOCKS	FREE BLOCKS	TOTAL FILES	OPEN FILES	ITOC FILES	LARGEST FREE SEGMENT
S00DIMAGE1	STD	614389	142554	28	0	0	81715
S00DPMLOADS	STD	614389	137474	83	0	0	82386
S00DDLOG	STD	8185	4995	49	0	0	586
S01DIMAGE1	STD	614389	29436	39	0	0	7320
S00DPMLOADS	STD	51189	245	116	0	0	78
S01DDLOG	STD	8185	597	15	0	0	134

Total number of volumes found on node CM : 6

- 4 Determine from office records the volumes that contain the CM and MS image files (one image volume for each disk).
- 5 To list the file information for the image volume on the disk of SLM 0, type

>LISTFL disk_volume_name

and press the Enter key.

where

disk volume name

is the name of the disk of SLM 0 (S00D) and the name of the volume on S00D that contains the CM and MS image files

Example input:

>LISTFL SOODIMAGE

minor (continued)

File information for volume S00DIMAGE1:

{NOTE: 1 BLOCK = 512 BYTES }

FILE NAME	O R	ΙO	0 0	FILE	MAX	NUM OF	FILE	LAST
	R E	ΤP	LL	CODE	REC	RECORDS	SIZE	MOFIFY
	G C	O E	D D		LEN	IN	IN	DATE
		C N				FILE	BLOCKS	
930215_CM	ΙF			0	1020	6957	13914	930215
930215_MS	ΙF			0	1020	176542	353084	930215
ERS35CG	0 V			0	120	761	511	930212
APX35CG	0 V			0	120	52	511	930212
FPX35CG	0 V			0	120	3296	1023	930216
LRC35CG	0 V			0	120	4384	1535	930216
LCC35CG	0 V			0	120	83	511	930215
ASN1UI\$LD	0 V			0	120	37	511	930129
LRS35CD	0 V			0	120	493	511	920109
LPX35CG	0 F			0	120	80	511	930212
930212_CM	0 V			0	120	6908	13914	930212
930212_MS	0 V			0	120	174029	353084	920212

6 Determine the registration of a CM image file in the ITOC for SLM 0.

Note: The letter Y under the ITOC header means that the file is registered in the ITOC. If the area is blank, a file that is registered is not present. In the MAP response in step 5, there is no registered MS or CM image file registered in the ITOC.

If Status of a CM image file	Do
registered	step 10
not registered	step 7

7 Record the file name of the current CM image file.

Note: In the MAP response in step 5, the current CM image file is 930215_CM .

8 Add the current CM image file to the ITOC for SLM 0. Type

>SETBOOTFL disk_volume_name file_name CM 1 ACTIVE and press the Enter key.

where

disk volume name

is the disk and volume name specified in step 5 file_name is the name of the current CM image file

Example input:

>SETBOOTFL S00DIMAGE1 930215_CM CM 1 ACTIVE Example of a MAP response:

minor (continued)

File 930215_CM in volume S00DIMAGE1 has been registered in the Image Table Of Contents for CM on SLM, unit 0 as entry number 1.

It is also registered as the active boot file.

9 Determine if the ITOC minor alarm cleared.

If the alarm	Do
cleared	step 24
did not clear	step 10

10 Determine if an MS image file is registered in the ITOC for SLM 0.

If Status of the MS image file	Do
registered	step 14
not registered	step 11

- 11 Record the file name of the current MS image file.
- 12 To add the latest MS image file to the ITOC for SLM 0, type

>SETBOOTFL disk_volume_name file_name MS 1 ACTIVE and press the Enter key.

where

disk_volume_name

is the disk and volume name specified in step 5 file_name is the name of the latest MS image file

Example input:

>SETBOOTFL S00DIMAGE1 930215_MS MS 1 ACTIVE Example of a MAP response:

File 930215_MS in volume S00DIMAGE1 has been registered in the Image Table Of Contents for MS on SLM, unit 0 as entry number 1.

It is also registered as the active boot file.

13 Determine if the ITOC minor alarm cleared.

If the alarm	Do
cleared	step 24
did not clear	step 14

minor (continued)

14 To list the file information for the image volume on the disk of SLM 1, type

>LISTFL disk_volume_name

and press the Enter key.

where

disk_volume_name

is the name of the disk of SLM 1 (S01D) and the name of the volume on S01D that contains the CM and MS image files

Example input:

>LISTFL S01DIMAGE1

Example of a MAP response:

File information for volume S01DIMAGE1:

{NOTE: 1 BLOCK = 512 BYTES }

FILE NAME	OR	000	FILE	MAX	NUM OF	FILE	LAST
	RE?	грьь	CODE	REC	RECORDS	SIZE	MOFIFY
	G C (DEDD		LEN	IN	IN	DATE
	(C N			FILE	BLOCKS	
930215_CM	I F		0	1020	6957	13914	930215
930215_MS	I F		0	1020	176542	353084	930215
ERS35CG	O V		0	120	761	511	930212
APX35CG	0 V		0	120	52	511	930212
FPX35CG	0 V		0	120	3296	1023	930216
LRC35CG	0 V		0	120	4384	1535	930216
LCC35CG	0 V		0	120	83	511	930215
ASN1UI\$LD	0 V		0	120	37	511	930129
LRS35CD	0 V		0	120	493	511	920109
LPX35CG	0 F		0	120	80	511	930212
930212_CM	0 V		0	120	6908	13914	930212
930212_MS	0 V		0	120	174029	353084	920212

15 Determine if a CM image file is registered in the ITOC for SLM 1.

Note: In the MAP response in step 14, a registered CM and MS image file is not in the ITOC.

If a file	Do
is registered	step 19
is not registered	step 16

- Record the file name of the current CM image file.
- 17 To add the latest CM image file to the ITOC for SLM 1, type

>SETBOOTFL disk_volume_name file_name CM 1 ACTIVE and press the Enter key.

where

minor (continued)

disk volume name

is the disk and volume name specified in step 14 file name is the name of the latest CM image file

Example input:

>SETBOOTFL S01DIMAGE1 930215_CM CM 1 ACTIVE Example of a MAP response:

File 930215_CM in volume S01DIMAGE1 has been registered in the Image Table Of Contents for CM on SLM, unit 1 as entry number 1.

It is also registered as the active boot file.

Determine if the ITOC minor alarm cleared. 18

If the alarm	Do
cleared	step 24
did not clear	step 19

19 Determine if an MS image file registered in the ITOC for SLM 1.

If a file	Do
is registered	step 22
is not registered	step 20

- 20 Record the file name of the latest MS image file.
- 21 Add the latest MS image file to the ITOC for SLM 1. Type

>SETBOOTFL disk_volume_name file_name MS and press the Enter key.

where

disk volume name

is the disk and volume name specified in step 14 file_name is the name of the current MS image file

Example input:

>SETBOOTFL S01DIMAGE1 930215_MS MS 1 ACTIVE Example of a MAP response:

File 930215_MS in volume S01DIMAGE1 has been registered in the Image Table Of Contents for MS on SLM, unit 1 as entry number 1.

It is also registered as the active boot file.

minor (end)

22 Determine if the ITOC minor alarm cleared.

If the alarm	Do
cleared	step 24
did not clear	step 23

- 23 For additional help, contact the next level of support.
- 24 The procedure is complete.

IOD KEEPn minor

Alarm display

Indication

At the MTC level of the MAP display, KEEP appears under the IOD header at the alarm banner. KEEP followed by a number (n) indicates a minor alarm for a keep file.

Meaning

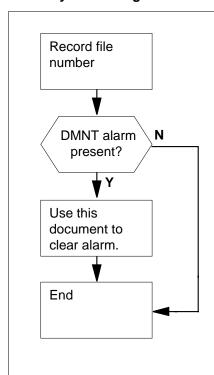
Retain the file on a recording device in the office, following transmission to a data center. The number that follows KEEP represents the number of the recording device.

Result

Service is not affected.

Common procedures

There are no common procedures


Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD KEEPn

minor (continued)

Summary of Clearing an IOD KEEPn minor alarm

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.

IOD KEEPn minor (end)

Clearing an IOD KEEPn minor alarm

At the MAP terminal

To access the XFER (transfer) level of the MAP display, type

>MAPCI;MTC;IOD;XFER

and press the Enter key.

Example of a MAP display:

IOD IOC 0 1 2 3 STAT .

DIRP: XFER: DVI : DPPP: DPPU: NX25: MLP : SLM : SCAI:

2 To record the number of the file that appears in the alarm, type

>KEPT file_no

and press the Enter key.

where

file no

is the number of the file

If a DMNT alarm	Do
appears	step 3
does not appear	step 4

- 3 Perform the procedure Clearing an IOD DMNTn minor alarm in this document to clear this alarm. Complete the procedure and return to this point.
- 4 Determine if the KEEPn alarm cleared.

If the KEEPn alarm	Do	
cleared	step 6	
did not clear	step 5	

- 5 For additional help, contact the next level of support.
- 6 The procedure is complete.

IOD MPCLNK minor

Alarm display

Indication

At the MTC level of the MAP display, MPCLNK appears under the IOD header of the alarm banner. MPCLNK indicates a minor alarm for a multiple protocol controller link on the input/output controller (IOC).

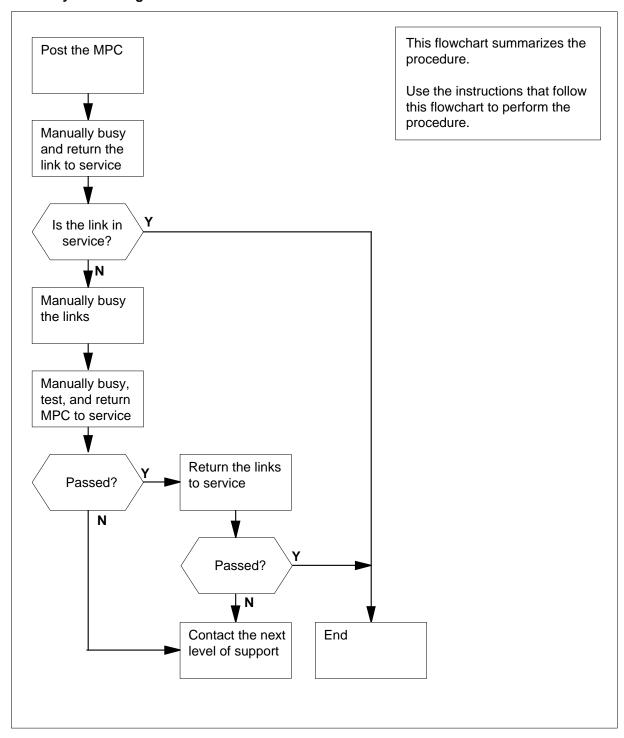
Meaning

One or more multiple protocol controller links are system busy.

Result

Loss of data can occur if the link becomes system busy during transmission.

Common procedures


There are no common procedures.

Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD MPCLNK minor (continued)

Summary of Clearing an IOD MPCLNK minor alarm on IOC

IOD MPCLNK

minor (continued)

Clearing an IOD MPCLNK minor alarm

At the MAP Terminal

1 To access the IOD level of the MAP, type

>MAPCI;MTC;IOD

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2 3
STAT . . . S

DIRP: SMDR B XFER: . SLM : . NPO: . NX25: .
MLP : . DPPP: . DPPU: . SCAI :
```

2 To post the configured controller system, type

```
>IOC ioc_no
```

and press the Enter key.

where

ioc no

is the number of the affected IOC or IOM

Example of a IOC MAP display:

Example of a IOM MAP display:

IOD MPCLNK minor (continued)

If the controller	Do
is IOC	step 4
is IOM	step 3

- 3 Perform the IOD MPCLNK on an IOM alarm clearing procedure for the input/output module (IOM) in this document.
- 4 To post the affected MPC card, type

>IOC ioc_no;CARD card_no

and press the Enter key.

Example of a MAP display:

```
DIRP: SMDR B XFER: .
               SLM :
                       NPO:
                              NX25: .
                       SCAI :
MLP: . DPPP:
               DPPU:
IOC CARD
       0
               2
                        5
           1
                  3
                    4
                           6
   STAT .--- .--- ...P ..-- .---
   TYPE MTD DDU CONS DLC CONS
```

5 To make all the links on the affected MPC manually busy, type

>BSY LINKS

and press the Enter key.

If the BSY command	Do
passed	step 31
failed	step 6

6 To make the MPC card manually busy, type

>BSY ALL Force

and press the Enter key.

Example of MAP response:

bsy OK

7 To test the MPC card, type

>TST

IOD MPCLNK

minor (continued)

and press the Enter key.

If the TST command	Do
passed	step 30
failed, and the system generated a card list	step 8
failed, as a result of the following response that appeared at the MAP terminal: REQUEST FAILED, MPC LOGS MAY HAVE MORE INFO	step 32

- **8** Replace the multiprotocol controller card. Perform the correct procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.
- **9** To download the MPC binary file to the MPC card, type

>DOWNLD

and press the Enter key.

If the DOWNLD command	Do
passed	step 30
failed, and the download file parameter was not specified	step 10
failed, and a background download to an MPC occurred	step 32

10 To determine the name of the binary file for the MPC card, type

>QMPC

and press the Enter key.

Determine from office records if the MPC binary file is on tape, IOC disk, or SLM disk.

If the binary file	Do
is on tape	step 12
is on IOC disk	step 18
is on SLM disk	step 20

IOD MPCLNK minor (continued)

12 Obtain the tape that contains the MPC binary file and load the tape on an available MTD tape.

13 To mount the tape, type

>MOUNT mtd_no

and press the Enter key.

where

is the number of the available MTD

To verify that the MPC binary file is present, type 14

and press the Enter key.

If the tape	Do	
contains the MPC binary file	step 17	
does not contain the MPC binary file	step 15	

15 To demount the tape, type

>DEMOUNT tape name

and press the Enter key.

where

tape name

is the name of the tape

- 16 Determine from office records the tape that contains the MPC binary file. Go to step 12.
- 17 To download the MPC binary file to the MPC card, type

>DOWNLD

and press the Enter key.

If the DOWNLD command	Do
passed	step 30
failed	step 32

- Determine from office records the IOC disk volume that contains the MPC 18 binary file.
- 19 To verify that the MPC binary file is available on the IOC disk volume, type >DISKUT;LIV vol name ALL and press the Enter key.

IOD MPCLNK

minor (continued)

where

vol name

is the name of the volume that contains the MPC binary file

If the binary file	Do
is available	step 22
is not available	step 32

- 20 Determine from office records the SLM disk volume that contains the MPC binary file.
- To verify that the MPC binary file is available on the SLM disk volume, type

>DISKUT; LF vol_name

and press the Enter key.

where

vol_name

is the name of the volume that contains the MPC binary file Example of a MAP display:

File information for volume S01DVOL1 {NOTE: 1 BLOCK = 512 BYTES}

`									
LAST	File	0	R	I	0	FILE	NUM OF	MAX	FILE NAME
MODIFY	CODE	R	E	Т	P	SIZE	RECORDS	REC	
DATE		G	C	0	E	IN	IN	LEN	
				C	N	BLOCKS	FILE		
930325	0	I	F	Y		201570	100785	1020	MBCS34CR_CM
930325	0	I	F	Y		9754	4877	1020	MBCS34CR_MS
930326	0	I	F	Y		5334	2667	1020	LRC34CR
930226	0	0	F	Y		7460	3730	1024	ELI34CR
930326	0	0	F	Y		2396	1198	1024	EDH34CR
930319	0	I	F	Y		9104	4552	1020	LPX34CR
930319	0	I	F	Y		6634	3317	1020	NRS34CR
921204	0	I	F	Y		7284	3642	1020	XRX34CR
931206	0	0	F	Y		162	1504	55	LCME34U
921208	0	0	F	Y		1432	716	1024	DCH34CR

If the binary file	Do
is available	step 22
is not available	step 32

Determine from table PMLOADS if the data entries of the MPC binary file contain the correct load device. Type

>TABLE PMLOADS; POSITION file_name; LIST and press the Enter key.

IOD MPCLNK minor (continued)

where

file name

is the name of the MPC binary file

23 Determine if the MPC binary file data entries contain the correct load device.

If MPC binary file data entries	Do
contain the correct load device	step 30
do not contain the correct load device	step 24
can not find the tuple	step 26

24 To change the device type to the correct load device, type

>CHANGE DEVICE dev_type vol_name

and press the Enter key.

where

dev_type

is an MTD, IOC disk, or SLM disk

is the name of the IOC volume or SLM disk volume

25 To confirm the tuple change, type

>Y

and press the Enter key.

Go to step 17 in this procedure.

26 To add the MPC binary file to table PMLOADS, type

>ADD file_name dev_type vol_name

and press the Enter key.

where

file name

is the name of the MPC binary file

dev type

is an MTD, IOC disk, or SLM disk

vol name

is the name of the IOC volume or SLM disk volume

27 To confirm the addition, type

>Y

and press the Enter key.

28 To quit table PMLOADS and the disk utility, type

>QUIT;QUIT

IOD MPCLNK

minor (end)

and press the Enter key.

29 To download the binary file to the MPC card, type

>DOWNLD

and press the Enter key.

If the DOWNLD command	Do
passed	step 30
failed	step 32

To return the MPC card to service, type

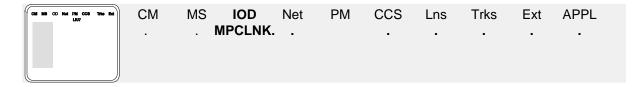
>RTS

and press the Enter key.

If the RTS command	Do
passed	step 31
failed	step 32
failed, and part of the response included REQUEST FAILED, MPC LOGS MAY HAVE MORE INFO	step 32

31 To return the MPC links to service, type

>RTS LINKS


and press the Enter key.

If the RTS command	Do	
passed	step 33	
failed	step 32	

- **32** For additional help, contact the next level of support.
- 33 The procedure is complete.

IOD MPCLNK on an IOM minor

Alarm display

Indication

MPCLNK appears at the IOD level of the MAP display. MPCLNK indicates a minor alarm for the multiple protocol controller link on the input/output module (IOM).

Meaning

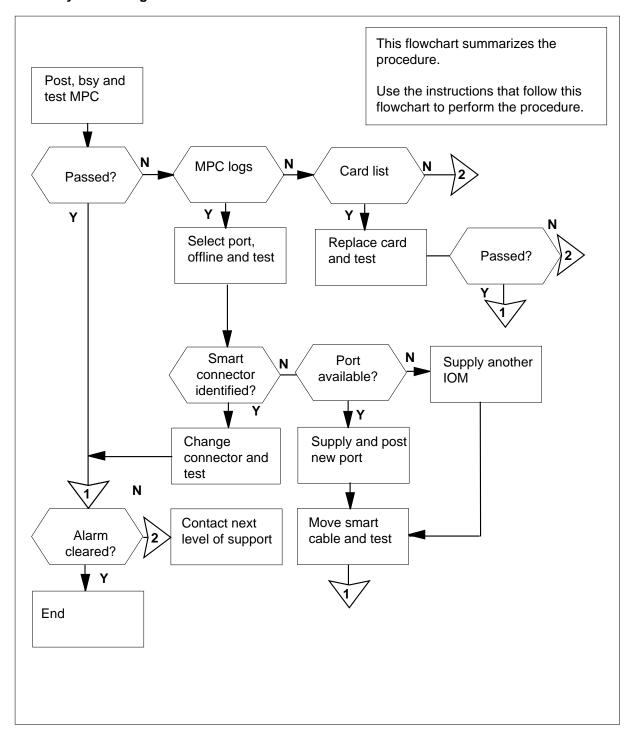
One or more multiple protocol controller links are system-busy.

Result

If the link becomes system busy during transmission, loss of data can occur.

Common procedures

There are no common procedures.


Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD MPCLNK on an IOM

minor (continued)

Summary of Clearing an IOD MPCLNK on an IOM alarm

IOD MPCLNK on an IOM minor (continued)

Clearing an IOD MPCLNK on an IOM alarm

ATTENTION

Proceed only if a step in the IOD MPCLNK in an IOC minor alarm clearing procedure directed you to this procedure.

At the MAP

IOD

1 To access the IOD level of the MAP display, type

>MAPCI; MTC; IOD

and press the Enter key.

Example of a MAP display:

```
IOC 0 1 2 3
STAT . . .
DIRP: SMDR B XFER:
                             NPO: .
                                      NX25: .
                    SLM :
                    DPPU: .
MLP: . DPPP: .
                             SCAI :
```

2 To post the configured controller system, type

```
>IOC ioc_no
```

and press the Enter key.

where

ioc no

is the number of the affected IOM

Example of a IOM MAP display:

```
DIRP: SMDR B XFER: .
                               NPO:
                                        NX25:
                     SLM :
MLP: . DPPP: .
                     DPPU: .
                               SCAI :
     PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
IOC
(IOM) STAT . . . - - - . - -
                      M
P
    TYPE C C C C M
                                          D S
         O O O O T
N N N N D
                                          D C
```

3 To post the affected IOM MPC port, type

```
>PORT port_no
and press the Enter key.
```

IOD MPCLNK on an IOM

minor (continued)

where

port_no

is the port number of the MPC device

Example of a MAP:

Port 3 Unit

> User SYSTEM PROTOCOL LINK

Status Ready X2584 COMACT ENABLD

4 To manually busy the MPC, type

>BSY

and press the Enter key.

Example of MAP response:

bsy

OK

To test the MPC, type 5

>TST

and press the Enter key.

If the TST command	Do
passed	step 35
failed, and the system generated a card list	step 31
failed, and the system generated MPC logs	step 6
To place the MPC offline, type	
OFFL	
and press the Enter key	

6

and press the Enter key.

7 To return to the IOC level of the MAP display, type

>QUIT

and press the Enter key.

8 To make the IOM MPC port manually busy, type

>BSY PORT port_no

and press the Enter key.

where

port no

is the number of the MPC port

IOD MPCLNK on an IOM minor (continued)

Example of MAP response:

bsy OK

9 To place the IOM MPC port offline, type

>OFFL PORT port_no

and press the Enter key.where

port no

is the number of the MPC port

10 To test the IOM MPC port, type

>TST PORT port_no

and press the Enter key.

where

port no

is the port number of the MPC device

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

Check and replace smart connector for port 3 (FX34, FX35)

If an identified smart connector	Do
is present	step 11
is not present	step 13

IOD MPCLNK on an IOM

minor (continued)

At the back of the ISM shelf

11

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point of a modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects the cards against static electricity damage.

Locate the smart cable that connects the MPC port on the paddle board and the associated MPC device. Check the smart connector LED. Replace the smart connector.

Note: When you connect the smart connector to the IOM, the color of the LED changes from red to orange to green. In normal operation, the LED should stay green.

12 To test the smart connector, type

>TST PORT port_no

and press the Enter key.

where

port_no

is the port number of the MPC device

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

If the smart connector	Do
passes	step 26
fails	step 13

Go to step 2. Select an open IOM port and return to this point.

If	Do
a port is available on the posted IOM controller	step 14
a port is available on another IOM	step 28

IOD MPCLNK on an IOM minor (continued)

If	Do
another IOC is not available	step 30

14

CAUTION

Provisioning changes

You can require the help of the provisioning administrator before you proceed with the following provisioning changes.

To determine from table IOC if the open port contains the correct load device, type

>TABLE IOC

and press the Enter key.

15 To access table MPCLINK, type

>TABLE MPCLINK

and press the Enter key.

- 16 Delete the link tuple for the affected port.
- 17 To access table MPC, type

>TABLE MPC

and press the Enter key.

Example of a MPC table:

Table: MPC

MPCNO IOCCCT MPCIOC ΕQ DNDFILE 1 3 2 FX30AA IOM\$LOAD

- 18 Delete the tuple for the affected port.
- 19 To access table MPC, type

>TABLE MPC

and press the Enter key.

Example of a MPC table:

Table: MPC

MPCNO MPCIOC IOCCCT ΕQ DNDFILE 1 FX30AA IOM\$LOAD 3 2

20 Add the tuple for the spare IOM port selected in step13.

IOD MPCLNK on an IOM

minor (continued)

21 To access table MPCLINK, type

>TABLE MPCLINK

and press the Enter key.

- Add the link tuple for the spare IOM port selected in step 13.
- 23 To post the new IOM MPC port, type

```
>PORT port_no
```

and press the Enter key.

where

port_no

is the number of the MPC port

Example of a MAP display:

```
Port 3 Unit 1
User SYSTEM PROTOCOL LINK
Status Ready X2584 COMACT ENABLD
```

24 To make the MPC manually busy, type

>BSY

and press the Enter key.

Example of MAP response:

bsy OK

At the back of the ISM shelf

25

WARNING

Static electricity damage

Wear a wrist strap that connects to the wrist-strap grounding point of a modular supervisory panel (MSP) to handle circuit cards. The wrist strap protects the cards against static electricity damage.

Locate the smart cable that connects the MPC port on the paddle board and the associated MPC device. Disconnect the smart cable. Connect the smart cable to the new MPC port.

Go to step 35.

26 To manually busy the port for the MPC device, type

>BUSY PORT port_no

where

IOD MPCLNK on an IOM minor (continued)

port no

is the number of the MPC port

Example of MAP response:

bsy OK

27 To return the MPC port to service, type

>RTS PORT port no

and press the Enter key.

where

port no

is the number of the MPC port

Go to step 35.

28 To post another configured controller system, type

>IOC ioc_no

and press the Enter key.

where

ioc no

is the number of the affected IOM

Example of a IOM MAP:

```
DIRP: SMDR B XFER:
                              NPO:
                                       NX25:
                     SLM :
          DPPP:
                     DPPU:
                               SCAI :
     PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
(IOM) STAT . . . - . . - - - . - -
    TYPE C C C C M
                      M
                                          D S
         0 0 0 T
                       P
                                          D C
         N N N N D
                       C
                                          U S
```

29 Select an open IOM port on the new controller.

If a port	Do
is available	step 14
is not available	step 30

IOD MPCLNK on an IOM

minor (continued)

30

WARNING

Provisioning changes

You need the help of the provisioning administrator before you proceed with the following provisioning changes.

You must provide another IOM module. Consult your provisioning administrator to add and provision another IOM controller card.

Go to step 37.

- Perform the correct procedure in *Card Replacement Procedures* to replace the first card on the list. Complete the procedure and return to this point.
- 32 To test the IOM card, type

>TST

and press the Enter key.

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

If the test	Do
passes	step 34
fails, and you did not replace all cards	step 33
fails, and you replaced all cards	step 38

- Perform the correct procedure in *Card Replacement Procedures* to replace the second card on the list. Complete the procedure and return to this point.
 - Go to step 32.
- 34 To post the affected IOM MPC port, type

>PORT port_no

where

port_no

is the number of the MPC port

Example of a MAP:

IOD MPCLNK on an IOM minor (end)

Port 9 Unit 1 User SYSTEM PROTOCOL LINK Status Ready X2584 COMACT ENABLED

35 To return the IOM MPC to service, type >RTS

and press the Enter key.

If the alarm	Do
cleared	step 38
changed to another alarm	step 36
did not clear	step 37

- 36 Perform the correct alarm clearing procedure in this document. Complete the procedure and return to this point.
- 37 For additional help, contact the next level of support.
- 38 The procedure is complete.

IOD nCKEr minor

Alarm display

Indication

At the MTC level of the MAP display, a number and CKEr appears under the I/O device (IOD) header of the alarm banner. The CKEr indicates a circuit error alarm in the input/out controller (IOC).

Meaning

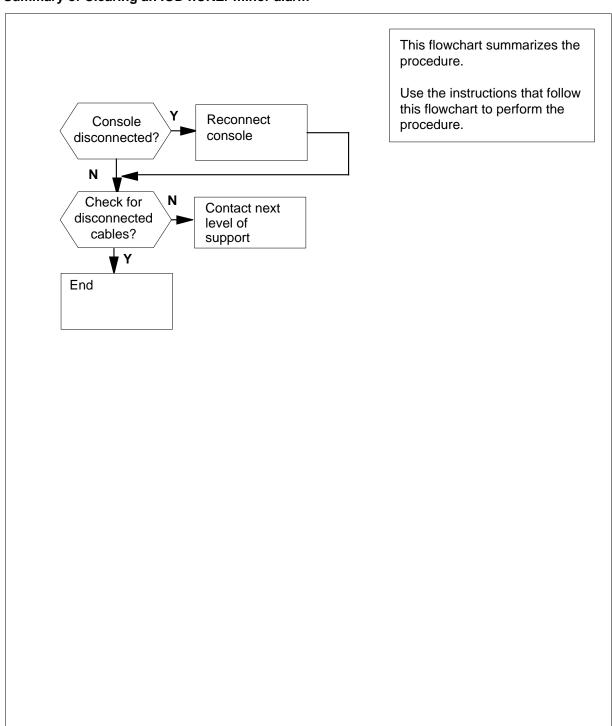
The disconnetion of a minimum of one IOD occurs. The number preceding CKEr is the number of disconnected IODs.

You can disable the CKEr alarm for a disconnected IOD. To disable the IOD, change the entry for the device in field CKERDISC in table TERMDEV to N. For additional information, refer to the description of table TERMDEV in the Data Schema section of *Translations Guide*.

Result

The system generates the CKEr alarm for an IOD disconnected at the IOC.

Common procedures


There are no common procedures.

Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nCKEr minor (continued)

Summary of Clearing an IOD nCKEr minor alarm

IOD nCKEr

minor (continued)

Clearing an IOD nCKEr minor alarm

At the MAP terminal

1 To access the IOD level of the MAP display, type

>MAPCI;MTC;IOD

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2 3
STAT . . . S

DIRP: SMDR B XFER: . SLM : . NPO: . NX25: .
MLP : . DPPP: . DPPU: . SCAI :
```

2 To post the configured controller system, type

```
>IOC ioc_no
```

and press the Enter key.

where

ioc no

is the number of the affected IOC or IOM

Example of a IOC MAP display:

Example of a IOM MAP display:

IOD nCKEr minor (continued)

If the controller	Do	
is IOM	step 3	
is IOC	step 4	

- Perform the *IOD nCKEr on an IOM* alarm clearing procedure for the input/output module (IOM) in this document. 3
- 4 To display the state of the console devices, type

>LISTDEV CONS

and press the Enter key.

Example of a MAP response:

CONS ID	CONSTYPE	STATUS	IOC.CARD/PORT
MAP	VT100		0.2
RD030	VT100		0.2
RD040	VT100		0.4
RD041	VT100		0.4
RP042	KSR	Disc	0.4
RP061	KSR		0.6
RV062	VT100		0.6
RV063	VT100		1.2
RD140	VT100	•	1.4
RD141	VT100	•	1.4
RP142	KSR	•	1.4
RV160	VT100	•	1.6
RV163	VT100	•	1.6
RD045	VT100	•	2.0
RD046	VT100	•	2.0
RD050	VT100	•	2.0
RD051	VT100	•	2.0
RP200	VT100	•	2.1
RP203	VT100	•	2.1
RP205	VT100	•	2.2
RP206	VT100	•	3.0
RD31	VT100	•	3.0
RD32	VT100	•	3.1
RD33	VT100	•	3.1
RD34	VT100	•	3.1
RD35	VT100	•	3.1
RD36	VT100	•	3.2

IOD nCKEr

minor (continued)

5 Record the IOC number and card number for each console device that is in a state of disconnection (Disc).

If	Do
one IOC has disconnected console device	step 7
more than one IOC has disconnected console device	step 6

- 6 Choose an IOC to work on.
- 7 To access the MAP display for the IOC, type

>IOC ioc_number

and press the Enter key.

where

ioc no

is the number of the affected IOC or IOM

Example of a IOC MAP display:

```
DIRP: SMDR B XFER:
                                  NPO:
                                             NX25: .
                       SLM :
MLP : .
            DPPP:
                       DPPU:
                                  SCAI :
IOC CARD
                 1
                      2
                           3
                                4
                                     5
                                         6
           0123 0123 0123 0123 0123 0123 0123 0123
    PORT
    STAT
          .--- .--- ...P ..-- ..--
    TYPE MTD DDU CONS DLC CONS
```

If you recorded	Do
one card that associates with the IOC in step 5.	step 9
more than one card that associates with the IOC in step 5.	step 8

- 8 Choose a IOC terminal controller card to use.
- 9 To post the terminal controller card, type

>CARD card_no

and press the Enter key.

where

card no

is the number of the terminal controller card (0 to 8)

Example of a MAP response:

IOD nCKEr minor (continued)

Card	4	Ckt	0	1	2	3
Status	3			Disc		_
Cons I	Id		RD040	RD041	RP042	
ConTyp	pe		VT100	VT100	KSR	

Note: Identify disconnected circuits (links) by a state of Disc in the status

At the back of IOC shelf

Locate the terminal controller card. Determine if disconnection of any of the 10 cables to the associated console device occurred.

If disconnection occurs for	Do
a minimum of one cable	step 11
no cables	step 16

11 Reconnect the cables.

> Note: Connection of the associated console device can occur at the remote end with an RS232 connector. In this condition, make sure the connector is seated correctly.

At the MAP terminal

12 From the MAP display for the posted terminal controller card, determine the state of the links you reconnected.

If	Do
all links are in service (.)	step 13
a minimum of one link is not in service	step 16

13 Determine if other IOCs with disconnected console devices exist.

Note: You recorded this information in step 5.

If other IOCs with disconnected console devices	Do
exist	step 6
do not exist	step 14

14 Determine if the CKEr alarm cleared.

If the alarm	Do
cleared	step 17

IOD nCKEr minor (end)

If the alarm	Do	
changed to another alarm	step 15	
did not clear	step 16	

- 15 Perform the correct procedure in this document to clear the alarm.
- 16 For additional help, contact the next level of support.
- 17 The procedure is complete.

IOD nCKEr on an IOM minor

Alarm display

Indication

At the MTC level of the MAP display, a number and CKEr appear under the IOD header of the alarm banner. The CKEr indicates a circuit error alarm in the input/output module (IOM).

Meaning

A minimum of one I/O device is in a disconnected state. The number that precedes CKEr indicates the number of disconnected I/O devices.

To disable the CKEr alarm for a disconnected I/O device on an IOM, change the data entry. The data entry for the device is in field CKERDISC in table TERMDEV to N. For additional information, refer to the description of table TERMDEV in the Data Schema section of *Translations Guide*.

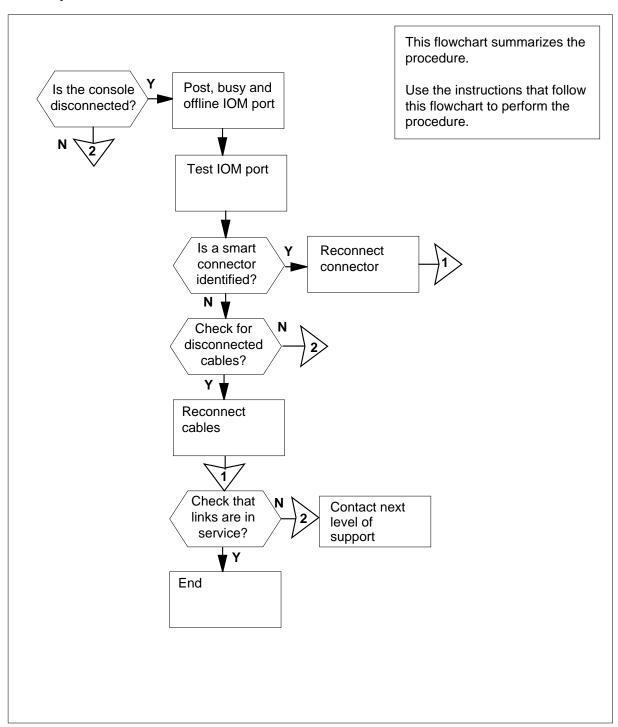
If the port connects to a modem that is currently idle, the disconnected status is normal. You can disable the alarm in the field CKERDISC in table TERMDEV to N.

Result

The CKEr alarm generates for an I/O device disconnected at the input/output module (IOM).

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

IOD nCKEr on an IOM

minor (continued)

Summary of How to clear an IOD nCKEr on an IOM minor alarm

IOD nCKEr on an IOM minor (continued)

How to clear an IOD nCKEr on an IOM alarm

At the MAP terminal

To access the I/O device (IOD) level of the MAP, type >MAPCI;MTC;IOD and press the Enter key. Example of a MAP display:

```
IOD
IOC 0 1 2 3
STAT .
DIRP: SMDR B XFER:
                     SLM : .
                               NPO: .
                                        NX25: .
MLP: .
          DPPP:
                     DPPU: .
                               SCAI :
```

2 To display the state of the console devices, type

>LISTDEV CONS and press the Enter key. Example of a MAP response:

IOD nCKEr on an IOM

minor (continued)

CONS ID	CONSTYPE	STATUS	IOC.CARD/PORT
MAP	VT100	•	0.2
RD030	VT100	•	0.2
RD040	VT100	•	0.4
RD041	VT100	•	0.4
RP042	KSR	Disc	0.4
RP061	KSR		0.6
RV062	VT100	•	0.6
RV063	VT100	•	1.2
RD140	VT100	•	1.4
RD141	VT100	•	1.4
RP142	KSR	•	1.4
RV160	VT100	•	1.6
RV163	VT100	•	1.6
RD045	VT100	•	2.0
RD046	VT100	•	2.0
RD050	VT100	•	2.0
RD051	VT100	•	2.0
RP200	VT100	•	2.1
RP203	VT100	•	2.1
RP205	VT100	•	2.2
RP206	VT100	•	3.0
RD31	VT100	•	3.0
RD32	VT100	•	3.1
RD33	VT100	•	3.1
RD34	VT100	•	3.1
RD35	VT100	•	3.1
RD36	VT100	•	3.2

Record the input/output module (IOM) number and port number for each console device with a state of Disc (disconnected).

If	Do
one IOM has a disconnected console device	step 5
more than one IOM has a dis- connected console device	step 4

- 4 Choose an IOM to work on.
- To post the configured controller system, type
 >IOC ioc_no
 and press the Enter key.

 where

IOD nCKEr on an IOM minor (continued)

ioc no

is the number of the affected IOM

Example of a IOM MAP display:

```
DIRP: SMDR B XFER:
                       SLM :
                                  NPO:
                                            NX25:
            DPPP: .
                       DPPU:
                                  SCAI :
IOC
     PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
(IOM) STAT . . . - . . - - . .
     TYPE C C C C M
                          M
                                              D
                                                 S
          0 0 0 T
                          Ρ
                                              D C
          N N N N D
                           С
                                              U
                                                 S
```

If you Do

recorded one port for the IOM in step 7 step 3.

recorded more than one port for step 6 the IOM in step 3.

- 6 Choose an IOM port to work on.
- 7 To post the terminal controller port, type

>PORT port_no

and press the Enter key.

where

port no

is the port number of the terminal controller device (0 to 15)

Example of a MAP response:

```
Port
      2
          Status
                    Disc
          Cons Id
                    1CONS
                    VT100
          ConType
```

Note: A state of Disc in the status field identifies the disconnected circuits (links).

8 To busy the console, type

>BSY

and press the Enter key.

Example of MAP response:

bsy OK

IOD nCKEr on an IOM

minor (continued)

9 To offline the console, type

>OFFL

and press the Enter key.

To return to the IOC level of the MAP display, type

>QUIT

and press the Enter key.

11 To manually busy the IOM controller port, type

>BSY PORT port_no

and press the Enter key.

Example of MAP response:

bsy

OK

12 To offline the IOM controller port, type

>OFFL PORT port_no

and press the Enter key.

To test the IOM controller port, type

>TST PORT port_no

and press the Enter key.

where

port_no

is the number of the port

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

Check and replace smart connector for port 5 (FX36)

If an identified smart connector	Do
is present	step 14
is not present	step 15

IOD nCKEr on an IOM minor (continued)

At the back of ISM shelf

14

DANGER

Static electricity damage

Wear a wrist strap that connects to a wrist-strap grounding point of a modular supervisory panel (MSP) while handling circuit cards. The wrist strap protects the cards against static electricity damage.

Locate the smart cable that connects to the CONS port identified in the MAP response in step 13. Reconnect the RS232 smart connector.

Go to step 17.

15 Locate the console cables between the console port and the RS232 smart connectors. Locate the console port on the paddleboard at the backplane. Locate the RS232 smart connectors at the associated console device. Determine if any disconnected console cables are present.

> **Note:** In the event of a cabinetized ISM (CISM), the cables from the controller paddleboard connect to a splitter unit on the ISM bulkhead. Other cables connect the splitter unit to the associated console device through RS232 smart connectors.

If	Do					
a minimum of one disconnected cable is present	step16					
no disconnected cables are present	step 26					

16 Reconnect the cables.

> **Note:** If an RS232 smart connector connects the associated console device to the remote end, make sure that the connector sits correctly.

At the MAP terminal

17 To manually busy the IOM controller port, type

> >BSY PORT port_no and press the Enter key.

18 To return the IOM controller port to service, type

>RTS PORT port_no

IOD nCKEr on an IOM

minor (continued)

and press the Enter key.

If the RTS command	Do
passed	step 19
failed	step 26

19 To post the terminal port, type

>PORT port_no

and press the Enter key.

20 To busy the terminal, type

>BSY

and press the Enter key.

Example of MAP response:

bsy OK

,

21 To return the terminal to service, type

>RTS

and press the Enter key.

From the MAP display for the posted IOM, determine the state of the links that you reconnected.

If	Do
the state of all links is in service (.)	step 23
a minimum of one link is not in service	step 26

23 Determine if other IOMs with disconnected console devices are present.

Note: You recorded this information in step 3.

If other IOMs with disconnected console devices	Do
are present	step 4
are not present	step 24

IOD nCKEr on an IOM minor (end)

24 Determine if the CKEr alarm cleared.

If the alarm	Do
cleared	step 27
changed to another alarm	step 25
did not clear	step 26

- 25 Perform the correct alarm clearing procedure in this document.
- 26 For additional help, contact the next level of support.
- 27 The procedure is complete.

IOD nCKOS major or minor

Alarm display

Indication

At the IOD level of the MAP display, a number (n) precedes CKOS. CKOS indicates a major or minor circuit out-of-service alarm.

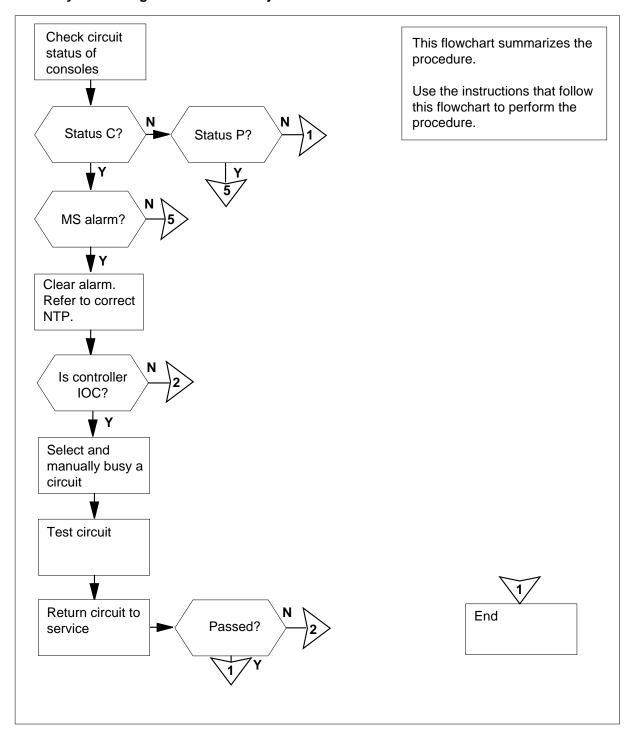
Meaning

One or more circuits or ports are out of service. The number that precedes CKOS indicates the number of circuits or ports that are out of service. The circuit controls one of the four ports on the IOC controller card. Each of these ports connects to a terminal (for example, a MAP terminal or a printer).

Result

Service stops to any device associated with an out-of-service circuit or port.

Common procedures


There are no common procedures.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nCKOS major or minor (continued)

Summary of Clearing an IOD nCKOS major or minor alarm on an IOC

major or minor (continued)

Clearing an IOD nCKOS major or minor alarm

At the MAP terminal

1 To access the IOD level of the MAP display, type

>MAPCI;MTC;IOD

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2 3
STAT . . . S

DIRP: SMDR B XFER: . SLM : . NPO: . NX25: .
MLP:: . DPPP: . DPPU: . SCAI: .
```

2 Determine if an audible alarm is present.

If an audible alarm	Do
is present	step 3
is not present	step 4

3 To silence the alarm, type

>SIL

and press the Enter key.

4 To determine the configuration of the controller system, type

```
>IOC ioc_no
```

and press the Enter key.

where

ioc no

is the number of the affected IOC or IOM

Example of a IOC MAP display:

Example of a IOM MAP display:

IOD nCKOS major or minor (continued)

DIRP: MLP:														1	VX2	5:	•
IOC (IOM) 0	_	C O	C	C O	-	C O	M	-	М	11 -	12	13 -	14	15 -	- S	17 - S C S	

If the controller	Do
is IOM	step 5
is IOC	step 6

- Perform the IOD nCKOS on an IOM alarm clearing procedure for the input/output module (IOM) in this document. 5
- 6 Record the port status display for each console.

If the port status	Do
is C (C-side busy)	step 7
is P (P-side busy)	step 10

7 The C-side links to the console are out of service. Determine if an alarm exists under the MS header.

If an alarm under the MS header	Do
is present	step 8
is not present	step 10

- 8 Perform the correct procedure in this document to clear the alarm. Complete the procedure and return to this point.
- 9 Determine from the MAP display if the alarm under the MS header cleared.

If the alarm	Do
cleared	step 10
did not clear	step 32

10 List the console cards that have P status.

If the P status	Do	
affects one card (IOC)	step 12	

major or minor (continued)

If the P status	Do
affects more than one card	step 11

- 11 From the list you recorded in step 10, choose one console card to work on.
- 12 To post the affected IOC console card, type

>CARD card_no

and press the Enter key.

where

card_no

is the number of the affected console card

Example of a MAP response:

Card 1 Unit 0

User system Drive_State Status Ready on_line

If the port status	Do	
is SYSb	step 13	
is OFFL	step 28	
is ManB	step 29	

13 List the IOC circuits that are system busy.

If	Do
one circuit is busy	step 15
more than one circuit are system busy	step 14

- 14 From the list, choose one circuit to work on.
- 15 To make the IOC circuit manually busy, type

>BSY circuit_no

and press the Enter key.

where

circuit_no

is the number of the circuit

Example of MAP response:

bsy OK

major or minor (continued)

16 To test the circuit, type >TST circuit_no and press the Enter key. where

circuit_no

is the number of the circuit

If the TST command	Do
passed	step 30
failed, and the system generated a card list	step 17
failed, and the system did not generate a card list	step

- 17 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the cards on the card list.
- Perform the correct procedure in Card Replacement Procedure.to replace the 18 card. Complete the procedure and return to this point.
- 19 To test the circuit, type

>TST circuit_no

and press the Enter key.

where

circuit no

is the number of the circuit

If the TST command	Do
passed	step 30
failed, and the system generated a card list	step 20
failed, and the system did not generate a card list	step 22

- 20 Perform the correct procedure in Card Replacement Procedures to replace the next card. Complete the procedure and return to this point.
- 21 Go to step 19.
- 22 From your MAP display, record the console ID and console type.
- 23 Determine from office records the correct data set configuration for the console.

major or minor (continued)

- 24 Check the console to make sure that that the console runs correctly and does not have problems.
- 25 Check the external switch settings on the console.

Switch	Setting
Power	ON
Local/Online	Online
Baud Rate	1200 (or as required - see IS3X01)
Parity	No Parity
Full Duplex/Half Duplex	Full Duplex

If the external switch settings	Do
are correct	step 27
are not correct	step 26

- Change the external switch setting according to the table in step 25. Complete the procedure and return to this point.
- **27** To test the circuit, type

>TST circuit_no

and press the Enter key.

where

circuit no

is the number of the circuit

If the TST command	Do
passed	step 30
failed	step 32

Consult office records or operating company personnel. Determine the reason that the circuit is offline. If you have permission, manually busy the circuit. To manually busy the circuit, type

>BSY circuit_no

and press the Enter key.

where

circuit_no

is the number of the circuit

IOD nCKOS major or minor (continued)

29 To test the manually-busy circuit, type >TST circuit_no

and press the Enter key.

where

circuit_no

is the number of the circuit

If the TST command	Do
passed	step 30
failed, and the system generated a card list	step 17
failed, and the system did not generate a card list	step 20
To return the circuit to service, type	

30

>RTS circuit_no

and press the Enter key.

where

circuit no

is the number of the circuit

If the RTS command	Do
passed, and all circuits are in service	step 31
passed, and one or more circuits are out of service	step 12
failed	step 32

31 Determine from the MAP display if the *nCKOS major or minor* alarm cleared.

If the alarm	Do
cleared	step 33
did not clear, and other consoles are out of service	step 6
did not clear, and all consoles are in service	step 32

major or minor (end)

- **32** For additional help, contact the next level of support.
- 33 The procedure is complete.

IOD nCKOS on an IOM major or minor

Alarm display

Indication

At the IOD level of the MAP display, CKOS preceded by a number (n) indicates a major or minor port out-of-service alarm.

Meaning

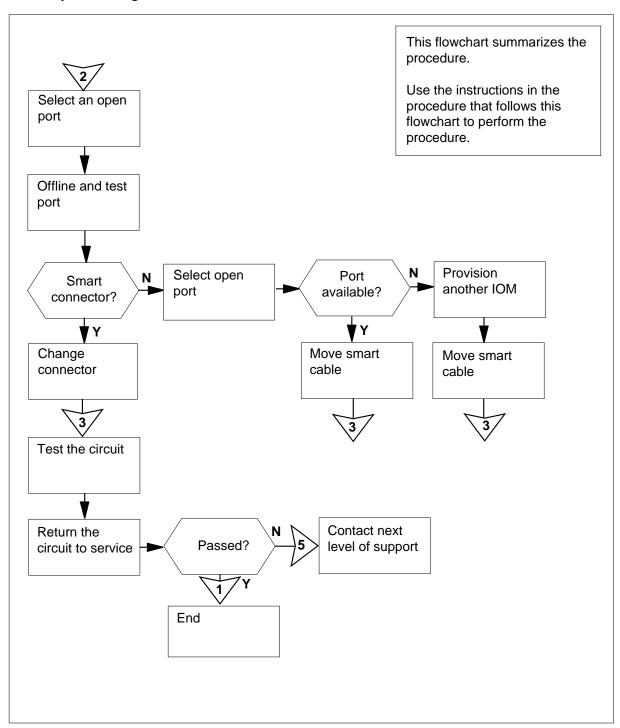
One or more ports are out of service. The number that precedes CKOS indicates how many ports are out of service. Each of these ports is connected to a terminal, such as a MAP terminal or a printer.

Impact

Service is discontinued to any device associated with an out-of-service circuit or port.

Common procedures

Not applicable


Action

The following flowchart is only a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nCKOS on an IOM

major or minor (continued)

Summary of clearing an IOD nCKOS on an IOM alarm

IOD nCKOS on an IOM major or minor (continued)

Clearing a/an IOD nCKOS on an IOM alarm

ATTENTION

Proceed only if you have been directed to this procedure from a step in the IOD nCKOS in an IOC minor alarm clearing procedure.

At the MAP terminal

Access the IOD level of the MAP display by typing

>MAPCI; MTC; IOD

and pressing the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2 3
STAT . . .
```

DIRP: SMDR B XFER: . SLM : . NPO: . NX25: . DPPP: . DPPU: . SCAI:

2 Determine if an audible alarm exists.

If an audible alarm	Do	
exists	step 3	
does not exists	step 4	

3 Silence the alarm by typing

>SIL

and pressing the Enter key.

4 Determine the configuration of the controller system by typing

```
>IOC ioc no
and pressing the Enter key.
```

where

is the number of the affected IOM

Example of a IOM MAP display:

IOD nCKOS on an IOM

major or minor (continued)

NX25: . DIRP: SMDR B XFER: . SLM : NPO: DPPP: DPPU: SCAI : IOC PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 (IOM) STAT . . . - . . - - . TYPE C C C C M S S M 0 0 0 ОТ С С Ρ N N N N D C S S

5 Record the port status display for each console.

If the port status is	Do
C (C-side busy)	step 6
P (P-side busy)	step 9

The C-side links to the console are out of service. Determine if there is an alarm under the MS header.

If an alarm under the MS header	Do
exists	step 7
does not exist	step 8

- 7 Clear the alarm by performing the appropriate procedure in this document. When you have completed the procedure, return to this point.
- **8** Determine from the MAP display if the alarm under the MS header has cleared.

If the alarm	Do
cleared	step 9
did not clear	step 51

9 Record the IOM console ports that have P status.

If the P status affects	Do
one port	step 11
more than one port	step 10

- Select one port to work from the list recorded in step 9.
- 11 Post the affected IOM console port by typing

>PORT port_no

and pressing the Enter key.

IOD nCKOS on an IOM major or minor (continued)

where

port_no

is the port number of the affected console device

Example of a MAP response:

Port 2 Status

Cons Id MAP ConType CYB

If the device status is	Do
SYSb	step 12
Offl	step 47
Text ManB	step 45

12 Manually busy the console by typing

>BSY

and pressing the Enter key.

Example of MAP response:

bsy

OK

13 Test the console by typing

>TST

and pressing the Enter key.

If the TST command	Do
passed	step 49
failed, and a card list was generated	step 36
failed, and a card list was not generated	step 14

14 Offline the terminal by typing

>OFFL

and pressing the Enter key.

15 Return to the IOC level of the MAP display by typing

>QUIT

and pressing the Enter key.

IOD nCKOS on an IOM

major or minor (continued)

16 Manually busy the console port by typing

>BSY PORT port_no

and pressing the Enter key.

circuit no

is the number of the circuit

Example of MAP response:

bsy

OK

17 Offline the busied console port by typing

>OFFL PORT port_no

and pressing the Enter key.

18 Test the console port by typing

>TST PORT port_no

and pressing the Enter key.

where

circuit no

is the number of the circuit

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

Check smart connector for port 5

If a smart connector is	Do	
identified	step 19	
not identified	step 21	

IOD nCKOS on an IOM major or minor (continued)

At the rear of the ISM shelf

19

DANGER

Static electricity damage

Wear a wrist strap connected to the wrist-strap grounding point of a modular supervisory panel (MSP) while handling circuit cards. This protects the cards against damage by static electricity.

Locate the PERTEC smart connector mounted on an L-shaped bracket close to the tape drive and check the smart connector LED. Replace the smart connector.

Note: When you connect the smart connector to the IOM, the color of the LED changes from red to orange to green. In normal operation, the LED should stay green.

20 Test the smart connector by typing

>TST PORT port no

and pressing the Enter key.

where

is the port number of the MPC device

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC A05 ISME 03 32 HOST 01 IOC 03 FX30AA

If the smart connector	Do	
passes	step 29	
fails	step 21	

At the MAP terminal

21 Go to step 4, select an open IOM port and return to this point.

If a port is	Do
available on the posted IOM controller	step 23
available on another IOM	step 32

IOD nCKOS on an IOM

major or minor (continued)

If a port is	Do
there is no other IOM available	step 34

22

CAUTION

Provisioning changes

You may require the assistance of the provisioning administrator before proceeding with the following provisioning changes.

Determine from table IOC if the open port is datafilled with the correct load device by typing

>TABLE IOC

and pressing the Enter key.

23 Go to table CONS by typing

>TABLE TERMDEV

and pressing the Enter key.

- Delete the tuple associated with the affected port and add the tuple for the spare IOM port selected in step 21.
- 25 Post the new IOM CONS port by typing

>PORT port_no

and pressing the Enter key.

where

port_no

is the number of the CONS port

Example of a MAP display:

Port 2 Status

Cons Id MAP ConType CYB

26 Manually busy the new console by typing

>BSY

and pressing the Enter key.

Example of MAP response:

bsy

OK

IOD nCKOS on an IOM major or minor (continued)

At the rear of the ISM shelf

27

DANGER

Static electricity damage

Wear a wrist strap connected to the wrist-strap grounding point of a modular supervisory panel (MSP) while handling circuit cards. This protects the cards against damage by static electricity.

Locate the smart cable connecting the CONS port on the paddleboard and the associated CONS device. Disconnect the smart cable and connect it to the new CONS port selected in step 21.

- 28 Go to step 40.
- 29 Manually busy the console port by typing

>BSY PORT port_no

and pressing the Enter key.

where

port no

is the port number of the CONS device

Example of MAP response:

bsy

OK

30 Return the console port to service by typing

>RTS PORT port_no

and pressing the Enter key.

where

port_no

is the port number of the CONS device

- 31 Go to step 36.
- 32 Post another configured controller system by typing

>IOC ioc_no

and pressing the Enter key.

where

is the number of the affected IOM

Example of a IOM MAP display:

IOD nCKOS on an IOM

major or minor (continued)

DIRP: SMDR B XFER: SLM : NPO: NX25: MLP : . DPPP: DPPU: SCAI : IOC PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 (IOM) STAT . . . - . . - - . TYPE C C C C M S S M 0 0 0 ОТ С Ρ C N N N N D C S S

33 Select an open IOM port on the new controller.

If there is a port	Do	
available	step 22	
not available	step 34	

34

CAUTION

Provisioning changes

You will require the assistance of the provisioning administrator before proceeding with the following provisioning changes.

There will be a requirement to provision another IOM module. Consult your provisioning administrator about provisioning another IOM controller card.

- **35** Go to step 51.
- Replace the card by performing the appropriate procedure in *Card Replacement Procedures.* When you have completed the procedure, return to this point.
- 37 Test the IOM card by typing

>TST

and pressing the Enter key.

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

If the test	Do
passes	step 41

IOD nCKOS on an IOM major or minor (continued)

If the test	Do
fails, and all cards have not been replaced	step 38
failed, and all cards have been replaced	step 51

- Replace the next card on the list by performing the appropriate procedure in *Card Replacement Procedures.* When you have completed the procedure, return to this point. Go to step 37. 38
- 39 Go to step 37.
- 40 Post the console port by typing

>PORT port_no

and pressing the Enter key.

where

port no

is the port number of the console device

- 41 From your MAP display, record the console ID and console type.
- 42 Determine from office records the correct data set configuration for the console.
- 43 Check the console to ensure that it is running properly and there are no physical problems.
- Check the external switch settings on the console. 44

Switch	Setting
Power	On
Local/OnLine	OnLine
Baud Rate	1200 (or as required - see IS3X01)
Parity	No Parity
Full Duplex/Half Duplex	Full Duplex

If the external switch settings are	Do
correct	step 46
not correct	step 45

IOD nCKOS on an IOM

major or minor (continued)

- 45 Change the external switch setting as per the table in step 44. When you have completed the procedure return to this point.
- 46 Test the console device by typing

>TST

and pressing the Enter key.

where

port_no

is the port number of the console device

If the TST command	Do
passed	step 49
failed	step 51

Determine from office records or from office personnel why the console is offline. When permissible, manually busy the console by typing

>BSY

and pressing the Enter key.

48 Test the manually busy console by typing

>TST

and pressing the Enter key.

If the TST command	Do
passed	step 49
failed, and a card list was generated	step 36
failed, and a card list was not generated	step 51

49 Return the console to service by typing

>RTS

and pressing the Enter key.

If the RTS command	Do
passed	step 50
failed	step 51

IOD nCKOS on an IOM major or minor (end)

Determine from the MAP display if the *nCKOS major or minor* alarm has cleared. 50

If the alarm	Do
cleared	step 52
did not clear, and there are other consoles out of service	step 10
did not clear, and all consoles are in service	step 51

- 51 For further assistance, contact the personnel responsible for the next level of support.
- 52 You have completed this procedure.

IOD nDDUOS major or minor

Alarm display

Indication

At the IOD level of the MAP display, DDUOS [preceded by a number (n)] indicates a DDU major or minor alarm.

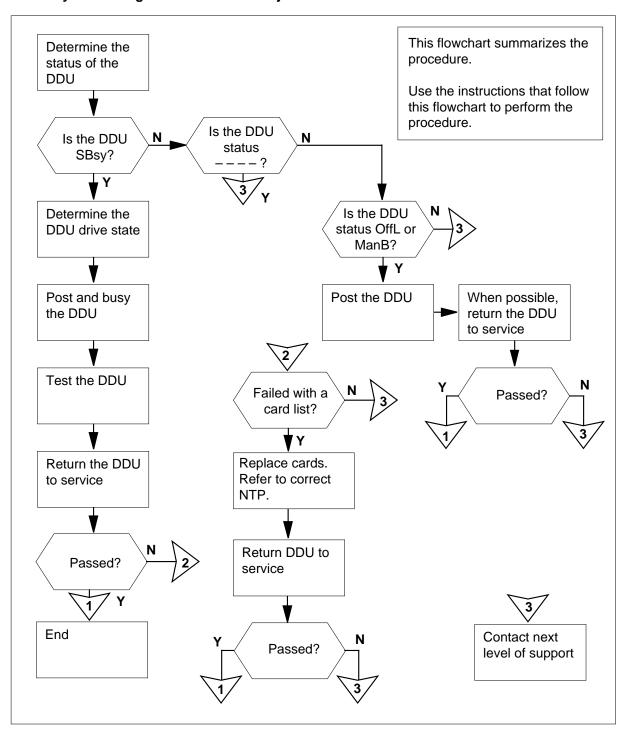
Meaning

One or more disk drive units (DDU) are out of service. The number that precedes DDUOS indicates the number DDUs out of service.

Result

You cannot record files to the tape or DDU. You cannot download files from the tape or DDU.

Common procedures


There are no common procedures.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nDDUOS major or minor (continued)

Summary of Clearing an IOD nDDUOS major or minor alarm

major or minor (continued)

Clearing an IOD nDDUOS major or minor alarm

At the MAP terminal

1 To access the IOD level of the MAP display, type

>MAPCI;MTC;IOD

and press the Enter key.

Example of a MAP:

```
DIRP: SMDR B XFER: . SLM : . NPO: . NX25: . MLP : . DPPU: . SCAI :
```

2 Determine if an audible alarm is present.

If an audible alarm	Do
is present	step 3
is not present	step 4

3 To silence the alarm, type

>SIL

and press the Enter key.

4 Determine if there is an FSP alarm under the EXT header of the MAP display.

If an FSP alarm is	Do
present	step 5
not present	step 7

- 5 Perform the appropriate alarm clearing procedure in this document. When you have completed the procedure, return to this point.
- 6 Determine if the DDUOS alarm under the IOD header of the MAP display has cleared.

If the DDUOS alarm is	Do
present	step 7
not present	step 74

IOD nDDUOS major or minor (continued)

7 To determine the configured controller system, type

>IOC ioc_no

and press the Enter key.

where

ioc no

is the number of the affected IOC or input/output module (IOM)

Example of a IOC MAP display:

```
IOD
IOC 0 1 2
STAT . . .
DIRP: SMDR B XFER: .
                SLM : .
                        NPO:
                           . NX25: .
MLP: .
       DPPP:
               DPPU:
                        SCAI :
IOC CARD
        0
            1
               2
                   3
                      4
                         5
                            6
                                7
   PORT
       STAT
       .--- .--- ...P ..-- ..-- --- ---
```

MTD DDU CONS DLC CONS

Example of a IOM MAP display:

```
IOD
IOC 0 1 2 3
STAT . . .
            S
DIRP: SMDR B XFER:
                                NPO:
                                          NX25:
                      SLM :
MLP: . DPPP: .
                      DPPU:
                                 SCAI :
IOC
     PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
(IOM) STAT . . . - . . - - .
     TYPE C C C C M
                        M
                                            D
                                              S
         0 0 0 T
                        Ρ
                                              C
                                            D
         N N N N D
                         С
                                            U
```

If the controller	Do
is IOM	step 8
is IOC	step 9

- 8 Perform the IOD nDDUOS on an IOM alarm clearing procedure for the input/output module (IOM) in this document.
- 9 To display the status of the DDU, type

>LISTDEV DDU

and press the Enter key.

major or minor (continued)

10 From the status display, determine the status of the DDU.

If the status	Do
is SysB	step 11
is	step 73
is OffL or ManB	step 61

11 Examine the drive state of the system busy DDU.

If the drive state	Do
is ONLINE	step 12
is DISCONNECTED	step 20
has DRIVE FAULTS	step 28
is SPINNING	step 32
is SPINNING DOWN	step 35
is SPUN DOWN	step 43
is UNKNOWN	step 52

To post the NT1X55 DDU controller card, type

>IOC ioc_no;CARD card_no and press the Enter key.

where

ioc no

is the number of the affected IOC

card no

is the number of the DDU controller card

13 To make the DDU card manually busy, type

>BSY

and press the Enter key.

Example of MAP response:

bsy OK

14 To test the DDU card, type

>TST

IOD nDDUOS major or minor (continued)

and press the Enter key.

If the TST command	Do
passed	step 17
failed, and the system generated a card list	step 15
failed, and the system did not generate a card list	step 73

- 15 Record the location, description, slot number and the product engineering code (PEC), and PEC suffix of the cards on the card list.
- Perform the correct procedure in Card Replacement Procedures to replace 16 the first card on the list. Complete the procedure and return to this point.
- 17 To return the DDU device to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 71
failed, and you did not replace all cards noted in step 15	step 18
failed, and you replaced all cards noted in step 15	step 73

- 18 Perform the correct procedure in Card Replacement Procedures. to replace the next card on the list. Complete the procedure and return to this point.
- 19 Go to step 17.

At the equipment shelf

20 Inspect the DDU cabling and power supply.

If the cables and power supply	Do
are in good working order	step 22
has faults	step 21

- 21 Refer to office installation guides to replace the signal cabling to the DDU, or adjust the power supply to the DDU. Complete this task and return to this
- 22 To test the DDU, type

>TST

major or minor (continued)

and press the Enter key.

If the TST command	Do
passed	step 25
failed, and the system generated a card list	step 23
failed, and the system did not generate a card list	step 33

- 23 Record the location, description, slot number, PEC, and PEC suffix of the cards on the card list.
- Perform the correct procedure in *Card Replacement Procedures*. to replace the first card on the list. Complete the procedure and return to this point.
- **25** To return the DDU to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 71
failed, and you did not replace all cards noted in step 23	step 26
failed, and you replaced all cards noted in step 23	step 73

- Perform the correct procedure in Card Replacement Procedures. to replace the next card on the list. Complete the procedure and return to this point.
- **27** Go to step 25.
- 28 To post the NT1X55 DDU controller card, type

>IOC ioc_no;CARD card_no

and press the Enter key.

where

ioc no

is the number of the affected IOC

card no

is the card number

29 To make the NT1X55 DDU controller card manually busy, type

>BSY

and press the Enter key.

IOD nDDUOS major or minor (continued)

Example of MAP response:

bsy OK

At the equipment shelf

- 30 Perform the correct procedure in Routine Maintenance Procedures to clear the optical sensors on the DDU. Complete the procedure and return to this point.
- 31 Go to step 20.
- 32 Wait 3 min for the DDU to spin up to speed.

If the status of the DDU	Do
changes to ONLINE	step 71
does not change to ONLINE	step 33

- 33 Perform the correct procedure in *Trouble locating and clearing procedures* to replace the DDU. Complete the procedure and return to this point.
- 34 Go to step 36.
- Consult office records or operating company personnel. Determine the reason that the DDU spins down. Wait 3 min for the spinning DDU to stop. 35
- 36 To return the DDU card to service, type

>IOC ioc_no;CARD card_no;RTS and press the Enter key.

where

ioc no

is the number of the affected IOC

card no

is the number of the DDU controller card

If the RTS command	Do
passed	step 71
failed, and the system generated a card list	step 37
failed, and the system did not generate a card list	step 73

- 37 Record the location, description, slot number, PEC, and PEC of the card(s) on the card list.
- 38 Perform the correct procedure in Card Replacement Procedures to replace the first card on the list. Complete the procedure and return to this point.

major or minor (continued)

39 To test the DDU, type

>TST

and press the Enter key.

If the TST command	Do
passed	step 42
failed, and you did not replace all cards noted in step 37	step 40
failed, and you replaced all cards noted in step 37	step 73

- Perform the correct procedure in *Card Replacement Procedures* to replace the next card on the list. Complete the procedure and return to this point.
- **41** Go to step 39.
- To return the DDU card to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 71
failed	step 73

43 To post and busy the DDU controller card, type

>IOC ioc_no;CARD card_no;BSY

and press the Enter key.

where

ioc no

is the number of the affected IOC

card no

is the card number

Example of MAP response:

bsy OK

- Determine from office records or from operating company personnel the reason that the DDU was spun down.
- To return the DDU card to service, type

>RTS

IOD nDDUOS major or minor (continued)

and press the Enter key.

If the RTS command	Do	
passed	step 71	
failed, and the system generated a card list	step 46	
failed, and the system did not generate a card list	step 73	

- 46 Record the location, description, slot number, PEC, and PEC suffix of the cards on the card list.
- 47 Perform the correct procedure in Card Replacement Procedures to replace the first card on the list. Complete the procedure and return to this point.
- 48 To test the DDU, type

>TST

and press the Enter key.

If the TST command	Do	
passed	step 51	
failed, and you did not replace all cards noted in step 46	step 49	
failed, and you replaced all cards noted in step 46	step 73	

- Perform the correct procedure in Card Replacement Procedures to replace 49 the next card on the list. Complete the procedure and return to this point.
- 50 Go to step 48.
- 51 To return the DDU card to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 71
failed	step 73

52 To post the DDU controller card, type >IOC ioc_no; CARD card_no and press the Enter key.

major or minor (continued)

where

ioc no

is the number of the affected IOC

card no

is the card number

To make the DDU controller card manually busy, type

>BSY

and press the Enter key.

Example of MAP response:

bsy

54 To test the DDU card, type

>TST

and press the Enter key.

If the TST command	Do
passed	step 60
failed, and the system generated a card list	step 55
failed, and the system did not generate a card list	step 73

- Record the location, description, slot number, PEC, and PEC suffix of the cards on the card list.
- Perform the correct procedure in *Card Replacement Procedures* to replace the first card on the list. Complete the procedure and return to this point.
- 57 To test the DDU card, type

>TST

and press the Enter key.

If the TST command	Do	
passed	step 60	
failed, and you did not replace all cards noted in step 55	step 58	
failed, and you replaced all cards noted in step 55	step 73	

major or minor (continued)

- Perform the correct procedure in Card Replacement Procedures to replace 58 the next card on the list. Complete the procedure and return to this point.
- 59 Go to step 57.
- To return the DDU card to service, type 60

>RTS

and press the Enter key.

If the RTS command	Do		
passed	step 71		
failed	step 73		

61 To post the DDU controller card, type

> >IOC ioc_no;CARD card no

and press the Enter key.

where

ioc no

is the number of the affected IOC

card_no

is the card number

62 Determine from office records or from operating company personnel if the DDU is offline or manual busy.

If the DDU	Do
is offline	step 63
is manual busy	step 64

63 To make the DDU manually busy, type

>BSY

and press the Enter key.

Example of MAP response:

bsy

OK

64 To return the DDU to service, type

>RTS

and press the Enter key.

If the RTS command	Do	
passed	step 71	

major or minor (continued)

•	·	
	If the RTS command	Do
	failed, and the system generated a card list	step 65
	failed, and the system did not generate a card list	step 73
65	Record the location, description, slot a cards on the card list.	number, PEC, and PEC suffix of the
66	Perform the correct procedure in <i>Carc</i> the first card on the list. Complete the	
67	To test the DDU, type	
	>TST	
	and press the Enter key.	
	If the TST command	Do
	passed	step 70
	failed, and you did not replace all cards noted in step 65	step 68
	failed, and you replaced all cards noted in step 65	step 73
68	Perform the correct procedure in <i>Carc</i> the next card on the list. Complete th	
69	Go to step 67.	
70	To return the DDU to service, type	
	>RTS	
	and press the Enter key.	
	If the RTS command	Do
	passed	step 71
	failed	step 73
71	Check under the IOD banner on your nDDUOS major or minor alarm cleare	
	If the nDDUOS alarm	Do
	cleared	step 74

step 72

changed to another alarm

IOD nDDUOS major or minor (end)

If the nDDUOS alarm	Do
did not clear	step 73
Perform the correct procedure in this of the procedure and go to step 71.	locument to clear the alarm. Complete
For additional help, contact the next le	evel of support.
The procedure is complete.	

72

73 74

IOD nDDUOS on an IOM major or minor

Alarm display

Indication

At the MTC level of the MAP display, DDUOS appears under the IOD header of the alarm banner. DDUOS preceded by a number (n) indicates a DDU major or minor alarm on the IOM.

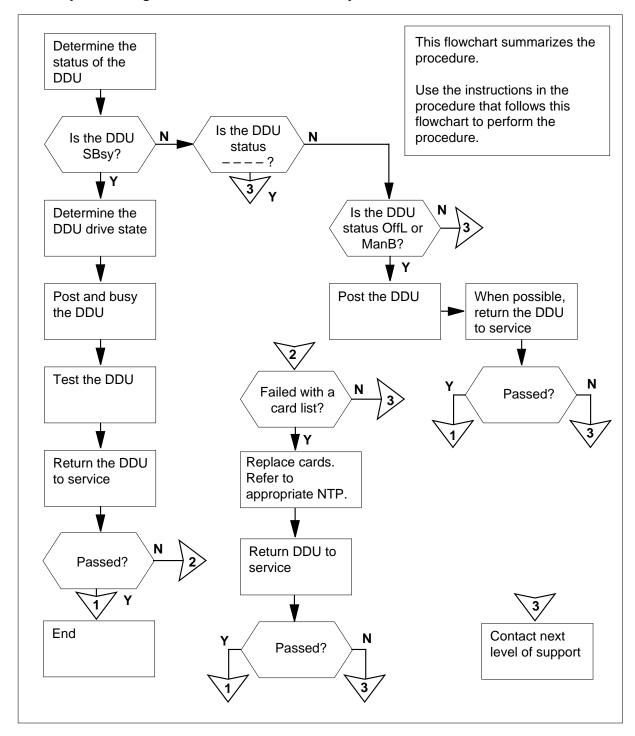
Meaning

One or more disk drive units (DDU) are out of service. The number that precedes DDUOS indicates how many DDUs are out of service.

Impact

No files can be recorded to or downloaded from tape or DDU.

Common procedures


Not applicable

Action

The following flowchart is only a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nDDUOS on an IOM major or minor (continued)

Summary of Clearing an IOD nDDUOS on an IOM major or minor alarm

IOD nDDUOS on an IOM

major or minor (continued)

Clearing a/an IOD nDDUOS on an IOM alarm

ATTENTION

Proceed only if you have been directed to this procedure from a step in the *IOD nDDUOS* in an *IOC minor* alarm clearing procedure.

At the MAP

1 Access the IOD level of the MAP display by typing

>MAPCI;MTC;IOD

and pressing the Enter key.

Example of a MAP display:

DIRP: SMDR B XFER: . SLM: . NPO: . NX25: . MLP: . DPPP: . DPPU: . SCAI:

2 Determine if an audible alarm exists.

If an audible alarm	Do
exists	step 3
does not exist	step 4

3 Silence the alarm by typing

>SIL

and pressing the Enter key.

4 Post the IOM controller system by typing

>IOC ioc_no

and pressing the Enter key.

where

ioc_no

is the number of the affected IOM

Example of a IOM MAP display:

IOD nDDUOS on an IOM major or minor (continued)

IOD IOC 0 1 2 3 STAT . . S DIRP: SMDR B XFER: . SLM : . NPO: . NX25: . MLP: . DPPP: . DPPU: . SCAI : IOC PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 (IOM) STAT . . . - . . - - - - - - - - - -TYPE C C C C M M D S 0 0 0 0 T Ρ D C N N N N D С U S

5 Display the status of the disk drive unit (DDU) by typing

>LISTDEV DDU

and pressing the Enter key.

Example of a MAP display

DDU	USER	STATUS	IOC	CARD	PORT	DRIVE STATE
1	System	Ready	0	3	0	On Line
6	System	Offl	3	-	16	

6 From the status display, determine the status of the DDU.

If the status is	Do
SysB	step 7
	step 64
OffL or ManB	step 52

7 Examine the drive state of the system busy DDU.

If the drive state is	Do
ONLINE	step 8
DISCONNECTED	step 23
DRIVE FAULTS	step 27
SPINNING	step 26
SPINNING DOWN	step 29
SPUN DOWN	step 36

IOD nDDUOS on an IOM

major or minor (continued)

If the drive state is	Do	
UNKNOWN	step 44	

8 Post the DDU port on the IOM by typing

>IOC ioc_no;PORT port_no

and pressing the Enter key.

where

port_no

is the number of the DDU port

9 Manually busy the DDU IOM port by typing

>BSY PORT port_no

and pressing the Enter key.

port_no

is the number of the DDU port

Example of MAP response:

bsy OK

10 Test the DDU port by typing

>TST

and pressing the Enter key.

If the TST command	Do
passed	step 61
failed, and a card list was generated	step 11
failed, and no card list was generated	step 64

- Record the location, description, slot number and the product engineering code (PEC), including suffix, of the cards on the card list.
- Replace the first card on the list by performing the appropriate procedure in Card Replacement Procedures. When you have completed the procedure, return to this point.
- 13 Test the DDU device to service by typing

>TST

IOD nDDUOS on an IOM major or minor (continued)

and pressing the Enter key.

If the TST command	Do
passed	step 61
failed, and you have not replaced all the cards noted in step 11	step 14
failed, and you have replaced all the cards noted in step 11	step 64

- Replace the next card on the list by performing the appropriate procedure in 14 Card Replacement Procedures. When you have completed the procedure, return to this point.
- 15 Go to step 13.

At the equipment shelf

16

DANGER

Static electricity damage

Wear a wrist strap connected to the wrist-strap grounding point of a modular supervisory panel (MSP) while handling circuit cards. This protects the cards against damage by static electricity.

Check the NTFX40 SCSI cable connecting the NTFX31 paddleboard to the backplate pins of slot 4 and reconnect.

Note: The plug-in 3.5-in. (89mm) DDU is located on the NTFX32 IOM storage media card in slot 4 and 5 of the ISM shelf. The cabling for the storage media card connects the DDU to the NTFX31 paddleboard located in slot 3 at the rear of the ISM shelf.

At the MAP terminal

17 Test the DDU by typing

and pressing the Enter key.

If the TST command	Do
passed	step 61

IOD nDDUOS on an IOM

major or minor (continued)

If the TST command	Do
failed, and a card list was generated	step 18
failed, and a card list was not generated	step 64

- 18 Record the location, description, slot number and PEC, including suffix, of the cards on the card list.
- Replace the first card on the list by performing the appropriate procedure in Card Replacement Procedures. When you have completed the procedure, return to this point.
- **20** Test the DDU to service by typing

>TST

and pressing the Enter key.

If the TST command	Do
passed	step 61
failed, and you have not replaced all the cards noted in step 18	step 21
failed, and you have replaced all the cards noted in step 18	step 64

- Replace the next card on the list by performing the appropriate procedure in *Card Replacement Procedures*. When you have completed the procedure, return to this point.
- **22** Go to step 20.
- 23 Post the DDU port on the IOM by typing

>IOC ioc_no;PORT port_no

and pressing the Enter key.

where

port_no

is the number of the DDU port

24 Manually busy the DDU by typing

>BSY

and pressing the Enter key.

Example of MAP response:

IOD nDDUOS on an IOM major or minor (continued)

bsy OK

25 Go to step 16.

26 Wait for a few minutes while the DDU is spinning up to speed.

If status of the DDU	Do
changes to ONLINE	step 62
does not change to ONLINE	step 64

- Replace the DDU by performing the appropriate procedure in *Trouble* 27 Locating and Clearing Procedures. When you have completed the procedure, return to this point.
- 28 Go to step 23.
- Determine from office records or from office personnel why the DDU is 29 spinning down. Wait for a few minutes for the DDU to stop spinning.
- When permissible, return the DDU device to service by typing 30

>IOC ioc_no;PORT port_no;RTS

and pressing the Enter key.

where

ioc no

is the number of the affected IOC

port no

is the number of the IOM DDU port

If the RTS command	Do
passed	step 62
failed, and a card list was generated	step 31
failed, and a card list was not generated	step 64

- 31 Record the location, description, slot number, and PEC, including suffix, of the card(s) on the card list.
- 32 Replace the first card on the list by performing the appropriate procedure in Card Replacement Procedures. When you have completed the procedure, return to this point.
- 33 Test the DDU by typing

>TST

IOD nDDUOS on an IOM

major or minor (continued)

and pressing the Enter key.

If the TST command	Do
passed	step 61
failed, and you have not replaced all the cards noted in step 31	step 34
failed, and you have replaced all the cards noted in step 31	step 64

- Replace the next card on the list by performing the appropriate procedure in Card Replacement Procedures. When you have completed the procedure, return to this point.
- **35** Go to step 33.
- 36 Post and busy the DDU device on the IOM by typing

>IOC ioc_no;PORT port_no;BSY and pressing the Enter key.

where

ioc_no

is the number of the affected IOM

port_no

is the number of the DDU port

Example of MAP response:

bsy OK

- 37 Determine from the office records or from office personnel why the DDU was spun down.
- When permissible, return the DDU to service by typing

>RTS

and pressing the Enter key.

If the RTS command	Do
passed	step 62
failed, and a card list was generated	step 39
failed, and no card list was generated	step 64

IOD nDDUOS on an IOM major or minor (continued)

- Record the location, description, slot number and PEC, including suffix, of the 39 cards on the card list.
- Replace the first card on the list by performing the appropriate procedure in *Card Replacement Procedures*. When you have completed the procedure, 40 return to this point.
- 41 Test the DDU by typing

>TST

and pressing the Enter key.

If the TST command	Do
passed	step 61
failed, and you have not replaced all the cards noted in step 39	step 42
failed, and you have replaced all the cards noted in step 39	step 64

- 42 Replace the next card on the list by performing the appropriate procedure in Card Replacement Procedures. When you have completed the procedure, return to this point.
- 43 Go to step 41.
- 44 Post the DDU device on the IOM by typing

```
>IOC ioc_no;PORT port_no
```

and pressing the Enter key.

where

ioc no

is the number of the affected IOM

port no

is the number of the DDU port

45 Manually busy the DDU port by typing

>BSY

and pressing the Enter key.

Example of MAP response:

bsy

OK

46 Test the DDU by typing

>TST

IOD nDDUOS on an IOM

major or minor (continued)

and pressing the Enter key.

If the TST command	Do
passed	step 61
failed, and a card list was generated	step 47
failed, and no card list was generated	step 64

- 47 Record the location, description, slot number and PEC, including suffix, of the cards on the card list.
- 48 Replace the first card on the list by performing the appropriate procedure in Card Replacement Procedures. When you have completed the procedure, return to this point.
- **49** Test the DDU by typing

>TST

and pressing the Enter key.

If the TST command	Do
passed	step 61
failed, and you have not replaced all the cards noted in step 47	step 50
failed, and you have replaced all the cards noted in step 47	step 64

- Replace the next card on the list by performing the appropriate procedure in Card Replacement Procedures. When you have completed the procedure, return to this point.
- **51** Go to step 49.
- 52 Post the DDU device on the IOM by typing

>IOC ioc_no;PORT port_no and pressing the Enter key.

where

oc_no is the number of the affected IOM

port no

is the number of the DDU port

IOD nDDUOS on an IOM major or minor (continued)

53 Determine from office records or from office personnel whether the DDU is offline or manual busy.

If the DDU is	Do
offline	step 54
manual busy	step 55

54 Manually busy the DDU by typing

>BSY

and pressing the Enter key.

Example of MAP response:

bsy OK

55 Return the DDU to service by typing

>RTS

and pressing the Enter key.

If the RTS command	Do
passed	step 62
failed, and a card list was generated	step 56
failed, and no card list was generated	step 64

- Record the location, description, slot number and PEC, including suffix, of the 56 cards on the card list.
- Replace the first card on the list by performing the appropriate procedure in *Card Replacement Procedures*. When you have completed the procedure, 57 return to this point.
- 58 Test the DDU by typing

>TST

and pressing the Enter key.

If the TST command	Do
passed	step 61
failed, and you have not replaced all the cards noted in step 57	step 59

IOD nDDUOS on an IOM

major or minor (end)

Do
laced all step 64
e list by performing the appropriate procedure in ures. When you have completed the procedure,
by typing

If the RTS command	Do	
passed	step 62	
failed	step 64	

62 Check under the IOD banner on your MAP display to determine if the nDDUOS major or minor alarm has cleared.

If the nDDUOS alarm	Do
cleared	step 65
changed to another alarm	step 63
did not clear	step 64

- Perform the appropriate alarm clearing procedure in this document. When you have completed the procedure, go to step 65.
- For further assistance, contact the personnel responsible for the next level of support.
- You have completed this procedure.

IOD nDPCOS minor

Alarm display

Indication

At the MTC level of the MAP display, DPCOS appears under the IOD header of the alarm banner. DPCOS preceded by a number (n) indicates a DATAPAC controller alarm.

Meaning

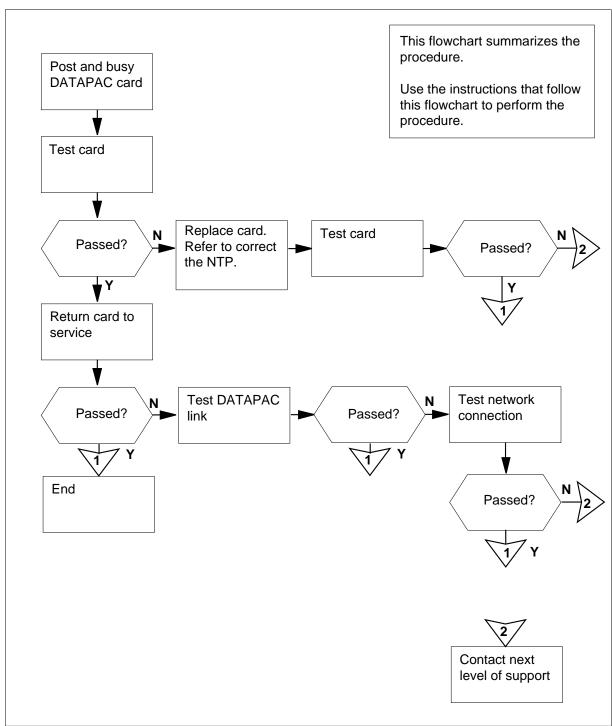
One or more DATAPAC controllers are out of service. The number that precedes DPCOS indicates how many DATAPAC controllers are out of service.

Result

Data cannot transfer to and from the IOC shelf.

Common procedures

There are no common procedures.


Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nDPCOS

minor (continued)

Summary of Clearing an IOD nDPCOS minor alarm

IOD nDPCOS minor (continued)

Clearing an IOD nDPCOS minor alarm

At the MAP terminal

To access the IOD level of the MAP display, type

>MAPCI;MTC;IOD

and press the Enter key.

Example of a MAP:

```
IOD
IOC 0 1 2 3
STAT . .
DIRP: .
         XFER: .
                     DVI : .
                               DPPP:
                                          DPPU:
          SLM :
                     NX25:
                               MLP:
                                          SCAI:
```

2 Determine if an audible alarm exists.

If an audible alarm	Do
is present	step 3
is not present	step 4

3 To silence the alarm, type

>SIL

and press the Enter key.

4 To display the status of the affected DATAPAC card, type

```
>LISTDEV dpac
```

and press the Enter key.

where

dpac

is the number of the DATAPAC card

- 5 From the status display, determine the affected IOC number and DATAPAC controller card number.
- 6 To post the NT1X67 DATAPAC controller card, type

```
>IOC ioc no; CARD card no
```

and press the Enter key.

where

is the number of the affected IOC

card no

is the number of the affected controller card

IOD nDPCOS

minor (continued)

7 To manually busy the affected NT1X67 DATAPAC controller card, type >BSY

and press the Enter key.

8 To test the NT1X67 DATAPAC controller card, type

>TST

and press the Enter key.

If the TST command	Do
passed	step 9
failed, and a card list generated	step 10
failed, and a card list did not generate	step 17

9 To return the NT1X67 DATAPAC controller card to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 15
failed	step 13

- Replace the NT1X67 DATAPAC controller card. Perform the correct procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.
- 11 To test the new NT1X67 DATAPAC controller card, type >TST

and press the Enter key.

If the TST command	Do	
passed	step 12	
failed	step 17	

To return the NT1X67 DATAPAC controller card to service, type

>RTS

and press the Enter key.

If the RTS command	Do	
passed	step 15	

IOD nDPCOS minor (end)

If the RTS command	Do
failed	step 13

13 To test the DATAPAC link, type

>DISC;DISC;DISC

and press the Enter key.

If the test	Do
passed	step 15
failed	step 14

14 To test the network connection, type

>CON node chan

and press the Enter key.

where

node

is the number of the switch within the DATAPAC network

is the DATAPAC virtual channel

If the test	Do
passed	step 15
failed	step 17

15 Check under the IOD banner on your MAP display to determine if the nDPCOS minor alarm cleared.

If the alarm	Do
cleared	step 18
changed to another alarm	step 16
did not clear	step 17

- Perform the correct procedure in this document to clear the alarm. Complete 16 the procedure and go to step 15.
- 17 For additional help, contact the next level of support.
- 18 The procedure is complete.

IOD nIOCOS major or minor

Alarm display

Indication

At the MTC level of the MAP display, IOCOS appears under the IOD header of the alarm banner. IOCOS preceded by a number (n) indicates an IOCOS major or minor alarm.

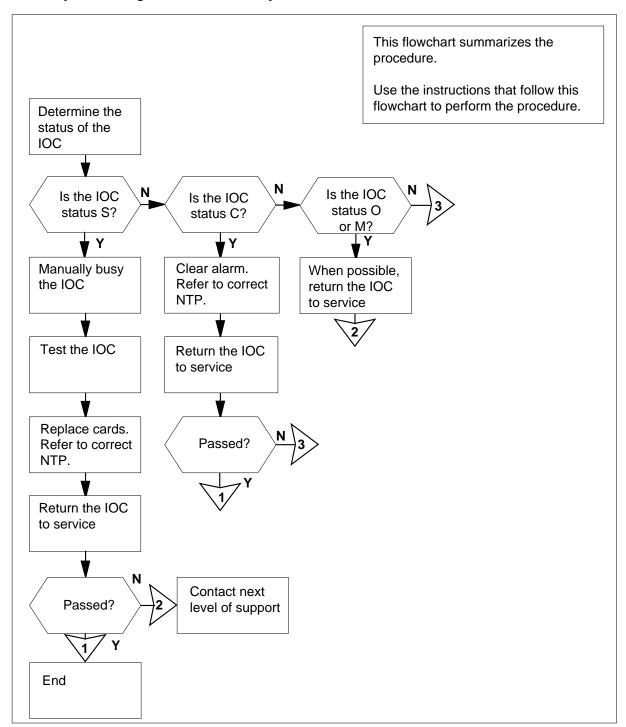
Meaning

More than one input/output controllers (IOCs) are out of service. The number that precedes IOCOS indicates the number of IOCs out of service.

Result

All devices associated with the IOC that is out of service lost communication with the switch.

Common procedures


There are no common procedures.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nIOCOS major or minor (continued)

Summary of Clearing an IOD nIOCOS major or minor alarm

IOD nIOCOS

major or minor (continued)

Clearing an IOD nIOCOS major or minor alarm

At the MAP terminal

1 To access the IOD level of the MAP display, type

>MAPCI;MTC;IOD

and press the Enter key.

Example of a MAP display:

```
DIRP: SMDR B XFER: . SLM : . NPO: . NX25: . MLP: . DPPU: . SCAI:
```

2 Determine if the audible alarm is present.

If the audible alarm	Do
is present	step 3
is not present	step 4

3 To silence the alarm, type

>SIL

and press the Enter key.

4 To determine the configuration of the controller system, type

```
>IOC ioc_no
```

and press the Enter key.

where

ioc_no

is the number of the affected IOC or IOM

Example of an IOC MAP display:

IOD nIOCOS major or minor (continued)

```
IOD
IOC
    0 1 2
             3
STAT .
DIRP: SMDR B XFER:
                        SLM :
                                    NPO:
                                               NX25: .
MLP : .
           DPPP:
                        DPPU:
                                    SCAI :
IOC CARD
                       2
                            3
                                4
                                      5
                                           6
                                                7
             Ω
                  1
    PORT
           STAT .--- ...P ..-- ...-
     TYPE
           MTD DDU CONS DLC CONS
 Example of an IOM MAP display:
 IOD
 IOC 0 1 2 3
 STAT . .
                                          . NX25: .
DIRP: SMDR B XFER:
                         SLM : .
                                     NPO:
             DPPP:
                         DPPU:
                                     SCAI :
      PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 IOC
 (IOM) STAT . . . - . . - - .
      TYPE C C C
                   C M
                                                  D
                                                    S
                             M
           0 0 0
                   ОТ
                             Ρ
                                                  D
                                                    C
           NNN
                   N D
                             С
                                                  U S
  If the controller
                              Do
  is IOC
                              step 6
  is IOM
                              step 5
 Perform the IOD nIOCOS on an IOM alarm clearing procedure for the
 input/output module (IOM) in this document.
 Determine the status of the affected IOC.
  If the status
                              Do
  is S (system busy)
                              step 7
  is C (C-side busy)
                              step 21
```

step 22

7 To make the affected IOC manually busy, type >IOC ioc no;BSY IOC

is O (offline) or M (manual busy)

5

6

IOD nIOCOS

major or minor (continued)

and press the Enter key.

where

ioc_no

is the number of the affected IOC

Example of MAP response:

bsy OK

At the equipment shelf

8 Check to see if the fault indicator lamp is lit on the power converter cards.

If the fault indicator lamp	Do
is lit	step 9
is not lit	step 10

- 9 Perform the correct procedure in Card Replacement Procedures to replace the power converter cards. Complete the procedure and return to this point.
- 10 To test the IOC, type

>TST IOC

and press the Enter key.

If the TST command	Do
passed	step 14
failed, and the system generated a card list	step 11
failed, and the system did not generate a card list	step 19

Record the location, description, slot number, and product engineering code (PEC), and PEC suffix of the cards on the card list.

At the equipment shelf

Perform the correct procedure in *Card Replacement Procedures* to replace the first card on the list. Complete the procedure and return to this point.

IOD nIOCOS major or minor (continued)

At the MAP terminal

To test the IOC, type 13

>TST IOC

and press the Enter key.

If the TST command	Do
passed	step 14
failed, and you did not replace all cards noted in step 11	step 15
failed, and you replaced all cards noted in step 11	step 25

14 To return the IOC to service, type

>RTS IOC

and press the Enter key.

If the RTS command	Do
passed	step 23
failed	step 25

At the equipment shelf

15 Perform the correct procedure in Card Replacement Procedures to replace the next card on the list. Complete the procedure and return to this point.

At the MAP terminal

16 To test the IOC, type

>IOC ioc_no;TST IOC

and press the Enter key.

where

ioc no

is the number of the affected IOC

If the TST command	Do
passed	step 20
failed, and you did not replace all cards in the list recorded in step 11	step 17

IOD nIOCOS

major or minor (continued)

If the TST command	Do
failed, and you replaced all cards in the list recorded in step 11	step 18

At the equipment shelf

- Perform the correct procedure in *Card Replacement Procedures* to replace the next card on the list. Complete the procedure and go to step 16.
- 18 Check the output voltages on the power converter card. If the voltages are not correct, adjust the voltages.

At the MAP terminal

To test the IOC, type

>TST IOC

and press the Enter key.

If the TST command	Do
passed	step 20
failed	step 25

20 To start the IOC again, type

>RTS IOC

and press the Enter key.

If the RTS command	Do
passed	step 23
failed	step 25

- Perform the correct procedure in this document to clear the alarm. Complete the procedure and return to this point.
- Consult office logs or operating company personnel. Determine the reason that the IOC is offline or manually busy. To return the IOC to service, type

>IOC ioc_no;RTS IOC

and press the Enter key.

where

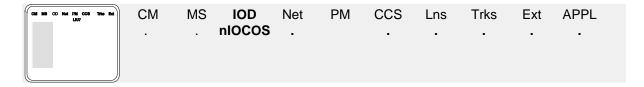
ioc no

is the number of the affected IOC

If the RTS command	Do
passed	step 23

IOD nIOCOS major or minor (end)

If the RTS command	Do
failed	step 25


23 Check under the IOD banner on your MAP display to determine if the nIOCOS major or minor alarm cléared.

If the alarm	Do
cleared	step 26
changed to another alarm	step 24
did not clear	step 25

- Perform the correct procedure in this document to clear the alarm. Complete the procedure and go to step 23. 24
- 25 For additional help, contact the next level of support.
- 26 The procedure is complete.

IOD nIOCOS on an IOM major or minor

Alarm display

Indication

At the MTC level of the MAP display, IOCOS appears under the IOD header of the alarm banner. IOCOS, preceded by a number (n), indicates an IOCOS major or minor alarm.

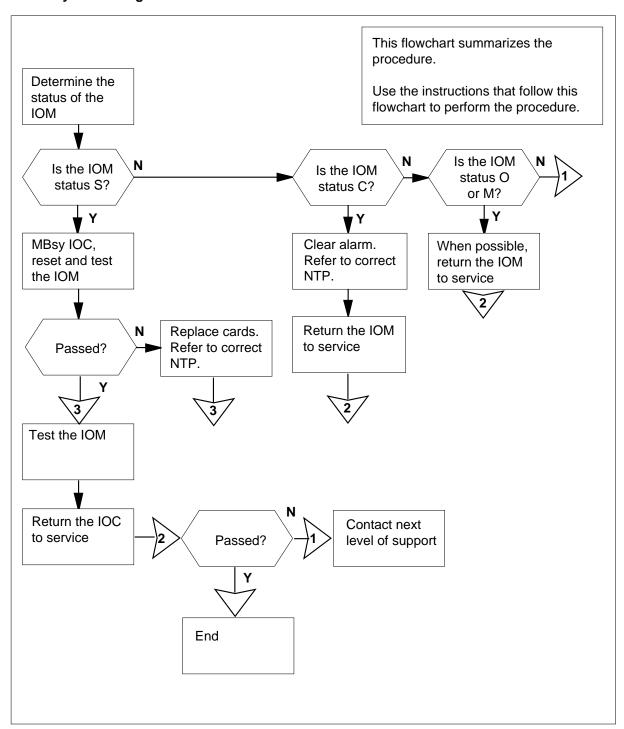
Meaning

One input/output module or more than one input/output modules (IOMs) are out of service. The number that precedes IOCOS indicates the number of out of service IOMs.

Result

All devices with an IOM that is not in service lost communication with the switch.

Common procedures


There are no common procedures.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nIOCOS on an IOM major or minor (continued)

Summary of Clearing an IOD nIOCOS on an IOM alarm

IOD nIOCOS on an IOM

major or minor (continued)

Clearing an IOD nIOCOS on an IOM alarm

ATTENTION

Proceed only if a step in the *IOD nIOCOS* in an *IOC minor* alarm clearing procedure directed you to this procedure

At the MAP terminal

1 To access the IOD level of the MAP display, type

>MAPCI;MTC;IOD

and press the Enter key.

Example of a MAP display:

DIRP: SMDR B XFER: . SLM: . NPO: . NX25: . MLP: . DPPP: . DPPU: . SCAI:

2 Determine if the audible alarm is present.

If the audible alarm	Do	
is present	step 3	
is not present	step 4	

3 To silence the alarm, type

>SIL

and press the Enter key.

4 To determine the configuration of the controller system, type

>IOC ioc_no

and press the Enter key.

where

ioc_nc

is the number of the affected IOM

Example of an IOM MAP:

IOD nIOCOS on an IOM major or minor (continued)

```
IOD
IOC 0 1 2 3
STAT . .
DIRP: SMDR B XFER: .
                   SLM : . NPO: . NX25: .
MLP: . DPPP: .
                   DPPU: . SCAI:
    PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
IOC
(IOM) STAT . . . - . . - - - - - - - - - -
    TYPE C C C C M
                     M
                                       D S
        0 0 0 T
                      Ρ
                                       D C
        N N N N D
                     C
                                       U S
```

5 Determine the status of the affected IOM.

If the status	Do
is S (system busy)	step 6
is C (C-side busy)	step 15
is O(offline)	step 16
is M (manual busy)	step 16

6 To manually busy the IOM, type

>BSY IOC

and press the Enter key.

Example of MAP response:

bsy OK

7 To test the IOM controller card, type

>TST IOC

and press the Enter key.

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

If the TST command	Do
passed	step 14

IOD nIOCOS on an IOM

major or minor (continued)

If the TST command	Do
failed, and the system generated a card list	step 8
failed, and the system did not generate a card list	step 19

8 To reset the IOM processor card, type

>RESET IOC

and press the Enter key.

Wait ten seconds.

Example of MAP response:

This process may cause sever problems with IO devices Please confirm "YES", "Y" or "NO" "N"

Enter "Y"

9 To test the IOM, type

>TST IOC

and press the Enter key.

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

If the TST command	Do
passed	step 14
failed, and the system generated a card list	step 10
failed, and the system did not generate a card list	step 19

Record the location, description, slot number, and product engineering code (PEC), and PEC suffix of the cards on the card list.

At the equipment shelf

Perform the correct procedure in *Card Replacement Procedures*. to replace the first card on the list. Complete the procedure and return to this point.

IOD nIOCOS on an IOM major or minor (continued)

At the MAP terminal

12 To test the IOM, type

>TST IOC

and press the Enter key.

If the TST command	Do
passed	step 14
failed, and you did not replace all cards noted in step 10	step 13
failed, and you replaced all cards noted in step 10	step 19

At the equipment shelf

13 Perform the correct procedure in Card Replacement Procedures. to replace the next card on the list. Complete the procedure and return to this point.

> **Note:** The splitter unit NTFX39 can require a replacement. Go to the next level of support.

At the MAP terminal

14 To return the IOC to service, type

>RTS IOC

and press the Enter key.

If the RTS command	Do
passed	step 20
failed	step 19

- To clear the alarm, perform the correct procedure in this document. Complete 15 the procedure and return to this point.
- 16 Consult office logs or operating company personnel. Determine the reason that the IOC is offline or manually busy. To return the IOC to service, type

>IOC ioc_no;RTS IOC

and press the Enter key.

where

ioc no

is the number of the affected IOC

If the RTS command	Do
passed	step 20

IOD nIOCOS on an IOM

major or minor (end)

If the RTS command	Do	
failed	step 19	

17 Check under the IOD banner on your MAP display to determine if the nIOCOS major or minor alarm cleared.

If the alarm	Do
cleared	step 20
changed to another alarm	step 18
did not clear	step 19

- Perform the correct alarm clearing procedure in this document. Complete the correct procedure and go to step 17.
- 19 For additional help, contact the next level of support.
- 20 The procedure is complete.

IOD nMPCOS in an IOC major or minor

Alarm display

Indication

At the MTC level of the MAP display, MPCOS appears under the IOD header of the alarm banner. MPCOS preceded by a number (n) indicates a multiple protocol controller major or minor alarm.

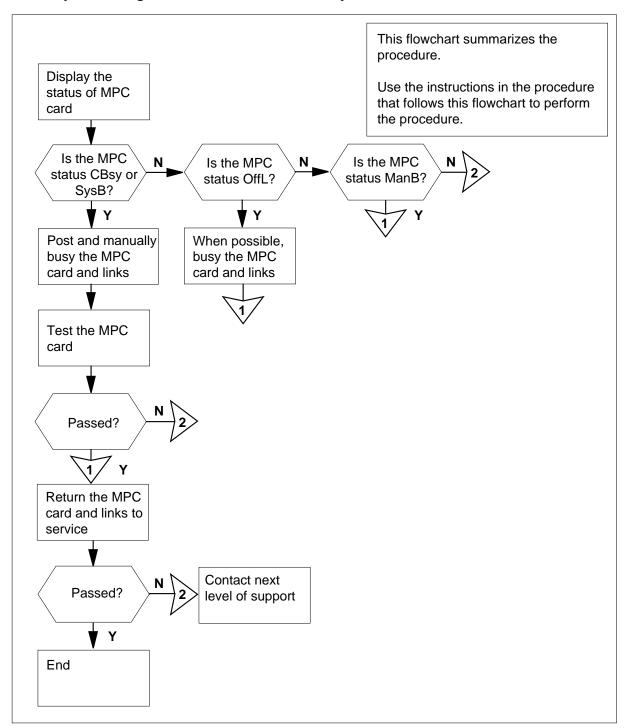
Meaning

One or more multiple protocol controllers or ports are out of service. The number that precedes MPCOS indicates the number of input/ouput controller (IOC) multiple protocol controllers or input/output module(IOM) controller ports that are out of service.

Impact

Multiple controller cards on the IOC shelf or ports on the IOM controller on the integrated service module (ISM) are out of service. Access to the switch by remote terminals is lost for any affected cards or ports.

Common procedures


Not applicable

Action

The following flowchart is only a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nMPCOS in an IOC major or minor (continued)

Summary of Clearing an IOD nMPCOS in an IOC major or minor alarm in an IOC

IOD nMPCOS in an IOC major or minor (continued)

Clearing an IOD nMPCOS in an IOC major or minor alarm

At the MAP

1 Access the IOD level of the MAP display by typing

>MAPCI;MTC;IOD

and pressing the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2 3
STAT . .
```

```
DIRP: SMDR B XFER: .
                   SLM : . NPO: . NX25: .
MLP: . DPPP: .
                   DPPU:
                         . SCAI :
```

2 Determine if an audible alarm exists.

If an audible alarm	Do	
exists	step 3	
does not exist	step 4	

3 Silence the alarm by typing

>SIL

and pressing the Enter key.

Post the controller system configured by typing

>IOC ioc_no

and pressing the Enter key.

where

ioc no

is the number of the affected IOC or IOM

Example of an IOC MAP display:

```
DIRP: SMDR B XFER:
              SLM : .
                     NPO:
                            NX25: .
            . DPPU:
                     SCAI :
MLP: . DPPP:
IOC CARD
       0
          1
             2 3
                   4 5 6
  STAT .--- .-- ...P ..-- .-- --- --- ---
   TYPE
       MTD DDU CONS DLC CONS
```

Example of an IOM MAP display:

IOD nMPCOS in an IOC

major or minor (continued)

NX25: . DIRP: SMDR B XFER: . SLM : NPO: MLP: . DPPP: . DPPU: SCAI : IOC PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 (IOM) STAT . . . - . . - - . . TYPE C C C C M M D S 0 0 0 T C Ρ D N N N N D C U S

If the controller is an	Do
IOC	step 6
IOM	step 5

- 5 Perform the *IOD nMPCOS* on an *IOM* alarm clearing procedure for the input/output module (IOM).
- Display the status of the multiprotocol controller (MPC) card that has one or more P-side busy ports by typing

>IOC ioc_no;LISTDEV MPC

and pressing the Enter key.

where

ioc no

is the number of the affected IOC

7 From the MAP display, determine the status of the MPC card.

If the status is	Do
CBusy (C-side busy) or SysB (system busy)	step 8
OffL (offline)	step 36
ManB (manual busy)	step 39

8 Post the affected MPC card by typing

>CARD card no

and pressing the Enter key.

where

card_no

is the number of the MPC card

Example of a MAP response:

IOD nMPCOS in an IOC major or minor (continued)

Card 1 0 Unit

User system Drive_State Status Ready on_line

9 Manually busy all the links on the affected MPC card by typing

>BSY LINKS

and pressing the Enter key.

If the BSY command	Do
passed	step 11
failed	step 10

10 The MPC ports are being used by other users. Instruct all users to log off, and when they are logged off, attempt to manually busy the MPC links again by typing

>BSY LINKS

and pressing the Enter key.

If the BSY command	Do
passed	step 11
failed, and all users have logged off	step 44

11 Manually busy the affected MPC card by typing

>BSY

and pressing the Enter key.

Example of MAP response:

bsy

OK

12 Test the MPC card by typing

>TST

and pressing the Enter key.

If the TST command	Do
passed	step 40
failed, and a card list was generated	step 13

IOD nMPCOS in an IOC

major or minor (continued)

If the TST command	Do
failed, because the following response appeared at step 44 the MAP display: REQUEST FAILED,	
MPC LOGS MAY HAVE MORE INFO	

- Replace the NT1X89 multiprotocol controller card by performing the appropriate procedure in *Card Replacement Procedures*. When you have completed the procedure, return to this point.
- 14 Download the MPC binary file to the MPC card by typing

>DOWNLD

and pressing the Enter key.

If the DOWNLD command	Do
passed	step 40
failed, and the download file parameter was not specified	step 15
failed, and a background download to an MPC RTS occurred	step 44

15 Determine the name of the binary file for the MPC card by typing

>QMPC

and pressing the Enter key.

Determine from office records whether the MPC binary file is on tape, IOC disk or SLM disk.

If the binary file is on	Do
tape	step 17
IOC disk	step 23
SLM disk	step 25

- Obtain the tape containing the MPC binary file and load the tape on an available MTD.
- 18 Mount the tape by typing

>MOUNT mtd no

and pressing the Enter key.

where

mtd_no

is the number of the available MTD

IOD nMPCOS in an IOC major or minor (continued)

Verify that the MPC binary file is present by typing 19 >LIST

and pressing the Enter key.

If the tape	Do
contains the MPC binary file	step 22
does not contain the MPC binary file	step 20

20 Demount the tape by typing

>DEMOUNT tape_name

and pressing the Enter key.

where

tape_name

is the name of the tape

- 21 Determine from office records which tape contains the MPC binary file. Return to step 17.
- 22 Download the MPC binary file to the MPC card or IOM port by typing >DOWNLD

and pressing the Enter key.

If the DOWNLD command	Do
passed	step 40
failed	step 44

- 23 Determine from office records which IOC disk volume contains the MPC binary file.
- 24 Verify that the MPC binary file is available on the IOC disk volume by typing >DSKUT;LIV vol_name

and pressing the Enter key.

where

vol name

is the name of the volume containing the MPC binary file

If the binary file is	Do
available	step 27
not available	step 44

IOD nMPCOS in an IOC

major or minor (continued)

- 25 Determine from office records which SLM disk volume contains the MPC binary file.
- Verify that the MPC binary file is available on the SLM disk volume by typing

>DISKUT; LF vol_name

and pressing the Enter key.

where

vol name

is the name of the volume containing the MPC binary file

Example of a MAP display:

File information for volume S01DVOL1

{NOTE: 1 BLOCK = 512 BYTES}

LAST	File	0	R	I	0	FILE	NUM OF	MAX	FILE NAME
MODIFY	CODE	R	E	Т	P	SIZE	RECORDS	REC	
DATE		G	C	0	E	IN	IN	LEN	
				С	N	BLOCKS	FILE		
930325	0	I	F	Y		201570	100785	1020	MBCS34CR_CM
930325	0	I	F	Y		9754	4877	1020	MBCS34CR_MS
930326	0	I	F	Y		5334	2667	1020	LRC34CR
930226	0	0	F	Y		7460	3730	1024	ELI34CR
930326	0	0	F	Y		2396	1198	1024	EDH34CR
930319	0	I	F	Y		9104	4552	1020	LPX34CR
930319	0	I	F	Y		6634	3317	1020	NRS34CR
921204	0	I	F	Y		7284	3642	1020	XRX34CR
931206	0	0	F	Y		162	1504	55	LCME34U
921208	0	0	F	Y		1432	716	1024	DCH34CR

If the binary file is	Do
available	step 27
not available	step 44

27 Check table PMLOADS to verify that the MPC binary file has been datafilled with the correct load device by typing

>TABLE PMLOADS; POSITION file_name; LIST

and pressing the Enter key.

where

file_name

is the name of the MPC binary file

IOD nMPCOS in an IOC major or minor (continued)

Determine if the MPC binary file has been datafilled correctly with the proper load device. 28

	load device.	
	If the MPC binary file has	Do
	been datafilled with the correct load device	step 35
	not been datafilled with the correct load device	step 29
	you cannot find the tuple	step 32
29	Change the device type to the correct	load device by typing
	>CHANGE DEVICE dev_type v	ol_name
	and pressing the Enter key.	
	where	
	<pre>dev_type is an MTD, IOC disk, or SLM di</pre>	sk
	vol_name is the name of the IOC volume	or SLM disk volume
30	Confirm the tuple change by typing	
	>Y	
	and pressing the Enter key.	
31	Go to step 35.	
32	Add the MPC binary file to table PMLC	DADS by typing
	>ADD file_name dev_type v	ol_name
	and pressing the Enter key.	
	where	
	file_name is the name of the MPC binary	file
	<pre>dev_type is an MTD, IOC disk, or SLM disk</pre>	sk
	vol_name is the name of the IOC volume	or SLM disk volume
33	Confirm the addition by typing	
	>Y	
	and pressing the Enter key.	
34	Quit table PMLOADS and the disk utili	ity by typing
	>QUIT;QUIT	

and pressing the Enter key.

IOD nMPCOS in an IOC

major or minor (continued)

35 Download the binary file to the MPC card by typing

>DOWNLD

and pressing the Enter key.

If the DOWNLD command	Do
passed	step 40
failed	step 44

36 Post the affected MPC card by typing

>CARD card_no

and pressing the Enter key.

where

card no

is the number of the MPC card

Example of a MAP display:

Card 1 Unit 0

User system Drive_State Status Ready on_line

37 Determine from office records or office personnel why the MPC card is offline. When permissible, manually busy the MPC card by typing

>BSY

and pressing the Enter key.

38 Manually busy the MPC links by typing

>BSY LINKS

and pressing the Enter key.

Go to step 40.

39 Determine from office records or from office personnel why the MPC card is manually busy, and when permissible post the MPC card by typing

>CARD card no

and pressing the Enter key.

where

card_no

is the number of the busied card

Example of a MAP response:

Card 1 Unit 0

User system Drive_State Status Ready on_line

IOD nMPCOS in an IOC major or minor (end)

40 Return the MPC card to service by typing >RTS

and pressing the Enter key.

If the RTS command	Do
passed	step 41
failed	step 44
failed, and part of the MAP display was REQUEST FAILED, MPC LOGS MAY HAVE MORE INFO	step 44

41 Return the MPC links to service by typing

>RTS LINKS

and pressing the Enter key.

If the RTS LINKS command	Do
passed	step 45
failed	step 44

42 Check under the IOD banner of the MAP display to determine if the nMPCOS major or minor alarm cleared.

If the alarm	Do
cleared	step 45
changed to another alarm	step 43
did not clear	step 44

- 43 Perform the appropriate alarm clearing procedure in this document. When you have completed the procedure, go to step 42.
- For further assistance, contact the personnel responsible for the next level of 44 support.
- 45 You have completed this procedure.

IOD nMPCOS on an IOM major or minor

Alarm display

Indication

At the MTC level of the MAP display, MPCOS appears under the IOD header in the alarm banner. MPCOS [preceded by a number (n)] indicates an input/output module (IOM) major or minor alarm.

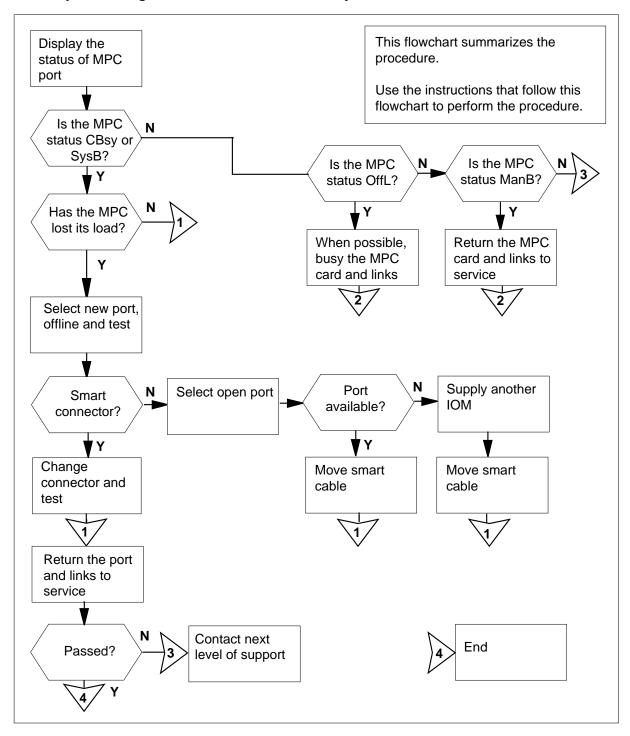
Meaning

One or more IOM controller ports are out of service. The number that precedes MPCOS indicates the number of IOM controller ports out of service.

Result

Multiple controller ports in the IOM controller on the integrated services module (ISM) shelf are out of service. Loss of access to the switch by remote terminals is a result.

Common procedures


There are no common procedures.

Action

The flowchart is a summary of this procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nMPCOS on an IOM major or minor (continued)

Summary of Clearing an IOD nMPCOS on an IOM major or minor alarm

IOD nMPCOS on an IOM

major or minor (continued)

Clearing an IOD nMPCOS on an IOM major or minor alarm

ATTENTION

Proceed only if a step in the *IOD nMPCOS in an IOC major or minor* alarm clearing procedure directs you to.

At the MAP terminal

1 To post the configured controller system, type

>IOC ioc_no

and press the Enter key.

where

ioc no

is the number of the affected IOM

Example of a IOM MAP display:

2 From the MAP display, determine the status of the IOM port.

If the status	Do
is CBusy (C-side busy) or SysB (system busy)	step 3
is OffL(offline)	step 40
is ManB(manualbusy)	step 42

3 To display the status of the IOM controller, type

>QIOM

and press the Enter key.

Example of a IOM MAP display:

IOD nMPCOS on an IOM major or minor (continued)

Port IOC: 0 Node_no: 6; Status: SBSY; State: DNLDED Table IOC File: IOMR0001 on D00DV002 IOM load on board: IOMR0001; Auto_Load: ON Site Flr Rpos Bay_id Shf Description Slot EqPEC HOST 01 ISME 03 32 03 Port Info: (C-CON, M-MPC, D-DDU, T-MTD, s-SCSI, F-Fault 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 C C C C T - - M -. F .

- Determine the following information from the MAP response:
 - the status of the IOM controller
 - data entry in table IOC
 - the state of the autoload

If the IOM controller	Do
has no load, and autoload is ON	step 5
has no load, and autoload is OFF	step 7
loaded	step 8

5 Wait for 2 min for the audit procedure to work. The process will make three attempts before the failure to load is complete.

If the IOM controller	Do
loaded	step 8
did not load	step 6

- 6 Review log IOD610 and verify that the load file is correct and available.
- 7 Determine from table IOC if the open port contains the correct load device. If necessary, enter the correct load file in table IOC again.

Note: The input/output controller (IOC) audit must put into effect auto_downloading every two minutes for three reports that follow in sequence.

If the IOM controller	Do
loaded	step 8
did not load	step 46

8 To post the affected IOM MPC port, type

>PORT port_no

IOD nMPCOS on an IOM

major or minor (continued)

and press the Enter key.

where

port no

is the port number of the MPC device

Example of a MAP:

Port 9 Unit 1 User SYSTEM PROTOCOL LINK Status Ready X2584 COMACT ENABLED

9 To manually busy the affected MPC,type

>BSY

and press the Enter key.

Example of MAP response:

bsy OK

10 To test the MPC, type

>TST

and press the Enter key.

and press the Enter key. Example of MAP response:

	If the TST command	Do
	passed	step 43
	failed, and the system generated a card list	step 37
	failed, and the system generated MPC logs	step 11
11	To put the MPC offline, type	
	>OFFL	
	and press the Enter key.	
12	To return to the IOC level of the MAP display, type	
	>QUIT	
	and press the Enter key.	
13	To busy the IOM MPC port, type	
	>BSY PORT port_no	

IOD nMPCOS on an IOM major or minor (continued)

bsy OK

14 To place the MPC port offline, type

>OFFL PORT port_no

and press the Enter key.

15 To test the IOM MPC port, type

>TST PORT port_no

and press the Enter key.

where

port_no

is the port number of the MPC device

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

Check and replace smart connector for port 9 (FX34, FX35)

Determine if the test identified smart connectors. 16

If the test	Do
identified smart connectors	step 17
did not identify smart connectors	step 20

IOD nMPCOS on an IOM

major or minor (continued)

At the back of the ISM shelf

17

WARNING

Static electricity damage

When you handle smart connectors, wear a wrist strap that connects to a wrist-strap grounding point. The grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects against static electricity damage.

Locate the smart cable that connects the MPC paddleboard port and the associated MPC device. Check the LED on the smart connector.

Note: The IOM powers the LED on the smart connector. If the smart connector does not connect to the IOM, the LED is off.

Disconnect the 6-pin teledapt connector on the IOM side and the 25-pin connector on the MPC side. Replace the smart connector. Connect the 6-and 25-pin connectors again.

Note: When you connect the smart connector to the IOM, the color of the LED changes from red to orange to green. In normal operation, the LED should stay green.

19 To test the smart connector, type

>TST PORT port_no and press the Enter key.

where

port_no

is the port number of the MPC device

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

If the smart connector	Do
passes	step 43
fails	step 20

IOD nMPCOS on an IOM major or minor (continued)

20 Go to step 1. Select an open IOM port and return to this point.

If	Do
a port is not available on the posted IOM	step 21
a port is available on another IOC	step 34
no other IOC is available	step 46

21

CAUTION

Help with provisioning changes

You can require the help of the provisioning administrator before you proceed with the following provisioning changes.

To determine from table IOC if the open port contains the correct load device, type

>TABLE IOC

and press the Enter key.

22 To access table MPCLINK, type

>TABLE MPCLINK

and press the Enter key.

- 23 Delete the link tuple for the affected port.
- 24 To access table MPC, type

>TABLE MPC

and press the Enter key.

- 25 Delete the tuple for the affected port.
- 26 To access table MPC, type

>TABLE MPC

and press the Enter key.

- 27 Add the link tuple for the spare IOM port selected in step 20.
- 28 To access table MPCLINK, type

>TABLE MPCLINK

and press the Enter key.

Add the tuple for the spare IOM port selected in step 20.

IOD nMPCOS on an IOM

major or minor (continued)

Example of a MPC table:

Table: MPC

MPCNO MPCIOC IOCCCT EQ DNDFILE
1 3 2 FX30AA IOM\$LOAD

29 To post the selected MPC, type

>PORT port_no

and press the Enter key.

where

port_no

is the number of the IOM MPC port

Example of a MAP:

Port 9 Unit 1

User SYSTEM PROTOCOL LINK

Status Ready X2584 COMACT ENABLED

30 To make the MPC manually busy, type

>BSY

and press the Enter key.

Example of MAP response:

bsy OK

At the back of the ISM shelf

31

WARNING

Static electricity damage

When you handle smart connectors, wear a wrist strap that connects to a wrist-strap grounding point. The grounding point is on a frame supervisory panel (FSP) and the modular supervisory panel (MSP). The wrist-strap protects the smart connectors against static electricity damage.

Locate the smart cable that connects the MPC port on the paddleboard and the associated MPC device. Disconnect the 6-pin teledapt connector on the IOM side and the 25-pin connector on the MPC side. Replace the smart connector. Connect the 6- and 25-pin connectors again.

Note: When you connect the smart connector to the IOM, the color of the LED changes from red to orange to green. In normal operation, the LED should stay green.

IOD nMPCOS on an IOM major or minor (continued)

At the MAP terminal

32 To post the MPC port, type

>PORT port_no

and press the Enter key.

port_no

is the number of the selected MPC port

Example of MAP response:

bsy OK

33 To return the MPC to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 47
failed	step 46

34 To post another controller system, type

>IOC ioc_no

and press the Enter key.

where

ioc no

is the number of the affected IOM

Example of an IOM MAP display:

```
. NPO: . NX25: .
DIRP: SMDR B XFER:
                    SLM :
          DPPP: .
                    DPPU: .
                              SCAI :
IOC
    PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
(IOM) STAT . . . - . . - - - . - - -
    TYPE C C C C M
                      M
         0 0 0 T
                                         C C
                       Ρ
         N N N N D
                        C
```

35 Select an open IOM port on the new controller selected in step 34.

IfA port	Do	
is available	step 21	
is not available	step 36	

IOD nMPCOS on an IOM

major or minor (continued)

36

CAUTION

Provisioning changes

You need the help of the provisioning administrator before you proceed with the following provisioning changes.

You need to provision another IOM module. Consult your provisioning administrator to add an IOM controller card.

Go to step 46.

- 37 Perform the correct procedure in Card Replacement Procedures to replace the first card on the list. Complete the procedure and return to this point.
- 38 To test the card, type

>TST

and press the Enter key.

Example of a MAP display:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

If the test	Do
passes	step 43
fails, you did not replace all cards	step 39
fails, you replaced all cards	step 46

- Perform the correct procedure in *Card Replacement Procedures* to replace the next card from the list. Complete the procedure and go to step 38.
- 40 To post the affected IOM MPC port, type

>PORT port_no

and press the Enter key.

where

port_no

is the number of the MPC port

Example of a MAP:

IOD nMPCOS on an IOM major or minor (continued)

Port 9 Unit 1 User SYSTEM PROTOCOL LINK Status Ready X2584 COMACT ENABLED

41 Consullt office records or operating company personnel. Determine the reason that the IOM port is offline. To manually busy the port, type

>BSY

and press the Enter key.

Example of MAP response:

bsy OK

Go to step 43.

42 Consult office records or from operating company personnel. Determine the reason that the MPC port is manually busy. To post the MPC port, type

port no

and press the Enter key.

where

port no

is the number of the busied port

Example of a MAP response:

Port 9 Unit 1 PROTOCOL User SYSTEM T.TNK Status Ready X2584 COMACT ENABLED

43 To return the IOM MPC to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 44
failed	step 46

Check under the IOD banner of the MAP display to determine if the nMPCOS 44 major or minor alarm cleared.

If the alarm	Do	
cleared	step 47	
changed to another alarm	step 45	

IOD nMPCOS on an IOM

major or minor (end)

If the alarm	Do
did not clear	step 46

Perform the correct procedure in this document to clear the alarm. Complete the procedure and return to this point.

Go to step 44.

- 46 For additional help, contact the next level of support.
- The procedure is complete.

IOD nMTDOS in an IOC minor

Alarm display

Indication

At the IOD level of the MAP display, a number (n) and MTDOS indicate a minor alarm. The MTDOS can indicate a minor alarm for a magnetic tape drive (MTD) and a digital audio tape (DAT).

Meaning

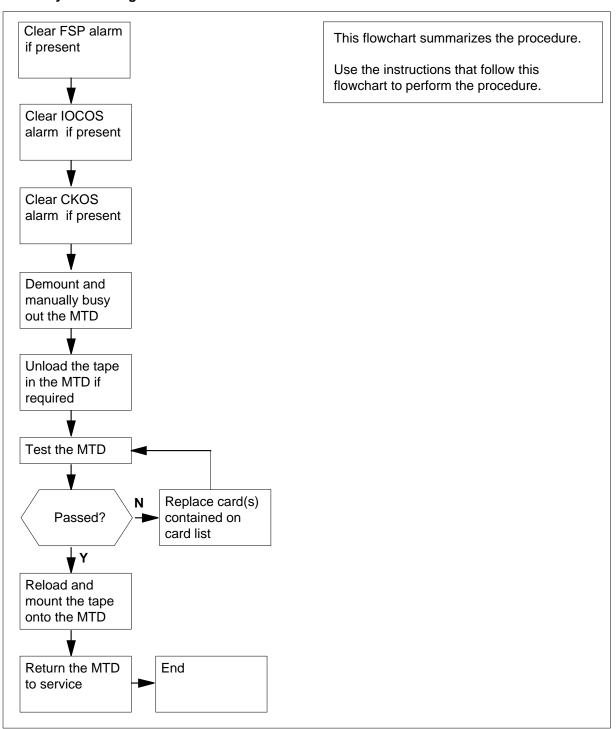
One or more tape drives or digital audio tapes are out of service. The number that precedes MTDOS indicates the quantity of the out of service MTDs or DATs.

Result

Loss of billing data occurs when the DIRP utility uses MTD or DAT to record billing data. Files can not download or record to or from tape when the DIRP utility does not use the MTD or DAT.

Common procedures

There are no common procedures.


Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nMTDOS in an IOC

minor (continued)

Summary of Clearing an IOD nMTDOS in an IOC minor alarm

IOD nMTDOS in an IOC minor (continued)

Clearing an IOD nMTDOS in an IOC minor alarm

At the MAP terminal

To access the IOD level of the MAP display, type

>MAPCI;MTC;IOD

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2 3
STAT .
                      DVI: .
           XFER:
                                  DPPP:
DIRP:
                                              DPPU:
                       NX25:
NOP :
           SLM :
                                  MLP :
                                              SCAI:
```

Determine if an audible alarm exists.

If the alarm	Do
exists	step 3
does not exist	step 10

3 To silence the alarm, type

>SIL

and press the Enter key.

4 Determine if an FSP alarm appears under the EXT header of the MAP display.

If the alarm is	Do
present	step 5
not present	step 6

5 Perform the appropriate alarm clearing procedure in this document. When you have completed the procedure, return to this point.

If the MTDOS alarm	Do
cleared	step 39
did not clear	step 6

6 Determine if there is an nIOCOS alarm.

If the alarm is	Do
present	step 7

IOD nMTDOS in an IOC

minor (continued)

If the alarm is	Do
not present	step 8

7 Perform the procedure *Clearing an nIOCOS major or minor alarm* in this document to clear this alarm. Complete the procedure and return to this point.

If the MTDOS alarm	Do
cleared	step 39
did not clear	step 8

8 Determine if there is an nCKOS alarm.

If the alarm is	Do
present	step 9
not present	step 10

9 Perform the procedure *Clearing an nCKOS major or minor alarm* in this document to clear this alarm. Complete the procedure and return to this point.

If the MTDOS alarm	Do	
did clear	step 39	
did not clear	step 10	

10 To display the status of all the magnetic tape drives (MTD), type

>LISTDEV MTD

and press the Enter key.

11 From the status display, determine the status of the MTD.

If the status	Do
is SysB (system busy)	step 12
is <i>OffL</i> (offline) or <i>ManB</i> (manual busy)	step 33

To post the IOC connected to the MTD, type

>IOC ioc_no

and press the Enter key.

where

IOD nMTDOS in an IOC minor (continued)

ioc no

is the number of the affected IOC

Example of a MAP display:

	: SMDR		-		_	NX2	5: .
IOC 0	CARD PORT				_		-
		 MTD				 	

Example of a IOM MAP display:

DIRP:	SMDR	В	XI	FEF	₹:		•		SI	LΜ	:			NP():		1	1X25	5:	•
MLP :	•		DI	PPI	:		•		DI	PP	J:		•	SC	ΙA	:				
IOC	PORT	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
(MOI)	STAT				-			_	_	_		-	_	-	_	-	-	-	-	
0	TYPE	С	С	С		С	Μ				Μ							D	S	
		Ο	Ο	0		Ο	Т				Ρ							D	C	
		N	N	N		N	D				С							U	S	

If the device	Do
is MTD (IOC)	step 14
is MTD (IOM)	step 13
is DAT (IOM)	step 13

- 13 Perform the IOD nMTDOS on an IOM alarm clearing procedure for the input/output module (IOM) in this document.
- 14 To post the affected MTD, type

>CARD card_no

and press the Enter key.

where

card no

is the number of the affected card

Example of a MAP response:

Card 1 Unit 0 User system Status Ready Drive_State on_line

IOD nMTDOS in an IOC

minor (continued)

15 Make sure that the MTD demounted.

IfStatus of the MTD	Do
is demounted	step 18
is not demounted	step 16

16 To demount the MTD, type

>DEMOUNT tape_name

and press the Enter key.

where

tape name

is the name of the tape

17 To manually busy the MTD, type

>BSY

and press the Enter key.

Example of MAP response:

bsy OK

At the equipment shelf

18 Determine if the MTD contains a loaded tape.

If the MTD	Do
contains a loaded tape	step 19
does not contain a loaded tape	step 20

19 Unload the tape on the MTD.

IOD nMTDOS in an IOC minor (continued)

At the MAP terminal

20

WARNING

Possible loss of MTD data

Make sure the MTD does not contain a loaded tape. If you test the MTD with a loaded tape you can destroy data on the tape.

To test the MTD, type

>TST

and press the Enter key.

If the TST command	Do
passed	step 21
failed, and a card list generated	step 24
failed, and a card list did not generate	step 38

- 21 Load the tape on the MTD. Perform the correct procedure in *Routine Maintenance Procedures*. Complete the procedure and return to this point.
- 22 To reload and mount the tape, type

>MOUNT mtd no

and press the Enter key.

where

mtd no

is the number of the MTD

23 To return the MTD to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 36
failed, and the system generated a card list	step 24

24 Record the location, description, slot number, product engineering code (PEC) and the PEC suffix of the cards on the card list.

IOD nMTDOS in an IOC

minor (continued)

Replace the first card on the list. Perform the correct procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.

Note: If the input/output message processor card requires replacement, make sure that the IOC that contains the card is manual busy.

26 To test the MTD, type

>TST

and press the Enter key.

If the TST command	Do
passed	step 29
failed, and you did not replace all the cards in the list recorded in step 24	step 27
failed, and you replaced all the cards in the list recorded in step 24.	step 30

- 27 Replace the next card on the list. Perform the correct procedure in Card Replacement Procedures. Complete the procedure and return to this point.
- 28 Go to step 26.
- 29 To return the MTD to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 36
failed	step 30

At the equipment shelf

30 Check the cables to the MTD for faults.

If the cables	Do
has faults	step 31
does not have faults	step 38

31 Refer to your office installation manuals to change the cabling to the MTD.

IOD nMTDOS in an IOC minor (continued)

At the MAP terminal

32 To return the MTD to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 36
failed	step 38

33 Determine from office records or operating company personnel why the MTD is offline or manual busy. When acceptable, return the MTD to service.

If the MTD	Do
is offline	step 34
is manual busy	step 35

34 To manually busy the MTD card, type

>BSY

and press the Enter key.

35 To return the MTD to service, type

>IOC ioc_no;CARD card_no;RTS

and press the Enter key.

where

ioc no

is the number of the affected IOC

card no

is the number of the MTD card

If the RTS command	Do
passed	step 36
failed	step 38

36 Determine if the nMTDOS minor alarm cleared.

If the alarm	Do
cleared	step 39
changed to another alarm	step 37
did not clear	step 38

IOD nMTDOS in an IOC

minor (end)

- Perform the correct procedure in this document to clear the alarm. Complete the procedure and do step 36.
- **38** For additional help, contact the next level of support.
- 39 The procedure is complete.

IOD nMTDOS on an IOM minor

Alarm display

Indication

At the IOD level of the MAP display, a number (n) and MTDOS indicate a minor alarm on an integrated services module (ISM). The minor alarm is for a magnetic tape drive (MTD) and digital audio tape (DAT).

Meaning

One tape drive or digital audio tape is not in service. The number that precedes MTDOS indicates the number of MTDs or DATS not in service.

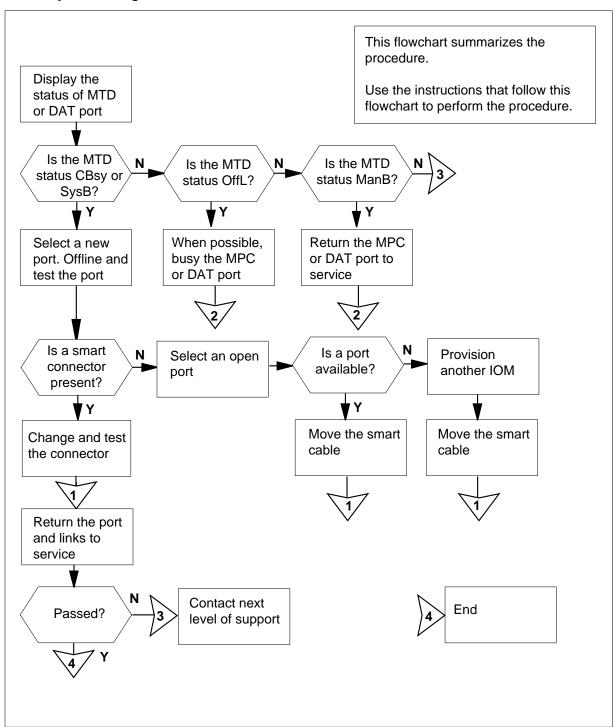
Result

A loss of billing data occurs if the DIRP utility uses the MTD or DAT to record billing data. If the DIRP utility does not use the MTD or DAT, files can not download to or from tape.

Common procedures

There are no common procedures.

Action


The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Do not proceed to the common procedure unless the step-action procedure directs you to go.

IOD nMTDOS on an IOM

minor (continued)

Summary or Clearing an IOD nMTDOS on an IOM minor alarm

IOD nMTDOS on an IOM minor (continued)

Clearing an IOD nMTDOS on an IOM minor alarm

ATTENTION

The step in the IOD nMTDOS in an IOC minor alarm clearing procedure directs you to this procedure. Do not proceed at any other time.

At the MAP terminal

To post the controller system connected to the magnetic tape drives (MTD) or digital audio drive (DAT), type

>IOC ioc_no

and press the Enter key.

where

ioc_no

is the number of the affected IOM

Example of an IOM MAP display:

DIRP:	SMDR	В	XI	FEF	₹:				SI	LΜ	:			NPO):		1	1X25	5:	
MLP :	•		DI	PPI	:				DI	PP	J:			SCA	AI :	:				
IOC	PORT	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
(MOI)	STAT				-			_	_	_		_	_	_	_	_	_	_	_	
0	TYPE	С	С	С		С	M				Μ							S	S	
		0	0	0		0	Т				Ρ							С	С	
		Ν	Ν	Ν		Ν	D				С							S	S	

2 To display the status of all the MTD or the DAT, type

> >LISTDEV MTD

and press the Enter key.

Example of a MAP display:

3 From the status display, determine the status of the MTD or DAT.

If the status	Do
is SysB MTD	step 4
is SysB DAT	step 6
is CBsy (C-side busy)	step 58
is <i>OffL</i> (offline) or <i>ManB</i> (manual busy)	step 60

IOD nMTDOS on an IOM

minor (continued)

4 To post the affected MTD port, type

>PORT port_no

and press the Enter key.

where

port_no

is the number of the affected MTD (0-15)

Example of a MAP display:

Port 5 MTD 0 DevType
TapeName User
Status Idle

- **5** Go to step 7.
- 6 Post the affected DAT port, type

>PORT port_no

and press the Enter key.

where

port no

is the number of the affected DAT port (16-17)

Example of a MAP display:

Port 16 MTD 0 DevType DAT (SCSI) TapeName User Status Idle

7 Make sure the MTD or DAT is demounted.

If the MTD or DAT	Do
is demounted	step 9
is not demounted	step 8

8 To demount the MTD or DAT, type

>DEMOUNT tape_name

and press the Enter key.

where

tape_name

is the name of the tape

9 To manually busy the MTD or DAT, type

>BSY

and press the Enter key.

Example of MAP response:

IOD nMTDOS on an IOM minor (continued)

bsy OK

If the device	Do	
is MTD	step 10	
is DAT	step 13	

At the equipment shelf

10 Determine if the MTD contains a loaded tape.

If the MTD	Do
contains a loaded tape	step 11
does not contain a loaded tape	step 19

- 11 Unload the tape on the MTD from the drive unit.
- 12 Go to step 19.

At the ISM shelf

13 Determine if the storage media card NTFX32AA contains a DAT cartridge in the drive unit.

If the NTFX32AA	Do
contains a cartridge	step 14
does not contain a cartridge	step 15

14

DANGER

Ejection of a tape cartridge

Force eject a cartridge a last resort to recover a cartridge. Never use this method as a quick way to eject the cartridge. You can lose data and the tape can format wrong.

Press the unload button at the front of the unit to remove the DAT cartridge. The DAT LED flashes during the removal of the tape.

Note: The drive performs an unload sequence. The drive rewinds the tape to the beginning of partition (BOP) for partition 0. If the tape is write-enabled, the drive writes a copy of the tape log back to tape. The drive rewinds the tape to the start of the media. The drive removes the thread and ejects the tape from the mechanism.

IOD nMTDOS on an IOM

minor (continued)

Locate the DAT drive on the media card NTFX32AA slots 4 and 5 of the ISM shelf. Check the LEDs for the current condition of the DAT unit.

IfThe DAT clean/attention lights	Do
are on	step 16
are off	step 19

The status of the DAT LEDs indicates that the drive heads require cleaning. The DAT LEDs also indicates when a cartridge is not useful. Clean the drive heads or change the cartridge. Perform the correct procedure in *Routine Maintenance Procedures* to clean the drive heads or to change the cartridge. Return to this point

IfThe DAT clean/attention lights	Do
are off	step 19
are not off	step 17

- The DAT unit requires replacement. Perform the correct procedure in *Trouble Locating and Clearing Procedures* to replace the DAT. Return to this point.
- **18** Go to step19

At the MAP terminal

19

WARNING Loss of MTD or DAT data

Make sure the MTD or the DAT drive on the storage media card NTFX32 do not contain the tape. If you test a MTD or DAT that contain a tape, you can damage data on the tape.

To test the MTD or DAT devices, type

>TST

and press the Enter key.

If the TST command	Do
passed	step 46
failed test, controller okay	step 46
failed, (MTD) port CFG fail	step 22
failed, (DAT) port CFG fail	step 20

IOD nMTDOS on an IOM minor (continued)

If the TST commar	nd	Do
failed, and a card generated	ist was	step 51
failed, and a card generated	l list was not	step 65
Ensure that the mediare mounted. Refer to Clearing Procedures	o the appropriate	TFX32 and the DAT drive NTFX32AA procedure in <i>Trouble Locating and</i> s point.
Go to step 46.		
To place the MTD off	ine, type	
>OFFL		
and press the Enter k	ey.	
To return to the IOC I	evel of the MAP	display, type
>QUIT		
and press the Enter k	ey.	
To make the MTD po	rt manually busy,	type
>BSY PORT port_r	10	
and press the Enter k	ey.	
where		
port_no is the number	of the MTD port	
Example of MAP res _l	oonse:	
osy OK		
To place the affected	MTD port offline.	type
OFFL PORT port	•	•
and press the Enter k	_	
where	,	
port_no is the number	of the MTD port	
To test the MTD port,	type	
>TST PORT port_r	10	
and press the Enter k	ey.	
where	-	
port_no is the number	of the MTD port	

IOD nMTDOS on an IOM

minor (continued)

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

Check smart connector for port 5

If a SMART connector	Do
is identified	step 27
is not identified	step 33

At the back of the ISM shelf

- 27 Locate the PERTEC SMART connector mounted on an L-shaped bracket near the tape drive. Check the SMART connector LED. Replace the SMART connector.
- 28 To test the SMART connector, type

>TST PORT port_no

and press the Enter key.

where

port_no

is the port number of the MPC device

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

If the SMART connector	Do
passes	step 29
fails	step 33

29 Manually busy the MTD port by typing

>BSY PORT port_no

and pressing the Enter key.

where

port no

is the port number of the MTD device

30 Return the MTD port to service by typing

>RTS PORT port_no

IOD nMTDOS on an IOM minor (continued)

and pressing the Enter key.

where

port no

is the port number of the MTD device

Post the MTD port by typing 31

>PORT port_no

and pressing the Enter key.

where

port_no

is the port number of the MTD device

- 32 Go to step 57.
- 33 Go to step 2, select an open IOM port and return to this point.

If a port is	Do
available on the posted IOM controller	step 35
available on another IOM controller	step 42
there is no other IOM controller available	step 44

34

WARNING

Assistance in provisioning changes

Contact the provisioning administrator if you require support before you proceed with the following provision changes.

To determine from table IOC if the open port contains the correct load device, type

>TABLE IOC

and press the Enter key.

35 To access the table MTD, type

>TABLE MTD

and press the Enter key.

- 36 Delete the tuple associated with the affected port.
- 37 Add the tuple for the spare IOM port selected in step 33.

IOD nMTDOS on an IOM

minor (continued)

38 To post the new IOM MTD port, type

>PORT port_no

and press the Enter key.

where

port_no

is the number of the MPC port

Example of a MAP display:

Port 6 MTD 0 DevType DAT (SCSI) TapeName User Status Idle

39 To make the IOM MTD port manually busy, type

>BSY

and press the Enter key.

Example of MAP response:

bsy OK

At the back of the ISM shelf

40

WARNING

Static electricity damage

When you handle SMART connectors, wear a wrist strap that connects to the wrist-strap grounding point. A grounding point is on a frame supervisory panel (FSP) or a modular supervisory panel (MSP). The wrist strap protects the connectors against static electricity damage.

Locate the SMART cable that connects to the MTD port on the paddle board and the associated MTD device. Disconnect the SMART cable and connect it to the new MTD port.

Go to step 41.

To return the MTD to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 47

IOD nMTDOS on an IOM minor (continued)

If the RTS command	Do
failed, no port available	step 42

42 To post another controller system, type

>IOC ioc_no

and press the Enter key.

where

ioc no

is the number of the affected IOM

Example of an IOM MAP:

```
DIRP: SMDR B XFER:
                       SLM :
                                   NPO:
                                             NX25:
MLP : .
            DPPP:
                       DPPU:
                                   SCAI :
     PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
IOC
(IOM) STAT . . . - . . - - .
     TYPE C C C
                 C M
                                                  S
                           M
                                               S
          0 0 0
                 ОТ
                           Ρ
                                               C
                                                  C
          N N N N D
                           C
                                               S S
```

43 Select an open IOM port on the new controller.

If A port	Do
is available	step 34
is not available	step 44

44

WARNING

Provisioning changes

Contact the provisioning administrator if you require support before you proceed with the following provision changes.

Provision another IOM module. Consult your provisioning administrator about the addition of an IOM controller card.

- 45 Go to step 65.
- 46 To return the MTD to service, type

>RTS

IOD nMTDOS on an IOM

minor (continued)

and press the Enter key.

If the RTS command	Do
passed	step 47
failed, and the system generated a card list g	step 50

- Perform the correct procedure in *Routine Maintenance Procedures*. to load the tape on the MTD or DAT unit. Complete the procedure and return to this point.
- 48 To reload and mount the tape, type

>MOUNT mtd_no

and press the Enter key.

where

mtd no

is the number of the MTD

- **49** Go to step 63.
- **50** Test the MTD by typing

>TST PORT port no

and pressing the Enter key.

where

port no

is the port number of the MTD device

Example of MAP response:

Failed

Site Flr Rpos Bay_Id Shf Description Slot EqPEC HOST 01 A05 ISME 03 32 IOC 03 FX30AA

If the TST command	Do
passes	step 56
failed with a card list	step 51
failed without a card list	step 65

- 51 Record the location, description, slot number, product engineering code (PEC) and PEC suffix of the cards on the list.
- 52 Perform the correct procedure in *Card Replacement Procedures* to replace the first card on the list. Complete the procedure and return to this point.

Note: If the input/output message processor card requires replacement, first make sure that the IOM is manual busy.

IOD nMTDOS on an IOM minor (continued)

53 To test the MTD or DAT units, type >TST and press the Enter key.

If the TST command	Do
passes	step 56
failed, and you did not replace all the cards in the list recorded in step 51	step 54
failed, and you did replace all the cards in the list recorded in step 51	step 65

- 54 Perform the correct procedure in Card Replacement Procedures to replace the next card on the list. Complete the procedure and return to this point.
- 55 Go to step 53.
- 56 Perform the correct procedure in Routine Maintenance Procedures. to load the tape on the MTD or DAT unit. Complete the procedure and return to this
- 57 To return the MTD or DAT to service, type

>RTS

and press the Enter key.

If the RTS command	Do	
passed	step 63	
failed	step 65	

58 To post the controller system connected to the MTD, type

>IOC ioc_no

and press the Enter key.

where

ioc no

is the number of the affected IOM

Example of a IOM MAP display:

IOD nMTDOS on an IOM

minor (continued)

IOD IOC 0 1 2 3 STAT . S DIRP: SMDR B XFER: NPO: SLM : NX25: . MLP : DPPP: DPPU: SCAI : IOC PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 (IOM) STAT . . . - . . - -TYPE C C C C M S S M 0 0 0 ОТ Ρ С С N N N N D С S S If the IOM Do

is in service step 66
is not in service step 59

59 Perform the procedure *Clearing an nIOCOS major or minor alarm* in this document to clear this alarm. Complete the procedure and return to this point.

If the alarm	Do
cleared	step 66
did not clear	step 65

Determine from office records or from operating company personnel why the MTD or DAT is offline or manual busy. When acceptable, return the MTD or DAT to service.

If the MTD or DAT	Do
is offline	step 61
is manual bsy	step 62

To make the MTD or DAT port manually busy, type

>BSY

and press the Enter key.

To return the MTD or DAT to service, type
>IOC ioc_no;PORT port_no;RTS
and press the Enter key.

where

IOD nMTDOS on an IOM minor (end)

ioc no

is the number of the affected IOM

is the number of the MTD or DAT port

If the RTS command	Do
passed	step 66
failed	step 65

63 Determine if the nMTDOS minor alarm cleared.

If the alarm	Do
cleared	step 66
changed to another alarm	step 64
did not clear	step 65

- Perform the correct procedure in this document to clear the alarm. Complete the procedure and go to step 66. 64
- 65 For additional help, contact the next level of support.
- 66 The procedure is complete.

IOD nnAMA critical, major, or minor

Alarm display

Indication

At the IOD level of the MAP, a number (nn) precedes AMA. The AMA indicates an AMA critical, an AMA major, or an AMA minor alarm. For clearing AMA alarms in a network with a DPP subassembly, refer to *Distributed Processing Maintenance Procedures Guide*, 297-1001-547.

Meaning

The DIRP utility cannot open enough recording files to meet the number of files specified in the DIRPSSYS table. The number that precedes AMA indicates the number of files required to satisfy the minimum number of files for the subsystem. The DIRPSSYS table specifies the number of files.

Result

Backup recording of automatic message accounting (AMA) data is not available.

Common procedures

This procedure refers to Allocating a volume.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nnAMA critical, major, or minor (continued)

Summary of Clearing an IOD nnAMA critical, major, or minor alarm

IOD nnAMA

critical, major, or minor (continued)

Clearing an IOD nnAMA critical, major, or minor alarm

ATTENTION

For clearing AMA alarms in a network with a DPP subassembly, refer to *Distributed Processing Maintenance Procedures Guide*, 297-1001-547.

At the MAP terminal

- 1 Record the value of nn in the AMA subsystem alarm indicator under the IOD header of the MAP display.
- Check local office records for available recording volumes that are acceptable for AMA subsystem recording. You need the same number of available volumes as the nn value determined in step 1.
- **3** Record the volume name(s) of the available recording volumes determined in step 2.
- 4 To access the DIRP level of the MAP display, type

>MAPCI;MTC;IOD;DIRP

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2
STAT . L .
```

```
DIRP: HOLD00 XFER: . DVI: . DPPP: . DPPU: . NOP: . SLM: . NX25: . MLP: . SCAI: .
```

- To allocate one of the additional recording volumes, perform the procedure How to allocate a volume in this document. You determined which recording volumes are acceptable in step 2. Complete the procedure and return to this point.
- 6 Determine if you need to allocate another volume.

If you	Do
need to allocate another volume	step 5
do not need to allocate another volume	step 7

IOD nnAMA critical, major, or minor (end)

7 Determine if the nnAMA critical, nnAMA major, or nnAMA minor alarm cleared.

If the alarm	Do
cleared	step 9
did not clear	step 8

- 8 For additional help, contact the next level of support.
- 9 The procedure is complete.

Silencing Audible DPP alarms

A site can use DDP as an AMA. To clear a DPP alarm enter the following information at the DMS-100 MAP terminal.

>SIL (cr)

IOD nnJF critical, major, or minor

Alarm display

Indication

At the IOD level of the MAP, a number (nn) precedes JF. JF indicates a journal file critical, major, or minor alarm.

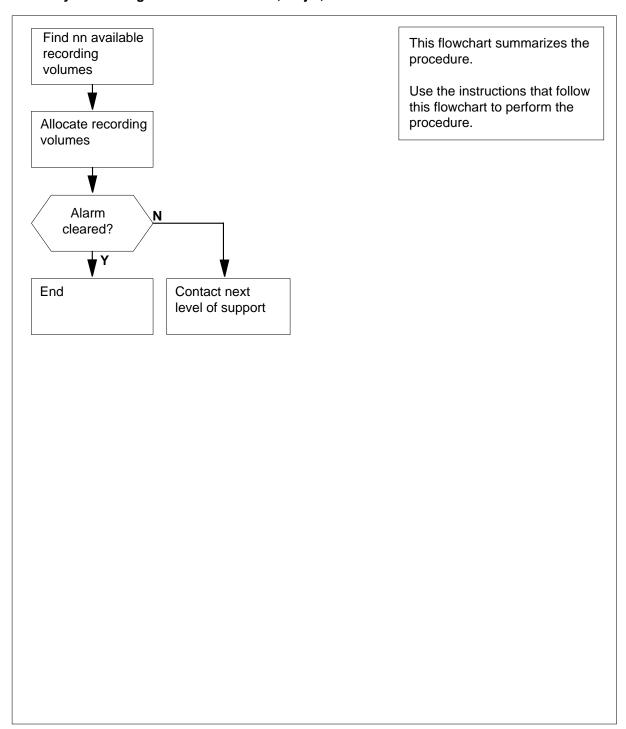
Meaning

The DIRP utility cannot open enough recording files to meet the number of files specified in the DIRPSSYS table. The number that precedes JF indicates the number of files needed to satisfy the minimum number of files. The DIRPSSYS table specifies the number of files.

Result

The system loses records of changes made to data tables or service orders of the DMS-100 Family systems. The records of changes are on disk or tape.

Common procedures


This procedure refers *Allocating a volume*.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nnJF critical, major, or minor (continued)

Summary of Clearing an IOD nnJF critical, major, or minor alarm

IOD nnJF

critical, major, or minor (continued)

Clearing an IOD nnJF critical, major, or minor alarm

CAUTION

Possible loss or damage of JF data

If you do not use this procedure or follow this procedure exactly, you can lose or corrupt your JF data.

At the MAP terminal

- 1 Record the value of nn in the JF alarm indicator under the IOD header of the MAP display.
- 2 Check local office records for available recording volumes that are acceptable for JF subsystem recording. You need the same number of available volumes as the nn value determined in step 1.
- 3 Record the volume name(s) of the available recording volumes determined in step 2.
- 4 To access the DIRP level of the MAP display, type

>MAPCI;MTC;IOD;DIRP

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2
STAT . L .
DIRP: HOLD00 XFER: . DVI : . DPPP: . DPPU:
NOP : . SLM : . NX25: . MLP : . SCAI:
```

5 To determine the volumes now mounted for JF, type

>QUERY JF VOLUMES

and press the Enter key.

Example of a MAP display:

```
SSNAME SSNO SEQNO ROTATES POOLNO PARLPOOL EMERGENCY
                3 4 NONE ***YES***
        0
JF
REGULAR VOLUME(S)
VOL# VOLNAME
              STATE
                     IOC CARD VOL FSEG ROOM VLID FILES
 21 D010JF
              READY
                      1
                          1 8 4 4 2828 S1
 21 D010JF READY
22 D000JF READY
                      0
                            1 2
                                   0 0 2802 A
```

IOD nnJF critical, major, or minor (end)

- If any volumes have problems, where a fault occurred, the STATE is 6 "INERROR". A significant reduction in recording capacity occurs when a fault takes a volume out of service. This fault is a common cause of shortage of
- 7 If the STATE is READY for all the volumes, you need to allocate additional volumes.
- 8 If you need to allocate any volumes, allocate one of the additional recording volumes determined in step 2. To allocate a volume, perform the procedure How to allocate a volume in this document. Complete the procedure and return to this point.
- 9 Determine if you need to allocate another volume. You must find free space on a disk to format as an additional JF volume. Go to step 11.

If you	Do
need to allocate another volume	step 8
do not need to allocate another volume	step 10

10 Determine if the nnJF alarm cleared.

If the alarm	Do
cleared	step 12
did not clear	step 11

- 11 For additional help, contact the next level of support.
- 12 The procedure is complete.

IOD nnOM critical, major, or minor

Alarm display

Indication

At the IOD level of the MAP display, a number (nn) and OM indicate an operational measurement (OM) critical, major or minor alarm

Meaning

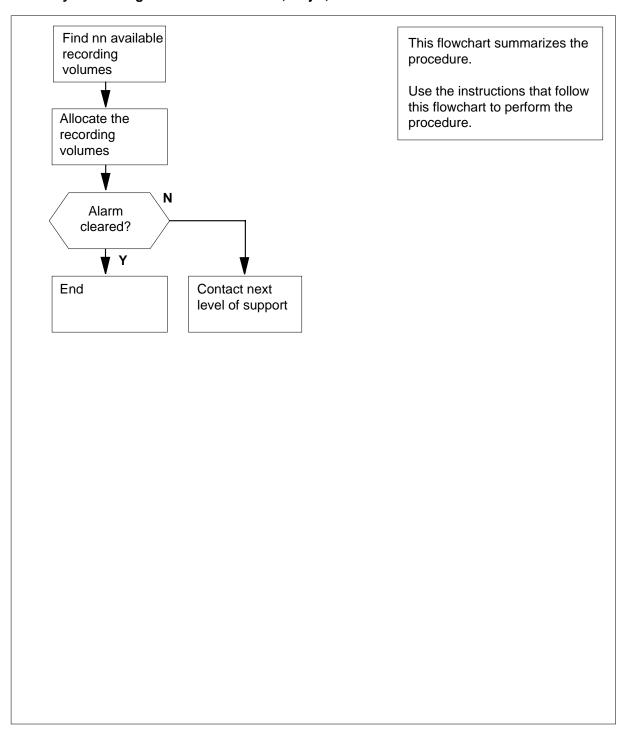
The DIRP utility cannot open enough recording files to meet the number of files specified in the DIRPSSYS table.

Result

The operating system loses measurement data and cannot collect or display the data. Measurement data forms the base for decisions about maintenance, traffic, accounting, and supplies. The number that precedes OM indicates the number of files required to satisfy the minimum number of files for this subsystem. The DIRPSSYS table specifies the minimum number of files.

Common procedures

This procedure refers to Allocating a volume.


Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nnOM

critical, major, or minor (continued)

Summary of Clearing an IOD nnOM critical, major, or minor alarm

IOD nnOM

critical, major, or minor (continued)

Clearing an IOD nnOM critical, major, or minor alarm

CAUTION

Possible loss or damage of OM data

If you do not use this procedure or follow this procedure correctly, you can lose or corrupt your OM data.

WARNING

Possible loss or damage of OM data

If you do not use this procedure or follow this procedure correctly, you can lose or corrupt your OM data.

At the MAP terminal

- 1 Record the value of nn in the OM alarm indicator under the IOD header of the MAP display.
- Check local office records for available recording volumes that are acceptable for OM subsystem recording. You need the same number of available volumes as the nn value determined in step 1.
- 3 Record the volume name(s) of the available recording volume(s) determined in step 2.
- 4 To access the DIRP level of the MAP display, type

>MAPCI;MTC;IOD;DIRP

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2
STAT . L .
DIRP: HOLD00 XFER: . DVI : . DPPP: . DPPU: .
NOP : . SLM : . NX25: . MLP : . SCAI: .
```

Allocate one of the additional recording volumes determined in step 2. To allocate the volume, perform the procedure *Allocating a volume* in this document. Complete the procedure and return to this point.

IOD nnOM critical, major, or minor (end)

6 Determine if you need to allocate another volume.

If you	Do
need to allocate another volume	step 5
do not need to allocate another volume	step 7

7 Determine if the nnOM critical, major, or minor alarm cleared.

If the alarm	Do
cleared	step 9
did not clear	step 8

- 8 For additional help, contact the next level of support.
- 9 The procedure is complete.

IOD NO AMA on device type DISK critical

Alarm display

Indication

At the IOD level of the MAP display, NO AMA indicates a NO AMA critical alarm. Follow this procedure for device type DISK. For device type TAPE, follow the procedure *Clearing an IOD NO AMA on device type TAPE critical alarm*. For clearing NO AMA alarms in a network with a DPP subassembly, refer to *Distributed Processing Maintenance Procedures Guide*, 297-1001-547.

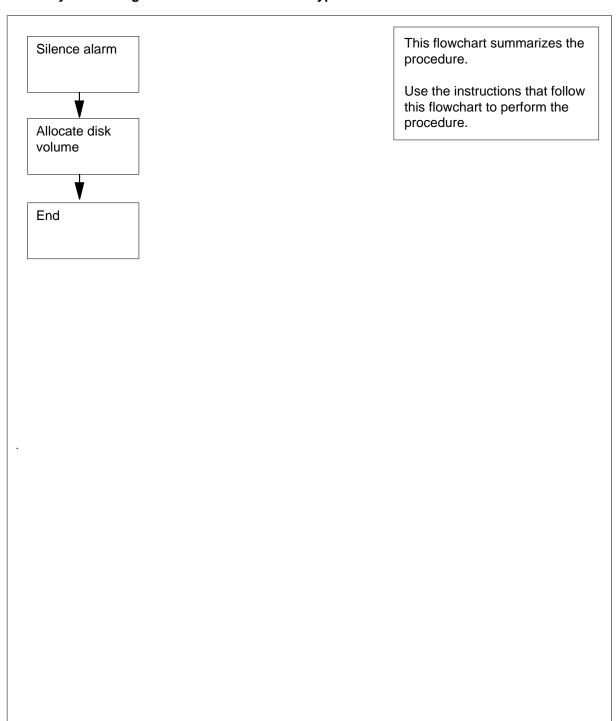
Meaning

Files are not available to record from the AMA subsystem.

Result

Loss of billing information.

Common procedures


There are no common procedures.

Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD NO AMA on device type DISK critical (continued)

Summary of Clearing an IOD NO AMA on device type DISK critical alarm

IOD NO AMA on device type DISK

critical (continued)

Clearing an IOD NO AMA on device type DISK critical alarm

CAUTION

Possible loss or corruption of AMA data

Use this procedure or follow it exactly. Not doing so will lose or damage automatic message accounting (AMA) data. The operating company uses AMA data to produce billings. Loss or damage of AMA data results in revenue loss for the operating company.

ATTENTION

For clearing NO AMA alarms in a network with a DPP subassembly, refer to *Distributed Processing Maintenance Procedures Guide*, 297-1001-547.

At the MAP terminal

1 To access the DIRP level of the MAP display, type

>MAPCI;MTC;IOD;DIRP

and press the Enter key.

Example of a MAP:

IOD IOC 0 1 2 STAT . L .

DIRP: HOLDOO XFER: . SLM: . NPO: . NX25: . MLP: . DPPU: . SCAI:

2 To silence the audible alarm, type

>SIL

and press the Enter key.

3 Inform your maintenance support group of the condition.

If your maintenance group	Do
instructs you to continue this procedure	step 4

IOD NO AMA on device type DISK critical (continued)

If your maintenance group	Do
instructs you not to continue this procedure	step 31

4 Determine the amount of available space in the AMA subsystem. Type

>QUERY AMA SPACE

and press the Enter key.

Example of a MAP response:

SSNAME SSNO SEQNO ROTATES POOLNO PARLPOOL EMERGENCY 0 1 2 0 6 ***YES*** AMA

REGULAR SPACE

VOL# VOLNAME STATE SEGS EXP UNEXP TOTAL

5 To query the volumes now mounted in the subsystem, type

>QUERY AMA VOLUMES

and press the Enter key.

Example of a MAP response:

SSNAME SSNO SEQNO ROTATES POOLNO PARLPOOL EMERGENCY AMA 1 2 0 6 ***YES***

REGULAR VOLUME(S)

VOL# VOLNAME STATE IOC CARD VOL FSEG ROOM VLID FILES

NONE NONE

6 Record the pool number.

> **Note:** The pool number appears under the POOLNO header. The MAP response in step 5 shows a pool number of 0.

7 To access the DIRPPOOL table, type

>TABLE DIRPPOOL

and press the Enter key.

Example of a MAP response:

MACHINES NOT IN SYNC - DMOS NOT ALLOWED JOURNAL FILE UNAVAILABLE - DMOS NOT ALLOWED TABLE: DIRPPOOL

8 To position the tuple for the subsystem REGULAR pool, type

>POSITION n;LIST

IOD NO AMA on device type DISK

critical (continued)

and press the Enter key.

where

n

is the pool number noted in step 5

Example of a MAP response:

POOLNO POOLNAME POOLTYPE DEVTYPE VOLUMEO VOLUME1 VOLUME2 VOLUME3 VOLUME4 VOLUME5 VOLUME6 VOLUME7 VOLUME8 VOLUME9 VOLUME10 VOLUME11 VOLUME12 VOLUME13 VOLUME14 VOLUME15 VOLUME16 VOLUME17 VOLUME18 VOLUME19 VOLUME20 VOLUME21 VOLUME22 VOLUME23

0	AMA:	POOL REG	GULAR	DISK	\$ \$	\$
	\$	\$	\$	\$	\$ \$	\$
	\$	\$	\$		\$ \$	\$
	\$	\$	\$		\$ \$	\$
	\$	\$				

9 Record the device type shown in the DEVTYPE field for later use.

Note: The device type is under the DEVTYPE header. The MAP response in step 8 shows the device type as DISK.

10 To exit the DIRPPOOL table, type

>LEAVE

and press the Enter key.

- Determine from office records the location of an available disk recording volume used with AMA. Record the volume name.
- **12** Determine if a disk volume is available.

If a disk volume	Do
is available	step 18
is not available	step 13

To post the configured controller system, type

>IOC ioc_no

and press the Enter key.

where

ioc_no

is the number of the affected IOC or IOM

Example of a IOC MAP display

IOD NO AMA on device type DISK critical (continued)

```
DIRP: SMDR B XFER: . SLM : . NPO: . NX25: .
MLP: . DPPP: . DPPU: . SCAI:
IOC CARD
       0 1
            2
               3
                  4 5
                        6
                           7
  STAT .--- .-- ...P ..-- ..-- ---
  TYPE MTD DDU CONS DLC CONS
```

Example of a IOM MAP display:

DIRP:															1	NX2!	5:	
IOC (IOM)		-			_	_	_	-	-	-	 11 -	12	13	14	15 -	16 -	17 -	
0	TYPE	С	С	С		С	Μ			М						D	S	
		Ο	Ο	Ο		Ο	Т			Ρ						D	C	
		N	N	N		N	D			С						U	S	

If the controller	Do
is IOC	step 14
is IOM	step 15

14 To post the Card level, type

>CARD card no

and press the Enter key.

where

is the card number determined in step 13

Example of a MAP response:

Card 1 Unit 0 User system Status Ready Drive_State on_line

Go to step 16.

15 To post the Port level, type

>PORT port_no

and press the Enter key.

where

port no

is the port number determined in step 13

IOD NO AMA on device type DISK

critical (continued)

Example of a MAP response:

Port 1 Unit 0

User system Drive_State Status Ready on_line

To determine the available volumes, type

>ALLOC

and press the Enter key.

Example of a MAP response:

VOLID	VOL_NAME	SERIAL_NO	BLOCKS	ADDR	TYPE	R/O	FILES_OPEN
0	IMAGE	2800	65535	D000	0	NO	0
1	XPMLOADS	2801	45000	D000	0	NO	0
2	PMLOADS	2802	10000	D000	0	NO	0
3	MPCLOADS	2803	5000	D000	0	NO	0
4	MTCE	2804	10000	D000	0	NO	0
5	MISC	2805	10000	D000	0	NO	0
6	AMA	2806	5000	D000	0	NO	0
7	OM	2807	5000	D000	0	NO	0
8	JF	2808	5000	D000	0	NO	0

17 Determine if a disk volume is available.

If a disk volume	Do	
is available	step 18	
is not available	step 31	

18 To allocate the disk volume, type

>DIRP;MNT AMA vol_name

and press the Enter key.

where

vol_name

is the disk volume name

Example of a MAP response:

UPDATING VOLUME INFORMATION FOR vol_name: VOLUME nn IN REGULAR POOL n, pool_name
PLEASE CONFIRM ("YES" OR "NO")

19 Determine if you need to allocate the volume.

If you	Do
need to allocate the volume	step 21

IOD NO AMA on device type DISK critical (continued)

If you	Do
do not need to allocate the volume	step 20

20 To halt the allocation, type

>NO

and press the Enter key.

Go to step 32.

21 To confirm the allocation, type

>YES

and press the Enter key.

Example of a MAP response:

REGULAR VOLUME vol_name ALLOCATED

- 22 Allow one minute for the DIRP to allocate the volume.
- 23 Determine if the NO AMA on device type DISK critical alarm under the IOD level of the MAP display cleared.

If the alarm	Do	
cleared	step 26	
did not clear	step 24	

- 24 Determine from office records the location of another available disk volume that you did not try.
- 25 Determine if another disk volume is available.

If another disk volume	Do
is available	step 18
is not available	step 31

26 Determine if an nnAMA alarm is present under the IOD header of the MAP display.

If an alarm	Do
is present	step 27
is not present	step 32

27 Clear the nnAMA alarm. Perform the procedure How to clear an nnAMA critical, major, or minor alarm in this document. Complete the procedure and return to this point.

IOD NO AMA on device type DISK

critical (end)

Determine if the NO AMA on device type DISK critical, major, or minor alarm cleared.

If the alarm	Do	
cleared	step 32	
changed to another alarm	step 29	
did not clear	step 31	

- Perform the correct procedure in this document to clear the alarm. Complete the procedure and return to this point.
- **30** Go to step 28.
- 31 For additional help, contact the next level of support.
- 32 The procedure is complete.

IOD NO AMA on device type TAPE critical

Alarm display

Indication

At the IOD level of the MAP display, NO AMA indicates a NO AMA critical alarm. Follow this procedure for device type TAPE. For device type DISK, follow the procedure Clearing an IOD NO AMA on device type DISK critical alarm. For clearing NO AMA alarms in a network with a DPP subassembly, refer to Distributed Processing Maintenance Procedures Guide, 297-1001-547.

Meaning

There are no files available to record data from the subsystem.

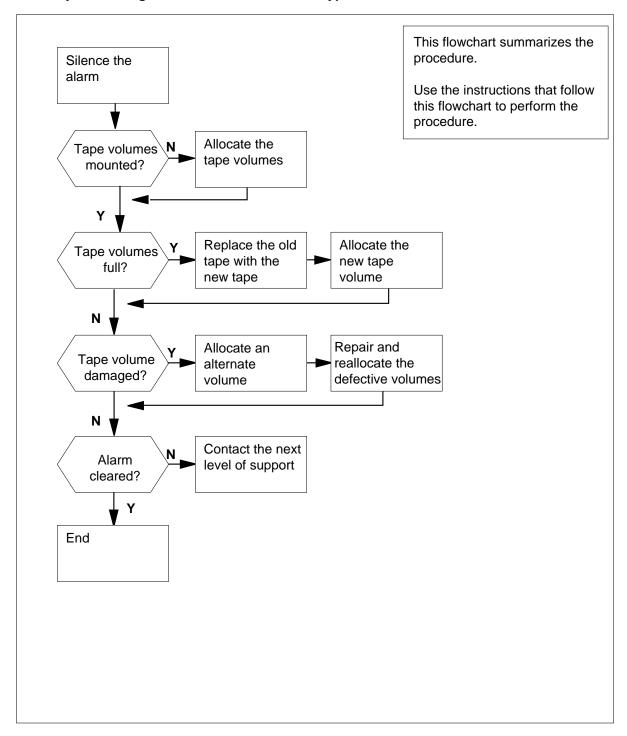
Result

Loss of billing information.

Common procedures

The following common procedures refer to:

- Allocating a volume
- Deallocating a volume
- Resetting a volume


Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follow the flowchart to clear the alarm.

IOD NO AMA on device type TAPE

critical (continued)

Summary of Clearing an IOD NO AMA on device type TAPE critical alarm

IOD NO AMA on device type TAPE critical (continued)

Clearing an IOD NO AMA on device type TAPE critical alarm

CAUTION

Possible loss or corruption of AMA data

Use this procedure or follow it exactly. Not doing so will lose or corrupt automatic message accounting (AMA) data. The operating company uses AMA data to produce billings. Loss or damage of AMA data results in revenue loss for the operating company.

ATTENTION

For clearing NO AMA alarms in a network with a DPP subassembly, refer to Distributed Processing Maintenance Procedures Guide, 297-1001-547.

At the MAP

To access the DIRP level of the MAP display, type >MAPCI;MTC;IOD;DIRP and press the Enter key. Example of a MAP display:

```
IOD
IOC
    0 1 2
STAT .
       L
DIRP: HOLD00 XFER:
                      SLM : .
                                NPO:
                                         NX25:
MLP :
            DPPP :
                  . DPPU: . SCAI:
```

- 2 To silence the audible alarm, type
 - >SIL

and press the Enter key.

3 Inform your maintenance support group of the condition.

If your maintenance group instructs you	Do
to continue this procedure	step 4
not to continue this procedure	step 72

IOD NO AMA on device type TAPE

critical (continued)

4 To query the status of the subsystem files, type

>QUERY AMA FILES

and press the Enter key.

Example of a MAP response:

SSNAME SSNO SEQNO ROTATES POOLNO PARLPOOL EMERGENCY
AMA 0 1 2 0 6 ***YES***

REGULAR
FILE(S) STATE VOLUME RECCOUNT BLOCK E V V_B VLID FNUM
FRN#
ACTIVE NONE
STANDBY1 NONE

- **5** Examine the status of the files in the AMA subsystem.
- Determine the number of volumes required for the AMA subsystem. Count the number of active and reserve files displayed. Record this number for later use.
- 7 To query the volumes now mounted in the subsystem, type

>QUERY AMA VOLUMES

and press the Enter key.

Example of a MAP response:

SSNAME	SSNO	SEQNO	ROTATES	POOI	LNO P	ARLPO	OOL EI	MERGE	1CY
AMA	0	1	2		0		6 *	* *YES*	***
REGULA	R VOLUM	ME(S)							
VOL# VO	OLNAME	STATE	<u> </u>	IOC	CARD	VOL	FSEG	ROOM	VLID
FILES									
22	T0	INERF	ROR	0	0	0	N/A	0	2400
23	Т1	INERF	ROR	2	1	0	N/A	0	2400

8 Record the pool number and the status of the normal volumes.

Note: The MAP response in the last step shows a pool number of 0, and two normal volumes mounted. The response marked the normal volumes as INERROR.

9 Determine if mounted volumes that are normal are present.

If any normal volumes	Do
mounted	step 25
did not mount	step 10

10 To access table DIRPPOOL, type

>TABLE DIRPPOOL

IOD NO AMA on device type TAPE critical (continued)

and press the Enter key.

11 To position the tuple for the normal pool of the subsystem, type

>POSITION n;LIST

and press the Enter key.

where

is the pool number noted in step 8

Example of a MAP response:

POOLNO POOLNAME POOLTYPE DEVTYPE VOLUMEO VOLUME1 VOLUME2 VOLUME3 VOLUME4 VOLUME5 VOLUME6 VOLUME7 VOLUME8 VOLUME9 VOLUME10 VOLUME11 VOLUME12 VOLUME13 VOLUME14 VOLUME15 VOLUME16 VOLUME17 VOLUME18 VOLUME19 VOLUME20 VOLUME21 VOLUME22 VOLUME23

0	AMAP	OOL REG	GULAR	TAPE	\$	\$ \$
	\$	\$	\$	\$	\$	\$ \$
	\$	\$	9	\$	\$	\$ \$
	\$	\$	9	\$	\$	\$ \$
	т1	Т2				

12 Record the device type shown in field DEVTYPE.

Note: The MAP response in the last step shows the DEVTYPE of TAPE.

13 To exit the DIRPPOOL table, type

>QUIT

and press the Enter key.

If the tape drive	Do
is MTD	step14
is DAT	step 15

14 Determine from office records the location of an available magnetic tape drive (MTD) for AMA recording. Record the MTD number.

Go to step 16.

- 15 Determine from office records the location of an available digital audio tape (DAT) drive for AMA recording. Record the DAT number.
- 16 Determine if another tape drive is available.

If another tape drive	Do	
is available (MTD)	step 17	
is available (DAT)	step 18	

IOD NO AMA on device type TAPE

critical (continued)

If another tape drive	Do
is not available	step 72

Load a tape on the MTD. Refer to *Magnetic Tape Reference Manual*, 297-1001-118 and return to this point.

18

WARNING

Tape cartridges

Use cartridges with the DDS logo. The DAT drive unit supports DDS/DDS-1 cartridges only and rejects DDS-2 cartridges during the load operation.

Insert the tape cartridge into the drive. The drive automatically takes the cartridge and performs a load sequence.

19 To allocate the tape volume on the MTD, type

>MNT AMA tn

and press the Enter key.

where

tn

is the MTD number

Example of a MAP response:

UPDATING VOLUME INFORMATION FOR Tn: VOLUME nn IN REGULAR POOL n, pool_name
PLEASE CONFIRM ("YES" OR "NO")

20 Determine if you want to continue with the volume allocation.

Do	
step 22	
step 21	
	step 22

21 To halt the allocation, type

>NO

and press the Enter key.

Go to step 73.

22 To confirm the allocation, type

>YES

and press the Enter key.

IOD NO AMA on device type TAPE critical (continued)

Example of a MAP response:

REGULAR VOLUME vol_name ALLOCATED

23 Determine if the NO AMA on device type TAPE critical alarm cleared.

If the alarm	Do
cleared	step 67
did not clear	step 24

24 Determine from office records if another magnetic tape drive or digital audio tape drive is available.

If another tape drive	Do
is available (MTD)	step 17
is available (DAT)	step 18
is not available	step 72

25 Determine from the volume the name of the recording device type used for the allocated volumes.

Note: Tn is the standard name for tape volumes.

26 Determine if any volumes are in the INERROR state.

If any volumes	Do
are in the INERROR state	step 27
are not in the INERROR state	step 58

27 Determine from the DIRP logs why INERROR marks the volumes. Type >LOGUTIL

and press the Enter key.

28 To record the logs, type

>STARTDEV dev_type ADDREPS dev_name DIRP

and press the Enter key.

where

dev_type

is the type of device in use

is the name of the printer or visual display unit

Example of a MAP response:

IOD NO AMA on device type TAPE

critical (continued)

ONE REPORT ADDED

When you determine why the INERROR condition occurred. To exit the log utility, type

>QUIT

and press the Enter key.

30 Determine if the voume is INERROR because of a volume-full condition or because of a device error.

If the volume	Do
is INERROR and the reason is the volume is full	step 31
is INERROR and the reason is a device error	step 35

31 Deallocate the tape volume. Refer to common procedure *Deallocating a volume* in this document. Complete the procedure and return to this point.

If the tape drive	Do	
is MTD	step 32	
is DAT	step 33	

Unload the full tape from the drive. Label the tape and store it according to your local procedures. Load a new tape acceptable for the subsystem recording on the drive. Perform the correct procedure in *Magnetic Tape Reference Manual*, 297-1001-118. Complete the procedure and return to this point.

33

CAUTION

Possible loss of data

Force eject a cartridge only at a last resort to recover a cartridge. Never use this method as a quick way to eject the cartridge. If you use this method as a quick way of ejecting the cartridge, you can lose data. This method can also cause a tape to format in the wrong manner.

Remove the full tape cartridge from the drive. Press the unload button at the front of the unit.

Note: The drive will perform an unload sequence. The tape is rewound to the beginning of partition (BOP) for partition 0. If the tape is write enabled, the drive writes a copy of the tape log back to the tape. The drive rewinds

IOD NO AMA on device type TAPE critical (continued)

the tape to the beginning of media. The drive rewrites to the tape from the mechanism and eject the tape.

34 Determine if replacement of more tape volumes is to occur.

If more tape volumes	Do
need replacement	step 31
do not need replacement	step 19

- 35 Reset the INERROR volume. Perform the common procedure How to reset a volume in this document. Complete the procedure and return to this point.
- 36 Determine if more volumes need to reset.

If more volumes	Do
are to be reset	step 35
are not to be reset	step 37

37 To guery the subsystem again and verify the status of the reset volumes, type >QUERY AMA VOLUMES

and press the Enter key.

Example of a MAP response:

SSNAME SSNO SEQNO ROTATES POOLNO PARLPOOL EMERGENCY AMA 0 1 0 0 NONE ***YES*** REGULAR VOLUME(S) IOC CARD VOL FSEG ROOM VLID VOL# VOLNAME STATE FILES

38 Determine if the INERROR volumes reset correctly.

If the INERROR volumes	Do
reset correctly	step 46
did not reset correctly	step 39

39 Determine from office records if another recording volume is available. The MTD or DAT unit that is now in use can have faults.

If another tape drive	Do
is available (MTD)	step 17
is available (DAT)	step 18
is not available (MTD)	step 40

IOD NO AMA on device type TAPE

critical (continued)

If another tape drive	Do	
is not available (DAT)	step 41	

Repair the recording device that has faults. Perform the correct procedure in *Recovery Procedures*. Complete repairs of the device that has faults and return to this point.

Go to step 42.

- 41 Replace the DAT unit that has faults. Perform the correct procedure in *Trouble and Locating Procedures*. Complete the repairs of the device that has faults and return to this point.
- Reset the repaired volume. Perform the common procedure *How to reset a volume* in this document. Complete the procedure and return to this point.
- 43 Determine if more volumes need to reset.

If more volumes	Do
are to be reset	step 42
are not to be reset	step 44

Query the subsystem again and verify the status of the reset volume(s). Type

>QUERY AMA VOLUMES

and press the Enter key.

Example of a MAP response:

SSNAME SSNO SEQNO ROTATES POOLNO PARLPOOL EMERGENCY
AMA 0 1 0 0 NONE ***YES***
REGULAR VOLUME(S)
VOL# VOLNAME STATE IOC CARD VOL FSEG ROOM VLID
FILES

45 Determine if the repaired volumes reset.

If the repaired volumes	Do	
reset	step 46	
did not reset (MTD)	step 47	
did not reset (DAT)	step 48	

46 Determine if the NO AMA alarm cleared.

If the alarm	Do
cleared	step 67

IOD NO AMA on device type TAPE critical (continued)

If the alarm	Do	
did not clear (MTD)	step 47	
did not clear (DAT)	step 48	

47 Obtain enough blank or expired tapes for the number of tape volumes that you allocate again. Make sure each tape has a write-enable ring attached. Go to step 49.

48

CAUTION

Tape cartridges

Use cartridges marked with the DDS logo. The DAT drive unit supports only DDS/DDS-1 cartridges and rejects DDS-2 cartridges during the load operation.

Obtain enough blank or expired cartridges for the number of tape volumes that you allocate again.

- 49 Select a tape volume to deallocate and record the MTD or DAT number.
- 50 Deallocate the selected volume. Perform the common procedure Deallocating a volume in this document. Complete the procedure and return to this point.
- 51 Unload the tape from the deallocated MTD or DAT. Marked INERROR this volume can have data errors.

If the tape drive	Do
is MTD	step 52
is DAT	step 54

- 52 Label and store this tape according to local procedure. Perform the correct procedure in Magnetic Tape Reference Manual, 297-1001-118. Complete the procedure and return to this point.
- 53 Load a blank or expired tape on the unloaded MTD. Perform the correct procedure in Magnetic Tape Reference Manual, 297-1001-118. Complete the procedure and return to this point.

Go to step 55.

IOD NO AMA on device type TAPE

critical (continued)

54

WARNING

Labeling of tape cartridges

Cartridge labels must be firmly stuck to the recessed label area on the cartridge to prevent a jam of the mechanism.

Label and store the cartridge according to local procedure. Make sure that labels are not:

- peeling off
- over the edge of the label area
- stuck on top of another label
- Allocate the volume. Perform the common procedure *Allocating a volume* in this document. Complete the procedure and return to this point.
- Allow 1 min for the DIRP utility to allocate the volumes.
- 57 Determine if more volumes move.

If more volumes	Do
require allocation (MTD)	step 47
require allocation (DAT)	step 48
do not require allocation	step 66

To deallocate the disk volume, type

>DMNT AMA vol_name and press the Enter key.

where

vol name

is the name of the disk volume

Example of a MAP response:

UPDATING VOLUME INFORMATION FOR
vol_name: VOLUME nn IN REGULAR POOL n, pool_name
PLEASE CONFIRM ("YES" OR "NO"):

59 Determine if you want to continue with the volume deallocation.

If you want the volume deallocation	Do
to continue	step 61

IOD NO AMA on device type TAPE critical (continued)

If you want the volume deallocation	Do
not to continue	step 60
To halt the deallocation, type	
>NO	
and press the Enter key.	
Go to step 73.	
To confirm the deallocation, type	
>YES	
and press the Enter key.	
Example of a MAP response:	

REGULAR VOLUME vol_name WILL BE TAKEN OUT OF DIRP AS SOON AS POSSIBLE

62 To allocate the disk volume, type

> >MNT AMA vol_name and press the Enter key. where

> > vol name

is the name of the disk volume

Example of a MAP response:

UPDATING VOLUME INFORMATION FOR vol_name: VOLUME nn IN REGULAR POOL n, pool_name PLEASE CONFIRM ("YES" OR "NO"):

63 Determine if you want to continue with the volume allocation.

Do
step 65
step 64

64 To halt the allocation, type

>NO

and press the Enter key.

Go to step 73.

65 To confirm the allocation, type

>YES

IOD NO AMA on device type TAPE

critical (end)

and press the Enter key.

Example of a MAP response:

REGULAR VOLUME vol_name ALLOCATED

66 Determine if the NO AMA alarm cleared.

If the alarm	Do
cleared	step 67
did not clear	step 72

Determine if an nnAMA alarm is present under the IOD header of the MAP display.

If the alarm	Do
is present	step 68
is not present	step 73

- Clear the nnAMA alarm. Perform the procedure *Clearing an IOD nnAMA critical, major, or minor alarms* in this document. Complete the procedure and return to this point.
- Determine if the NO AMA on the device type TAPE critical alarm cleared.

If the alarm	Do
cleared	step 73
changed to another alarm	step 70
did not clear	step 72

- Perform the correct procedure in this document to clear the alarm. Complete the procedure and return to this point.
- **71** Go to step 69.
- 72 For additional help, contact the next level of support.
- 73 The procedure is complete.

Alarm display

Indication

At the IOD level of the MAP display, NOssys indicates a NOssys critical, major, or minor alarm. Follow this procedure for device type DISK. For critical alarms on device type TAPE, follow Clearing an IOD NOssys on device type TAPE critical alarm.

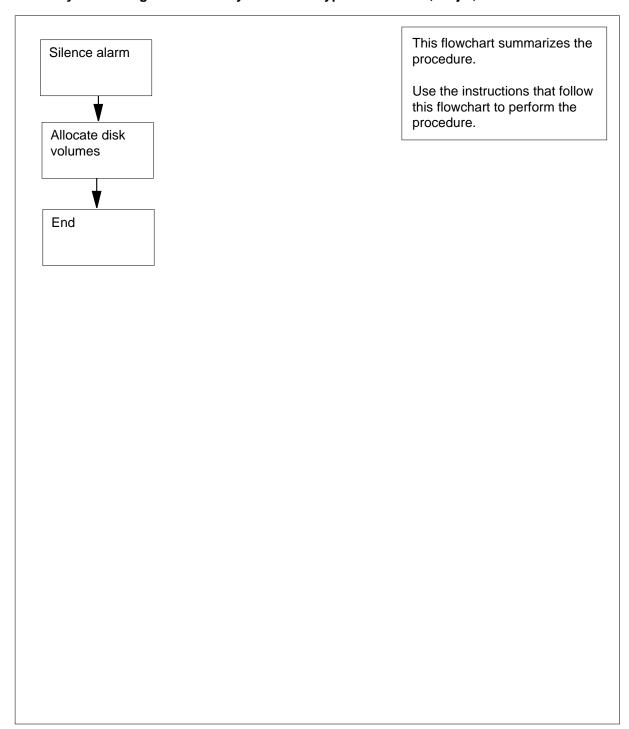
Meaning

Files are not available to record data from the subsystem. The abbreviation ssys represents the affected subsystem. Affected subsystems can include journal file (JF), operational measurement (OM), station message detail recording (SMDR), and automatic message accounting (AMA).

Result

If the NOssys is a NO AMA or NO SMDR alarm, loss of billing data occurs. If the NO ssys is an alarm that affects any other subsystem, the loss of switch information occurs. Each subsystem contains the following data:

- The JF subsystem records changes made to data tables or service orders.
- The OM subsystem collects and shows measurement data on the operating system.
- The AMA subsystem collects and records billing data of long distance calls that the subscriber dialed.


Common Procedures

There are no common procedures.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Summary of Clearing an IOD NOssys on device type DISK critical, major, or minor alarm

Clearing a IOD NOssys on device type DISK critical, major, or minor alarm

CAUTION

Possible loss or damage of AMA data

Use this procedure or follow it exactly. Not doing so will lose or corrupt automatic message accounting (AMA) data. The operating company uses AMA data to produce billings. Loss or damage of AMA data results in revenue loss for the operating company.

At the MAP terminal

To access the DIRP level of the MAP display, type

>MAPCI;MTC;IOD;DIRP

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2
STAT . L
                                 NPO:
DIRP: HOLD00 XFER:
                      SLM :
                                          NX25:
                      DPPU:
MLP : .
           DPPP:
                                 SCAI :
```

To silence the audible alarm, type 2

>SIL

and press the Enter key.

Contact your maintenance support group immediately. Notify the 3 maintenance group of the condition.

If your maintenance group instructs you	Do
to continue this procedure	step 4
not to continue this procedure	step 30

4 To determine the amount of available space in the subsystem, type

>QUERY ssys SPACE

and press the Enter key.

where

ssys

is the affected subsystem

Example of a MAP response:

SSNAME SSNO SEQNO ROTATES POOLNO PARLPOOL EMERGENCY ssys 0 1 2 0 6 ***YES***

REGULAR SPACE

THE SPACE OPTION IS NOT SUPPORTED BY THE DEVICE USED FOR REGULAR RECORDING BY THIS SUBSYSTEM.

5 To query the volumes now mounted in the subsystem, type

>QUERY ssys VOLUMES

and press the Enter key.

where

ssys

is the subsystem affected

Example of a MAP response:

SSNAME SSNO SEQNO ROTATES POOLNO PARLPOOL EMERGENCY ssys 0 1 2 0 6 **YES***

REGULAR VOLUME(S)

VOL# VOLNAME STATE IOC CARD VOL FSEG ROOM VLID VLID FILES

NONE

NONE

6 Record the pool number.

Note: The pool number is under the POOLNO header. For example, the MAP response in step 5 shows a pool number of 0.

7 To access table DIRPPOOL, type

>TABLE DIRPPOOL

and press the Enter key.

Example of a MAP response:

MACHINES NOT IN SYNC - DMOS NOT ALLOWED JOURNAL FILE UNAVAILABLE - DMOS NOT ALLOWED TABLE: DIRPPOOL

8 To position the tuple for the subsystem REGULAR pool, type

>POSITION n;LIST

and press the Enter key.

where

is the pool number noted in step 5 Example of a MAP response:

POOLNO POOLNAME POOLTYPE DEVTYPE VOLUMEO VOLUME1 VOLUME2 VOLUME3 VOLUME4 VOLUME5 VOLUME6 VOLUME7 VOLUME8 VOLUME9 VOLUME10 VOLUME11 VOLUME12 VOLUME13 VOLUME14 VOLUME15 VOLUME16 VOLUME17 VOLUME18 VOLUME19 VOLUME20 VOLUME21 VOLUME22 VOLUME23

0	ssys	POOL	REGULAR	DISK	\$	\$ \$
	\$	\$	\$	\$	\$	\$ \$
	\$		\$	\$	\$	\$ \$
	\$		\$	\$	\$	\$ \$
	T1	Т2				

9 Record the device type shown in the DEVTYPE field for later use.

> **Note:** The device type appears under the DEVTYPE header. For example, the MAP response in step 8 shows a DEVTYPE of DISK.

To exit table DIRPPOOL, type 10

>LEAVE

and press the Enter key.

- 11 Determine from office records the location of an available disk recording volume. Record the volume name.
- Determine if a disk volume is available. 12

If a disk volume	Do	
is available	step 18	
is not available	step 30	

13 To post the configured controller system, type

>IOC ioc no

and press the Enter key.

where

ioc no

is the number of the affected IOC or IOM

Example of a IOC MAP display:

```
DIRP: HOLD00 XFER: . SLM: .
                            NPO: . NX25: .
MLP: . DPPP: . DPPU:
                            SCAI :
IOC CARD
         0 1
                 2
                     3
                         4
                             5
                                 6
                                     7
   STAT .--- P--P P-- .--
   TYPE MTD DDU CONS CONS CONS MPC MPC CONS
 Example of a IOM MAP display:
DIRP: HOLD00 XFER:
                   SLM : . NPO: . NX25: .
                   DPPU:
MLP: . DPPP:
                             SCAI :
     PORT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
IOC
(IOM) STAT . . . - . . - - . -
     TYPE M D C C C M M
         T D O O O
                     ΡP
                                      D C
         D U N N N
                      C C
  If the device
                       Do
  is IOC
                       step 14
  is IOM
                       step 15
 To post the DDU, type
```

14

>CARD card no

and press the Enter key.

where

is the number of the terminal controller card (0 to 8)

Example of a MAP response:

Card 1 Unit 0 User system Drive_State Status Ready On_line

Go to step 16.

15 To post the DDU, type

>PORT port_no

and press the Enter key.

where

port no

is the number of the terminal controller port (0 to 15)

Example of a MAP response:

Port 1 Unit 0 User system Drive_State Status On_line Ready

16 To determine the available volumes, type

>ALLOC

and press the Enter key.

Example of a MAP response:

```
VOLID VOL_NAME SERIAL_NO BLOCKS ADDR TYPE R/O FILES_OPEN
                              IMAGE 2800 65535 D000 0 NO 0 XPMLOADS 2801 45000 D000 0 NO 0

        XPMLOADS
        2801
        45000
        D000
        0
        NO
        0

        PMLOADS
        2802
        10000
        D000
        0
        NO
        0

        MPCLOADS
        2803
        5000
        D000
        0
        NO
        0

        MTCE
        2804
        10000
        D000
        0
        NO
        0

        MISC
        2805
        10000
        D000
        0
        NO
        0

        AMA
        2806
        5000
        D000
        0
        NO
        0

        OM
        2807
        5000
        D000
        0
        NO
        0

        JF
        2808
        5000
        D000
        0
        NO
        0

1
3
7
```

17 Determine if a disk volume is available.

If a disk volume	Do
is available	step 18
is not available	step 30

18 To allocate the disk volume, type

> >DIRP;MNT ssys vol_name and press the Enter key.

where

is the affected subsystem

vol name

is the disk volume name

Example of a MAP response:

```
UPDATING VOLUME INFORMATION FOR vol name:
                                           VOLUME nn
IN REGULAR POOL n, pool_name
PLEASE CONFIRM ("YES" OR "NO")
```

19 Determine if you need to allocate the volume

If you	Do
need to allocate the volume	step 21
do not need to allocate the volume	step 20

20 To halt the allocation, type

>NO

and press the Enter key.

Go to step 31.

21 To confirm the allocation, type

>YES

and press the Enter key.

Example of a MAP response:

REGULAR VOLUME vol_name ALLOCATED

- Allow approximately 1 min for the DIRP utility to allocate the volumes.
- 23 Determine if the NO ssys alarm cleared.

If the alarm	Do
cleared	step 25
did not clear	step 24

24 Determine from office records the location of another available disk volume that is available.

If another disk volume	Do
is available	step 18
is not available	step 30

Determine if an nnJF, nnOM, or nnAMA alarm is present under the IOD header of the MAP display.

If an nnJF, nnOM, or nnAMA alarm	Do
is present	step 26
is not present	step 31

IOD NOssys on device type DISK critical, major, or minor (end)

- Use the correct procedure in this document to clear the nnJF, nnOM, or nnAMA alarm. Complete the procedure and return to this point. 26
- Determine if a NOssys on device type DISK critical, major, or minor alarm 27 cleared.

If the alarm	Do
cleared	step 31
changed to another alarm	step 28
did not clear	step 30

- 28 Perform the correct procedure in this document to clear the alarm. Complete the procedure and return to this point.
- 29 Go to step 27.
- 30 For additional help, contact the next level of support.
- 31 The procedure is complete.

IOD NOssys on device type TAPE critical

Alarm display

Indication

At the IOD level of the MAP, NO ssys indicates a NO ssys alarm. Follow this procedure for critical alarms on device type TAPE. For critical alarms on device type DISK, follow the correct procedure. The correct procedure is *Clearing an IOD NOssys on device type DISK critical, major, or minor alarm.*

Meaning

There are no files available to record data from the subsystem. The abbreviation ssys represents the affected subsystem. Affected subsystems can include JF, OM, SMDR, and AMA.

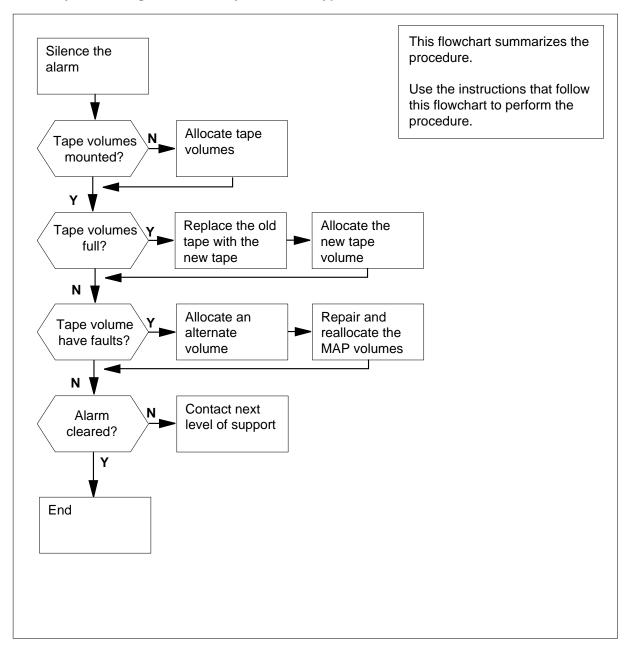
Result

If the NO ssys is a NO AMA or NO SMDR alarm, loss of billing data occurs. If the NO ssys is an alarm that affects any other subsystem, switch information loss occurs. The following data associates with each subsystem.

- The JF subsystem records changes made to data tables or service orders
- The OM subsystem collects and displays measurement data on the operating system.
- The AMA subsystem collects and records billing data of subscriber dialed long distance calls

Common procedures

The following common procedures refer to:


- Allocating a volume
- Deallocating a volume
- Resetting a volume

IOD NOssys on device type TAPE critical (continued)

Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follow the flowchart to clear the alarm.

Summary of Clearing an IOD NOssys on device type TAPE critical alarm

IOD NOssys on device type TAPE

critical (continued)

Clearing an IOD NOssys on device type TAPE critical alarm

At the MAP terminal

1 To access the DIRP level of the MAP display, type

>MAPCI;MTC;IOD;DIRP

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2
STAT . L .

DIRP: HOLD00 XFER: . SLM: . NPO: . NX25:
MLP: . DPPP: . DPPU: . SCAI: . .
```

2 To silence the audible alarm, type

>SIL

and press the Enter key.

3 Inform your maintenance support group of the condition.

If your maintenance group instructs you	Do
to continue this procedure	step 4
not to continue this procedure	step 68

4 To query the status of the subsystem files, type

```
>QUERY ssys FILES and press the Enter key. where
```

ssys

is the affected subsystem

Example of a MAP response:

```
SSNAME SSNO SEQNO ROTATES POOLNO PARLPOOL EMERGENCY ssys 0 1 2 0 6 REGULAR FILE(S) STATE VOLUME RECCOUNT BLOCK E V V_B VLID FNUM FRN#

ACTIVE NONE
STANDBY1 NONE
```

5 Examine the status of the files in the ssys subsystem.

IOD NOssys on device type TAPE critical (continued)

- 6 Determine the number of volumes required for the subsystem. Count the number of active and auxiliary files displayed. Record this number for later
- 7 To query the volumes now mounted in the subsystem, type

>QUERY ssys VOLUMES

and press the Enter key.

where

SSVS

the affected subsystem

Example of a MAP response:

SS	SNAME	SSNO	SEQNO	ROTATES	POOI	NO P	ARLPO	OOL E	MERGE	1CY
SS	ys	0	1	2		0		6 *	*YES*	k *
RE	GULAF	R VOLUM	ME(S)							
VC	L# VC	DLNAME	STATI	C	IOC	CARD	VOL	FSEG	ROOM	VLID
FI	LES									
22	:	T0	INER	ROR	0	0	0	N/A	0	2400
23	}	Т1	INER	ROR	2	1	0	N/A	0	2400

8 Record the pool number and the status of the normal volumes.

> Note: The MAP response in step 7 shows a pool number of 0. The MAP response also shows two REGULAR volumes mounted and marked INERROR.

9 Determine if any REGULAR volumes mounted.

If any regular volumes	Do
mounted	step 26
did not mount	step 10

10 To access table DIRPPOOL, type

>TABLE DIRPPOOL

and press the Enter key.

Example of a MAP response:

MACHINES NOT IN SYNC - DMOS NOT ALLOWED JOURNAL FILE UNAVAILABLE - DMOS NOT ALLOWED TABLE: DIRPPOOL

11 To position the tuple for the subsystem REGULAR pool, type

>POSITION pool_no;LIST

and press the Enter key.

where

IOD NOssys on device type TAPE

critical (continued)

pool_no

is the pool number noted in step 7

Example of a MAP response:

POOLNO POOLNAME POOLTYPE DEVTYPE VOLUME0 VOLUME1 VOLUME2 VOLUME3 VOLUME4 VOLUME5 VOLUME6 VOLUME7 VOLUME8 VOLUME9 VOLUME10 VOLUME11 VOLUME12 VOLUME13 VOLUME14 VOLUME15 VOLUME16 VOLUME17 VOLUME18 VOLUME19 VOLUME20 VOLUME21 VOLUME22 VOLUME23

0	ssys	POOL	REGULA	R	TAPE	\$	\$	\$;
	\$	\$	\$		\$	\$	\$	\$;
	\$	9	\$	\$		\$	\$	\$
	\$		\$	\$		\$	\$	\$
	T1	T	2					

12 For later use, record the device type shown in the DEVTYPE field.

Note: The MAP response in step 11 shows a DEVTYPE as TAPE.

13 To exit table DIRPPOOL, type

>LEAVE

and press the Enter key.

If an tape drive	Do
is MTD	step 14
is DAT	step 15

Determine from office records the location of an available magnetic tape drive (MTD) for subsystem recording. Record the MTD number for later use.

Go to step 16.

- Determine from office records the location of an available digital audio tape (DAT) drive for AMA recording. Record the DAT number.
- **16** Determine if another tape drive is available.

If another tape drive	Do
is available (MTD)	step 17
is available (DAT)	step 18
is not available	step 68

Perform the correct procedure in *Magnetic Tape Reference Manual*, 297-1001-118. to load a tape on the MTD. Complete the procedure and return to this point.

IOD NOssys on device type TAPE critical (continued)

18

DANGER

Tape cartridges

Use cartridges marked with the DDS logo. The DAT drive unit supports only DDS/DDS-1 cartridges and rejects DDS-2 cartridges during the load operation.

Insert the tape cartridge into the drive. The drive automatically takes the cartridge and performs a load sequence.

19 To allocate the tape volume on the MTD, type

> >MNT ssys tn

and press the Enter key.

where

SSVS

is the affected subsystem

is the MTD number

Example of a MAP response:

UPDATING VOLUME INFORMATION FOR Tn: VOLUME nn IN REGULAR POOL n, pool_name PLEASE CONFIRM ("YES" OR "NO")

20 Determine the volume that you will allocate.

If the volume	Do
needs allocation	step 22
does not need allocation	step 21

21 To halt the allocation, type

>NO

and press the Enter key.

Go to step 69.

22 To confirm the allocation, type

>YES

and press the Enter key.

Example of a MAP response:

REGULAR VOLUME vol_name ALLOCATED

IOD NOssys on device type TAPE

critical (continued)

- 23 Allow 1 min for the DIRP utility to allocate the volumes.
- 24 Determine if the NO ssys alarm cleared.

If the alarm	Do	
cleared	step 63	
did not clear	step 25	

25 Determine from office records if another tape drive is available.

If another tape drive	Do
is available (MTD)	step 17
is available (DAT)	step 18
is not available	step 68

Determine from the recording device type used for the allocated volumes from the volume name.

Note: Tn is the name for tape volumes.

27 Determine if any volumes are in the INERROR state.

If any volumes	Do
are in the INERROR state	step 28
are not in the INERROR state	step 60

Determine from the DIRP logs why the volumes have the INERROR marks. Type

>LOGUTIL

and press the Enter key.

29 To record of the logs, type

>STARTDEV dev_type; ADDREPS dev_name DIRP

and press the Enter key.

where

dev_type

is the type of device in use

dev name

is the name of the printer or visual display unit

Example of a MAP response:

ONE REPORT ADDED

IOD NOssys on device type TAPE critical (continued)

30 When you determine the reason for the INERROR condition, exit the log utility. Type

>QUIT

and press the Enter key.

31 Determine if the volume is in the INERROR state because of a volume full condition or a device error.

If the volume	Do
is in the INERROR state and the reason is the volume is full	step 32
is in the INERROR state and the reason is a device error	step 37

Deallocate the tape volume. Perform the common procedure *Deallocating a volume* in this document. Complete the procedure and return to this point. 32

If the tape drive	Do
is MTD	step 33
is DAT	step 35

- 33 Unload the full tape from the drive. Label the tape and store it according to your local procedures.
- 34 Load a new tape acceptable for subsystem recording on the drive. Perform the correct procedure in Magnetic Tape Reference Manual, 297-1001-118. Complete the procedure and return to this point.

Go to step 36.

35

DANGER

Possible loss of data

Force eject a cartridge only at a last resort to recover a cartridge. Never use the method as a quick way of ejecting the cartridge. If you use this method as a quick way of ejecting the cartridge, you can lose data. This method can also cause a tape to format wrong.

To remove the full tape cartridge from the drive, press the unload button at the front of the unit.

Note: The drive performs an unload sequence. The drive rewinds the tape to the beginning of partition (BOP) for partition 0. If the tape is write enabled, the drive writes a copy of the tape log back to tape. The drive

IOD NOssys on device type TAPE

critical (continued)

then rewinds the tape to the beginning of media. The drive unthreads the tape from the mechanism and ejects the tape.

36 Determine if you need to replace more tape volumes.

If you	Do
need to replace more tape volumes	step 32
do not need to replace any more tape volumes	step 19

- 37 Reset the INERROR volume. Perform the common procedure Resetting a volume in this document. Complete the procedure and return to this point.
- 38 Determine if more volumes need to be reset.

If you	Do
need to reset more volumes	step 37
do not need to reset any more volumes	step 39

39 Query the subsystem again and verify the status of the reset volumes. Type

>QUERY ssys VOLUMES

and press the Enter key.

where

ssys

is the affected subsystem

Example of a MAP response:

SSNAME SSNO SEQNO ROTATES POOLNO PARLPOOL EMERGENCY
AMA 0 1 0 0 NONE ***YES*** REGULAR
VOLUME(S)
VOL# VOLNAME STATE IOC CARD VOL FSEG ROOM VLID FILES

40 Determine if the INERROR you reset the volumes correctly.

If the INERROR volumes	Do
reset correctly	step 48
did not reset correctly	step 41

IOD NOssys on device type TAPE critical (continued)

41 Determine from office records if another available recording volume is present. The MTD or DAT unit now in use can have faults.

If a different drive	Do
is available (MTD)	step 17
is available (DAT)	step 18
is not available (MTD)	step 42
is not available (DAT)	step 43

- 42 Repair the recording device if it has faults. Perform the correct procedure in *Recovery Procedures.* Complete the procedure and return to this point. Go to step 44.
- 43 Repair or replace the DAT unit that has faults. Perform the correct procedure in Trouble and Locating Procedures. When replacement of the damaged drive unit is complete, return to this point.
- Reset the repaired volume. Perform the common procedure Resetting a 44 volume in this document. Complete the procedure and return to this point.
- 45 Determine if more volumes need to be reset.

If you	Do
need to reset more volumes	step 44
do not need to reset any more volumes	step 46

46 To query the subsystem again and verify the status of the reset volume(s). Type

>QUERY ssys VOLUMES

and press the Enter key.

where

ssys

is the affected subsystem

Example of a MAP response:

SSNAME SSNO SEQNO ROTATES POOLNO PARLPOOL EMERGENCY 0 0 NONE ***YES*** REGULAR AMA VOLUME(S) VOL# VOLNAME STATE IOC CARD VOL FSEG ROOM VLID FILES

IOD NOssys on device type TAPE

critical (continued)

47 Determine if the repaired volumes reset.

If the repaired volumes	Do
reset	step 48
did not reset (MTD)	step 49
did not reset (DAT)	step 50

48 Determine if the NO ssys alarm cleared.

If the alarm	Do
cleared	step 63
did not clear (MTD)	step 49
did not clear (DAT)	step 50

Obtain enough blank or expired tapes for the number of tape volumes that you allocate again. Make sure that each tape has a write enable ring attached.Go to step 51.

50

DANGER

Tape cartridges

Use cartridges marked with the DDS logo. The DAT drive unit will support only DDS/DDS-1 cartridges and will reject DDS-2 cartridges during the load operation.

Obtain the correct amount of blank or expired cartridges for the number of tape volumes that you allocate again.

- 51 Select a tape volume to deallocate and record the MTD or DAT number.
- Deallocate the selected volume. Perform the common procedure Deallocating a volume in this document. Complete the procedure and return to this point.
- Unload the tape from the deallocated MTD or DAT. This INERROR volume can contain data errors.

If the tape drive	Do
is MTD	step 54
is DAT	step 56

IOD NOssys on device type TAPE critical (continued)

- 54 Label and store this tape according to your local office procedure. Also, you can perform the correct procedure in Magnetic Tape Reference Manual. 297-1001-118. Complete the procedure and return to this point.
- 55 Load a blank or expired tape on the unloaded MTD. Perform the correct procedure in Magnetic Tape Reference Manual, 297-1001-118. Complete the procedure and return to this point.

Go to step 57.

56

DANGER

Labeling of tape cartridges

Cartridge labels must be firmly stuck to the inner label area on the cartridge. You can prevent a mechanism jam if the cartridge labels are stuck to the inner label area on the cartridge.

Label and store the cartridge according to local procedure. Ensure that labels are not:

- peeling off
- over the edge of the label area
- stuck on top of another label
- Allocate the volume. Perform the common procedure Allocating a volume in 57 this document. Complete the procedure and return to this point.
- 58 Allow one minute for the DIRP utility to allocate the volumes.
- 59 Determine if you have to allocate more volumes.

IfMore volumes	Do
to be allocated (MTD)	step 49
to be allocated (DAT)	step 50
not to be allocated	step 65

- 60 Deallocate the volume. Perform the common procedure *Deallocating a* volume in this document. Complete the procedure and return to this point.
- 61 Allocate the volume. Perform the common procedure Allocating a volume in this document. Complete the procedure and return to this point.
- 62 Allow one minute for the DIRP utility to allocate the volumes.

IOD NOssys on device type TAPE critical (end)

Determine if an nnJF, nnOM, or nnAMA alarm appears under the IOD header of the MAP.

If			Do		
an ala		nnOM,	or	nnAMA	step 64
	nnJF, rm	nnOM,	or	nnAMA	step 65

- 64 Clear the nnJF, nnOM, or nnAMA alarm. Perform the correct procedure in this document. When the procedure is complete, return to this point.
- **65** Determine if the NO ssys on device type TAPE critical alarm cleared.

If the alarm	Do
cleared	step 69
changed to another alarm	step 66
did not clear	step 68

- Perform the correct procedure in this document to clear the alarm. Complete the procedure and return to this point.
- **67** Go to step 65.
- For additional help, contact the next level of support.
- The procedure is complete.

IOD nSVC critical

Alarm display

Indication

At the MTC level of the MAP display, a number precedes SVC under the IOD header of the alarm banner. The SVC indicates an alarm for a switched virtual circuit (SVC). The SVC indicates the number of switched virtual circuits in alarm condition.

Meaning

A failure of an X.25 link indicates a network operations protocol (NOP) application is not available

A remote user logged into a switch on an X.25 link. The user disconnected without first logging out of the NOP session.

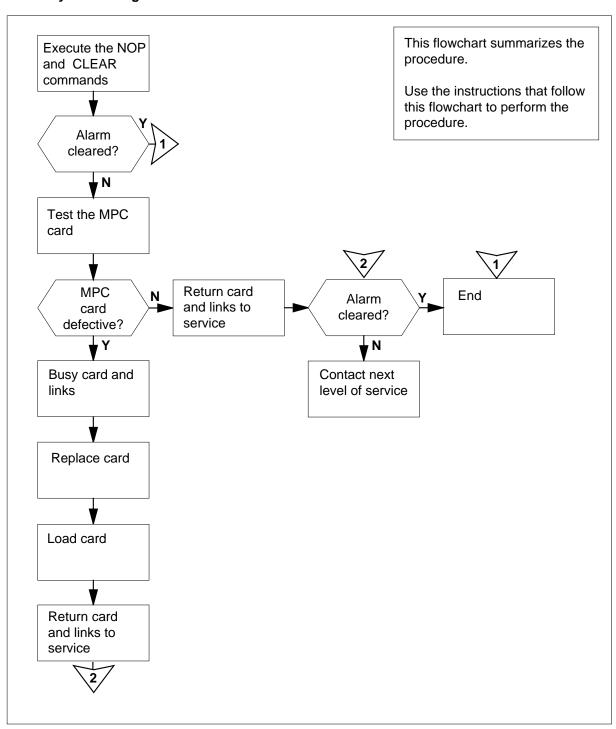
The terminal at the remote end of the associated multiprotocol controller (MPC) link reboots during an NOP session. The rebooting of the MPC link causes the X.25 link to go out of service.

Result

The X.25 link is not available.

Common procedures

There are no common procedures.


Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD nSVC

critical (continued)

Summary of Clearing an IOD nSVC critical alarm

IOD nSVC critical (continued)

Clearing an IOD nSVC critical alarm

At the MAP terminal

To access the NOP level of the MAP display, type

>MAPCI;MTC;IOD;NOP

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2 3 4 5
STAT. O. OLS
DIRP: NO AMA XFER: .
                   SLM: SLMoff NX25: . MLP: .
NOP: 1 SVC DPPP: . DPPU: . SCAI: .
SE: 0123456789012
ST: LLLLLLL.....
SESS
NOP:
```

2 To attempt to clear the alarm, type

>CLEAR

and press the Enter key.

If the alarm	Do
cleared	step 16
did not clear	step 3

3 To access the IOD level of the MAP display, type

>QUIT

and press the Enter key.

Example of a MAP display:

```
TOD
IOC 0 1 2 3
STAT . . .
DIRP: NO AMA XFER: . SLM : SLMoff NX25: .
                                       MLP: .
NOP: 1 SVC DPPP: . DPPU: . SCAI: .
IOD:
```

IOD nSVC

critical (continued)

4 Post the MPC card (NT1X62) associated with the affected X.25 link. Type >IOC ioc_no;CARD card_no

and press the Enter key.

where

ioc_no

is the number of the associated IOC (0 to 11)

card no

is the number of the associated MPC card

Example of a MAP display:

5 Determine the state of the MPC card.

If the state of the card	Do
is MANB	step 7
is OFFL	step 13
is other than listed here	step 6

Note: The card state appears under the BOARD header of the MAP display.

6

WARNING

Loss of service

When you busy the MPC card and its ports, all active NOP sessions associated with the card will disconnect.

To make the card and its links manually busy, type

>BSY ALL FORCE

IOD nSVC critical (continued)

and	press	the	Enter	key.
-----	-------	-----	-------	------

If the BSY command	Do
passed	step 7
failed	step 15

7 To test the MPC card, test

>TST

and press the Enter key.

If the TST command	Do
passed	step 11
failed, a card list generated, and the MPC card listed	step 8
other than listed here	step 15

8 To place the MPC card offline, type

>OFFL ALL FORCE

- Perform the procedure *Replacing a card* in *Card Replacement Procedures*. to replace the MPC card. Complete the procedure and return to this point.
- To load the MPC card, type 10

>DOWNLD

and press the Enter key.

If the DOWNLD command	Do			
passed	step 11			
failed	step 15			

11 To return the MPC card and its links to service, type

>RTS ALL

and press the Enter key.

If the RTS command	Do
passed	step 12
failed	step 14

IOD nSVC critical (end)

12 Determine if the alarm cleared.

If the alarm	Do	
cleared	step 16	
did not clear	step 14	

- Consult operating company personnel to determine why the card is offline. Continue as directed by office persons.
- 14 Obtain copies of IOD, MPC and NOP log reports.
- 15 For additional help, contact the next level of support.
- 16 The procedure is complete.

IOD PnnVnn minor

Alarm display

Indication

At the IOD level of the MAP display, P followed by a number (nn) and V followed by a number (nn) indicate a minor alarm. Pnn Vnn indicates a minor alarm for a pool volume.

Meaning

Vnn identifies the recording volume. The recording volume is in the recording pool. Pnn identifies the recording pool. The recording volume has less than 1 Mbyte of free space. The DIRP utility marks the recording volume INERROR.

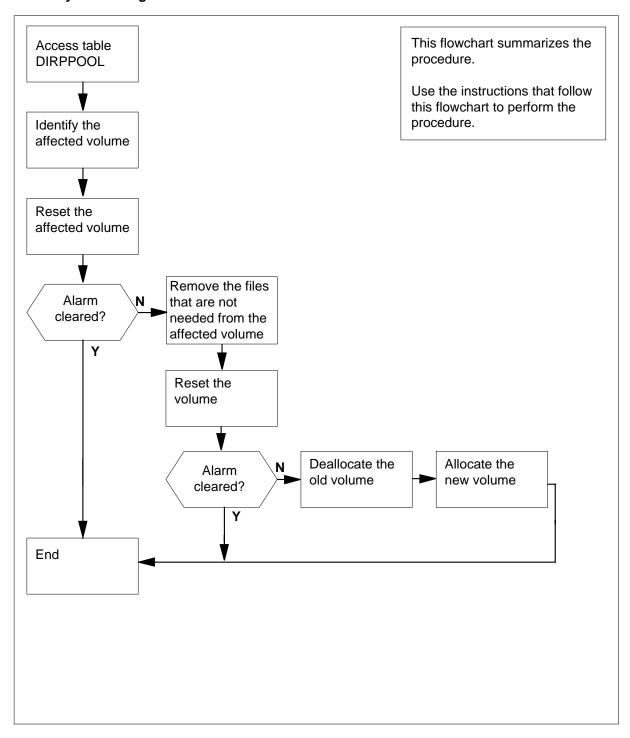
Result

Service is not affected.

Common procedures

This procedure refers to the following common procedures:

- Allocating a volume
- Deallocating a volume
- Resetting a volume


Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD PnnVnn

minor (continued)

Summary of Clearing an IOD PnnVnn minor alarm

IOD PnnVnn minor (continued)

Clearing an IOD PnnVnn minor alarm

At the MAP terminal

DANGER

Possible loss or corruption of AMA data

Use this procedure or follow it exactly. Not doing so will lose or damage automatic message accounting (AMA) data. The operating company uses AMA data to produce billings. Loss or damage of AMA data results in revenue loss for the operating company.

To access the MTC level of the MAP display, type

>MAPCI;MTC

and press the Enter key.

2 To silence the audible alarm, type

>SIL

and press the Enter key.

- 3 Note and record the time the alarm occurred. Note the pool and volume numbers indicated by nn in the PnnVnn alarm.
- To access the DIRPPOOL table, type

>TABLE DIRPPOOL

and press the Enter key.

Example of a MAP response:

MACHINES NOT IN SYNC - DMOS NOT ALLOWED JOURNAL FILE UNAVAILABLE - DMOS NOT ALLOWED TABLE: DIRPPOOL

5 To locate the pool number associated with this alarm, type

>POSITION pool_no

and press the Enter key.

where

is the pool number (nn)

Example of a MAP response:

IOD PnnVnn

minor (continued)

0	AMAPOOL REGULAR	TAPE	\$ \$	\$ \$	
\$	\$	\$	\$ \$	\$ \$	\$
\$	\$	\$	\$ \$	\$ \$	\$
\$	\$	\$	\$		

6 To list the pool number and pool name associated with this alarm, type

>POSITION pool_no;LIST

and press the Enter key.

where

pool_no

is the pool number (nn)

Example of a MAP response:

POOLNO POOLNAME POOLTYPE DEVTYPE VOLUME0 VOLUME1 VOLUME2 VOLUME3 VOLUME4 VOLUME5 VOLUME6 VOLUME7 VOLUME8 VOLUME9 VOLUME10 VOLUME11 VOLUME12 VOLUME13 VOLUME14 VOLUME15 VOLUME16 VOLUME17 VOLUME18 VOLUME19 VOLUME20 VOLUME21 VOLUME22 VOLUME23

0	AMAPOOL REGULAR	TAPE	\$ \$	\$ \$	
\$	\$	\$	\$ \$	\$ \$	\$
\$	\$	\$	\$ \$	\$ \$	\$
\$	\$	\$	\$		

7 Record the pool name that appears under the POOLNAME field.

Note: In the MAP response in the previous step, the POOLNAME is AMAPOOL.

8 Record the name of the affected volume under VOLUMEnn2.

Note: nn2 is the DIRPPOOL table volume number indicated in the alarm.

9 To exit the DIRPPOOL table, type

>LEAVE

and press the Enter key.

10 To access the DIRPSSYS table, type

>TABLE DIRPSSYS

and press the Enter key.

Example of a MAP response:

MACHINES NOT IN SYNC - DMOS NOT ALLOWED JOURNAL FILE UNAVAILABLE - DMOS NOT ALLOWED TABLE: DIRPSSYS

11 To list the tuples, type

>LIST ALL

IOD PnnVnn minor (continued)

and press the Enter key.

To record the subsystem name under the header SSYSNAME. 12

Example of a MAP response:

SSYSNAME READRITE NUMFILES MINFILES POOLNAME FILENAME ALARMO ALARM1 ALARM2 ALARM3 RETPD CRETPD PARLPOOL PARCONC MANDPALM FILEDATE SHEDDAYS SHEDBASE SHEDINCR ROTACLOS AUTOXFER SPACROTE MAXDFSIZ PRIORTIO

AMA		Y	1	0	AMAPOOL			\$	NA N	A
NA	NA	30	30	\$	N		NA	OPENED	NNNNNNN	
0 NOF	ROTATE	NC	NE	NONE	N		64	YDLO)G	Y
1	L	0 DI	JOGPOOI	_	\$	NA	N	ΙA		
NA	NA	0	0	DLOGPARL	N		NA	FIRSTACT	NNNNNNN	
0 NOF	ROTATE	BC	TH	NONE	N		6	NJF	Y	
1		0 JF	POOL		\$	NA	N	ΙA		
NA	NA	499	499	\$	N		NA	OPENED	NNNNNNN	
0 NOF	ROTATE	NC	NE	NONE	N		64	MOY	Y	
1		0 OM	IPOOL		\$	MN	N	ΙA		
NA	NA	30	30	\$	N		NA	OPENED	NNNNNN	
0 NOF	ROTATE	NC	NE	NONE	N		64	Y		

13 To exit the DIRPSSYS table, type

>LEAVE

and press the Enter key.

To access the DIRP level of the MAP display, type 14

>IOD;DIRP

and press the Enter key.

Example of a MAP display:

IOD IOC 0 1 2 STAT . L

DIRP: HOLD00 XFER: . DVI : . DPPP: . DPPU: SLM : . NX25: . MLP : .

15 For this volume, determine if the alarm occurs a second time within 5 min.

If	Do
this is the second time in 5 min- utes that the alarm has occurred	step 34
this is not the second time in 5 minutes that the alarm has occurred	step 16

IOD PnnVnn

minor (continued)

- Perform the common procedure *Resetting a volume* in this document to reset the affected volume. Complete the procedure and return to this point.
- 17 Determine if the PnnVnn alarm cleared.

If the alarm	Do
cleared	step 55
did not clear	step 18

The next step depends on the type of volume in use.

If the volume in use	Do	
is an SLM volume	step 19	
is a DDU volume	step 21	

19 To access the disk utility, type

>DISKUT

and press the Enter key.

20 To list the files on the affected volume, type

>LISTFL vol_name

and press the Enter key.

where

vol_name

is the name of the volume (nn)

Example of a MAP response:

FILE NAME	0	R	I	0	0	V	FILE	MAX	NUM OF	FILE	LAST	
	R	E	Т	Ρ	L	L	CODE	REC	RECORDS	SIZE	MODIFY	
	G	С	0	Ε	D	D		LEN	IN	IN	DATE	
			C	Ν					FILE	BLOCKS		
R9708160000300M	0	F					0	2048	164	766	970818	
R9708180000360M	0	F					Ö	2048	164	766	970819	
R9708200000410M	-	F					0	2048	164	766	970821	
R9708220000470M	0	F					0	2048	164	766	970823	

Go to step 23.

21 To access the disk utility, type

>DSKUT

and press the Enter key.

22 To list the files on the affected volume, type

>LISTVOL vol_name ALL

and press the Enter key.

where

IOD PnnVnn minor (continued)

vol name

is the name of the volume (nn)

Example of a MAP response:

>DSKUT DSKUT: >LISTVOLDO200M 2 files in the volume. ListVol may take up to 2 seconds. R9708190000360M R9708240000530M

23 To leave the disk utility, type

>QUIT

and press the Enter key.

24 Determine if the subsystem records to tape or disk.

If the subsystem	Do
records to tape	step 25
records to disk	step 27

25 To remove any files that are not needed from the affected volume, type

>CLEANUP VOLUME vol_name

and press the Enter key.

where

vol name

is the name of the volume (nn)

- 26 Perform the common procedure *Resetting a volume* in this document to reset the affected volume. Complete the procedure and go to step 29.
- 27 Perform the common procedure Deallocating a volume in this document to deallocate the volume. Complete the procedure and return to this point.
- 28 Perform the common procedure Allocating a volume in this document to allocate the volume. Complete the procedure and return to this point.
- 29 Determine if the PnnVnn alarm cleared.

If the alarm	Do
cleared	step 55
did not clear	step 30

- 30 Check office records for an available recording volume.
- 31 Perform the common procedure *Deallocating a volume* in this document to deallocate the full volume. Complete the procedure and return to this point.

IOD PnnVnn

minor (continued)

- Perform the common procedure *Allocating a volume* in this document to allocate a new volume. Complete the procedure and return to this point.
- 33 Determine if the PnnVnn alarm cleared.

If the alarm	Do
cleared	step 55
did not clear	step 54

34 Contact your maintenance support group and inform them about the condition.

If your maintenance support group instructs you	Do
to continue this procedure	step 35
not to continue this procedure	step 54

- Perform the common procedure *Deallocating a volume* in this document to deallocate the affected volume. Complete the procedure and return to this point.
- Perform the common procedure *Allocating a volume* in this document to attempt to allocate the affected volume again. Complete the procedure and return to this point.
- **37** Determine if the volume allocated again.

If the volume	Do
allocated again	step 38
did not allocate again	step 39

38 Determine if the PnnVnn alarm cleared.

If the alarm	Do
cleared	step 55
did not clear	step 39

- Perform the common procedure *Deallocating a volume* in this document to deallocate the affected volume. Complete the procedure and return to this point.
- The next step depends on the type of volume in use.

If the volume in use	Do
is an SLM volume	step 41

IOD PnnVnn minor (continued)

If the volume in use	Do
is a DDU volume	step 43

41 To access the disk utility, type

>DISKUT

and press the Enter key.

Go to step 44.

42 To list the files on the affected volume, type

>LISTFL vol_name

and press the Enter key.

where

vol name

is the name of the volume (nn)

Example of a MAP response:

FILE NAME	0	R	I	0	V C	FILE	MAX	NUM OF	FILE	LAST	
	R	Ε	Т	P	LЬ	CODE	REC	RECORDS	SIZE	MODIFY	
	G	C	0	E	D O		LEN	IN	IN	DATE	
			С	N				FILE	BLOCKS		
R9708160000300M	0	F				0	2048	164	766	970818	
R9708160000300M R9708180000360M	•	F F				0	2048 2048	164 164	766 766	970818 970819	
	0	-				0 0 0					

43 To access the disk utility, type

>DSKUT

and press the Enter key.

44 To list the files on the affected volume, type

>LISTVOL vol name ALL

and press the Enter key.

where

is the name of the volume (nn)

Example of a MAP response:

>DSKUT DSKUT: >LISTVOLDO200M 2 files in the volume. ListVol may take up to 2 seconds. R9708190000360M R9708240000530M

IOD PnnVnn

minor (end)

45 To leave the disk utility, type

>QUIT

and press the Enter key.

46 Determine if the subsystem records to tape or disk.

If the subsystem	Do	
records to tape	step 51	
records to disk	step 47	

To remove any files that are not needed from the affected volume, type

>CLEANUP VOLUME vol_name

and press the Enter key.

where

vol name

is the name of the volume (nn)

- 48 Determine from office records the location of an available disk volume for recording subsystem data.
- Perform the common procedure *Allocating a volume* in this document to allocate the affected volume again. Complete the procedure and return to this point.
- **50** Go to step 53.
- Perform the common procedure *Deallocating a volume* in this document to deallocate the tape volume. Complete the procedure and return to this point.
- **52** Perform the common procedure *Allocating a volume* in this document to allocate the tape volume. Complete the procedure and return to this point.
- 53 Determine if the PnnVnn alarm cleared.

If the alarm	Do
cleared	step 55
did not clear	step 54

- For additional help, contact the next level of support.
- **55** The procedure is complete.

IOD POOLnn minor

Alarm display

Indication

At the IOD level of the MAP display, POOL followed by a number (nn) indicates a pool minor alarm.

Meaning

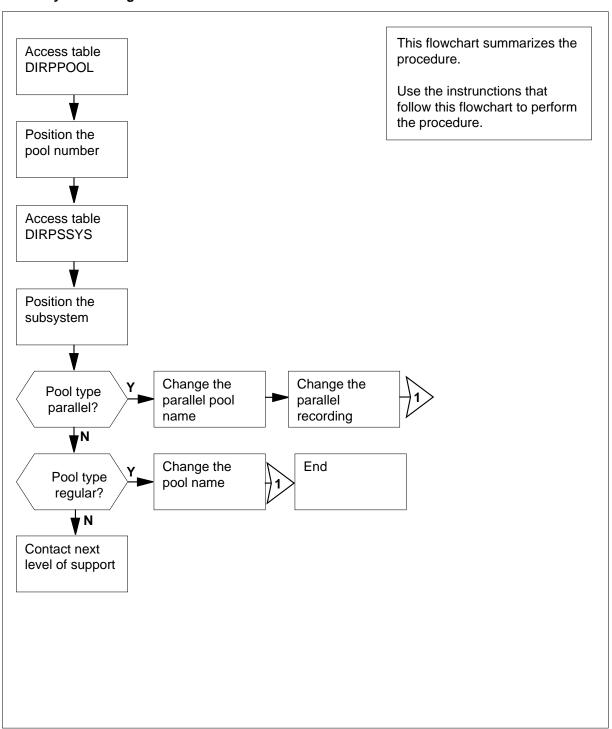
The data entries in table DIRPPOOL contain a pool. The data entries in table DIRPSSYS do not contain a pool.

Result

Service is not affected.

Common procedures

There are no common procedures.


Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure to clear the alarm.

IOD POOLnn

minor (continued)

Summary of Clearing an IOD POOLnn minor alarm

IOD POOLnn minor (continued)

Clearing an IOD POOLnn minor alarm

At the MAP terminal

- Record the pool number in the alarm (nn is the pool number).
- To access the DIRPPOOL table, type 2

>TABLE DIRPPOOL

and press the Enter key.

Example of a MAP response:

MACHINES NOT IN SYNC - DMOS NOT ALLOWED JOURNAL FILE UNAVAILABLE - DMOS NOT ALLOWED TABLE: DIRPPOOL

3 To position the tuple for the subsystem REGULAR pool, type

>POSITION pool no;LIST

and press the Enter key.

where

pool no

is the pool number (nn)

Example of a MAP response:

POOLNO POOLNAME POOLTYPE DEVTYPE VOLUMEO VOLUME1 VOLUME2 VOLUME3 VOLUME4 VOLUME5 VOLUME6 VOLUME7 VOLUME8 VOLUME9 VOLUME10 VOLUME11 VOLUME12 VOLUME13 VOLUME14 VOLUME15 VOLUME16 VOLUME17 VOLUME18 VOLUME19 VOLUME20 VOLUME21 VOLUME22 VOLUME23

0	ssys	POOL	REGULAR	TAPE	\$		\$	\$
	\$	\$	\$	\$	\$:	\$	\$
	\$		\$	\$	\$	\$	\$	
	\$		\$	\$	\$	\$	\$	
	Т1	Т	2					

Record the device type shown in the DEVTYPE field, the pool name shown in the POOLNAME field, and the pool number shown in the POOLNO field.

> **Note:** For example in the MAP response in the previous step, the device type is TAPE, the pool name is ssysPOOL, and the pool number is 0.

5 To exit the DIRPPOOL table, type

>LEAVE

and press the Enter key.

To access table DIRPSSYS, type 6

>TABLE DIRPSSYS

and press the Enter key.

IOD POOLnn

minor (continued)

Example of a MAP response:

MACHINES NOT IN SYNC - DMOS NOT ALLOWED JOURNAL FILE UNAVAILABLE - DMOS NOT ALLOWED TABLE: DIRPSSYS

7 To position on the subsystem, type

>POSITION ssys;LIST

and press the Enter key

where

ssys

is the name of the subsystem.

Example of a MAP response:

SYSNAME READWRITE NUMFILES MINFILES POOLNAME FILENAME ALARMO ALARM1 ALARM2 ALARM3 RETPD CRETPD PARLPOOL PARCONC MANDPALM FILEDATE SHEDDAYS SHEDBASE SHEDINCR ROTACLOS AUTOXFER SPACROTE MAXDFSIZ PRORTID

AMA		Y	1	0	AMADISK		\$	NA	NA
NA	NA	0	0	\$	N	NA	OPENED	NNNNN.	NN
14	NOROT	ATE	BOTH	FULL	N	64	Y		

8 Determine if the pool type is parallel.

If the pool type	Do
is parallel	step 10
is not parallel	step 9

9 Determine if the pool type is regular.

If the pool type	Do
is regular	step 13
is not regular	step 21

To change the name of the parallel pool, type

>CHANGE PARLPOOL pool_name

and press the Enter key.

where

pool name

is the pool name determined in step 4

Example of a MAP response:

IOD POOLnn minor (continued)

MACHINES NOT IN SYNC - DMOS NOT ALLOWED JOURNAL FILE UNAVAILABLE - DMOS NOT ALLOWED ENTER Y TO CONTINUE PROCESSING OR N TO QUIT

11 To confirm the command, type

>Y

and press the Enter key.

12 To change the parallel recording, type

>CHANGE PARCON Y

and press the Enter key.

Example of a MAP response:

TYPE OF PARLPOOL IS POOLNAMESR TYPE IS POOLNAMESR {AMAPOOL, OMPOOL, JFPOOL, OCCPOOL, OCCDISK, DLOGPOOL, DLOGPARL\$ } PARLPOOL:

Go to step 18.

13 To change the pool name, type

>CHANGE POOLNAME pool name

and press the Enter key.

where

pool name

is the pool name determined in step 4

14 Determine if you want to continue to change the pool name.

If you	Do
want to continue	step 15
do not want to continue	step 16

15 To confirm the change, type

>YES

and press the Enter key.

Go to step 18.

16 To halt the change, type

>NO

and press the Enter key.

IOD POOLnn

minor (end)

17 To leave the table, type

>LEAVE

and press the Enter key.

Go to step 22.

18 To leave the table, type

>LEAVE

and press the Enter key.

19 To return to the DIRP level of the MAP display, type

>MAPCI;MTC;IOD;DIRP

and press the Enter key.

20 Determine if the POOLnn alarm cleared.

If the alarm	Do
cleared	step 22
did not clear	step 21

- 21 For additional help, contact the next level of support.
- The procedure is complete.

IOD SCAX25 major

Alarm display

Indication

At the IOD level of the MAP (maintenance and administration position) display, SCAX25 indicates a fault with the IOC link for CompuCALL.

Meaning

A problem exists

- inside the central office (CO) with connections at the host
- outside the CO with either
 - the data link or
 - the customer premises equipment (CPE)

If the problem is inside the CO, the CO maintenance personnel need

- to check physical connections
- to verify the session is logged on
- to perform a continuity test for a switch-computer application interface (SCAI)

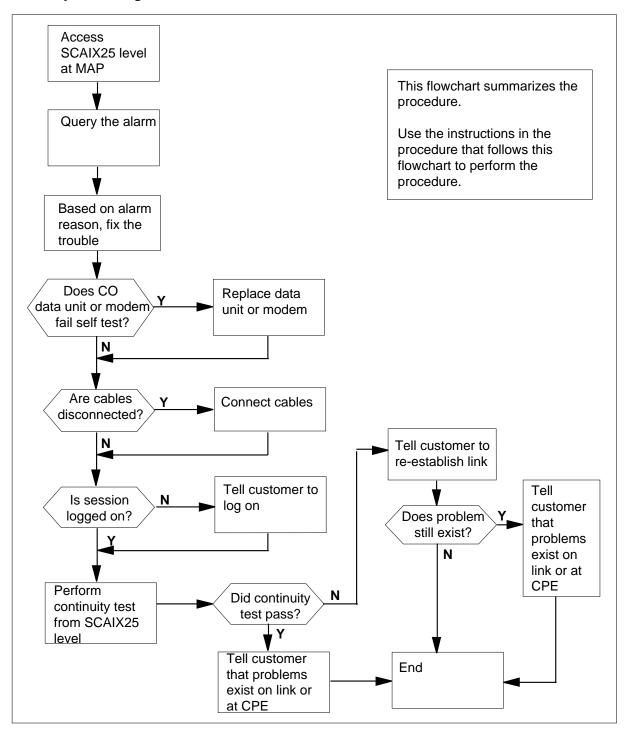
If the problem is outside the CO, the CO maintenance personnel must contact the appropriate field service personnel. Inform the field service personnel that a problem exists with either the data link or the CPE.

Impact

The CompuCALL session cannot be activated.

Common procedures

Not applicable


Action

The following flowchart is only a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD SCAX25

major (continued)

Summary of clearing an IOD SCAX25 alarm

IOD SCAX25 major (continued)

Clearing an IOD SCAX25 alarm

At the MAP terminal

Access the SCAIX25 level of the MAP display by typing

>MAPCI;MTC;IOD;SCAIX25

and pressing the Enter key.

2 Query the alarms by entering

>QUERY ALARM

and pressing the Enter key.

Example of a MAP display:

Status	M	L	C	Remote_ DNA	Protocol	Reason
CRIT	0	2	1	01208097	DMS LVL3	reset

3 Check the text in the Reason field. The MAP display states the SCAI link is clear or states a reason for a problem.

If the reason displayed is	Do
iDMS LVL3 reset	step 4
multiprotocol controller (MPC) SysBusied	step 4
MPC link reset	step 4
SCAI application clear	step 5
Host call cleared	step 9
Host LVL3 reset	step 9

4 Exit the SCAIX25 MAP level by typing

>QUIT

and pressing the Enter key.

IOD SCAX25

major (continued)

At the IOD shelf

To verify the operation of the CO data unit, perform a self test on the NT4X25 data unit.

Lift the flip-up lid of the data unit. Toggle the self-test/normal option switch to the self-test position and then toggle it back to the normal position.

You will hear a short beep. After a short delay, all light-emitting diodes (LED) on the data unit illuminate for approximately four seconds.

If the directory number LEDs flash, the system indicates a self-test failure.

You will hear a short beep. All LEDs turn off except the power LED.

If the CO data unit	Do
fails the self test	step 6
passes the self test	step 7

- **6** Replace the data unit with a new data unit.
- 7 Check for disconnected cables between the MPC circuit pack and the data unit or modem. Also check between the data unit or modem and the jack.

The 32-pin connector of the cable connects to either port 2 or port 3 of the MPC circuit pack.

The 25-pin connector of the cable connects to the data unit or modem.

The data unit or modem connects to the jack by a cable with RJ11 connectors. If the connect light on the data unit flashes, either the data unit is bad or you must disconnect the cable.

If you	Do
find disconnected cables	step 8
do not find disconnected cables	step 9

8 Connect the disconnected cables.

At the MAP terminal

9 The problem is not located inside the CO.

Access the IOD level of the MAP display by typing

>MAPCI;MTC;IOD

and pressing the Enter key.

10 Post the MPC by typing

>IOC n; CARD y

and pressing the Enter key.

where

IOD SCAX25 major (end)

is the number of the IOC shelf the MPC resides

У is the number of the MPC card

11 Determine if the session is logged on. An" L" means the session is logged

If the session	Do
is not logged on	step 12
is logged on	step 13

12 Inform the subscriber the session is not logged on. The subscriber must log on to clear the problem.

Go to step 18.

13 Access the SCAIX25 level of the MAP display by typing

>SCAIX25

and pressing the Enter key.

14 Perform an SCAI continuity test by typing

>SCAITEST

and pressing the Enter key.

If the test	Do
fails	step 15
passes	step 16

15 Tell the subscriber to establish the link again and to log on.

If the trouble	Do
still exists	step 17
no longer exists	step 18

- 16 Inform operating company personnel a problem is present in the data link outside the CO or with the customer premises equipment.
- 17 For additional help, contact the next level of support.
- You have successfully completed this procedure. 18

IOD SENDn minor

Alarm display

Indication

At the IOD level of the MAP display, SEND followed by a number (n) indicates a SENDn minor alarm.

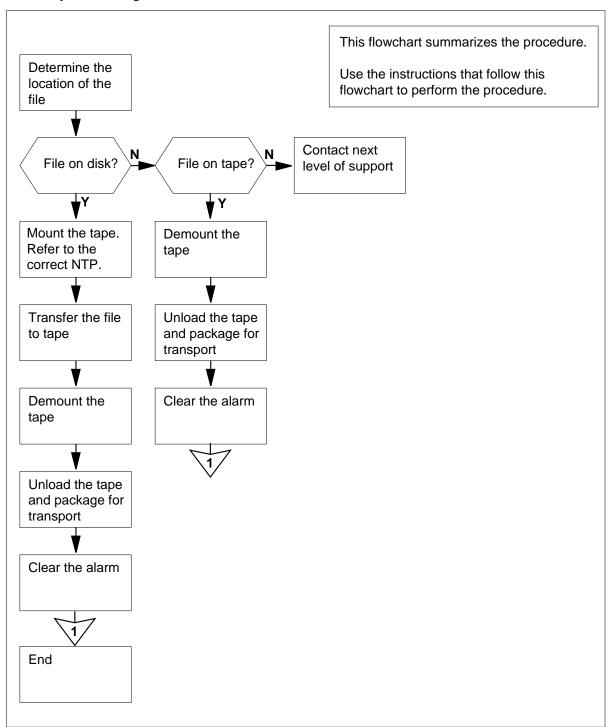
Meaning

Data tape on a recording device requires transport to a remote data center. The number after SEND represents the number of the recording device that holds the mounted tape.

Result

Service is not affected.

Common procedures


This procedure refers to *How to allocate a volume*.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure to clear the alarm.

minor (continued)

Summary of Clearing an IOD SENDn minor alarm

minor (continued)

Clearing an IOD SENDn minor alarm

At the MAP terminal

1 To access the transfer (XFER) level of the MAP display, type

>MAPCI;MTC;IOD;XFER

and press the Enter key.

2 To list the files requested by the data center, type

>QUERY SENT

and press the Enter key.

3 Determine where the file is stored. Note the number in the HOLDNO field, and the volume name in the FILE_LOCN field.

If the file storage	Do
is on disk	step 4
is on tape	step 11

- 4 Determine from office records the location of an available magnetic tape drive (MTD). Record the MTD number.
- 5 Perform the correct procedure in *Routine Procedures* to mount the tape. Complete the procedure and return to this point.
- **6** Transfer the file to tape. Use the file noted in step 2. Type

>DIRPCOPY file_name dev_name

and press the Enter key.

where

file_name

is the name of the file noted in step 2

dev name

is the name of the device the file is on

7 To demount the tape from the MTD, type

>DIRPCOPY tape_name dev_name

and press the Enter key.

where

tape name

is the name of the tape the file is on

dev_name

is the name of the device

At the shelf

8 Unload the tape from the MTD and package the tape. Transport the tape to a remote data center.

minor (continued)

At the MAP terminal

To clear the alarm, type

>SENT nn

and press the Enter key.

where

nn

is the number that appears in the alarm

10 Determine if the SENDn alarm cleared.

If the alarm	Do	
cleared	step 22	
did not clear	step 2	

- 11 Determine from office records the MTD holds the tape.
- 12 To access the DIRP level of the MAP display, type

>DIRP

and press the Enter key.

13 To determine if the file that will transfer is the active file, type

>QUERY ssys FILE

and press the Enter key.

where

is the affected subsystem

If the file	Do
is active	step 14
is not active	step 16

- 14 To allocate the DIRP disk recording volumes, perform the common procedure Allocating a volume in this document. Complete the procedure and return to this point.
- 15 To make the new volume the active volume, type

>ROTATE ssys_name REGULAR

and press the Enter key.

where

ssys name

is the affected subsystem

16 To demount the tape, type

>DMNT ssys_name vol_name

minor (end)

and press the Enter key.

where

ssys_name

is the affected subsystem

vol name

is the name of the volume

At the shelf

Unload the tape from the MTD. Prepare to transport the tape to the remote data center.

At the MAP terminal

18 To access the XFER level of the MAP display, type

>XFER

and press the Enter key.

19 To clear the SENDn alarm, type

>SENT nn

and press the Enter key.

where

nn

is the number that appears in the alarm

20 Determine if the SENDn alarm cleared.

If the alarm	Do
cleared	step 22
did not clear	step 21

- 21 For additional help, contact the next level of support.
- The procedure is complete.

IOD SLMbsy major

Alarm display

Indication

At the MTC level of the MAP display, SLMbsy appears under the IOD header of the alarm banner. The SLMbsy indicates an SLMbsy major alarm.

Meaning

At least one system load module (SLM) is system busy.

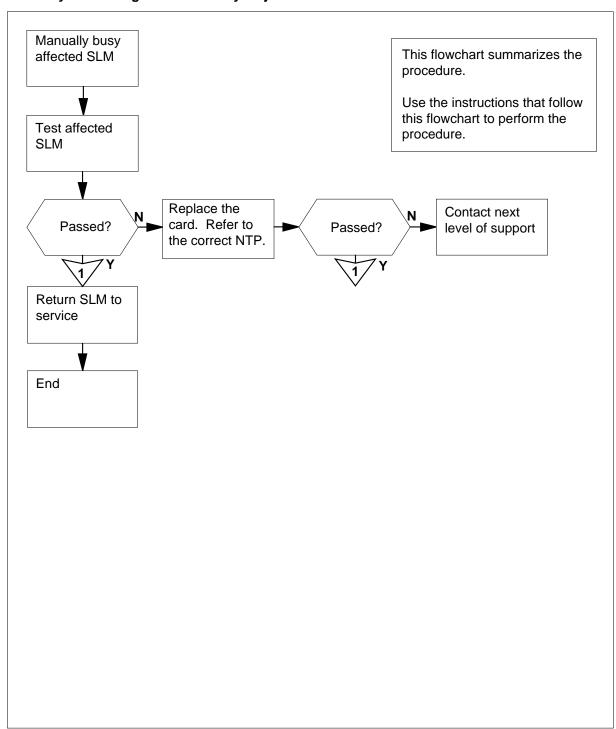
Result

If one SLM is system busy, service can continue. For service to continue, the b7otable computing module (CM) and message switch (MS) files must be on the in service SLM. Service loss occurs if a reload initiates and both SLMs are system busy. Service loss can occur if the only bootable CM and MS files are located on a system busy SLM.

If one SLM is system busy and the in-service SLM has enough recording volumes, the system maintains billing service information. If both SLMs are system busy, loss of billing service information occurs. If one SLM is system busy, and the other does not have enough recording volumes, loss of billing service information occurs. Automatic message accounting (AMA) is an example of billing service information.

Common procedures

There are no common procedures.


Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD SLMbsy

major (continued)

Summary of Clearing an IOD SLMbsy major alarm

IOD SLMbsy major (continued)

Clearing an IOD SLMbsy major alarm

At the MAP terminal

To access the SLM level of the MAP display, type

>MAPCI; MTC; IOD; SLM

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2 3
STAT .
DIRP:
           XFER:
                       DVI :
                                   DPPP:
                                               DPPU:
NOP :
                       NX25:
                                   MLP :
           SLM :
                                               SCAI:
SLM
      0 1
Stat S
SLM 0 primary
                       device
                                   TAPE
                                               DISK
                       status
                                   idle
                                               on line
                       drive
                                               SYSTEM
                       user
```

2 Determine the state of the SLMs.

> **Note:** The letter S to the right side of the SLM stat header means that the associated SLM is system busy. A dot means that the SLM is in service.

If state of	Do	
both SLMs is s	step 21	
one SLM is s	step 3	

3 Determine which SLM is the primary SLM.

> **Note:** The line under the SLM stat header shows the primary SLM. The other SLM is, by default, the secondary SLM. In step 1, the primary SLM is SLM 0.

4 Determine if the system busy SLM is the primary or secondary SLM.

If the system busy SLM	Do	
is the primary SLM	step 5	
is the secondary SLM	step 8	

To access the CMMNT level of the MAP display, type 5

>CM; CMMNT

IOD SLMbsy

major (continued)

and press the Enter key.

Example of a MAP display:

CM Sync Act CPU0 CPU1 Jam Memory CMMnt MC PMC 0 no cpu 0 . . . yes

Traps: Per minute = 0 Total = 5

AutoLdev: Primary = SLM 0 DISK Secondary = SLM 1 DISK

Image Restartable = No image test since last restart

Next image restart type = WARM

Last CM REXTST executed

System memory in kbytes as of 14:39:07
Memory(kbytes): Used =105984 Avail = 12800 Total = 118784

To change the primary autoload device to a device in the other SLM, type

>AUTOLD SLM slm_number device_type

and press the Enter key.

where

slm number

is the number of the SLM that is not system busy (0 or 1)

device_type

is the type of SLM device (DISK or TAPE)

Example input:

>AUTOLD SLM 1 DISK

Example of a MAP response:

New autoload route has been set.

7 Determine which SLM is the secondary SLM.

Note: The secondary SLM appears to the right side of the AutoLdev header. In step 5, the secondary SLM is SLM 1.

At the SLM shelf

8 Determine if the secondary SLM has a tape cartridge.

If a tape cartridge	Do
is present	step 9
is not present	step 10

IOD SLMbsy major (continued)

- 9 Remove the tape cartridge from the SLM and store the cartridge.
- 10 Insert a blank tape cartridge.

At the MAP terminal

11 To access the secondary SLM, type

>IOD;SLM slm_number

and press the Enter key.

where

slm_number

is the number of the SLM (0 or 1) containing the secondary autoload device

12 To make the secondary SLM manually busy, type

>BSY

and press the Enter key.

If the BSY command	Do
passed	step 13
failed	step 21

13 To test the secondary SLM, type

>TST

and press the Enter key.

If the TST command	Do
passed	step 17
failed, and the system generated a card list	step 14

- 14 Record the location, description, slot number, product engineering code (PEC) and PEC suffix of the first card on the list.
- Perform the correct card replacement procedure in Card Replacement 15 Procedures. Complete the procedure and return to this point.
- 16 Go to step 18.
- 17 To return the SLM to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 18
failed	step 21

IOD SLMbsy

major (end)

18 Determine if the other SLM is system busy.

If the state of the other SLM	Do
is s	step 5
is not s	step 19

19 Determine if the SLMbsy major alarm cleared.

If the alarm	Do
cleared	step 22
did not clear	step 21
changed to another alarm	step 20

- 20 Perform the correct alarm clearing procedure.
- 21 For additional help, contact the next level of support.
- The procedure is complete.

IOD SLMbsy minor

Alarm display

Indication

At the MTC level of the MAP display, SLMbsy appears under the IOD header of the alarm banner. The SLMbsy indicates an SLMbsy minor alarm.

Meaning

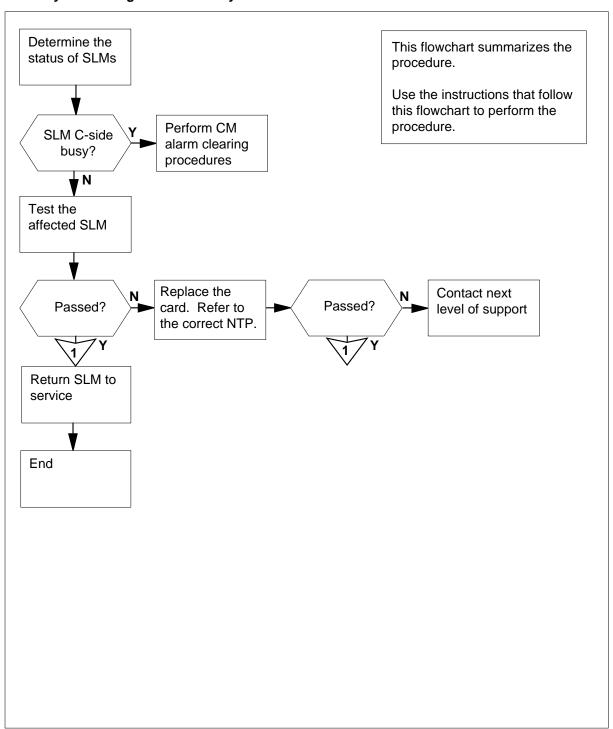
One system load module (SLM) is control-side (C-side) or manual busy.

Result

Service is not affected.

Common procedures

There are no common procedures.


Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure to clear the alarm.

IOD SLMbsy

minor (continued)

Summary of Clearing an IOD SLMbsy minor alarm

IOD SLMbsy minor (continued)

Clearing an IOD SLMbsy minor alarm

At the MAP terminal

To access the SLM level of the MAP display, type

>MAPCI; MTC; IOD; SLM

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2 3
STAT .
DIRP:
            XFER:
                        DVI :
                                    DPPP:
                                                DPPU:
NOP :
                        NX25:
                                    MLP :
            SLM :
                                                SCAI:
SLM
      0 1
Stat S
SLM 0 primary
                        device
                                    TAPE
                                                DISK
                        status
                                    idle
                        drive
                                                on line
                                                SYSTEM
                        user
```

2 Determine the state of the SLMs.

> Note: The letter C on the right of the SLM Stat header means that the associated SLM is C-side busy. The letter M indicates the SLM is manual busy. A dot indicates the SLM is in service.

If state of	Do
one SLM is C	step 20
both SLMs are C	step 21
one SLM is M	step 3
both SLMs are M	step 7

3 Determine which SLM is the primary SLM.

> **Note:** The entry under the SLM Stat header shows the primary SLM. The other SLM is the secondary SLM. In the MAP display in step 1, the primary SLM is SLM 0.

Determine if the manual busy SLM is the primary or secondary SLM.

If the manual busy SLM	Do	
is the primary SLM	step 5	

IOD SLMbsy

minor (continued)

If the manual busy SLM	Do	
is the secondary SLM	step 8	

5 To access the CMMNT level of the MAP display, type

>CM; CMMNT

and press the Enter key.

Example of a MAP display:

```
CM Sync Act CPU0 CPU1 Jam Memory CMMnt MC PMC 0 no cpu 0 . . yes . . . . . .

Traps: Per minute = 0 Total = 5

AutoLdev: Primary = SLM 0 DISK Secondary = SLM 1 DISK

Image Restartable = No image test since last restart

Next image restart type = WARM

Last CM REXTST executed

System memory in kbytes as of 14:39:07
```

6 To change the primary autoload device to a device in the other SLM , type

Memory(kbytes): Used =105984 Avail = 12800 Total = 118784

>AUTOLD SLM slm_number device_type

and press the Enter key.

where

slm number

is the number of the SLM that is not manual busy (0 or 1)

device type

is the SLM device type (DISK or TAPE)

Example input:

>AUTOLD SLM 1 DISK

Example of a MAP response:

New autoload route has been set.

7 Determine which SLM is the secondary SLM.

Note: The entry under the SLM Stat header indicates the primary SLM. The other SLM is the secondary SLM. In the MAP display in step 1, the secondary SLM is SLM 1.

IOD SLMbsy minor (continued)

At the SLM shelf

8 Determine if the secondary SLM holds a tape cartridge.

If the secondary SLM	Do
contains a tape cartridge	step 9
does not contain a tape cartridge	step 10

- 9 Remove the tape cartridge from the SLM and store the cartridge.
- 10 Insert a blank tape cartridge.

At the MAP terminal

11 To access the secondary SLM, type

>IOD;SLM slm_number

and press the Enter key.

where

slm number

is the number of the secondary SLM (0 or 1)

To test the secondary SLM, type 12

>TST

and press the Enter key.

If the TST command	Do
passed	step 16
failed, and a card list generates	step 13

- 13 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- 14 Perform the correct card replacement procedure in Card Replacement *Procedures.* Complete the procedure and return to this point.
- 15 Go to step 17.
- 16 To return the secondary SLM to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 17
failed	step 22

IOD SLMbsy

minor (end)

17 Determine if the other SLM is manual busy.

If the state of the other SLM	Do
is M	step 5
is not M	step 18

18 Determine if the SLMbsy minor alarm cleared.

If the alarm	Do
cleared	step 23
changed to another alarm	step 19
did not clear	step 22

- 19 Perform the correct procedure in this document to clear an alarm.
- **20** Perform the procedure *Clearing a CM PMCTbl minor alarm* described in this document.
- 21 Perform the procedure *Clearing a CM PMCFlt major alarm* described in this document.
- **22** For additional help, contact the next level of support.
- The procedure is complete.

IOD SLMoff minor

Alarm display

Indication

At the MTC level of the MAP display, SLMoff appears under the IOD header of the alarm banner. The SLMoff indicates an SLMoff minor alarm.

Meaning

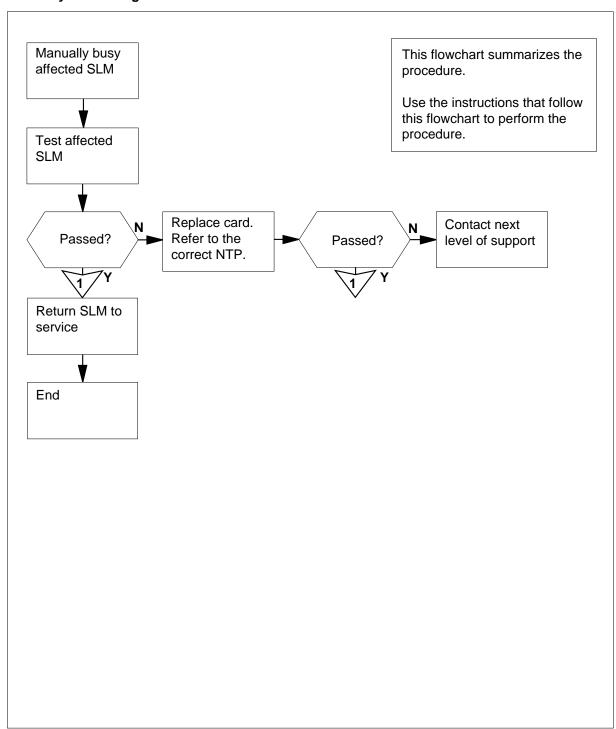
One system load module (SLM) is offline.

Result

Service continues if one SLM is offline and a computing module (CM) and message switch (MS) files can boot. The CM and MS can boot when they are on the in-service SLM. An initiated reload can cause the loss of service when both SLMs are offline. The loss of service also occurs when only bootable CM or MS files are on an offline SLM.

If one SLM is offline and an in-service SLM that contains enough recording volumes can maintain billing service information. An example of billing service information is automatic message accounting (AMA) data. The loss of billing service information occurs when both SLMs are offline. The loss of billing service information also occurs when the correct amount of recording volumes are not on the in-service SLM.

Common procedures


There are no common procedures.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure to clear the alarm.

minor (continued)

Summary of Clearing a CM SLMLim minor alarm

minor (continued)

Clearing an IOD SLMoff minor alarm

At the MAP terminal

Maintenance persons have put one or both SLMs offline. Determine if you can return the SLMs to service.

If you	Do
have permission to return the SLMs to service	step 2
do not have permission to return the SLMs to service	step 23

At the MAP terminal

2 To access the SLM level of the MAP display, type

>MAPCI;MTC;IOD;SLM

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0
STAT .
DIRP: .
           XFER: .
                       DVI: .
                                 DPPP: .
                                             DPPU:
NOP: .
           SLM: .
                       NX25: .
                                 MLP: .
                                             SCAI:
SLM
     0 1
Stat 0
                              TAPE
SLM 0
       primary
                   device
                                              DISK
                   status
                   drive
                               idle
                                              on line
                                              SYSTEM
                   user
```

3 Determine the status of the SLMs.

> Note: The letter O on the right of the SLM Stat header indicates that the associated SLM is offline. A dot means that the SLM is in service.

If the state of	Do
both SLMs is O	step 8
one SLM is O	step 4

minor (continued)

4 Determine which SLM is the primary SLM.

Note: The entry under the SLM Stat header indicates the primary SLM; the other SLM is the secondary SLM. In the MAP in step 2, the primary SLM is SLM $_{0}$.

5 Determine if the offline SLM is the primary or secondary SLM.

If the offline SLM	Do
is the primary SLM	step 6
is the secondary SLM	step 9

6 To access the CMMNT level of the MAP display, type

>CM; CMMNT

and press the Enter key.

Example of a MAP display:

```
CM
    Sync Act CPU0 CPU1 Jam Memory
                                        CMMnt
                                               MC
                                                   PMC
     no cpu 0
                            yes
            Per minute =
                                    Total =
Traps:
AutoLdev:
            Primary = SLM 0 DISK Secondary = SM 1 DISK
Image Restartable = No image test since last restart
Next image restart type =
                          WARM
Last CM REXTST executed
System memory in kbytes as of 14:39:07
Memory(kbytes):Used = 105984 Avail = 12800 Total = 118784
```

7 To change the primary autoload device to a device in the other SLM , type

```
>AUTOLD SLM slm_number device_type and press the Enter key.
```

where

```
slm number
```

is the number of the SLM that is not offline (0 or 1)

device type

is the type of SLM device (DISK or TAPE)

Example input

>AUTOLD SLM 1 DISK

minor (continued)

8 Determine which SLM is the secondary SLM.

> **Note:** The secondary SLM is on the right of the AutoLdev header. In step 6, the secondary SLM is SLM 1.

At the SLM

9 Determine if the secondary SLM holds a tape cartridge.

If a tape cartridge	Do
is present	step 10
is not present	step 11

- 10 Remove the tape cartridge from the SLM and store the cartridge.
- 11 Insert a blank tape cartridge.

At the MAP terminal

12 To access the secondary SLM, type

>IOD;SLM slm_number

and press the Enter key.

where

slm number

is the number of the secondary SLM (0 or 1)

13 To manually busy the secondary SLM, type

>BSY

and press the Enter key.

If the BSY command	Do
passed	step 14
failed	step 22

14 To test the secondary SLM, type

>TST

and press the Enter key.

If the TST command	Do
passed	step 18
failed, and the system generated a card list	step 15

15 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.

minor (end)

- Perform the correct card replacement procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.
- **17** Go to step 19.
- **18** To return the SLM to service, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 19
failed	step 22

19 Determine if the other SLM is offline.

If the state of the other SLM	Do
is O	step 6
is not O	step 20

20 Determine if the SLMoff minor alarm cleared.

If the alarm	Do
cleared	step 23
changed to another alarm	step 21
did not clear	step 22

- 21 Perform the correct alarm clearing procedure in this document.
- 22 For additional help, contact the next level of support.
- The procedure is complete.

IOD SLMtbl minor

Alarm display

Indication

At the MTC level of the MAP display, SLMtbl appears under the IOD header of the alarm banner. SLMtbl indicates an SLMtbl minor alarm.

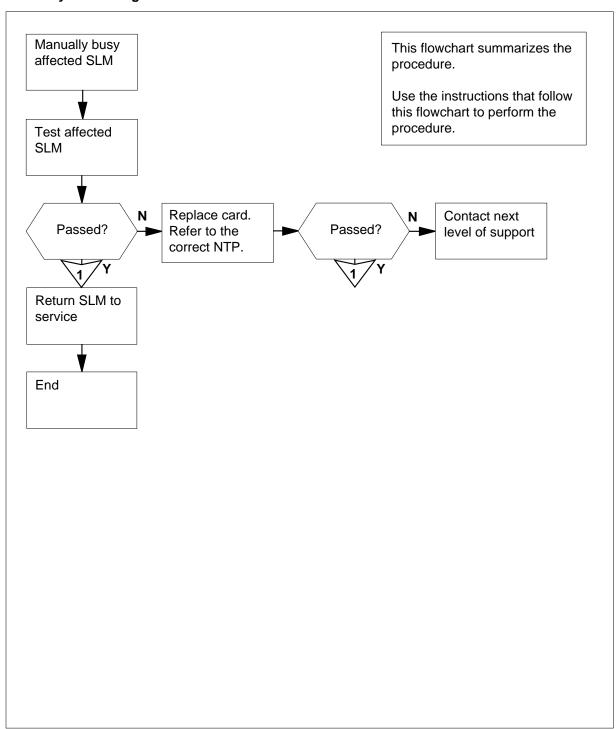
Meaning

At least one system load module (SLM) is in-service trouble.

Result

The condition does not affect service.

Common procedures


There are no common procedures.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

minor (continued)

Summary of Clearing an IOD SLMtbl minor alarm

minor (continued)

Clearing an IOD SLMtbl minor alarm

At the MAP terminal

To access the SLM level of the MAP display, type

>MAPCI; MTC; IOD; SLM

and press the Enter key.

Example of a MAP display:

```
IOD
IOC 0 1 2 3
STAT .
DIRP:
            XFER:
                        DVI:
                                   DPPP:
                                              DPPU:
NOP: .
                        NX25:
                                   MLP :
                                              SCAI:
            SLM : .
SLM
      0 1
Stat
     I
                                TAPE
                                            DISK
SLM 0
        primary
                    device
                    status
                    drive
                                idle
                                            on line
                    user
                                            SYSTEM
```

2 Determine the state of the SLMs.

> Note: The letter I on the right side of the SLM Stat header means that the associated SLM is in-service trouble. A dot means that the SLM is in service.

If state of	Do
both SLMs are I	step 7
one SLM is I	step 3

3 Determine the SLM that is the primary SLM.

> **Note:** The entry under the SLM Stat header shows the primary SLM; the other SLM is the secondary SLM. In the example MAP display in step 1, the primary SLM is SLM 0.

4 Determine if the SLM with in-service trouble is the primary or secondary SLM.

If the SLM with in-service trouble	Do
is the primary SLM	step 5
is the secondary SLM	step 8

minor (continued)

5 To access the CMMNT level of the MAP display, type

>CM; CMMNT

and press the Enter key.

Example of a MAP display:

CM Sync Act CPU0 CPU1 Jam Memory CMMnt MC PMC 0 no cpu 0 . . yes

Traps: Per minute = 0 Total = 5

AutoLdev: Primary = SLM 0 DISK Secondary = SLM 1 DISK

Image Restartable = No image test since last restart

Next image restart type = WARM

Last CM REXTST executed

System memory in kbytes as of 14:39:07
Memory(kbytes):Used = 105984 Avail = 12800 Total = 118784

6 To change the primary autoload device to a device in the other SLM, type

>AUTOLD SLM slm_number device_type

and press the Enter key.

where

slm_number

is the number of the SLM that is in service (0 or 1)

device_type

is the type of SLM device (DISK or TAPE)

Example input:

>AUTOLD SLM 1 DISK

7 Determine the SLM that is the secondary SLM.

Note: The entry under the SLM Stat header shows the primary SLM. The other SLM is the secondary SLM. In the example MAP display in step 1, the secondary SLM is SLM 1.

At the SLM shelf

8 Determine if the secondary SLM contains a tape cartridge.

Ifa tape cartridge	Do
is present	step 9
is not present	step 10

minor (continued)

- 9 Remove the tape cartridge from the SLM and store the cartridge.
- 10 Insert a blank tape cartridge.

At the MAP display

11 To access the secondary SLM, type

>IOD;SLM slm_number

and press the Enter key.

where

slm number

is the number of the secondary SLM (0 or 1)

12 To make the secondary SLM manually busy, type

>BSY

and press the Enter key.

If the BSY command	Do
passed	step 13
failed	step 12

13 To test the secondary SLM, type

and press the Enter key.

If the TST command	Do
passed	step 17
failed, and the system generated card list	a step 14

- Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list. 14
- Perform the correct procedure in Card Replacement Procedures. Complete 15 the procedure and return to this point.
- 16 Go to step 18.
- 17 To enable the secondary SLM, type

>RTS

and press the Enter key.

If the RTS command	Do
passed	step 18
failed	step 21

minor (end)

18 Determine if the other SLM has in-service trouble.

If the state of the other SLM	Do
is I	step 5
is . (dot)	step 19

19 Determine if the other SLM has in-service trouble.

If the alarm	Do
cleared	step 22
changed to another alarm	step 20
did not clear	step 21

- 20 Perform the correct alarm clearing procedure in this document.
- 21 For additional help, contact the next level of support.
- The procedure is complete.

IOD ssys B critical

Alarm display

Indication

At the IOD level of the MAP display, ssys B alarm indicates a ssys B critical alarm.

Meaning

When a DIRPSSYS table does not contain entered data, or data deletes from the table, a subsystem failure occurs. The abbreviation ssys represents the affected subsystem.

Result

If you need to, you can perform a warm restart to activate the subsystem after you enter data in the tables. Warm restarts disrupt the normal function of the core.

Common procedures

There are no common procedures.

Action

Contact the next level of support.

IOD ssys B minor

Alarm display

Indication

At the IOD level of the MAP display, ssys B alarm indicates a ssys B minor alarm.

Meaning

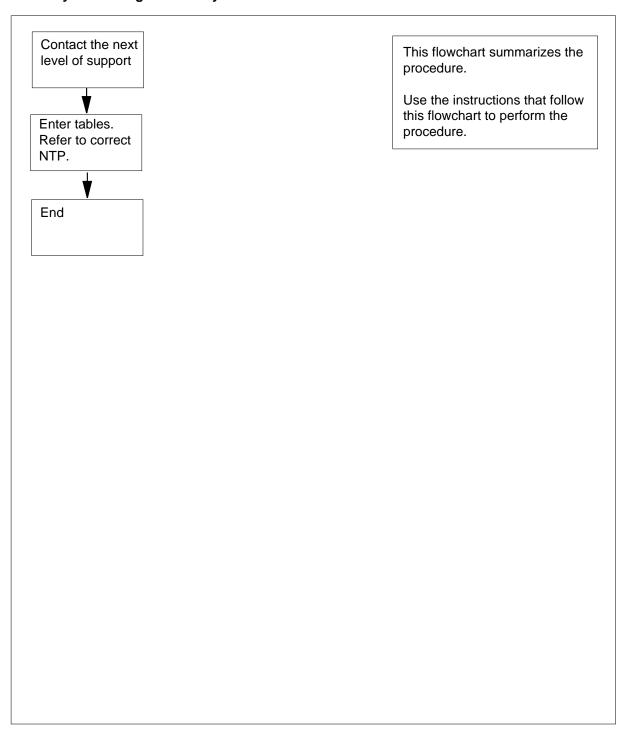
The subsystem failed to bond to the DIRP utility, or does not run. A common reason for the failures is that the DIRPSSYS table data entries do not contain the subsystem. The abbreviation ssys represents the affected subsystem. Affected subsystems can include journal file (JF), operational measurements (OM), Station-Message Detail Recording (SMDR), and automatic message accounting (AMA).

Result

This procedure can cause an interruption in service.

Perform this procedure during off-peak hours. To activate the subsystem after you enter the tables, perform a warm restart. Warm restarts disrupt the normal function of the core.

Common procedures


There are no common procedures.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD ssys B minor (continued)

Summary of Clearing an IOD ssys B minor alarm

IOD ssys B

minor (end)

Clearing an IOD ssys B minor alarm

CAUTION

Service interruption

Perform this procedure during off-peak hours. You must perform a warm restart to activate the subsystem after you enter tables. Warm restarts disrupt the normal function of the core.

At the MAP terminal

- To enter tables DIRPPOOL and DIRPSSYS, perform the correct procedures in the *Translations Guide*. Complete the procedure and return to this point.
- 2 Determine if the ssys B alarm cleared.

If the alarm	Do
cleared	step 4
did not clear	step 3

- **3** For additional help, contact the next level of support.
- 4 The procedure is complete.

IOD ssys E minor

Alarm display

Indication

At the IOD level of the MAP display, ssys E indicates a ssys E minor alarm.

Meaning

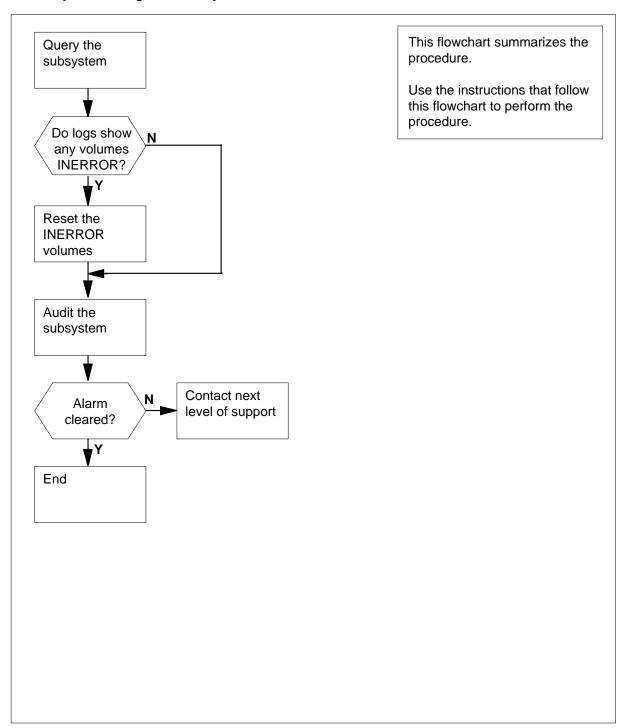
The DIRP utility completed an emergency rotation of the normal files of the indicated subsystem. The abbreviation ssys represents the affected subsystem. Affected subsystems can include journal file (JF), operational measurements (OM), and automatic message accounting (AMA).

Result

The condition does not affect service.

Common procedures

This procedure refers to *Resetting a volume*.


Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD ssys E

minor (continued)

Summary of Clearing an IOD ssys E minor alarm

IOD ssys E minor (continued)

Clearing an IOD ssys E minor alarm

At the MAP terminal

To access the DIRP level of the MAP display, type >MAPCI;MTC;IOD;DIRP

and press the Enter key.

2 To query the subsystem, type

>QUERY ssys ALL

and press the Enter key.

where

ssys

is the affected subsystem

Example of a MAP response:

SSNAM	ΊE	SSNO	SEQNO	ROTATES	POOLNO	PARI	LPOOL	EMI	ERGE	NCY
AMA		0		1	2	0			9	
REGUL	JAF	2								
3.TT	(9	s) s	TATE:	VOLUME	RECCOUN	ЛT	BLOCK	-	Е	V
	•	•			ICE CCCOOL	V ±	DHOCI	-		٧
V_B	V	/LID	FNUM	FRN#						
ACTIV	7F:	A	VAIL	D000AMA	4	1		1	Ο	23
	_				-	_		_	·	
NO	2	2806	001F	A132						
STAND	BY	71 A	VAIL	D010AMA	Ą	0		0	0	23
170	_	000	0000	0000						
NO		2806	0020	20BF						

Determine if volumes are in the INERROR state. 3

If any volumes	Do
are in the INERROR state	step 4
are not in the INERROR state	step 5

- Perform the common procedure Resetting a volume in this document to reset the INERROR volumes. Complete the procedure and return to this point.
- 5 To audit the subsystem that the alarm indicated, type

>AUDIT ssys

and press the Enter key.

where

is the subsystem

IOD ssys E minor (end)

Example of a MAP response:

SENDING REQUEST TO SUBSYSTEM
DO YOU WANT THE SUBSYSTEM EMERGENCY INDICATOR TURNED OFF?
PLEASE CONFIRM (YES OR NO):

6 To confirm the emergency indicator is OFF, type

> YES

and press the Enter key.

MAP response:

REQUEST SENT TO SUBSYSTEM, CHECK DIRP LOG FOR DETAILS

7 Determine if the ssys E alarm cleared.

If the alarm	Do	
cleared	step 9	
did not clear	step 8	

- **8** For additional help, contact the next level of support.
- **9** The procedure is complete.

IOD ssys F minor

Alarm display

Indication

At the IOD level of the MAP display, ssys F alarm indicates a ssys F minor alarm.

Meaning

More than 24 subsystems tried to bind into the DIRP utility. The abbreviation ssys represents the affected subsystem. Affected subsystems can include journal file (JF), operational measurements (OM), and automatic message accounting (AMA).

Result

The condition does not affect service.

Common procedures

There are no common procedures.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD ssys F

minor (continued)

Summary of Clearing an IOD ssys F minor alarm

IOD ssys F minor (end)

How to clear an IOD ssys F minor alarm

At your current location

- For additional help, contact the next level of support. 1
- The procedure is complete. 2

IOD ssys I minor

Alarm display

Indication

At the IOD level of the MAP, ssys I indicates an ssys I minor alarm.

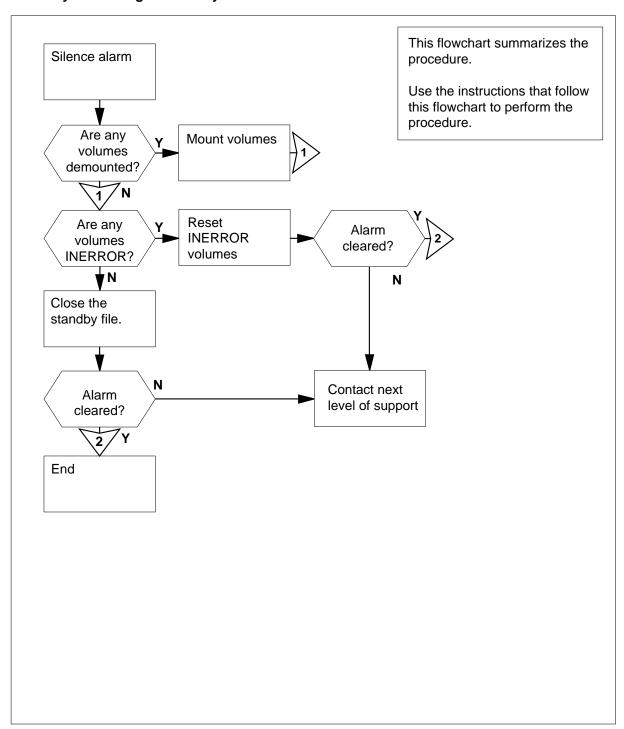
Meaning

The ACTIVE and STANDBY 1 volumes in the indicated subsystem are on the same input/output controller (IOC). The abbreviation ssys represents the affected subsystem. Affected subsystems can include journal file (JF), operational measurements (OM), and automatic message accounting (AMA).

Result

The condition does not affect service.

Common procedures


This procedure refers to Resetting a volume.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD ssys I minor (continued)

Summary of Clearing an IOD ssys I minor alarm

IOD ssys I

minor (continued)

Clearing an IOD ssys I minor alarm

CAUTION

Possible loss or damage of AMA data

Use this procedure or follow it exactly. Not doing so will lose or corrupt automatic message accounting (AMA) data. The operating company uses AMA data to produce billings. Loss or damage of AMA data results in revenue loss for the operating company.

At the MAP terminal

1 To access the DIRP level of the MAP display, type

>MAPCI;MTC;IOD;DIRP

and press the Enter key.

2 To silence the audible alarm, type

>SIL

and press the Enter key.

3 Determine from office records or from operating company personnel if any volumes are in the demounted state.

If volumes	Do
are in the demounted state	step 4
are not in the demounted state	step 10

- 4 Determine the reason that the volume is in the demounted state. When possible, go to the next step in this procedure.
- **5** Determine if the volume is a parallel volume.

If the volume	Do
is not a parallel volume	step 6
is a parallel volume	step 7

6 To mount the demounted volume, type

>MNT ssys vol_name and press the Enter key. where

IOD ssys I

minor (continued)

ssys

is the affected subsystem

is the name of the volume

Example input

>MNT AMA S01DAMA1

7 To mount the demounted volume, type

>MNT ssys vol_name PARALEL

and press the Enter key.

where

ssys

is the affected subsystem

vol name

is the name of the volume

Example input

>MNT AMA S01DAMA1 PARALEL

- 8 Repeat steps 4 through 7 until you mount all demounted volumes. Go to the next step in this procedure.
- 9 To query the subsystem, type

>QUERY ssys ALL

and press the Enter key.

where

is the affected subsystem

Example of a MAP response:

SSNAME	SSNO	SEÇ	ONQ	ROTATES	S	POOLNO	PAR.	LPO	ΣL	EME:	RGENCY	Z
AMA	0		1	2	2	0			9			
REGULAR												
FILE(S)	STATE	VOI	LUME		RECCOUNT	BLO	CK	E	V	V_B	VLID
FNUM F	RN#											
ACTIVE		AVAIL	D0(AMA00		1		1	0	23		
NO 2	806	001F	A132	2								
STANDBY	1	AVAIL	D0:	10AMA		0		0	0	23		
NO 2	806	0020	20BI	F								

10 Determine if any volumes are in the INERROR state.

If any volumes	Do
are in the INERROR state	step 11
are not in the INERROR state	step 13

IOD ssys I minor (end)

- To reset the INERROR volumes, perform the common procedure *Resetting a volume* in this document. Complete the procedure and return to this point.
- 12 Determine if the INERROR volumes changed to READY status.

If the INFERROR volumes	Do
changed to READY status	step 14
did not change to READY status	step 15

To close the standby file, type

>CLOSE ssys STDBY 1

and press the Enter key.

where

SSVS

is the affected subsystem

Note: If you close the standby file, the DIRP must open a new standby file on another IOC.

14 Determine if the ssys I alarm cleared.

If the alarm	Do
cleared	step 16
did not clear	step 15

- 15 For additional help, contact the next level of support.
- 16 The procedure is complete.

IOD ssys MP or ssys P critical

Alarm display

Indication

At the IOD level of the MAP display, ssys MP indicates critical alarms for an ssys MP. The ssys P alarm indicates critical alarms for an ssys P.

Meaning

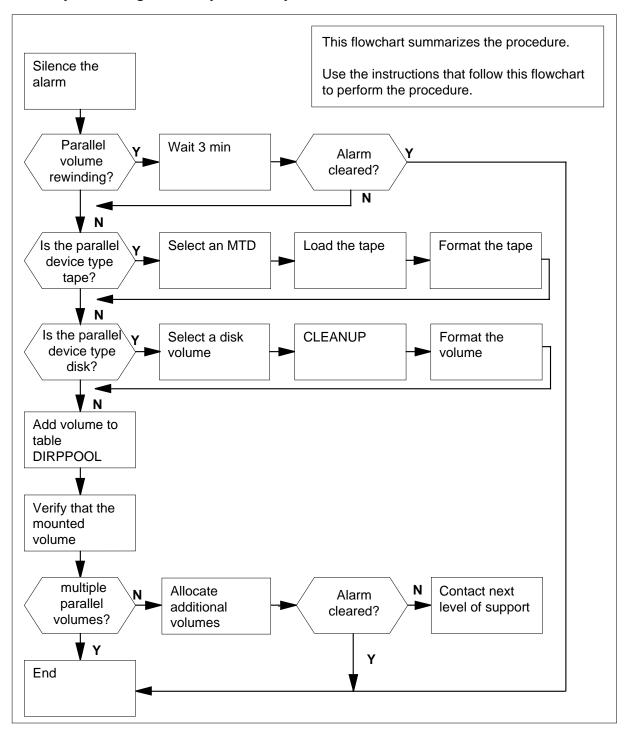
The parallel file assigned to the subsystem indicated by the alarm is not recording. The abbreviation ssys represents the affected subsystem. There can be an change in the JF, OM, and AMA subsystems.

Result

Loss of backup files of billing data.

Common procedures

This procedure refers to *Allocating a volume* and *Resetting a volume*.


Action

The following flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD ssys MP or ssys P

critical (continued)

Summary of Clearing an IOD ssys MP or ssys P critical alarm

IOD ssys MP or ssys P critical (continued)

Clearing an IOD ssys MP or ssys P critical alarm

At the MAP terminal

1

CAUTION

Possible loss or corruption of AMA data

Use this procedure or follow it exactly. Not doing so will lose or damage automatic message accounting (AMA) data. The operating company uses AMA data to produce billings. Loss or damage of AMA data results in revenue loss for the operating company.

To access the DIRP level of the MAP menu, type

>MAPCI;MTC;IOD;DIRP

and press the Enter key.

Example of a MAP:

IOD IOC 0 1 2 STAT . L

DIRP: HOLD00 XFER: DVI : DPPP: DPPU: SLM : . NX25: MLP : SCAI:

2 To silence the audible alarm, type

>SIL

and press the Enter key.

3 To query the subsystem, type

>QUERY ssys ALL

and press the Enter key.

where

SSVS

is the subsystem

Example of a MAP response:

IOD ssys MP or ssys P

critical (continued)

FILE(S)STATE VOLUME RECCOUNT BLOCK E V V_B VLID FNUM FRN# ACTIVE AVAIL D000AMA 1 1 0 23 NO 2806 001F A132 STANDBY1 AVAIL D010AMA 0 0 0 23 NO 2806 0020 20BF

PARALLEL FILE STATE VOLUME BLOCK E V V_B VLID FNUM FRN# B910130174616AMA AVAIL TO 0 0 VES 2400

- 4 Record the status of the parallel volume.
- 5 Determine if the active parallel volume mounted.

If the active parallel volume	Do
mounted	step 6
did not mount	step 21

6 Determine if multiple parallel volumes are in use.

IfMultiple parallel volumes	Do
used	step 7
not used	step 10

7 To query the subsystem to determine the number of parallel volumes that moved, type

>QUERY ssys ALL

and press the Enter key.

where

ssys

is the subsystem

Example of a MAP response:

FILE(S)STATE VOLUME RECCOUNT BLOCK E V V_B VLID FNUM FRN# ACTIVE AVAIL D000AMA 1 1 0 23 NO 2806 001F A132 STANDBY1 AVAIL D010AMA 0 0 0 23 NO 2806 0020 20BF

PARALLEL FILE STATE VOLUME BLOCK E $\,$ V $\,$ V_B VLID FNUM FRN# B910130174616AMA AVAIL TO $\,$ 0 $\,$ 0 $\,$ YES 2400

8 Determine if enough recording volumes were allocated to the parallel recording pool.

If enough recording volumes	Do
were allocated	step 10

IOD ssys MP or ssys P critical (continued)

If enough recording volumes	Do
were not allocated	step 9

- 9 Perform the common procedure Allocating a volume in this document to allocate additional volumes. Complete the procedure and return to this point.
- 10 Determine if the status of the active parallel volume is RWIND.

If the status	Do
is RWIND	step 12
is not RWIND	step 11

11 Determine if the status of the parallel volume is INERROR.

If the status	Do
is INERROR	step 14
is not INERROR	step 13

- 12 Wait for the rewind to complete. The rewind takes 3 min. Continue to QUERY the subsystem to monitor the parallel volume status.
- 13 Determine if the ssys P alarm cleared.

If the alarm	Do
cleared	step 39
did not clear	step 5

- 14 Reset the INERROR volume. Perform the common procedure Resetting a volume in this document. Complete the procedure and return to this point.
- 15 To verify that the INERROR volume changed from INERROR to AVAIL, type

>QUERY ssys ALL

and press the Enter key.

where

is the subsystem

Example of a MAP response:

FILE(S)STATE VOLUME RECCOUNT BLOCK E V V_B VLID FNUM FRN# ACTIVE AVAIL D000AMA 1 1 0 23 NO 2806 001F A132 STANDBY1 AVAIL D010AMA 0 0 23 NO 2806 0020 20BF

PARALLEL FILE STATE VOLUME BLOCK E V V_B VLID FNUM FRN# B910130174616AMA AVAIL TO 0 YES 2400 0

IOD ssys MP or ssys P

critical (continued)

16 Determine if the reset was successful.

If the reset	Do
was successful	step 20
was not successful	step 17

17 Check the IOD alarm header on the MAP display for an IOC alarm.

If an IOC alarm	Do
is present	step 19
is not present	step 18

- Contact the next level of support to restore the INERROR volume(s).Go to step 15.
- Perform the correct procedure in *Recovery Procedures*. to clear the alarm. Complete the procedure and return to this point.
- **20** Determine if the ssys P alarm cleared.

If the alarm	Do
cleared	step 39
did not clear	step 38

To determine the recording device type used for subsystem parallel recording, type

>QUERY ssys ALL

and press the Enter key.

where

ssys

is the subsystem

Example of a MAP response:

FILE(S)STATE VOLUME RECCOUNT BLOCK E V V_B VLID FNUM FRN# ACTIVE AVAIL D000AMA 1 1 0 23 NO 2806 001F A132 STANDBY1 AVAIL D010AMA 0 0 0 23 NO 2806 0020 20BF

PARALLEL FILE STATE VOLUME BLOCK E V V_B VLID FNUM FRN# B910130174616AMA AVAIL TO 0 0 VES 2400

- 22 Record the pool number shown in the POOLNO field.
- **23** To access table DIRPPOOL, type

>TABLE DIRPPOOL

IOD ssys MP or ssys P critical (continued)

and press the Enter key.

Example of a MAP response:

MACHINES NOT IN SYNC - DMOS NOT ALLOWED JOURNAL FILE UNAVAILABLE - DMOS NOT ALLOWED TABLE: DIRPPOOL

24 To determine the recording device type used for the subsystem parallel pool, type

>POSITION pool no; LIST

and press the Enter key.

where

pool no

is the pool number found in step 22

Example of a MAP response:

POOLNO POOLNAME POOLTYPE DEVTYPE VOLUMEO VOLUME1 VOLUME2 VOLUME3 VOLUME4 VOLUME5 VOLUME6 VOLUME7 VOLUME8 VOLUME9 VOLUME10 VOLUME11 VOLUME12 VOLUME13 VOLUME14 VOLUME15 VOLUME16 VOLUME17 VOLUME18 VOLUME19 VOLUME20 VOLUME21 VOLUME22 VOLUME23

0	AMA	APOOL	REGU	LAR	TAPE	\$ \$	\$ \$	\$
	\$	\$	\$		\$	\$ \$	\$ \$	\$
	\$	\$		\$	S	\$ \$		
\$		\$	\$	\$				

25 Record the value in the DEVTYPE field.

> **Note:** The MAP response in the preceding step shows the device type in the DEVTYPE field is TAPE.

26 To exit the DIRPPOOL table, type

>LEAVE

and press the Enter key.

27 Determine if the parallel device is tape or disk.

If the parallel device	Do
is tape	step 28
is disk	step 31

- 28 Select a magnetic tape drive (MTD) used for parallel data. Record the MTD number.
- 29 Mount a tape acceptable for recording parallel subsystem data on the selected MTD. Perform the correct procedure in Magnetic Tape Reference *Manual*, 297-1001-118. Complete the procedure and return to this point.

IOD ssys MP or ssys P

critical (continued)

- **30** Go to step 34.
- 31 Select a disk volume for parallel subsystem recording. Determine from office records the name of the volume.
- 32 To enter the disk utility, type

>DISKUT

and press the Enter key.

33 To list the files on the selected disk volume, type

>LIST vol_name ALL

and press the Enter key.

where

vol name

is the volume name

Example of a MAP response:

Volume	information	for SI	M disk	0 2		
Volume	Modify	T	otal	No. o	f	ITOC
Name	Date	N	o. of	Open		Files
	Y/M/D	F	iles	Files		
S00Dvol	1 870122		876	2		15
S00Dvol	2 861121		14	14		0
S00Dvol	3 861121		0	0		0
S00Dvol	4 861121	2	048	100		0
S00Dvol	5 861121		1	0		1

- To allocate the volume, perform the common procedure *Allocating a volume* in this document. Complete the procedure and return to this point.
- **35** To query the subsystem, type

>QUERY ssys ALL

and press the Enter key.

where

ssys

is the subsystem

Example of a MAP response:

FILE(S)STATE VOLUME RECCOUNT BLOCK E V V_B VLID FNUM FRN# ACTIVE AVAIL D000AMA 1 1 0 23 NO 2806 001F A132 STANDBY1 AVAIL D010AMA 0 0 0 23 NO 2806 0020 20BF

PARALLEL FILE STATE VOLUME BLOCK E V V_B VLID FNUM FRN# B910130174616AMA AVAIL TO 0 0 VES 2400

IOD ssys MP or ssys P critical (end)

36	Determine if the	parallel volume	allocated.
----	------------------	-----------------	------------

If the parallel volume	Do	
allocated	step 37	
did not allocate	step 38	

37 Determine if the ssys P or ssys MP alarm cleared.

If the alarm	Do	
cleared	step 39	
did not clear	step 38	

- 38 For additional help, contact the next level of support.
- 39 The procedure is complete.

IOD XMITn minor

Alarm display

Indication

At the IOD level of the MAP display, XMIT (transmit) followed by a number (n) indicates that an XMITn minor alarm exists.

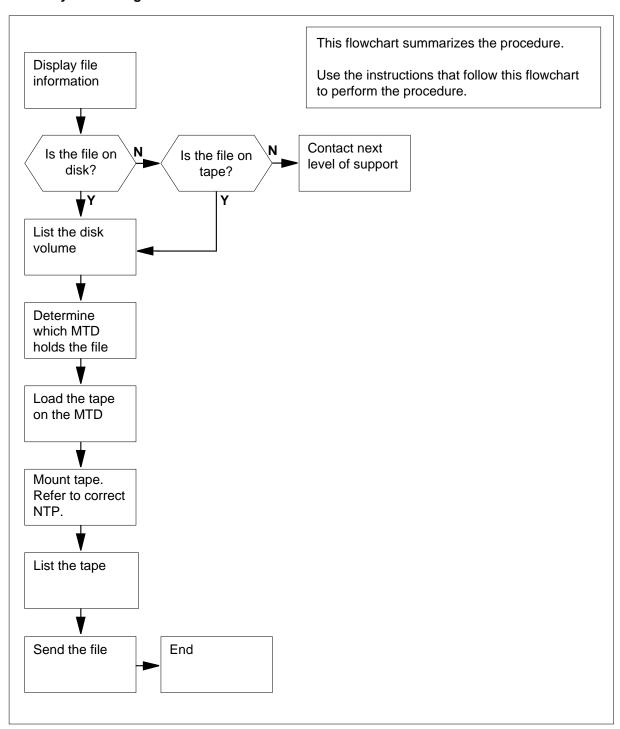
Meaning

A remote data center requested transmission of a file from a recording device. The number that follows XMIT represents the number of the recording device that holds the file.

Result

The condition does not affect service.

Common procedures


There are no common procedures.

Action

The flowchart is a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

IOD XMITn minor (continued)

Summary of Clearing an IOD XMITn minor alarm

IOD XMITn

minor (continued)

Clearing an IOD XMITn minor alarm

At the MAP terminal

To access the XFER (transfer) level of the MAP display, type

>MAPCI;MTC;IOD;XFER

and press the Enter key.

2 To display information about the file on the recording device, type

>QUERY XMIT dphd_index

and press the Enter key.

where

dphd_index

is a value for dirphold index (0 to 99)

3 To determine the location of the stored file, note the data in the FILE_LOCN.

If the file	Do
is on disk	step 4
is on tape	step 6

4 To access the disk utility software, type

>DISKUT

and press the Enter key.

5 To list the volume on the disk, type

>LISTVOLS vol_name ALL

and press the Enter key.

where

vol name

is the name of the disk volume

Example of a MAP response:

IOD XMITn minor (end)

Volume informat	ion for SLM	disk 0		
Volume	Modify	Total	No. of	ITOC
Name	Date	No. of	Open	Files
	Y/M/D	Files	Files	
S00dvol1	870122	876	2	15
S00Dvol2	861121	14	14	0
S00Dvol3	861121	0	0	0
S00Dvol4	861121	2048	100	0
S00Dvol5	861121	1	0	1

- 6 Determine from office records the location of the magnetic tape drive (MTD) that holds the file.
- 7 Perform the correct procedure in *Routine Procedures* to mount the tape.. Complete the procedure and return to this point.
- 8 To list the tape, type

>LIST mtd_no

and press the Enter key.

where

mtd no

is the number of the MTD

9 To send the file, type

>XMIT nn

and press the Enter key.

where

nn

is the number that appears in the alarms

10 Determine if the XMITn alarm cleared.

If the alarm	Do
cleared	step 12
did not clear	step 11

- 11 For additional help, contact the next level of support.
- 12 The procedure is complete.

2 Lines alarm clearing procedures

Introduction

This chapter contains lines alarm clearing procedures. Lines alarms appear under the Lns header of the alarm banner in the MAP. All the procedures contain the following sections:

- Alarm display
- Indication
- Meaning
- Result
- Common procedures
- Action

Alarm display

This section indicates how the alarm appears at the MAP terminal.

Indication

This section indicates:

- the location of the alarm indication
- the image of the alarm
- the affected subsystem
- the seriousness of the alarm

Meaning

This section indicates the cause of the alarm.

Result

This section describes the result of the alarm condition.

Common procedures

This section lists common procedures used during the alarm clearing procedure. A common procedure is a series of steps repeated within

maintenance procedures. Card removal and replacement is an example of a common procedure. Common procedures appear in the common procedures chapter in this NTP.

Do not use common procedures unless the step-action procedure directs you to the common procedure.

Action

This section provides a summary flowchart of the alarm clearing procedure. A detailed step-action procedure follows the flowchart.

Lns CR C critical

Alarm display

Indication

At the MTC level of the MAP display, CR C appear under the Lns header of the alarm banner. The CR C indicates a critical alarm. The alarm changes at 30s intervals with out-of-service alarms.

Meaning

A CR C alarm indicates the Focused Line Maintenance system has detected a critical number of call processing failures. Refer to the Maintenance and Operations Manual for information regarding the Focused Line Maintenance feature.

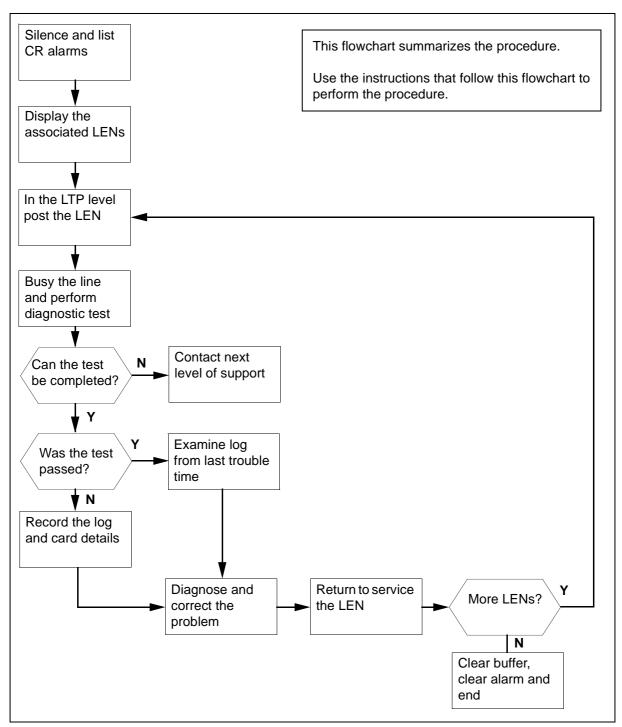
The generation of a CR C alarm depends on the following:

- the number of successful call attempts on the Line Concentrating Device (LCD)
- the number of call processing failures on that LCD
- the critical threshold for failures as defined in table LNSMTCE

Result

For subscriber service, the type of failure determines the result. For example, a noise problem will affect the quality of service but the system will continue to allow calls.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Lns CR C critical (continued)

Summary of clearing a Lns CR C critical alarm

Lns CR C

critical (continued)

Clearing a Lns CR C alarm

At the MAP terminal

To access the LNSTRBL level of the MAP display, type

>MAPCI;MTC;LNS;LNSTRBL

and press the Enter key.

Example of a MAP display:

```
MN
                       CR
                                LCD:
                ΜJ
CP
          0
                0
                       1
E# ID COUNT LAST TROUBLE TIME... TROUBLE DESCRIPTION...
 1
 2
 3
 4
 5
 6
 7
 8
```

2 To determine which LCDs are generating the call processing alarm, type

```
>LISTALM alarm_type CR
```

and press the Enter key.

where

9

alarm_type

is CR if the alarm is CR C.

Example of a MAP display:

```
ListAlm cr
HOST 01 0
                 CR
```

3 To determine the equipment location of the lines in the maintenance buffer with critical alarms, type

```
DISP {<SITE> <FRAME> <UNIT>}
```

and press the Enter key.

where

{<SITE> <FRAME> <UNIT>}

are the values obtained in step 2

Example of a MAP display:

Lns CR C critical (continued)

- 4 Record the LENs listed in step 3.
- 5 To access the LTP level of the MAP display, type

>LTP

and press the Enter key.

Example of a MAP display:

POST DELQ BUSYQ PREFIX
LEN
LCC PTY RNG STA F S LTA TE RESULT
DN

6 To post the LEN, type

>POST L <site> <frame> <unit> <drawer> <circuit> and press the Enter key.

where

<site> <frame> <unit> <drawer> <circuit>

is the equipment location of the circuit to post, as indicated in the MAP display in step 3. In this example the circuit to post is HOST 1 0 0 16.

Example of a MAP display:

POST DELQ BUSYQ PREFIX

LEN HOST 01 0 00 16

LCC PTY RNG STA F S LTA TE RESULT

IBN M529 DN 619 675 6078 SB I

7 To manually busy the line in the control position, type

>BSY

and press the Enter key.

Lns CR C critical (continued)

8 To test the line, type

>DIAG

and press the Enter key.

Example of a MAP display:

Diag

RTPE_B117BL ***+LINE101 FEB05 12:43:18 8500 FAIL LN_DIAG HOST 01 0 00 16 DN 6196756078 DIAGNOSTIC RESULT BIC/EBS LC TRBL:PTRN 000E S=1 R=0 ACTION REQUIRED Replace Card CARD TYPE 6X21AC

If the DIAG command	Do
passed	step 11
failed	step 9
Could not be completed	step 16

- Record the log, as well as the location, description, slot number, PEC and PEC suffix of the card that failed the diagnostic.
- 10 Refer to the Log Report Reference Manual and perform the Actions required to diagnose and correct the fault. Complete the procedure and return to this point.
- 11 Not all call processing Trouble Descriptions indicate a line card fault. If call processing faults continue, examine logs coinciding with the Last Trouble Time Indicated in step 3 and refer to the Log Report Reference Manual to diagnose and correct the indicated fault.
- To return the line to service, type 12

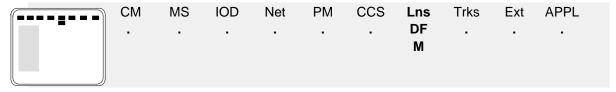
>RTS

and press the Enter key.

If the RTS command	Do
passed	step 13
failed	step 10
Could not be completed	step 16

- 13 If there are more LENs from step 3 to be tested, return to step 6.
- 14 To clear the LEN locations from the upper buffer, type

>CLRBUF


and press the Enter key.

Lns CR C critical (end)

- To clear the call processing alarm, type
 >CLRALM
 and press the Enter key.
- 16 For additional help, contact the next level of support.
- 17 The procedure is complete.

Lns DF **Major**

Alarm display

Indication

A DF appears under the Lns header in the MAP display for the subsystem status.

Meaning

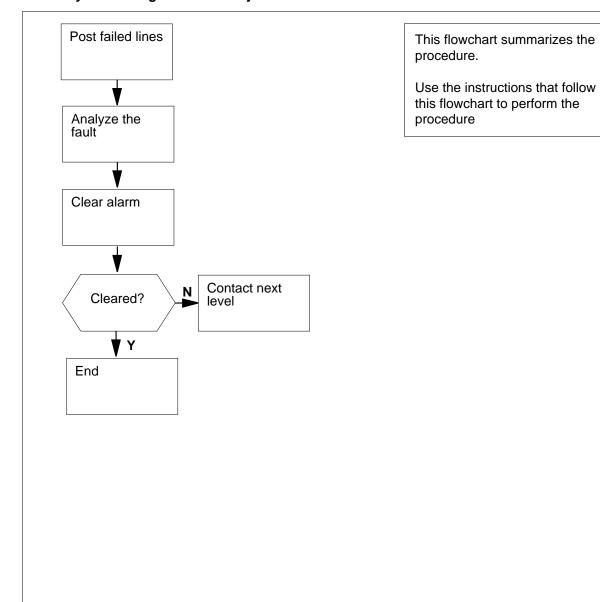
A diagnostic failure (DF) alarm indicates that two or more line circuits have alarms in the same class. The classes are critical, major, or minor. The alarms are SDIAG, DIAG, NDIAG, FAC, MSET, MCARD, UCARD, or QDIAG.

Result

The condition affects subscriber service. You must correct the condition.

Common procedures

This procedure refers to *Clearing lines alarms*.


Do not go to the common procedure unless the step-action procedure directs you to the common procedure.

Action

Lns DF

Major (continued)

Summary of Clearing an Lns DF Major alarm

Lns DF Major (continued)

Clearing an Lns DF Major alarm

At the MAP display:

- To access the LTP level of the MAP display, type >MAPCI;MTC;LNS;LTP and press the Enter key.
- 2 To post the lines that have a diagnostic failure, type >POST DF

and press the Enter key.

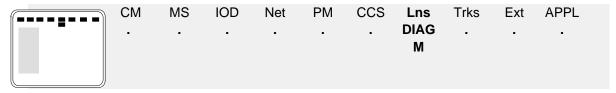
Example of a MAP response:

POST DF DELQ BUSYO PREFIX LCC PTY RNG.....LEN...... DN STA \mathbf{F} S LTA TE IBN REM1 00 0 00 06 7224345 IDL D

3 Note the failure code that appears under the F header (in bold in the response in the MAP example in the previous step). Check the following information for the meaning of the failure code.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that has faults
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	there is a call processing error
is I	there is a major incoming message overload (ICMO)
isi	there is a minor incoming message overload (ICMO)
is 1	the keyset line failed the loopback test at the terminal

Lns DF Major (end)


- 4 Perform the procedure *Clearing lines alarms*. Complete the procedure and return to this point.
- 5 Check the MAP to see if the DF major alarm cleared.

If the DF major alarm	Do
cleared	step 7
did not clear	step 6

- **6** For additional help, contact the next level of support.
- **7** The procedure is complete.

Lns DIAG critical, major, or minor

Alarm display

Indication

The DIAG appears under the Lns header in the MAP display for subsystem status.

Meaning

The diagnostic (DIAG) alarm indicates that a number of lines failed the extended diagnostic test.

Result

The impact on subscriber service depends on the type of the failure. For example, a call can continue when a noise problem affects the quality of service. A test failure for transhybrid loss or flux cancellation results in loss of service until you correct the fault.

Common procedures

This procedure refers to Clearing lines alarms.

Do not go to the common procedure unless the step-action procedure directs you to the common procedure.

Action

Lns DIAG

critical, major, or minor (continued)

Summary of Clearing an Lns DIAG critical, major, or minor alarm

Lns DIAG

critical, major, or minor (continued)

Clearing an Lns DIAG critical, major, or minor alarm

At the MAP:

To access the LTP level of the MAP display, type >MAPCI;MTC;LNS;LTP and press the Enter key.

2 To post the lines that have a diagnostic failure, type >POST DF D

and press the Enter key.

Example of a MAP response:

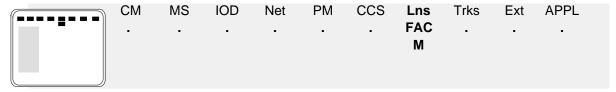
POST DF D DELQ BUSYQ PREFIX LCC PTY RNG.....LEN...... DN STA F S LTA TE IBN REM1 00 0 00 06 7224345 IDL D

3 Note the failure code that appears under the F header (in bold in the response in the MAP example in the previous step). Check the following information for the meaning of the failure code.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that has faults
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major incoming message overload (ICMO) is present
is i	a minor incoming message overload (ICMO) is present
is 1	the keyset line failed the loopback test at the terminal

Lns DIAG

critical, major, or minor (end)


- 4 Perform the procedure *Clearing lines alarms*. Complete the procedure and return to this point.
- 5 Check the MAP display to see if the DIAG major alarm cleared.

If the DIAG major alarm	Do	
cleared	step 7	
did not clear	step 6	

- **6** For additional help, contact the next level of support.
- **7** The procedure is complete.

Lns FAC major

Alarm display

Indication

An FAC appears under the Lns header in the MAP subsystem status display for the MAP.

Meaning

A facility (FAC) alarm indicates the number of line circuits that failed the facility check reached the threshold.

Result

The impact on subscriber service depends on the type of the failure. For example, a call can continue even when a noise problem affects the quality of service. A test failure for a transhybrid loss or flux cancellation results in loss of service until correction of the fault occurs.

Common procedures

This procedure refers to Clearing Lines alarms

Do not use the common procedure unless the step-action procedure directs you to the common procedure.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Note: If the card in the HAZ state is a WLC (World Line Card - 6X17BA), the cause of the HAZard condition must clear first. A DIAGnosis is not allowed on a 6X17BA while it is in the HAZ state.

Lns FAC

major (continued)

Summary of Clearing an Lns FAC major alarm

Lns FAC major (continued)

Clearing an Lns FAC major alarm

At the MAP display:

- To access the line test position (LTP) level of the MAP display, type >MAPCI;MTC;LNS;LTP and press the Enter key.
- 2 To post the lines that have a diagnostic failure, type >POST DF F

and press the Enter key.

Example of a MAP response:

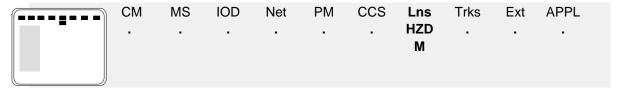
POST DF F DELO BUSYQ PREFIX LCC PTY RNG.....DN STA F S LTA TE IBN REM1 00 0 00 06 7224345 IDL D

3 Note the failure code that appears under the F header (in bold in the response in the MAP display example in the previous step). Check the following information for the meaning of that failure code.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that has faults
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major incoming message overload (ICMO) is present
is i	a minor incoming message overload (ICMO) is present
is 1	the keyset line failed the loopback test at the terminal

Lns FAC

major (end)


- 4 Perform the procedure *Clearing Lines alarms*. Complete the procedure and return to this point.
- 5 Check the MAP display to see if the FAC major alarm cleared.

If the FAC major alarm	Do	
cleared	step 7	
did not clear	step 6	

- **6** For additional help, contact the next level of support.
- **7** The procedure is complete.

Lns HZD major

Alarm display

Indication

An HZD appears under the Lns header in the subsystem status for the MAP.

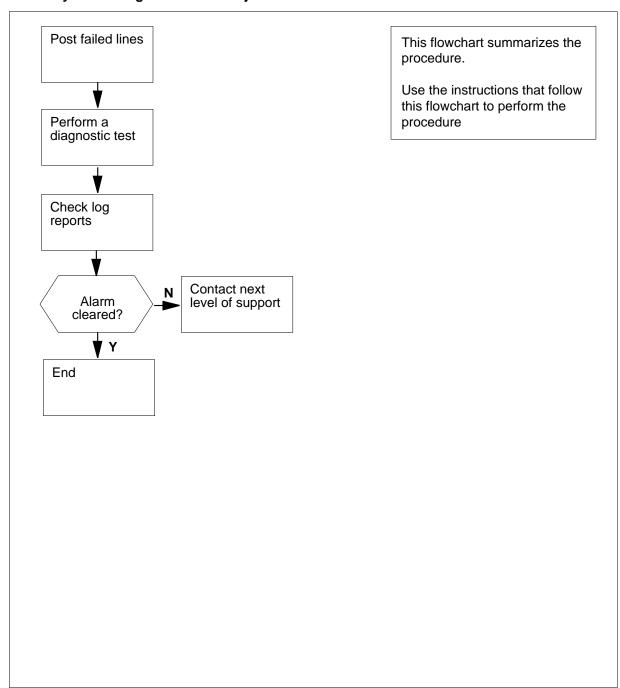
Meaning

A hazard (HZD) alarm indicates a line hazard. For example, a world line card (WLC) can have leakage resistance or foreign line voltage. The HZD alarm also indicates that the cutoff relay is in operation to isolate the line card. The HZD alarm reports that a condition is present. The system clears the hazard and the alarm. This procedure provides information about the alarm.

Result

The affected line is out of service until the hazard condition clears.

Common procedures


There are no common procedures.

Action

Lns HZD

major (continued)

Summary of Clearing an Lns HZD major alarm

Lns HZD major (continued)

Clearing an Lns HZD major alarm

At the MAP terminal

- To access the LTP level of the MAP display, type >MAPCI;MTC;LNS;LTP and press the Enter key.
- 2 To post the lines that have a diagnostic failure, type

>POST S HAZ

and press the Enter key.

Example of a MAP response:

S HAZ DELQ POST BUSYQ PREFIX LCC PTY RNG.....LEN...... DN STA F S LTA TE IBN REM1 00 0 00 06 7224345 IDL D

3 Note the failure code that appears under the F header (in bold in the response in the MAP example in the previous step). Check the following information for the meaning of that failure code.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that has faults
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call processing error is present
is I	a major incoming message overload (ICMO) is present
is i	a minor incoming message overload (ICMO) is present
is 1	the keyset line failed the loopback test at the terminal

Lns HZD

major (end)

4 To perform a diagnostic test on each line, type

>DIAG

and press the Enter key.

Example of a MAP response:

```
***LINE132 AUG01 10:15:57 2356 TBL

LEN HOST 15 1 9 27 DN 3511005

REASON = Line Hazard Condition Found

INFO = N/A Vac N/A Ohms N/A Vdc

ACTION TAKEN = Cut-off Relay Operated

ACTION REQUIRED Check Facility

CARD CODE = 6X17AA
```

5 Check the log report displayed on the MAP terminal as a result of the Diag command.

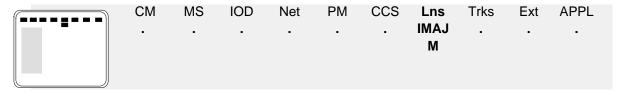
A LINE132 log provides details about the line hazard and is for information purposes only. When the system clears the alarm, the system generates a LINE133 log.

If the system	Do
generated a 132 log	step 6
generated a 133 log	step 9

6 Wait 30 min to perform another diagnostic test, type

>DIAG

and press the Enter key.


7 Check the log report displayed on the MAP terminal as a result of the Diag command.

If a LINE	Do	
132 log generated	step 8	
133 log generated	step 9	

- **8** For additional help, contact the next level of support.
- **9** The procedure is complete.

Lns IMAJ major

Alarm display

Indication

The IMAJ appears under the Lns header in the MAP subsystem status display.

Meaning

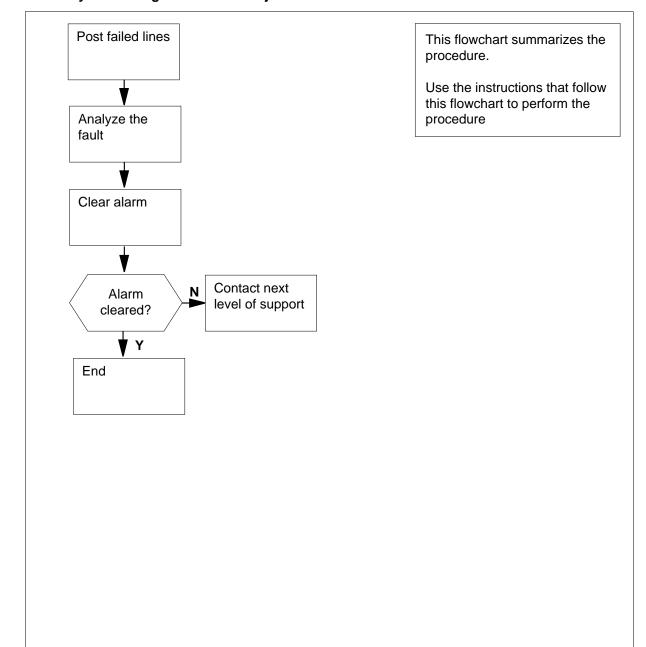
An incoming message overload major (IMAJ) alarm indicates that lines with an incoming message overload (ICMO) reached a major threshold.

Result

The condition affects subscriber service for electronic business set (EBS) and datapath lines until you correct the condition.

Common procedures

This procedure refers to Clearing Lines alarms.


Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

Lns IMAJ

major (continued)

Summary of Clearing an Lns IMAJ major alarm

Lns IMAJ major (continued)

Clearing an Lns IMAJ major alarm

At the MAP terminal:

3

- To access the LTP level of the MAP display, type >MAPCI;MTC;LNS;LTP and press the Enter key.
- 2 To post the lines that have a diagnostic failure, type >POST DF IMAJ and press the Enter key.

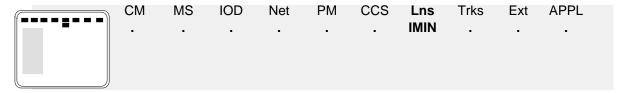
Example of a MAP response:

POST DF IMAJ DELQ BUSYO PREFIX LCC PTY RNG.....LEN...... DN STA F S LTA TE IBN REM1 00 0 00 06 7224345 IDL **D**

Note the failure code that appears under the F header. The code appears in bold for the response in the MAP example of the previous step. To determine the meaning of the failure code, use the following information.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is $S(N/A \text{ for } ISDN)$	the SDIAG test failed
is N	the SDIAG test passed on the line that had faults earlier
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major Incoming message overload (ICMO) is present
is i	a minor Incoming message overload (ICMO) is present
is 1	the keyset line failed the loopback test at the terminal

Lns IMAJ major (end)


- 4 Perform the procedure *Clearing Lines alarms*. Return to this point.
- 5 Determine from the MAP display if the IMAJ major alarm cleared.

If the IMAJ alarm	Do
cleared	step 7
did not clear	step 6

- **6** For additional help, contact the next level of support.
- **7** The procedure is complete.

Lns IMIN major

Alarm display

Indication

The IMIN appears under the Lns header in the MAP subsystem status display.

Meaning

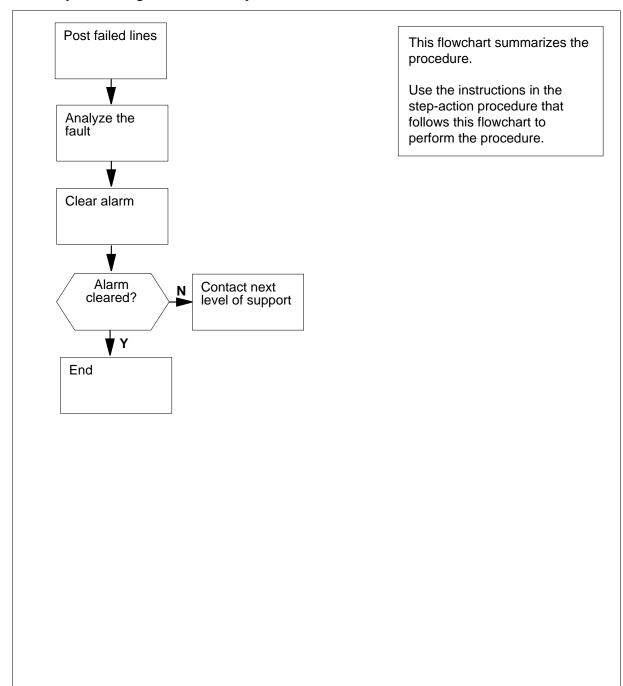
An incoming message overload minor (IMIN) alarm indicates that the lines with incoming message overload (ICMO) alarms reached the minor threshold.

Result

The condition affects subscriber service until you correct the condition.

Common procedures

This procedure refers to Clearing Lines alarms.


Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

Lns IMIN

major (continued)

Summary of clearing an Lns IMIN major alarm

Lns IMIN major (continued)

Clearing an Lns IMIN major alarm

At the MAP terminal:

- To access the LTP level of the MAP display, type >MAPCI;MTC:LNS;LTP and press the Enter key.
- 2 To post the lines that have a diagnostic failure, type >POST DF IMIN and press the Enter key. Example of a MAP response:

3 Note the failure code that appears under the F header. The code appears in bold for the response in the MAP example of the previous step. To determine the meaning of the failure code, use the following information.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on line that had faults earlier
is	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major Incoming message overload (ICMO) is present
isi	a minor Incoming message overload (ICMO) is present
is 1	the keyset line failed the loopback test at the terminal

Lns IMIN major (end)

- 4 Perform the procedure *Clearing Lines Alarms*. Return to this point.
- 5 Determine from the MAP display if the IMIN minor alarm cleared.

If the IMIN alarm	Do	_
cleared	step 7	
did not clear	step 6	

- **6** For additional help, contact the next level of support.
- **7** The procedure is complete.

Lns LCARD major

Alarm display

Indication

The LCARD appears under the Lns header in the MAP subsystem status display.

Meaning

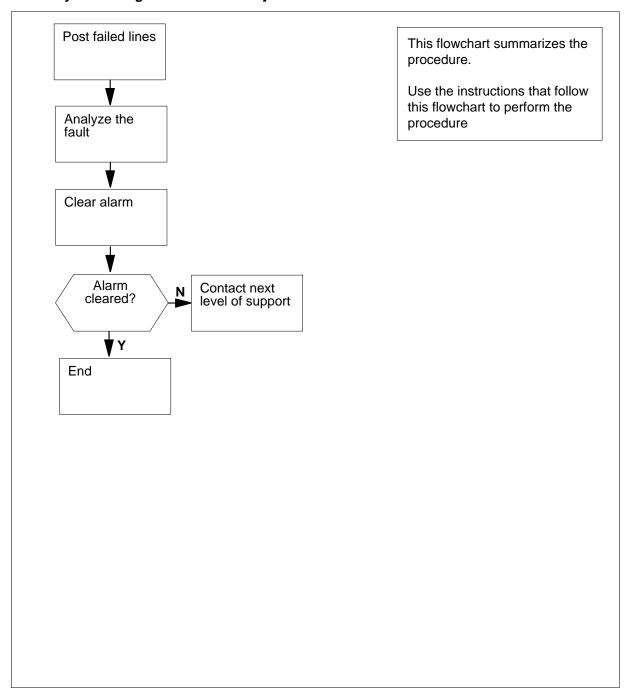
A keyset loopback activated at the line card (LCARD) alarm indicates that key telephone set (keyset) lines failed a loopback test.

Result

The condition affects subscriber service until the replacement or repair of the card.

Common procedures

This procedure refers *Clearing Lines alarms*.


Do not go to the common procedure unless the step-action procedure directs you.

Action

Lns LCARD

major (continued)

Summary of clearing an Lns LCARD major alarm

Lns LCARD major (continued)

Clearing an Lns LCARD major alarm

At the MAP terminal:

To access the LTP level of the MAP display, type >MAPCI;MTC;LNS;LTP and press the Enter key.

2 To post the lines that have a diagnostic failure, type >POST DF LCARD

and press the Enter key.

Example of a MAP response:

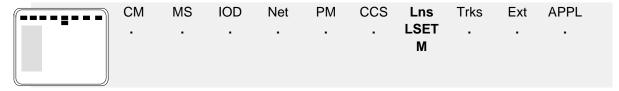
POST DF LCARD DELQ BUSYQ PREFIX LCC PTY RNG.....DN STA F S LTA TE IBN REM1 00 0 00 06 7224345 IDL **D**

3 Note the failure code that appears under the F header. The code appears in bold for the response in the MAP example of the previous step. To determine the meaning of the failure code, use the following information.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that had faults earlier
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major Incoming message overload (ICMO) is present
is i	a minor Incoming message overload (ICMO) is present
is 1	the keyset line failed the loopback test at the terminal

Lns LCARD

major (end)


- 4 Perform the procedure *Clearing Lines alarms*. Return to this point.
- 5 Determine from the MAP display to see if the DF major alarm cleared.

If the LCARD major alarm	Do
cleared	step 7
did not clear	step 6

- **6** For additional help, contact the next level of support.
- **7** This procedure is complete.

Lns LSET major

Alarm display

Indication

The LSET appears under the Lns header in the MAP subsystem status display.

Meaning

A keyset loopback activated at set (LSET) alarm indicates that key telephone set (keyset) lines failed a loopback test.

Result

The condition affects subscriber service until the replacement or repair of the telephone set.

Common procedures

This procedure refers to *Clearing Lines alarms*.


Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

Lns LSET

major (continued)

Summary of clearing an Lns LSET major alarm

Lns LSET major (continued)

Clearing an Lns LSET major alarm

At the MAP terminal:

- To access the LTP level of the MAP display, type >MAPCI;MTC;LNS;LTP and press the Enter key.
- 2 To post the lines that have a diagnostic failure, type >POST DF LSET and press the Enter key. Example of a MAP response:

3 Note the failure code that appears under the F header. The code appears in bold for the response in the MAP example of the previous step. To determine the meaning of the failure code, use the following information.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that had faults earlier
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major Incoming message overload (ICMO) is present
is i	a minor Incoming message overload (ICMO) is present
is 1	the keyset line failed the loopback test at the terminal

Lns LSET major (end)

- 4 Perform the procedure *Clearing Lines alarms*. Return to this point.
- 5 Determine from the MAP display if the LSET major alarm cleared.

If the LSET major alarm	Do
cleared	step 7
did not clear	step 6

- **6** For additional help, contact the next level of support.
- **7** This procedure is complete.

Lns MCARD critical, major, or minor

Alarm display

Indication

The MCARD appears under the Lns header in the MAP subsystem status display.

Meaning

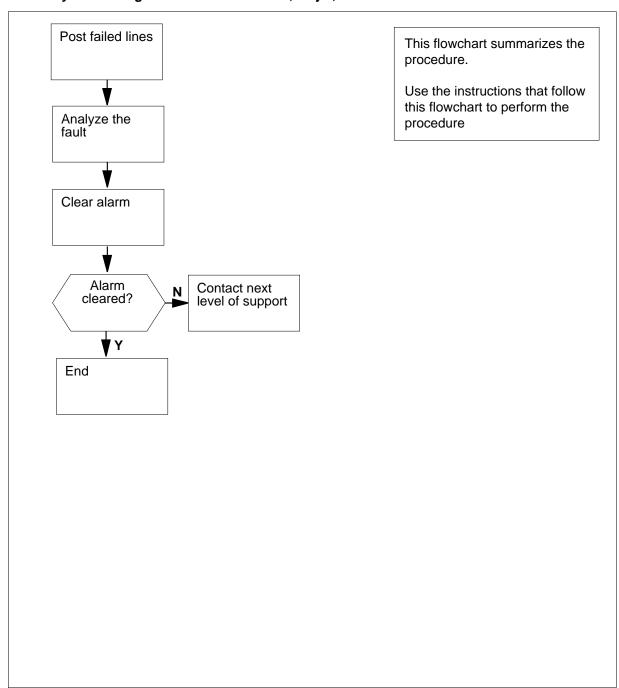
A missing card (MCARD) alarm indicates that lines have missing line cards.

Impact

The condition affects subscriber service until replacement or repair of the card.

Common procedures

This procedure refers to Clearing Lines alarms.


Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

Lns MCARD

critical, major, or minor (continued)

Summary of Clearing an Lns MCARD critical, major, or minor alarm

Lns MCARD critical, major, or minor (continued)

Clearing an Lns MCARD critical, major, or minor alarm

At the MAP terminal:

- To access the LTP level of the MAP display, type >MAPCI; MTC; LNS; LTP and press the Enter key.
- 2 To post the lines that have a diagnostic failure, type >POST DF MCARD and press the Enter key. Example of a MAP response:

3 Note the failure code that appears under the F header. The code appears in bold for the response in the MAP example of the previous step. To determine the meaning of the failure code, use the following information.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that had faults earlier
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major Incoming message overload (ICMO) is present
is i	a minor Incoming message overload (ICMO) is present
is l	the keyset line failed the loopback test at the terminal

Lns MCARD critical, major, or minor (end)

- 4 Perform the procedure *Clearing Lines alarms*. Return to this point.
- 5 Determine from the MAP display f the MCARD major alarm cleared.

If the MCARD major alarm	Do
cleared	step 7
did not clear	step 6

- **6** For additional help, contact the next level of support.
- **7** The procedure is complete.

Lns MSET major

Alarm display

Indication

The MSET appears under the Lns heading in the MAP subsystem status display.

Meaning

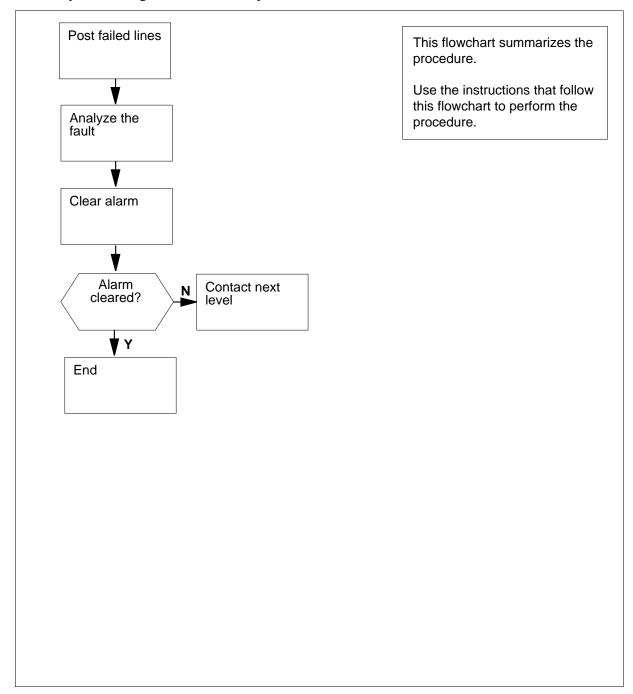
A missing set (MSET) alarm indicates that lines do not have telephone sets.

Result

The condition affects subscriber service until replacement or repair of the telephone set.

Common procedures

This procedure refers to *Clearing Lines alarms*.


Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

Lns MSET

major (continued)

Summary of clearing an Lns MSET major alarm

Lns MSET major (continued)

Clearing an Lns MSET major alarm

At the MAP terminal:

To access the LTP level of the MAP display, type >MAPCI;MTC;LNS;LTP and press the Enter key.

2 To post the lines that have a diagnostic failure, type >POST DF MSET

and press the Enter key.

Example of a MAP response:

POST DF MSET DELQ BUSYQ PREFIX LCC PTY RNG.....DN STA F S LTA TE IBN REM1 00 0 00 06 7224345 IDL **D**

3 Note the failure code that appears under the F header. The code appears in bold for the response in the MAP example of the previous step. To determine the meaning of the failure code, use the following information.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that had faults earlier
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major Incoming message overload (ICMO) is present
is i	a minor Incoming message overload (ICMO) is present
is l	the keyset line failed the loopback test at the terminal

Lns MSET major (end)

- 4 Perform the procedure *Clearing Lines alarms*. Return to this point.
- 5 Determine from the MAP display if the MSET major alarm cleared.

If the MSET major alarm	Do	
cleared	step 7	
did not clear	step 6	

- **6** For additional help, contact the next level of support.
- **7** The procedure is complete.

Lns NDIAG major

Alarm display

Indication

The NDIAG appears under the Lns header in the MAP subsystem status display.

Meaning

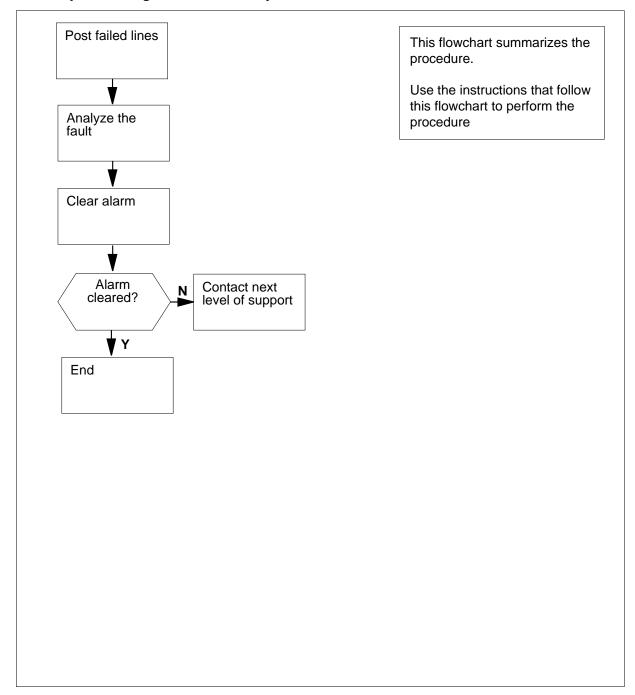
An NDIAG alarm indicates that lines passed a diagnostic test after a previous diagnostic failure. The lines require an extended diagnostic test to clear the alarm.

Result

This condition affects subscriber service if a D or F failure flag associates with the line. If any other failure flag associates with the line, the condition does not affect subscriber service.

Common procedures

This procedure refers to Clearing Lines alarms.


Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

Lns NDIAG

major (continued)

Summary of Clearing an Lns NDIAG major alarm

Lns NDIAG major (continued)

Clearing an Lns NDIAG major alarm

At the MAP terminal:

To access the LTP level of the MAP display, type >MAPCI;MTC;LNS;LTP and press the Enter key.

2 To post the lines that have a diagnostic failure, type

>POST DF N

and press the Enter key.

Example of a MAP response:

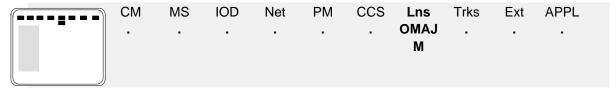
POST		DF N	DEL	Q		BUSYQ	PREF	'IX			
LCC	PTY	RNG	LEN	i		. DN	STA	F	S	LTA	TE
IBN		RI	EM1 00	0 00	06	7224345	IDL	D			

Note the failure code that appears under the F header. The code appears in bold for the response in the MAP example of the previous step. To determine the meaning of the failure code, use the following information. 3

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that had faults earlier
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major Incoming message overload (ICMO) is present
is i	a minor Incoming message overload (ICMO) is present
is l	the keyset line failed the loopback test at the terminal

Lns NDIAG

major (end)


- 4 Perform the procedure *Clearing Lines alarms*. Return to this point.
- 5 Determine from the MAP display if the NDIAG major alarm cleared.

If the NDIAG major alarm	Do
cleared	step 7
did not clear	step 6

- **6** For additional help, contact the next level of support.
- **7** The procedure is complete.

Lns OMAJ critical, major, or minor

Alarm display

Indication

OMAJ appears under the Lns header in the MAP subsystem status display.

Meaning

The out-of-service major (OMAJ) alarm indicates that the number of lines office wide with the O failure code crosses a threshold. Lines with the O failure code have two or more logical terminal identifiers (LTID) out-of-service because of rapid messaging (RM). The thresholds appear in office parameter RMSG_MAJALARM in table OFCVAR. To change the values of the thresholds, use the ALMSTAT OMAJ command. Using the table editor to change the threshold values does not update the alarms.

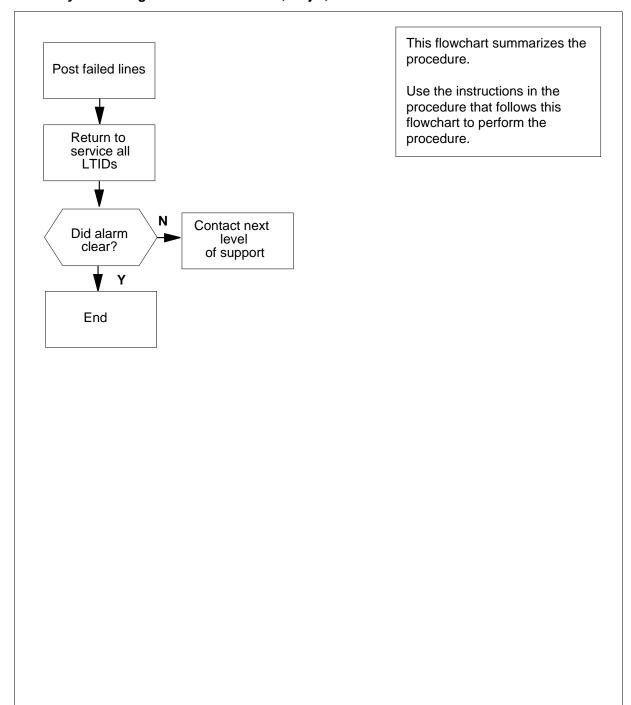
The following indicators can appear under OMAJ:

- *C* indicates a critical OMAJ alarm.
- M indicates a major OMAJ alarm.
- A blank space (neither *C* nor M) indicates a minor OMAJ alarm.

Impact

These conditions affect subscriber service until you correct the conditions.

Common procedures


Not applicable

Action

Lns OMAJ

critical, major, or minor (continued)

Summary of clearing an Lns OMAJ critical, major, or minor alarm

Lns OMAJ

critical, major, or minor (continued)

Clearing an Lns OMAJ critical, major, or minor alarm

At the MAP:

To access the LTP level of the MAP terminal, type

>MAPCI;MTC;LNS;LTP

and press the Enter key.

2 Post the lines or set of lines that have the O failure code. Type

>POST DF OMAJ

and press the Enter key.

Example of a MAP response:

POST DELQ BUSYQ PREFIX

LEN HOST 01 0 00 01

LCC PTY RNG STA F S LTA TE

ISDN LOOP DN 613 722 4209 IDL O

Note: To view all lines in the posted set, return to the CI level, and type

>MAPCI NODISP; MTC; LNS; LTP

and press the Enter key. To post the lines, type

>POST DF OMAJ PRINT

and press the Enter key. The list of lines in the posted set displays.

Note: To view the RM state of an LTID, post the LEN by the LTID. Type

>POST LT <group name> <group number>

and press the Enter key.

where

group name

is the LTID group name as defined in table LTDEF

group number

is the LTID group number from 1 to 1022

3 Return to service all LTIDs. Type

>RTS LT ALL

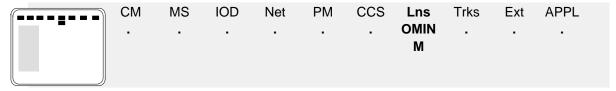
and press the Enter key.

Note: The RTS LT command does not return to service a busy line.

Example of a MAP response to the RTS LT ALL command:

Number of fully data filled lines in the posted set: 21 Number of lines with ISDN LTIDs to RTS: Number of lines with ISDN LTIDs that failed to RTS: 2

Lns OMAJ critical, major, or minor (end)


4 Check the MAP display to see if the OMAJ alarm cleared.

If the OMAJ major alarm	Do	_
did not clear	step 5	
cleared	step 6	

- 5 For additional help, contact the personnel responsible for the next level of support.
- **6** The procedure is complete.

Lns OMIN critical, major, or minor

Alarm display

Indication

OMIN appears under the Lns header in the MAP subsystem status display.

Meaning

The out-of-service minor (OMIN) alarm indicates that the number of lines office wide with the of ailure code crosses a threshold. Lines with the of ailure code have one logical terminal identifier (LTID) out-of-service because of rapid messaging (RM). The thresholds appear in office parameter RMSG_MINALARM in table OFCVAR. To change the values of the thresholds, use the ALMSTAT OMIN command. Using the table editor to change the threshold values does not update the alarms.

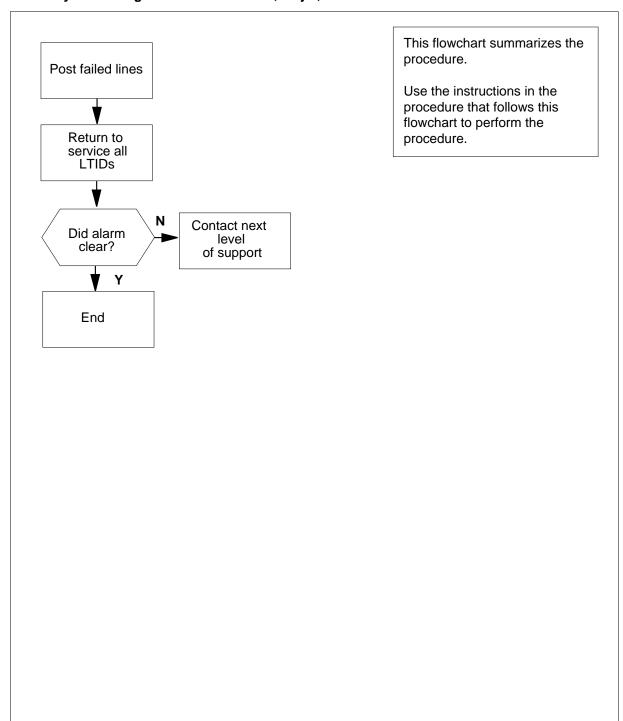
The following indicators can appear under OMIN:

- *C* indicates a critical OMIN alarm.
- M indicates a major OMIN alarm.
- A blank space (neither *C* nor M) indicates a minor OMIN alarm.

Impact

These conditions affect subscriber service until you correct the conditions.

Common procedures


Not applicable

Action

Lns OMIN

critical, major, or minor (continued)

Summary of clearing an Lns OMIN critical, major, or minor alarm

Lns OMIN

critical, major, or minor (continued)

Clearing an Lns OMIN critical, major, or minor alarm

At the MAP:

To access the LTP level of the MAP terminal, type

>MAPCI;MTC;LNS;LTP

and press the Enter key.

2 Post the lines or set of lines that have the o failure code. Type

>POST DF OMIN

and press the Enter key.

Example of a MAP response:

POST DELQ BUSYQ PREFIX

LEN HOST 01 0 00 01

LCC PTY RNG STA F S LTA TE

ISDN LOOP DN 613 722 4209 IDL o

Note: To view all lines in the posted set, return to the CI level, and type

>MAPCI NODISP; MTC; LNS; LTP

and press the Enter key. To post the lines, type

>POST DF OMIN PRINT

and press the Enter key. The list of lines in the posted set displays.

Note: To view the RM state of an LTID, post the LEN by the LTID. Type

>POST LT <group name> <group number>

and press the Enter key.

where

group name

is the LTID group name as defined in table LTDEF

group number

is the LTID group number from 1 to 1022

3 Return to service all LTIDs. Type

>RTS LT ALL

and press the Enter key.

Note: The RTS LT command does not return to service a busy line.

Example of a MAP response to the RTS LT ALL command:

Number of fully data filled lines in the posted set: 21 Number of lines with ISDN LTIDs to RTS:

Number of lines with ISDN LTIDs that failed to RTS: 2

Lns OMIN

critical, major, or minor (end)

4 Check the MAP display to see if the OMIN alarm cleared.

If the OMIN major alarm	Do	
did not clear	step 5	
cleared	step 6	

- 5 For additional help, contact the personnel responsible for the next level of support.
- **6** The procedure is complete.

Lns PSDF critical, major, or minor

Alarm display

Indication

The PSDF appears under the Lns header in the MAP subsystem status display.

Meaning

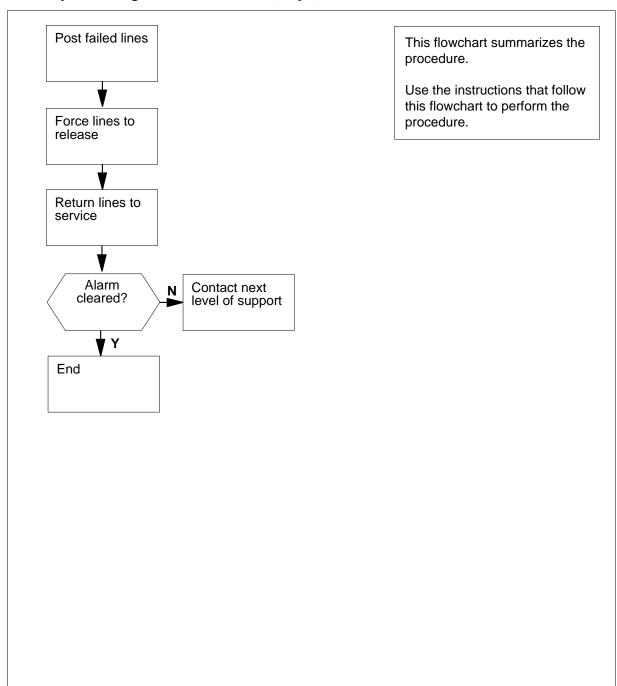
The permanent signal diagnostic failure (PSDF) alarm indicates that lines have permanent signal partial dial (PSPD) alarms. The alarm also indicates that lines have DIAG, FAC, MCARD, MSET, NDIAG, QDIAG, SDIAG, or UCARD alarms. The alarms are in the same class, either critical, major, or minor.

Result

The condition affects subscriber service until you correct the condition.

Common procedures

This procedure refers to Clearing Lines alarms.


Do not proceed to the common procedure unless the step-action procedure directs you to go,

Action

Lns PSDF

critical, major, or minor (continued)

Summary of clearing an Lns PSDF critical, major, or minor alarm

Lns PSDF critical, major, or minor (continued)

Clearing an Lns PSDF critical, major, or minor alarm

At the MAP terminal:

To access the LTP level of the MAP, type >MAPCI; MTC; LNS; LTP and press the Enter key.

2 To post the lines that are in the permanent lock-out state, type

>POST S PLO

and press the Enter key.

Example of a MAP response:

POST S PLO DELQ BUSYQ PREFIX LCC PTY RNG.....LEN...... DN STA F S LTA TE IBN REM1 00 0 00 06 7224345 IDL **D**

3 Note the failure code that appears under the F header. The code appears in bold for the response in the MAP example of the previous step. To determine the meaning of the failure code, use the following information.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that had faults earlier
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major Incoming message overload (ICMO) is present
is i	a minor Incoming message overload (ICMO) is present
is l	the keyset line failed the loopback test at the terminal

Lns PSDF

critical, major, or minor (end)

4 To force the lines to release, type

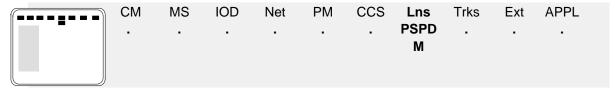
>FRLS

and press the Enter key.

- 5 Perform the procedure *Clearing Lines alarms*. Return to this point.
- 6 Determine from the MAP if the PSDF major alarm cleared.

If the PSDF major alarm	Do
cleared	step 7
did not clear	step 9

7 To return the force-released lines to service, type


>RTS

and press the Enter key.

- **8** Go to step 10.
- **9** For additional help, contact the next level of support.
- 10 The procedure is complete.

Lns PSPD major

Alarm display

Indication

The PSPD appears under the Lns header in the MAP subsystem status display.

Meaning

The permanent signal partial dial (PSPD) alarm indicates that a line is off-hook without any digits dialed. The alarm also indicates that only part of a directory number dialed.

Result

These conditions affect subscriber service until you correct the conditions.

Common procedures

This procedure refers to *Clearing lines alarms*.


Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

Lns PSPD

major (continued)

Summary of clearing an Lns PSPD major alarm

Lns PSPD major (continued)

Clearing an Lns PSPD major alarm

At the MAP:

- To access the LTP level of the MAP display, type >MAPCI;MTC;LNS;LTP and press the Enter key.
- 2 To post the lines that have a diagnostic failure, type >POST S PLO

and press the Enter key.

Example of a MAP response:

POST DELQ S PLO BUSYO PREFIX LCC PTY RNG.....LEN...... DN STA F S LTA TE IBN REM1 00 0 00 06 7224345 IDL **D**

3 Note the failure code that appears under the F header. The code appears in bold for the response in the MAP example of the previous step. To determine the meaning of the failure code, use the following information.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that had faults earlier
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major Incoming message overload (ICMO) is present
is i	a minor Incoming message overload (ICMO) is present
is l	the keyset line failed the loopback test at the terminal

Lns PSPD

major (end)


- 4 Perform the procedure *How to Clear Lines alarms*. Return to this point.
- 5 Determine form the MAP display if the PSPD major alarm cleared.

If the PSPD major alarm	Do
cleared	step 7
did not clear	step 6

- **6** For additional help, contact the next level of support.
- **7** The procedure is complete.

Lns QDIAG major

Alarm display

Indication

The QDIAG appears under the Lns header in the MAP subsystem status display.

Meaning

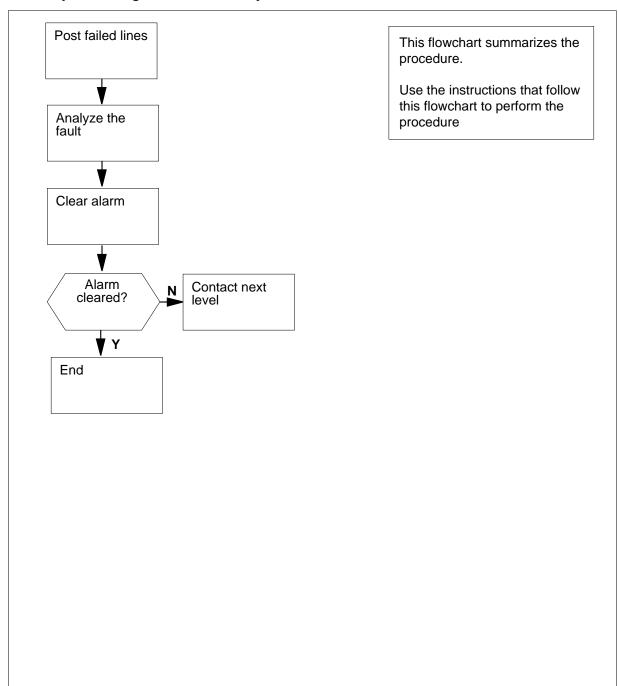
The queue diagnostic (QDIAG) alarm indicates the number of lines in the shower queue reached the threshold.

Result

The type of failure determines the result on subscriber service. For example, a noise problem affects the quality of service while the problem continues to allow calls. Test failures for transhybrid loss or flux cancellation result in loss of service until you correct the fault.

Common procedures

This procedure refers to *Clearing lines alarms*.


Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

Lns QDIAG

major (continued)

Summary of clearing an Lns QDIAG major alarm

Lns QDIAG major (continued)

Clearing an Lns QDIAG major alarm

At the MAP terminal:

- To access the LTP level of the MAP display, type >MAPCI;MTC;LNS;LTP and press the Enter key.
- To post the lines that have a diagnostic failure, type 2 >POST DF QUEUE and press the Enter key. Example of a MAP response:

3 Note the failure code that appears under the F header. The code appears in bold for the response in the MAP example of the previous step. To determine the meaning of the failure code, use the following information.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that had faults earlier
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major Incoming message overload (ICMO) is present
is i	a minor Incoming message overload (ICMO) is present
is l	the keyset line failed the loopback test at the terminal

Lns QDIAG

major (end)

- 4 Perform the procedure *Clearing lines alarms*. Return to this point.
- 5 Determine from the MAP display if the QDIAG major alarm cleared.

If the QDIAG major alarm	Do
cleared	step 7
did not clear	step 6

- **6** For additional help, contact the next level of support.
- **7** The procedure is complete.

Lns SDIAG major

Alarm display

Indication

The SDIAG appears under the Lns header in the MAP subsystem status display.

Meaning

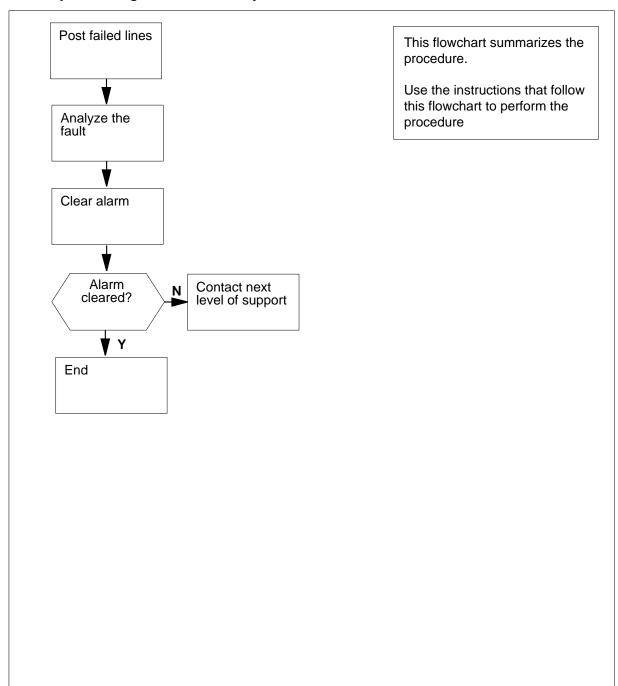
The short diagnostic (SDIAG) alarm indicates that a number of lines failed the short diagnostic test.

Result

The condition does not affect subscriber service unless a D or F failure flag associates with the line.

Common procedures

This procedure refers to *Clearing lines alarms*.


Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

Lns SDIAG

major (continued)

Summary of clearing an Lns SDIAG major alarm

Lns SDIAG major (continued)

Clearing an Lns SDIAG major alarm

At the MAP terminal:

To access the LTP level of the MAP display, type >MAPCI;MTC;LNS;LTP and press the Enter key.

2 To post the lines that have a diagnostic failure, type

>POST DF S

and press the Enter key.

Example of a MAP response:

POST DF S DELO BUSYQ PREFIX LCC PTY RNG.....DN STA F S LTA TE IBN REM1 00 0 00 06 7224345 IDL **D**

3 Note the failure code that appears under the F header. The code appears in bold for the response in the MAP example of the previous step. To determine the meaning of the failure code, use the following information.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that had faults earlier
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major Incoming message overload (ICMO) is present
is i	a minor Incoming message overload (ICMO) is present
is l	the keyset line failed the loopback test at the terminal

Lns SDIAG

major (end)

- 4 Perform the procedure *Clearing lines alarms*. Return to this point.
- 5 Determine from the MAP if the SDIAG major alarm cleared.

If the SDIAG major alarm	Do
cleared	step 7
did not clear	step 6

- **6** For additional help, contact the next level of support.
- **7** The procedure is complete.

Lns TCM major

Alarm display

Indication

The TCM appears under the Lns header in the MAP subsystem status display.

Meaning

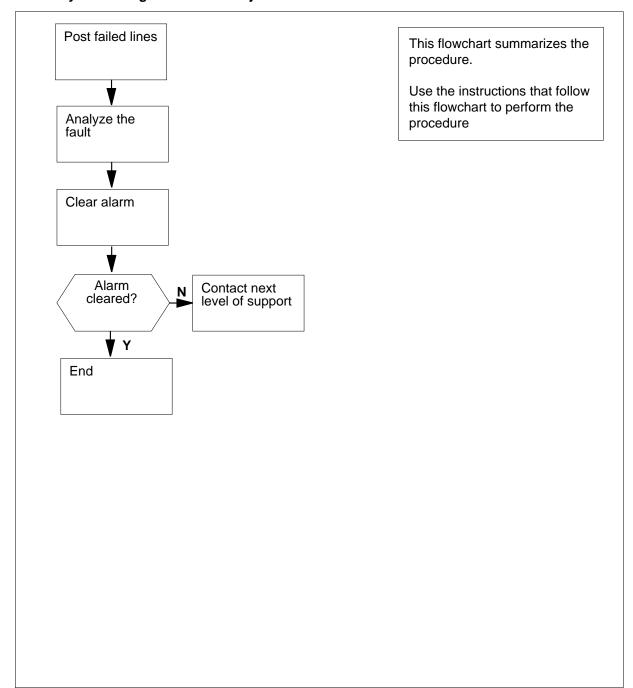
The time compression multiplexing (TCM) alarm indicates that the acceptable number of TCM synchronization losses reached the threshold.

Result

The condition affects subscriber service until the you correct the condition.

Common procedures

This procedure refers to Clearing lines alarms.


Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

Lns TCM

major (continued)

Summary of clearing an Lns TCM major alarm

Lns TCM major (continued)

Clearing an Lns TCM major alarm

At the MAP terminal:

To access the LTP level of the MAP, type >MAPCI;MTC;LNS;LTP

and press the Enter key.

2 To post the lines that have a diagnostic failure, type

>POST DF T

and press the Enter key.

Example of a MAP response:

POST DF T DELQ BUSYQ PREFIX LCC PTY RNG.....LEN...... DN STA F S LTA TE IBN REM1 00 0 00 06 7224345 IDL **D**

3 Note the failure code that appears under the F header. The code appears in bold for the response in the MAP example of the previous step. To determine the meaning of the failure code, use the following information.

If Failure Code	Do Check the Meaning
is D	the DIAG test failed
is F	the DIAG test failed
is S (N/A for ISDN)	the SDIAG test failed
is N	the SDIAG test passed on the line that had faults earlier
is m	the DIAG test detected a missing keyset or network termination 1 (NT1)
is M	the DIAG test detected a missing line card
is Q	a call-processing error is present
is I	a major Incoming message overload (ICMO) is present
is i	a minor Incoming message overload (ICMO) is present
is l	the keyset line failed the loopback test at the terminal

Lns TCM major (end)

- 4 Perform the procedure *Clearing lines alarms*. Return to this point.
- 5 Determine from the MAP if the TCM major alarm cleared.

If the TCM major alarm	Do
cleared	step 7
did not clear	step 6

- **6** For additional help, contact the next level of support.
- **7** The procedure is complete.

3 Message Switch alarm clearing procedures

Introduction

This chapter provides message switch (MS) alarm clearing procedures. Message switch alarms appear under the MS header of the alarm banner in the MAP display. All the procedures contain the following sections:

- Alarm display
- Indication
- Meaning
- Result
- Common procedures
- Action

Alarm display

This section indicates how the alarm appears at the MAP terminal.

Indication

This section indicates where the alarm appears and how the system represents the alarm. This section also indicates the affected subsystem, and the alarm severity.

Meaning

This section indicates the cause of the alarm.

Result

This section describes the results of the alarm condition.

Common procedures

This section lists common procedures used during alarm clearing procedures. A common procedure is a series of steps repeated in maintenance procedures. Removal and replacement of a card is an example of a common procedure. Common procedures appear in the common procedures chapter in this NTP.

Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

This procedure provides a summary flowchart and a list of steps to clear alarms. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS CCFB minor

Alarm display

Indication

At the MTC level of the MAP display, a number and CCFB appear under the MS header of the alarm banner. The CCFB indicates a minor alarm for the partial frame transport bus (F-bus) composite clock (CCFB).

Meaning

A partial F-bus (either F-bus 0 or F-bus 1) has a fault in an F-bus composite clock. The F-bus that has a fault is in-service trouble (ISTb).

The fault for the partial F-bus composite clock will generate a MS407 log.

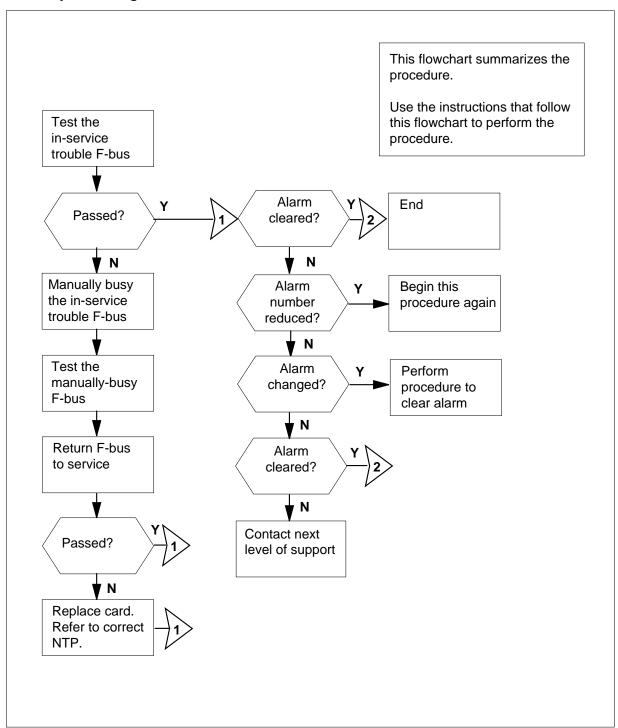
This alarm only applies to a single shelf link peripheral processor (SS LPP). Each F-bus must connect directly to the message switch (MS) with fiber-optic cables. A local message switch (LMS) is not present.

Result

The CCS7 performance can degrade.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS CCFB

minor (continued)

Summary of clearing an MS CCFB minor alarm

MS CCFB

minor (continued)

Clearing an MS CCFB minor alarm

At your current location

- Determine if an MS407 log report is present. The MS407 log report indicates a composite clock failure.
- 2 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

```
Message Switch Clock
                     Shelf 0 Inter-MS Link 0 1
MS 0
                     M Free F
MS 1
                     Slave
```

Note: In the example, the F under the Shelf header indicates you need access to the SHELF level of the MAP.

3 Determine if an F appears under the Shelf header of the MAP display.

If an F	Do
is present	step 4
is not present	step 13

To access the F-bus level of the MAP display, type 4

>SHELF; CARD 12

and press the Enter key.

Example of a MAP display:

										1	1	1	1							
Card	1	2	3	4	5	6	7	8	9	0	1	2	3							
Chain																				
MS 0												F								
MS 1																				
Card :	12					Ι	₹Bι	ıs	Τá	ap	:	0		11	12		16	,	20)
MS 0							1	Γ				I		I	III	I	ΙI	ΙΙ	ΙI	ΞI
MS 1														_						

Note: In the example, I under the F-Bus header indicates an in-service trouble F-bus, and (.) indicates an in-service F-bus. Under the F-bus tap numbers (0 to 23), I indicates an in-service trouble tap and (.) indicates an in-service tap.

MS CCFB

minor (continued)

Determine which message switch (MS) connects to the F-bus that is in-service trouble.

Note: In the MAP display example in step 4, the F-bus that is in-service trouble connects to MS 0.

6 To test the in-service trouble F-bus, type

>TST ms_number FBUS and press the Enter key where

ms number

is the number of the MS (0 or 1) connected to the manually busy F-bus

_

If the TST command	Do
passed	step 13
failed and composite clock failure detected	step 7

- 7 Check the composite clock cables for correct connections.
- 8 To manually busy the F-bus for in-service trouble, type

>BSY ms_number FBUS

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) connected to the in-service trouble F-bus

9 To test the manually busy F-bus, type

>TST ms_number FBUS

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) connected to the manually busy F-bus

10 To return the manual busy F-bus to service, type

>RTS ms_number FBUS and press the Enter key.

where

MS CCFB minor (end)

ms number

is the number of the MS (0 or 1) connected to the manual busy F-bus

If the RTS command	Do
passed	step 13
failed and the system generated a card list	step 11

- Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list. 11
- To change the card, perform the correct card replacement procedure in *Card Replacement Procedures*. Complete the procedure and return to this point. 12
- 13 Determine if the CCFB alarm cleared.

If the alarm	Do
cleared	step 16
reduced in number (for example, the alarm changed from 02CCFB to 01CCFB)	step 5
changed to another alarm	step 14
did not clear	step 15

- 14 Perform the correct procedure in this document to clear an alarm.
- 15 For additional help, contact the next level of support.
- 16 The procedure is complete.

MS CLOCK major

Alarm display

Indication

At the MTC level of the MAP display, CLOCK appears under the MS header of the alarm banner. The CLOCK indicates a major alarm for the CLOCK.

Meaning

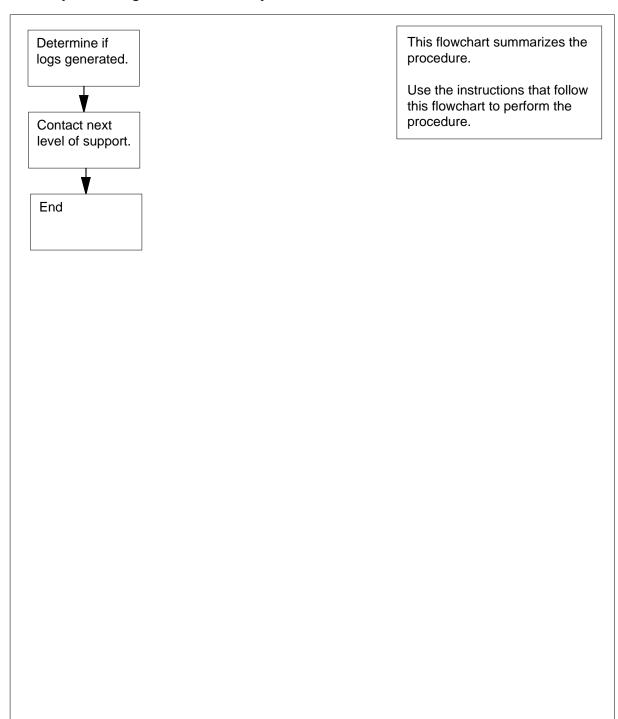
An error occurred on a clock card for a message switch (MS).

Result

The affected clock card is in service, but carrier slips can occur.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS CLOCK

major (continued)

Summary of clearing an MS CLOCK major alarm

MS CLOCK

major (end)

Clearing an MS CLOCK major alarm

At the MAP

- Obtain all recent SYNC and MSL logs.
- **2** For additional help, contact the next level of support.
- **3** The procedure is complete.

MS CMIC minor

Alarm display

Indication

At the MTC level of the MAP display, a number and CMIC appear under the MS header of the alarm banner. The CMIC indicates a computing module interface card (CMIC) minor alarm.

Meaning

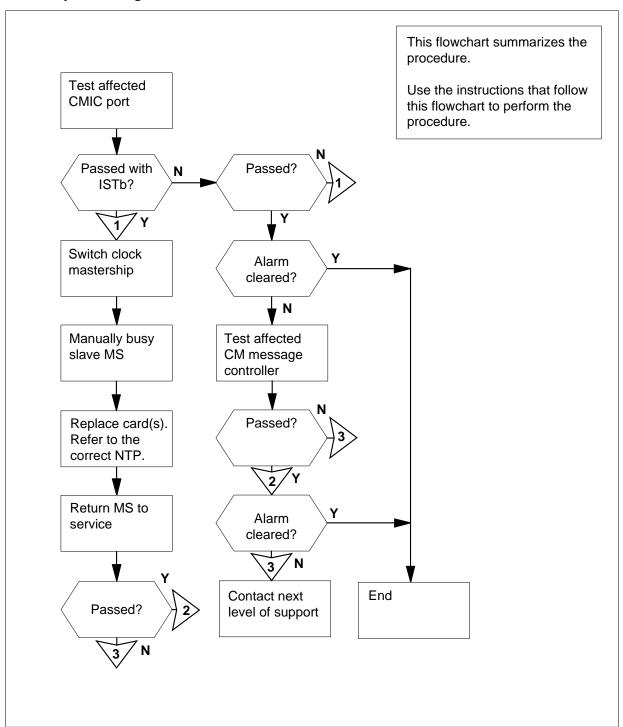
A port or interface card fault can cause an out-of-service CMIC link. A port or interface card fault can occur at either end of the link. The fiber link that has faults can be also.

The number under the MS header in the alarm banner indicates the number of affected CMIC links.

Result

Two CMIC links are between each message switch (MS) and the computing module (CM). If one of the two links is out of service, the MS functions normally. If faults are present in both links, the MS goes out-of-service.

Common procedures


This procedure refers to Failure to switch clock mastership.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

minor (continued)

Summary of clearing an MS CMIC minor alarm

minor (continued)

Clearing an MS CMIC minor alarm

At the MAP terminal

To access the Shelf level of the MAP display, type

>MAPCI;MTC;MS;SHELF shelf_number

and press the Enter key.

where

shelf number

is the number of the shelf (0 to 3)

Note: For DMS SuperNode SE, do not enter a shelf number.

Example of a MAP display for DMS SuperNode:

Message S	Swi	tc	h		C]	.00	k	5	She	elf	Ξ ()	Ir	nte	er-	-MS	S I	ir	ık	0	1					
MS 0								М	Fı	cee	9											R				
MS 1								S]	a۱	<i>r</i> e			Ε	7								S				
Shelf 0									1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	
Card 1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	
Chain																										
$MS \ 0$.																							F			
MS 1 .																										

Example of a MAP display for DMS SuperNode SE:

Message Switch	Clock Shelf 0	Inter-MS Link 0 1
MS 0 .	M Free	. R .
MS 1 .	Slave	F S.
Shelf 0	1 1 1 1	
Card 1 2 3 4 5	6 7 8 9 0 1 2 3	
Chain		
MS 0 F .		
MS 1		

- 2 Determine and note the number of CMIC alarms posted on the alarm banner. The alarm banner indicates one or two alarms. The 01CMIC indicates one alarm and 02CMIC indicates two alarms.
- 3 Examine the MAP display and determine the affected CMIC card. The affected CMIC card is card 4 on MS 0 or card 4 on MS 1 for a DMS supernode SE.

Note: An F under the card number indicates the affected CMIC card.

To post the affected card, type

>CARD card_number and press the Enter key.

minor (continued)

where

card_number

is the number of the affected card

Example of a MAP display:

```
Card 04 CMIC Interface Card Port: 0 1 MS 0 . . S MS 1 . . .
```

5 Determine the state of the affected ports.

Note: The state of a port appears under the Port number field at the Card level of the MAP display.

If the state of the ports	Do
is ManB (manual busy)	step 7
is SysB (system busy)	step 6
is ISTb (in-service trouble)	step 6

Manually busy the system busy port or the in-service trouble port. An S under the port number indicates a system busy port. An I under the port number indicates an in-service trouble port. To manually busy the system-busy port or the in-service trouble port, type

```
>BSY ms_number PORT port_number
```

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) on which

the affected card resides

port number

is the number of the system busy port (0 or 1)

Example of a MAP response:

```
Request to BUSY MS:0 shelf:0 card:4 port 1 submitted. Request to BUSY MS:0 shelf:0 card:4 port 1 passed.
```

7 To test the affected CMIC port, type

```
>TST ms_number PORT port_number and press the Enter key.

where
```

ms number

is the number of the MS (0 or 1) on which the affected

minor (continued)

card resides

port number

is the number of the system busy port (0 or 1)

Example of a MAP:

Request to TEST OOS MS:0 shelf:0 card:4 port 1 submitted. Request to TEST OOS MS:0 shelf:0 card:4 port 1 passed.

If the TST command	Do
passed	step 24
passed with ISTb, and the system generated a card list	step 8
failed, and the system generated a card list	step 8
other than listed here	step 43

- 8 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- 9 To access the MS level of the MAP display, type

>MS

and press the Enter key.

Example of a MAP display:

Mes	ssage	Switch	Clock	Shelf	0	Inter-MS	Link	0	1		
MS	0	•		M Free		•				R	
MS	1	•		Slave		F				S	

10 Determine the clocking configuration.

> Note: The clocking configuration appears under the Clock header at the MS level of the MAP display.

IfThe MS that contains the card you must replace is the	Do
slave	step 14
master	step 11

11 To switch clock mastership, type

>SWMAST

and press the Enter key.

minor (continued)

Example of a MAP display:

Request to Switch Clock Mastership MS: 0 submitted. Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command	Do
passed	step 13
failed	step 12

- Perform the procedure *Failure to switch clock mastership* in this document. Complete the procedure and return to this point.
- Wait 10 min to make sure the MS is stable. Continue the procedure.
- 14 To manually busy the MS that contains the card you must replace, type

>BSY ms_number

and press the Enter key.

where

ms number

is the number of the slave MS (0 or 1)

Example of a MAP display:

Request to MAN BUSY MS: 0 submitted. Request to MAN BUSY MS: 0 passed.

If the response	Do
is Request to MAN BUSY MS:0 passed	step 15
is Request to MAN BUSY MS:1 passed	step 15
other than listed here	step 43

- Perform the correct card replacement procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.
- To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

minor (continued)

ms number

is the number of the manual busy MS (0 or 1)

If the test	Do
passed	step 21
passed with ISTB, and the system generated a card list	step 19
passed with ISTB, or failed, and you replaced all the cards on the list	step 26
failed, and the system generated a card list	step 17
other than listed here	step 43

17 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 26
have not replaced all the cards on the list	step 18

18 Record the location, description, slot number, PEC, and PEC suffix of the first card listed that you did not replace.

Go to step 20.

- 19 Record the location, description, slot number, PEC, and PEC suffix of the next card on the list.
- 20 Use the information recorded in step 18 to determine the subsystem that contains the card you must replace.

If the card you must replace	Do
is an MS card	step 15
is a CM card	step 31

21 To return the manual busy MS to service, type

>RTS ms_number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

minor (continued)

Example of a MAP response:

Request to RTS MS: 0 submitted. Request to RTS MS: 0 passed.

If the RTS command	Do
passed	step 22
failed	step 43

22 To access the Shelf level of the MAP display, type

>SHELF shelf_number

and press the Enter key.

where

shelf number

is the number of the shelf (0 to 3)

Note: For DMS SuperNode SE, do not enter a shelf number.

Example of a MAP display for DMS supernode:

Shelf	0									1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	
Card	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	
Chain																											
MS 0																								I			
MS 1																											

Example of a MAP display for DMS supernode SE:

Shelf	0									1	1	1	1
Card	1	2	3	4	5	6	7	8	9	0	1	2	3
Chain													
MS 0				I									
MS 1													

23 To access the affected card, type

>CARD card_number

and press the Enter key.

where

card number

is the number of the affected card

Example of a MAP display:

```
Card 04 CMIC Interface Card Port: 0 1 MS 0 I . M MS 1 . . .
```

minor (continued)

24 To return the manual busy port to service, type

> >RTS ms_number PORT port_number and press the Enter key.

where

ms_number

is the number of the MS (0 or 1) that contains the affected card

is the number of the manual busy port (0 or 1)

Example of a MAP response:

Request to RTS MS:0 shelf:0 card:4 PORT 1 submitted. Request to RTS MS:0 shelf:0 card:4 PORT 1 passed.

If the RTS command	Do
passed	step 25
failed	step 43

25 To determine if the CMIC minor alarm cleared, check the MS alarm banner of the MAP display.

If the alarm	Do						
cleared	step 44						
changed to another alarm	step 42						
reduced in number (for example, the alarm changed from 02CMIC to 01CMIC)	step 1						
did not clear	step 26						

26 To access the CM level of the MAP display, type

>CM

and press the Enter key.

27 Determine if a step in the procedure clearing a CM MC Tbl minor alarm directed you to this procedure.

If a step in the procedure How to clear a CM MC Tbl minor alarm	Do
directed you to this procedure	step 41

minor (continued)

If a step in the procedure How to clear a CM MC Tbl minor alarm	Do
did not direct you to this procedure	step 28

28 To access the MC level of the MAP display, type

>MC

and press the Enter key.

29 To test the MC that connects to the affected CMIC, type

>TST mc_number

and press the Enter key.

where

mc_number

is the number of the affected MC (0 or 1)

Example of a MAP display:

```
CM 0
MC 0 MC 1
Istb .
```

The CMICs connect to the message controllers as follows:

- MS0 card 4 connects to port 0. Port 0 connects to MC0 on link 0
- MS0 card 4 connects to port 1. Port 1 connects to MC1 on link 1
- MS1 card 4 connects to port 0. Port 0 connects to MC1 on link 0
- MS1 card 4 connects to port 1. Port 1 connects to MC0 on link 1

If the TST command	Do
passed	step 35
failed, and the system generates a card list	step 30
failed, and you replaced all the cards on the list	step 43
other than listed here	step 43

- Record the location, description, slot number, PEC, and PEC suffix of the first card on the list.
- To change the card, perform the correct card replacement procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.

minor (continued)

To access the MC level of the MAP display, type 32

>MC

and press the Enter key.

33 To test the affected MC, type

>TST mc_number

and press the Enter key.

where

mc_number

is the number of the affected MC (0 or 1)

If the TST command	Do
passed	step 35
failed, the system generates a card list, and you replaced all the cards on the list	step 41
failed, and the system generates a card list	step 34
other than listed here	step 43

34 Record the location, description, slot number, PEC, and PEC suffix of the next card on the list.

Go to step 31.

35 Determine if the inactive CPU jammed.

> *Note:* The word yes under the JAM header means that the CPU jammed. This area is blank if the CPU has not jammed.

If the inactive CPU	Do	
jammed	step 36	
has not jammed	step 37	

At the CM RTIF

36 To remove the jam from the inactive CPU, type

>\RELEASE JAM

and press the Enter key.

RTIF response:

JAM RELEASE DONE

minor (continued)

At the MAP terminal

37 To access the CM level of the MAP display, type

>CM

and press the Enter key.

38 Determine if the CM is in sync.

Note: A dot symbol under the Sync header indicates that the CM is in sync. The word "No" means that the CM is not in sync.

If the CM	Do
is in sync	step 40
is not in sync	step 39

39 To synchronize the CM, type

>SYNC

and press the Enter key.

MAP response:

Synchronization successful

If the SYNC command	Do
passed	step 40
failed	step 43

40 To determine if the CMIC minor alarm cleared, check the MS alarm banner of the MAP display.

If the alarm	Do
cleared	step 44
reduced in number (for example, it changed from 02CMIC to 01CMIC)	step 1
changed to another alarm	step 42
did not clear	step 41

A fiber link between the CM and the MS can have faults. Go to step 43.

MS CMIC minor (end)

- 42 Perform the correct procedure in this document to clear an alarm.
- 43 For additional help, contact the next level of support.
- 44 The procedure is complete.

MS DDM major

Alarm display

Indication

At the MTC level of the MAP display, DDM appears under the MS header of the alarm banner. The DDM indicates a distributed data manager (DDM) major alarm.

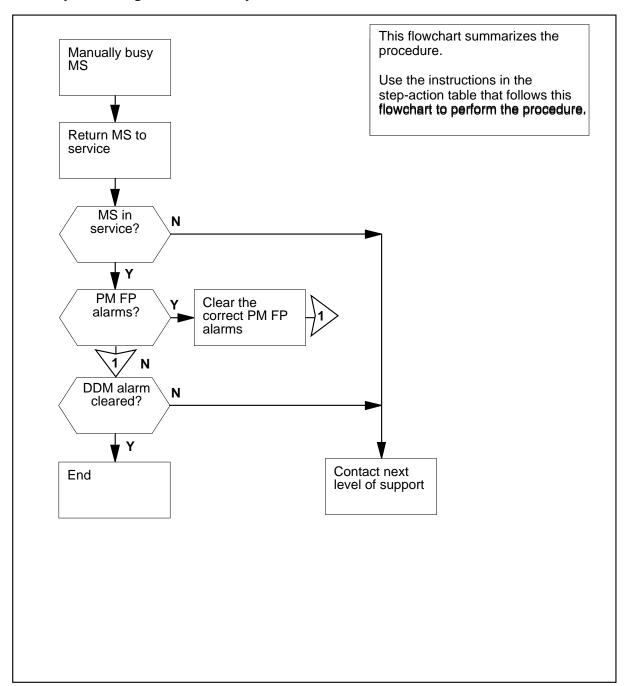
Meaning

The DDM failed to transfer data to the integrated link maintenance (ILM) software in the message switch (MS). MS links to the file processors (FP) are out of service.

Result

In-service trouble is present in one or both MSs. One or more FPs can be out of service. The performance will degrade for applications that run on the FPs that have faults.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

major (continued)

Summary of clearing an MS DDM major alarm

major (continued)

Clearing an MS DDM major alarm

At the MAP terminal

1 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP response:

		Message	Switch	Clock	Shelf	0	Inter-MS	Link	0	1
MS	0	I		Slave						
MS	1			Master						

2 Determine if in-service trouble is present in one or both MSs.

Note: In the example of a MAP response in step 1, MS 0 has in-service trouble

If	Do
one MS has in-service trouble	step 3
two MSs have in-service trouble	step 18

3 Determine the clocking configuration of the MS that has faults. The clocking configuration appears under the Clock header at the MS level of the MAP.

If the MS has faults	Do
is the master MS, Master, M Flt, or M Free appears under the Clock header	step 4
is the slave MS, Slave or S Flt or S Free appears under the Clock header	step 5

4 To switch clock mastership, type

>SWMAST

and press the Enter key.

If the switch of mastership	Do
passed	step 5
failed	step 18

5 To manually busy the MS that has in-service trouble, type

>BSY ms_number

major (continued)

and press the Enter key.

where

ms number

is the number of the MS that has in-service trouble (0 or 1)

If the BSY command	Do
passed	step 6
failed	step 18

6 To return the manual busy MS to service, type

>RTS ms_number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

If the RTS command	Do
passed	step 11
passed, with in-service trouble	step 18
failed, and the system generates a card list	step 7
failed, and the system does not generate a card list	step 18

- 7 Record the location, product engineering code (PEC), and PEC suffix of the first card on the card list.
- 8 To replace the card, use the correct card replacement procedure in Card Replacement Procedures. Complete the procedure and return to this point.
- 9 To return the MS to service, type

>RTS ms_number

and press the Enter key.

where

is the number of the manual busy MS (0 or 1)

If the RTS command	Do
passed	step 11
failed, and you did not replace all the cards on the list	step 10
failed, and you replaced all the cards on the list	step 18

major (continued)

	RTS comma	and				Do	
failed	, and the sy	stem did	not gener	ate a card l	ist	step 18	
Record	the location,	, PEC, and	PEC suffi	ix of the nex	t card or	the card l	
Go to st	tep 8.						
To access the PM level of the MAP display, type							
>PM							
and pre	ss the Enter	key.					
Exampl	le of a MAP i	response:					
	Sys	B ManE	offL	CBsy	ISTb	InSv	
PM	() 0	0	0	1	38	
	rmine if any		are syste	m busy, type	9		
>POST	FP SYSE	=					
•	ss the Enter	key.					
Exampl	le of a MAP:						
	GD		0551		T CITIL-		
	SysB	ManB	Offl	CBsy	ISTb	InSv	
PM	1	0	0	0	0	39	
PM FP	_		-	-			
	1	0	0	0	0	39	
FP	1	0	0 0 ane	0 0	0	39	
FP 0: SysB	1 1 FPO_25	0 0 56 Pl NoCo	0 0 ane	0 0	0	39	
FP 0: SysB	1 1 FPO_25 /Mtce	0 0 56 Pl NoCo	0 0 ane mm	0 0 Devices	0	39	
FP 0: SysB If syst are pr	1 1 FPO_25 /Mtce	0 0 56 Pl NoCo	0 0 ane mm	0 0 Devices	0	39	
FP 0: SysB If syst are pr	1 1 FPO_25 /Mtce tem busy FF	0 0 56 Pl NoCo	0 0 ane mm	Devices Do tep 13 tep 14	0 0	39 7	

>POST FP ISTB

and press the Enter key.

Example of a MAP display:

MS DDM major (end)

	SysB	ManB	Offl	CBsy	ISTb	InSv
PM	1	0	0	0	0	39
FP	0	0	0	0	1	7
FP 0:	FP0_2	56 PI	ane	Devices		
ISTb		NoCo	mm	•		

If FPs with in-service trouble	Do
are present	step 15
are not present	step 16

- Perform the procedure *How to clear a PM FP minor alarm* in this document. 15 Complete this procedure and return to this point.
- 16 To determine if the DDM alarm cleared, check the MS alarm banner of the MAP display.

If the alarm	Do
cleared	step 19
changed to another alarm	step 17
did not clear	step 18

- 17 Perform the correct procedure in this document to clear an alarm.
- 18 For additional help, contact the next level of support.
- 19 The procedure is complete.

MS FCFB minor

Alarm display

Indication

At the MTC level of the MAP display, FCFB (preceded by a number) appears under the MS header of the alarm banner. The FCFB indicates a full frame transport bus (F-bus) composite clock (FCFB) minor alarm.

Meaning

Both F-bus 0 and F-bus 1 have faults in the full F-bus composite clocks. Both the F-bus 0 and the F-bus 1 are in-service trouble.

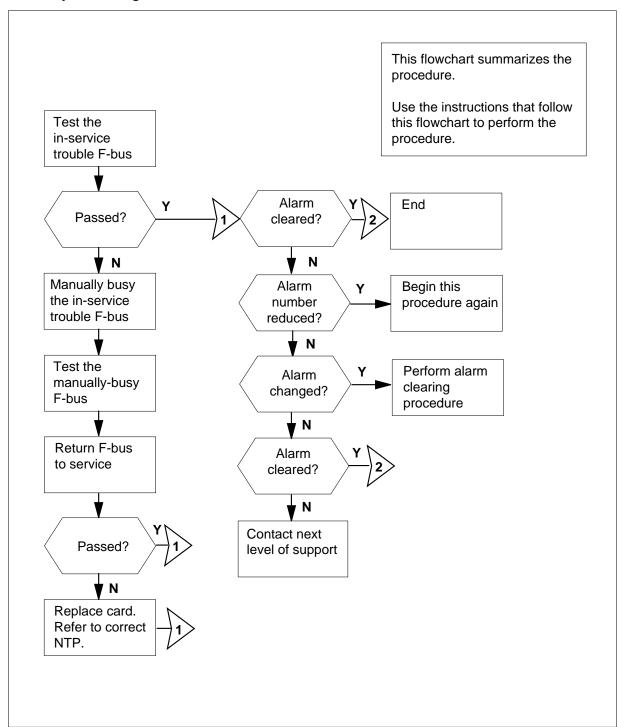
The fault for the full F-bus composite clock also generates a MS407 log.

This alarm applies only to a single shelf link peripheral processor (SS LPP). Each F-bus must connect to the message switch (MS) with fiber-optic cables. No local message switch (LMS) is present.

Result

Performance of the CCS7 can degrade.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

minor (continued)

Summary of clearing an MS FCFB minor alarm

minor (continued)

Clearing an MS FCFB minor alarm

At your current location

- 1 Check for an MS407 log report that indicates a composite clock failure.
- 2 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

Message	Switch Clock	Shelf 0	Inter-MS	Link	0	1
MS 0		M Free	F			
MS 1		Slave	F			

Note: In the example, F under the Shelf header tells you to access the SHELF level.

3 Determine if an F is present under the Shelf header of the MAP display.

If an F	Do
is present	step 4
is not present	step 13

4 To access the F-bus level of the MAP display, type

>SHELF; CARD 12

and press the Enter key.

Example of a MAP display:

											1	1	1	1							
Cai	rd	1	2	3	4	5	6	7	8	9	0	1	2	3							
Cha	ain																				
MS	0												F								
MS	1												F								
Cai	rd .	12					Ι	·Βι	ıs	Τá	ap:	:	0		11	12		16		20	
MS	0							1	Γ				I		I	III	I	ΙI	ΙΙ	II	ΙI
MS	1																				

Note: In the example, I under the F-Bus header indicates an in-service trouble F-bus, and (.) indicates an in-service F-bus. Under the F-bus tap numbers (0 to 23), I indicates an in-service trouble tap and (.) indicates an in-service tap.

Determine which message switch (MS) connects to the in-service trouble F-bus.

 $\textit{Note:}\$ In the MAP display example in step 4, the in-service trouble F-bus connects to MS 0.

minor (continued)

6 To test the in-service trouble F-bus, type

> >TST ms number FBUS and press the Enter key where

ms_number

is the number of the MS (0 or 1) that connects to the manually-busy F-bus

If the TST command	Do
passed	step 13
failed and composite clock failure detected	step 7

- 7 Check the composite clock cables for correct connections.
- 8 To manually busy the in-service trouble F-bus, type

>BSY ms_number FBUS and press the Enter key where

is the number of the MS (0 or 1) that connects to the in-service trouble F-bus

9 To test the manually busy F-bus, type

> >TST ms_number FBUS and press the Enter key where

ms number

is the number of the MS (0 or 1) that connects to the manually busy F-bus

10 To return the manual busy F-bus to service, type

> >RTS ms_number FBUS and press the Enter key. where

ms_number

is the number of the MS (0 or 1) that connects to the manual busy

minor (end)

_

If the RTS command	Do
passed	step 13
failed, and the system generates a card list	step 11

- Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- To change the card, perform the correct card replacement procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.
- **13** Determine if the FCFB alarm cleared.

If the alarm	Do
cleared	step 16
reduced in number (for example, a change from 2FCFB to 1FCFB)	step 5
changed to another alarm	step 14
did not clear	step 15

- 14 Perform the correct procedure in this document to clear an alarm.
- 15 For additional help, contact the next level of support.
- 16 The procedure is complete.

MS IMSL minor

Alarm display

Indication

At the MTC level of the MAP display, IMSL (preceded by a number) appears under the MS header of the alarm banner. The IMSL indicates an IMSL minor alarm.

Meaning

Inter-message switch (MS) links are out of service. Another route is possible through the inter-MS link that remains.

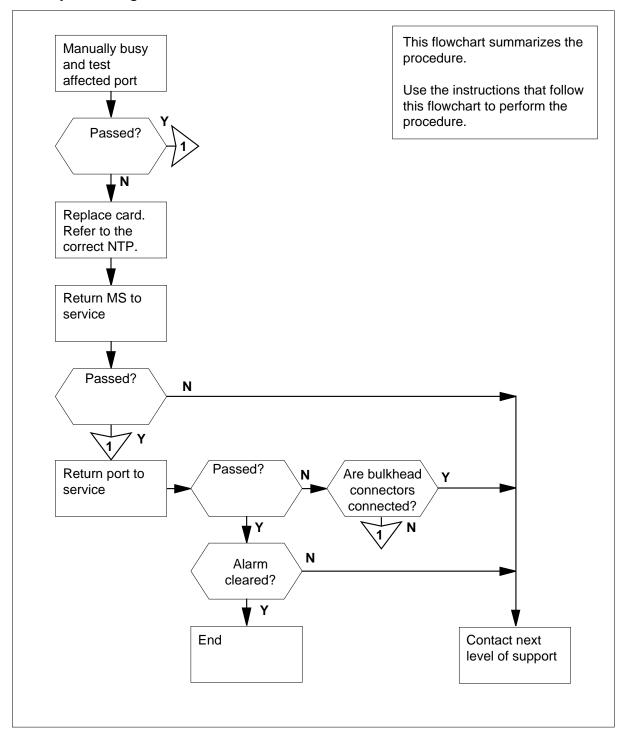
The number under the MS header in the alarm banner indicates the number of links affected.

Result

There is no impact on subscriber service.

Common procedures

This procedure refers to Failure to switch clock mastership.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS IMSL

minor (continued)

Summary of clearing an MS IMSL minor alarm

minor (continued)

Clearing an MS IMSL minor alarm

At the MAP terminal

To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1
MS 0
                    M Free
                                              R.
MS 1
                    Slave
                              F
                                              s.
```

- 2 Determine from the MAP display the inter-MS links that are out-of-service. An S, which means system busy, indicates an out-of-service inter-MS link.
- To access the level of the MAP display that indicates inter-MS port status, 3 type

```
>INTERMS link number
```

and press the Enter key.

where

is the inter-MS link (0 or 1) that is out of service

4 To determine from the MAP display the port that corresponds to the affected inter-MS link, type

```
>TRNSL ms number
```

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) on which the system busy

inter-MS link resides

Example of a MAP response:

```
Port 2=Inter-MS link
Port 1=Inter-MS link
```

5 To manually busy the affected port, type

>BSY ms_number PORT port_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) on which the system busy

minor (continued)

inter-MS link resides

port_number

is the number of the affected port (0 to 3)

Example of a MAP response:

Request to MAN BUSY MS:1 shelf:0 card:10 Port:1 submitted.
Request to MAN BUSY MS:1 shelf:0 card:10 Port:1 passed

6 To test the affected port, type

>TST ms_number PORT port_number and press the Enter key.

where

ms number

is the number of the MS (0 or 1) on which the system busy

inter-MS link resides

port_number

is the number of the affected port (0 to 3)

Example of a MAP response:

Request to Test OOS MS:1 Shelf:0 Card:10 Port:1 submitted. Request to Test OOS MS:1 Shelf:0 Card:10 Port:1 passed

If the TST command	Do
passed	step 23
passed with Istb, and the system generates a card list	step 7
failed, and the system generates a card list	step 7
failed, the system generates a card list, and an error response appears	step 26
other than listed here	step 26

Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.

minor (continued)

8 Determine the clocking configuration.

> **Note:** The clocking configuration appears under the Clock header at the MS level of the MAP display.

If the MS that contains the card you must replace	Do
is the slave MS, Slave appears under the Clock header	step 12
is the master MS, Master or M Free appears under the Clock header	step 9

9 To switch clock mastership, type

>SWMAST

and press the Enter key.

Example of a MAP response:

Request to Switch Clock Mastership MS: 0 submitted. Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command	Do
passed	step 11
failed	step 10

- 10 Perform the procedure Failure to switch clock mastership in this document. Complete the procedure and return to this point.
- 11 Wait 10 min to make sure the MS is stable. Continue this procedure.
- 12 To access the MS level of the MAP display, type

>MS

and press the Enter key.

13 To manually busy the MS that contains the card you must replace, type

>BSY ms number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that contains the card you must replace

Example of a MAP response:

minor (continued)

Request to MAN BUSY MS: 0 submitted. Request to MAN BUSY MS: 0 passed.

If the response	Do
is Request to MAN BUSY MS:0 passed.	step 14
is Request to MAN BUSY MS:1 passed.	step 14
is other than listed here	step 26

- Perform the correct card replacement procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.
- 15 To perform an out-of-service test on the manual busy MS, type

>TST ms number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to TEST OOS MS: 0 submitted. Request to TEST OOS MS: 0 passed. No node faults were found on MS 0.

If the TST command	Do
passed	step 21
passed with Istb, and the system generates a card list	step 18
passed with Istb, or failed, and you replaced all the cards on the list	step 19
failed, and the system generated a card list	step 16
other than listed here	step 26

minor (continued)

16 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 19
did not replace all the cards on the list	step 17

Record the location, description, slot number, PEC, and PEC suffix of the first 17 card listed that you did not replace.

Go to step 14.

Record the location, description, slot number, PEC, and PEC suffix of the next 18 card on the list.

Go to step 14.

19 Check office records or consult with the operating company personnel to find the office configuration for inter-MS links. Check the condition of the bulkhead connectors that correspond to the inter-MS links, on both the MSs.

If	Do
one or more bulkhead c onnectors are not connected	step 20
all bulkhead connectors connect	step 26

- 20 Connect the bulkhead connectors.
- 21 Use the out-of-band channel to return the manual busy MS to service. To return the manual busy MS to service, type

>RTS ms number OOBAND

and press the Enter key.

where

ms_number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to RTS OOBAND MS: 0 submitted. Request to RTS OOBAND MS: 0 passed.

If the RTS command	Do
passed	step 22
failed	step 26

minor (end)

To access the Card level of the MAP display, where the system maintains inter-MS link ports, type

>INTERMS link number

and press the Enter key.

where

link number

is the inter-MS link that is out of service (0 or 1)

23 To return the manual busy port to service, type

>RTS ms_number PORT port_number

and press the Enter key.

where

ms_number

is the number of the MS (0 or 1) on which the manual busy port resides

port number

is the number of the manual busy port (0 to 3)

If the RTS command	Do
passed	step 24
failed	step 26

To determine if the 01IMSL minor alarm cleared, check the MS alarm banner of the MAP.

If the alarm	Do
cleared	step 27
changed to another alarm	step 25
did not clear	step 26

- 25 Perform the correct alarm clearing procedure in this document.
- **26** For additional help, contact the next level of support.
- The procedure is complete.

MS Istb minor

Alarm display

Indication

At the MTC level of the MAP display, Istb appears under the MS header of the alarm banner.

Meaning

The system detects in-service trouble on one or more message switch (MS) cards. The following actions cause in-service trouble.

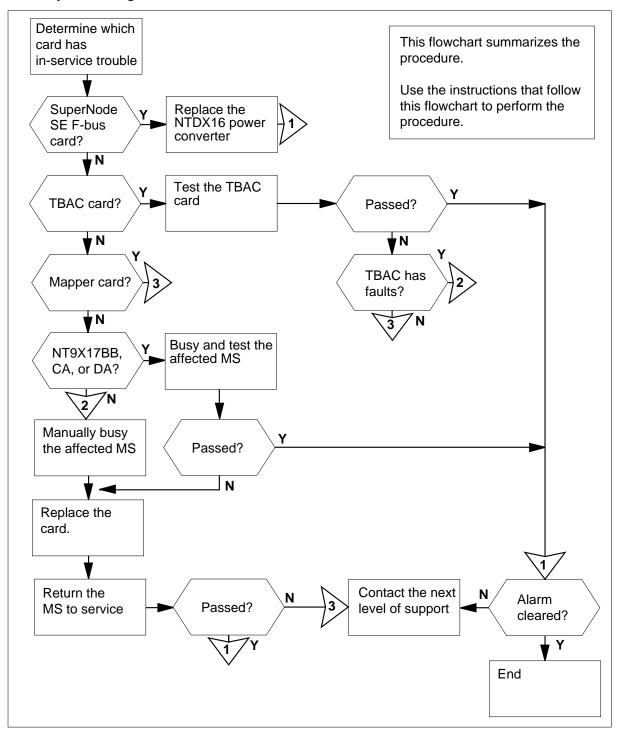
- a card insertion or removal takes place while the MS is in service
- the product engineering code (PEC) of a card does not match the PEC entered for the card slot
- buffer memory faults occur in NT9X17BB, NT9X17CA, or NT9X17DA
- on a SuperNode SE, an F-bus NTDX16AA power converter is out-ofservice

Note: The list above does not include all causes of an MS in-service trouble condition.

Result

When you insert a card into an in-service MS, the messaging that takes place in the MS becomes corrupt. Failure of the buffer memory indicates problems that can be important. These problems can require card replacement. The impact of a PEC mismatch depends on the type of card involved.

Common procedures


This procedure refers to Failure to switch clock mastership.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

minor (continued)

Summary of clearing an MS Istb minor alarm

minor (continued)

Clearing an MS Istb minor alarm

At the MAP terminal

Determine if the affected switch is a DMS supernode or a DMS supernode

If the affected switch	Do
is a DMS supernode	step 2
is a DMS supernode SE	step 4

2 To access the shelf level of the MAP display, type

>MAPCI;MTC;MS; SHELF

and press the Enter key.

Example of a MAP display:

Message	Swi	Lt	ch				(21	00	k		Sł	1e	lf	()	I	nt	er	-1	1S	L	in	k	0	1
MS 0							ľ	V[Fı	re	e														R	
MS 1							5	31	a١	<i>r</i> e]	F									S	
Shelf ()								1	1	1	1	1 :	1 1	1 :	1 :	1 1	L 2	2	2	2	2	2 2	2		
Card	1 2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9 () 1	. 2	3	4	5	6		
Chain																										
MS 0										I																
MS 1																										

3 Determine which cards have in-service trouble. Note the status of the cards on the MAP display.

Note: An I under the card number indicates in-service trouble.

If	Do
card 1 is in-service trouble	step 23
any of cards 6 to 23 is in-service trouble	step 6
card 5 is in-service trouble	step 48
any of cards 2 to 4 or 24 to 26 is in-service trouble	step 22

4 To access the Shelf level of the MAP display, type

>MAPCI;MTC;MS; SHELF

and press the Enter key.

Example of a MAP display:

minor (continued)

Determine which cards have in-service trouble. Note the status of the cards on the MAP.

Note: An I under the card number indicates in-service trouble.

If	Do
card 1 is in-service trouble	step 23
any of cards 5 to 10 is in-service trouble	step 6
card 11 is in-service trouble	step 48
card 12 is in-service trouble or damage (an F in the MAP display indicates the damage or trouble)	step 7
any of cards 2 to 4 or 13 is in-service trouble	step 22

6 The next step depends on the status of the card with in-service trouble.

If	Do
is an NT9X17BB, NT9X17CA, or NT9X17DA	step 13
is other than listed here	step 21

7 To access the F-bus level of the MAP display, type

>CARD 12

and press the Enter key.

Example of a MAP display:

minor (continued)

Card 12	FBus Tap:	0	11	12	16	20
MS 0 .	I		•			
MS 1 .						

8 To test the F-bus that has in-service trouble, type

>TST ms number FBUS

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that connects to the

in-service trouble F-bus

- 9 Determine from the MAP response the NTDX16 power converter that failed.
- 10 To manually busy the F-bus, type

>BSY ms number FBUS

and press the Enter key.

where

ms number

is the number of the MS (0 or 1 that connects to the

in-service trouble F-bus

- 11 To replace the power converter, perform the correct procedure in Card Replacement Procedures. Complete the procedure and return to this point.
- To return the manual busy F-bus to service, type 12

>RTS ms_number FBUS

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that connects to the

manual busy F-bus

If the RTS command	Do
passes	step 46
fails	step 48

13 To determine the type of card fault, type

> >QUERYMS MS ms_number CARD card_number FLT and press the Enter key.

minor (continued)

where

ms_number

is the number of the MS (0 or 1) where the card with

in-service trouble resides

card number

is the number of the card with in-service trouble

If	Do
is Interface card failed buf mem test invocation.	step 14
is Interface card failed buf mem test card config.	step 14
is Interface card failed buf mem test connection memory config.	step 14
is Interface card failed buf mem test port config.	step 14
is Interface card failed its buf mem test initialization.	step 14
is Interface card failed its buf mem test message looping.	step 14
is other than listed here.	step 21

14 Determine the clocking configuration.

 $\it Note:$ The clocking configuration appears under the Clock heading at the MS level of the MAP display.

If	Do
is the slave MS, Slave appears under the Clock header	step 18
is the master MS, Master or M Free appears under the Clock header	step 15
To switch clock mastership, type	
>SWMAST	
and press the Enter key.	

15

minor (continued)

Example of a MAP response:

Request to Switch Clock Mastership MS: 0 submitted. Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command	Do
passes	step 17
fails	step 16

- 16 Perform the procedure Failure to switch clock mastership in this document. Complete the procedure and return to this point.
- 17 Wait 10 min to make sure the MS is stable. Continue this procedure.
- 18 To manually busy the MS that contains the in-service trouble card, type

>BSY ms_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) with in-service trouble

card

Example of a MAP response:

```
Request to MAN BUSY MS: 0 submitted.
Request to MAN BUSY MS: 0 passed.
```

19 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

Note: If the buffer memory fault is transient, the node test clears the fault.

20 Wait for the test to finish. Determine if the in-service trouble state on the card cleared.

If the in-service trouble condition	Do
cleared	step 46
did not clear	step 27

21 To busy manually the in-service trouble card, type

>BSY ms_number card_number

minor (continued)

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) with the in-service trouble card

card number

is the number of the in-service trouble card

Example of a MAP response:

Request to MAN BUSY MS: 0 submitted. Request to MAN BUSY MS: 0 passed.

22 To test the card with in-service trouble, type

>TST ms_number card_number

and press the Enter key.

where

ms number

is the number of the MS (0 or1) with the in-service trouble card

card number

is the number of the in-service trouble card

If the TST command	Do
passed	step 43
passed with Istb, and the system generates a card list	step 26
failed, and the system generates a card list	step 26
is other than listed here	step 48

23 To test the T-bus access card, type

>TST ms_number 1

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) with the in-service trouble

T-bus card

Example of a MAP response:

minor (continued)

Request to TESTINSV MS:0 shelf:0 card:1 front submitted. Request to TESTINSV MS:0 shelf:0 card:1 back submitted.

If the TST command	Do
passed	step 46
passed with Istb	step 24
failed, and the system generates a card list	step 26
is other than listed here	step 48

24 To list the faults that the test detects, type

>QUERYMS MS ms_number CARD 1 FLT

and press the Enter key.

where

is the number of the MS (0 or 1) with the in-service trouble

T-bus card

25 Use the information in step 24 to determine the cause of the failure.

If the cause of the failure	Do
is a T-bus access controller (TBAC) that has faults, and the system generates a card list	step 26
is other than listed here	step 48

- 26 Record the location, description, slot number, PEC, and PEC suffix of the first card on the list.
- 27 To access the MS level of the MAP display, type

>MS

and press the Enter key.

minor (continued)

28 Determine the clocking configuration.

Note: The clock header at the MS level of the MAP display indicates the clocking configuration.

If the MS that contains the card you must replace	Do
is the slave MS, Slave appears under the Clock header	step 32
is the master MS, Master or M Free appears under the Clock header	step 29

29 To switch clock mastership, type

>SWMAST

and press the Enter key.

Example of a MAP response:

Request to Switch Clock Mastership MS: 0 submitted. Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command	Do
passed	step 31
failed	step 30

- Perform the procedure *Failure to switch clock mastership* in this document. Complete the procedure and return to this point.
- Wait 10 min to make sure the MS is stable. Continue this procedure.

If the MS is	Do
manually busied	step 36
not manually busied	step 32

To manually busy the MS that contains the card you must replace, type

>BSY ms_number

and press the Enter key.

where

ms_number

is the number of the in-service trouble MS (0 or 1)

Example of a MAP response:

minor (continued)

Request to MAN BUSY MS: 0 submitted. Request to MAN BUSY MS: 0 passed.

If the BSY command	Do
passed	step 36
is other than listed here	step 48

33 To determine the type of soft fault, type

> >QUERYMS MS ms_number CARD card_number FLT and press the Enter key.

where

ms_number

is the number of the MS (0 or 1) on which the card with in-service trouble resides

card_number

is the number of the card with in-service trouble

If the response	Do
is Interface card failed buf mem test invocation.	step 34
is Interface card failed buf mem test card config.	step 34
is Interface card failed buf mem test invocation.	step 34
is Interface card failed buf mem test port config.	step 34
is Interface card failed its buf mem test card initialization.	step 34
is Interface card failed its buf mem test message looping.	step 34
is other than listed here	step 36

34 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

minor (continued)

ms_number

is the number of the manual busy MS (0 or 1)

Note: If the buffer memory fault is transient, the node test clears the fault.

Wait for the test to finish. Determine if the in-service trouble state on the card cleared.

If the in-service trouble condition	Do
cleared	step 46
did not clear	step 36

Perform the correct card replacement procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.

At the MAP terminal

37 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to TEST OOS MS: 0 submitted. Request to TEST OOS MS: 0 passed. No node faults were found on MS 0.

If the TST command	Do
passed	step 41
passed with Istb, and the system generates a card list	step 38
failed, and the system generates a card list	step 39
passed with Istb or failed, and you replaced all the cards on the list.	step 48
failed, and the system indicates soft faults	step 33
is other than listed here	step 48

minor (continued)

Record the location, description, slot number, PEC, and PEC suffix of the next 38 card on the list.

Go to step 36.

39 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 48
did not replace all the cards on the list	step 40

40 Record the location, description, slot number, PEC, and PEC suffix of the next listed card that you did not replace.

Go to step 36.

41 To return the manual busy MS to service, type

>RTS ms_number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

If the RTS command	Do
passed	step 42
failed	step 48

42 To access the shelf level of the MAP display, type

>SHELF

and press the Enter key.

43 An M under the card number at the Shelf level of the MAP display indicates the card is manual busy.

If the card	Do
is manual busy	step 44
is not manual busy	step 46

44 To access the card level of the MAP display, type

>CARD card_number

and press the Enter key.

where

MS Istb minor (end)

card number

is the number of the manual busy card

45 To return the manual busy card to service, type

>RTS ms_number

and press the Enter key.

where

ms_number

is the number of the MS (0 or 1) that contains the replaced card

If the RTS command	Do
passed	step 46
failed	step 48

46 Determine if the 1stb minor alarm cleared.

If the Istb alarm	Do
cleared	step 49
changed to another alarm	step 47
did not clear	step 48

- 47 Perform the correct procedure to clear an alarm in this document.
- 48 For additional help, contact the next level of support.
- The procedure is complete.

MS ManB major

Alarm display

Indication

At the MTC level of the MAP display, ManB appears under the MS header of the alarm banner. ManB indicates a manual busy major alarm.

Meaning

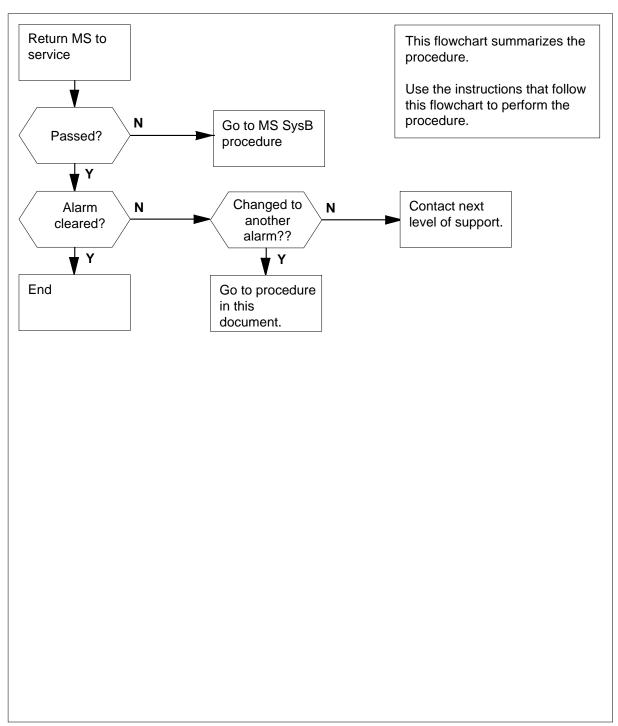
A message switch (MS) is manual busy. Operating company personnel manually removed the MS from service.

Result

The in-service MS carries the full messaging load. Subscriber service is not immediately affected, but you can lose subscriber service if the other MS fails.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS ManB

major (continued)

Summary of clearing an MS ManB major alarm

MS ManB

major (continued)

Clearing an MS ManB major alarm

At the MAP terminal

To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP:

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1
MS 0
                    M Free
                                               R.
MS 1
                     Slave
                               F
```

2 Determine from office records or operating company personnel why the MS is manual busy. Determine if you have permission to return the manual busy MS to service. To return the manual busy MS to service, type

>RTS ms_number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

Example of a MAP:

```
Request to RTS MS:1 submitted.
Request to RTS MS:1 passed.
No node faults were found on MS 1.
No cards were found to be faulty on MS 1.
```

If the RTS command	Do
passed	step 3
passed with Istb, and the system generated a card list	step 3
failed, and the system generated a card list	step 4
other than listed here	step 4

3 Determine if the ManB major alarm cleared.

If the alarm	Do
cleared	step 6
changed to another alarm	step 4

MS ManB

major (end)

If the alarm	Do
did not clear	step 5

- 4 Use the MS SysB alarm clearing procedure in this document to clear the alarm.
- **5** For additional help, contact the next level of support.
- **6** The procedure is complete.

MS MaxPt minor

Alarm display

Indication

At the MTC level of the MAP display, MaxPt appears under the MS header of the alarm banner. MaxPt indicates a MaxPt alarm.

Meaning

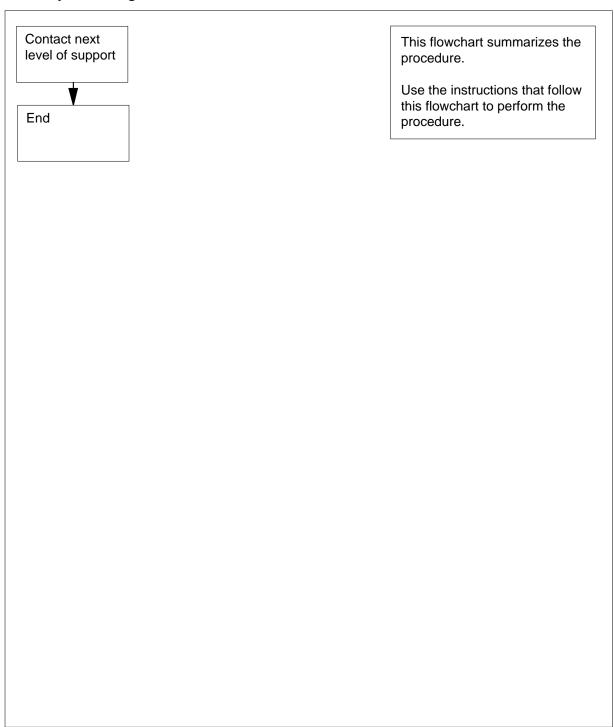
The MS MaxPt alarm indicates a problem with the number of ports with data entered for an application or node type. The entry of data is in a software table. The number of ports that have data entered is greater than the number allowed for the device.

Result

The system automatically generates the alarm on system audits, or through the REx test. The system also can generate the alarm if operating company personnel executes a QUERYMS command. The QUERYMS command accounts for all allocated ports.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS MaxPt

minor (continued)

Summary of clearing an MS MaxPt minr alarm

MS MaxPt minor (end)

Clearing an MS MaxPt minor alarm

At the MAP terminal

- For additional help, contact the next level of support.
- 2 This procedure is complete.

MS MBCD minor

Alarm display

Indication

At the MTC level of the MAP display, MBCD (preceded by a number) appears under the MS header of the alarm banner. The MBCD indicates an MBCD minor alarm.

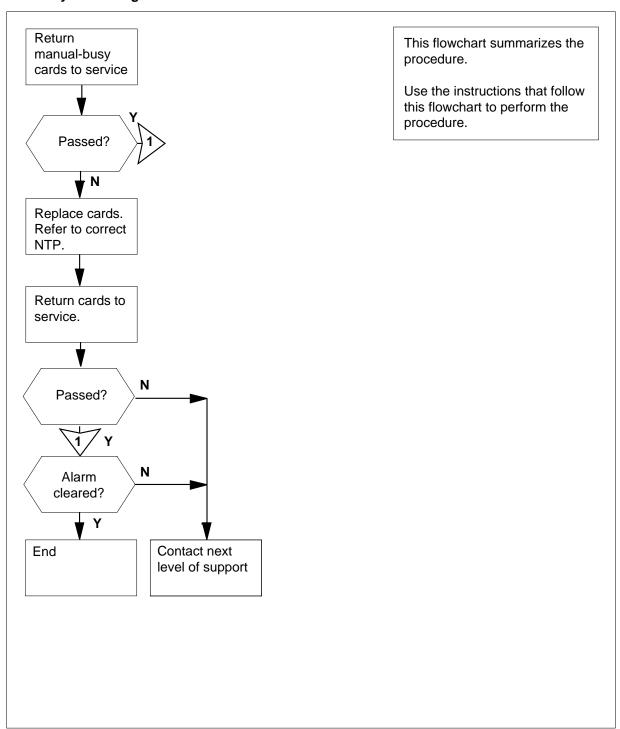
Meaning

Message switch (MS) interface cards are manual busy. Operating company personnel manually removed the cards from service.

Result

All ports on the affected cards are out of service.

Common procedures


This procedure refers to Failure to switch clock mastership.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

minor (continued)

Summary of clearing an MS MBCD minor alarm

minor (continued)

Clearing an MS MBCD minor alarm

At the MAP terminal

1 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1 MS 0 . M Free . R . MS 1 . Slave F . S .
```

2 To access the Shelf level of the MAP display, type

>SHELF shelf_number

and press the Enter key.

where

shelf number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

Example of a MAP for DMS SuperNode:

Shelf	0									1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2
Card	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6
Chain																										
MS 0													. 1	1 .										F		
MS 1																										

Example of a MAP for DMS SuperNode SE:

Shelf	0									1	1	1	1
Card	1	2	3	4	5	6	7	8	9	0	1	2	3
Chain													
MS 0								M					
MS 1													

3 Determine the number interface cards that are manual busy. Determine if the manual busy cards affected one or both MSs.

Note: An M under the card number identifies a manual busy card.

If	Do
one card is manual busy	step 5
more than one card is manual busy	step 4

minor (continued)

4 Select a card to work on.

> **Note:** If manual busy interface cards are present on both MSs, work on the slave MS first. In the MAP examples in steps1 and 2, the manual busy interface card is on the master MS.

- 5 Determine from office records or from operating company personnel why the card is manual busy. Determine when you can return the card to service.
- 6 To return the manual busy card to service, type

>RTS ms_number card_number

and press the Enter key.

where

ms number

is the number of the affected MS (0 or 1)

card number

is the card number of the manual busy card (6 to 23 for

Dms supernode, 5 to 10 for Dms supernode SE)

If the RTS command	Do
passed	step 27
passed with Istb, and the system generated a card list	step 7
failed, and the system generated a card list	step 7

- 7 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the manual busy card. The card list contains this information.
- 8 To access the MS level of the MAP display, type

>MS

and press the Enter key.

9 Determine the clocking configuration.

> **Note:** The clocking configuration appears under the Clock header at the MS level of the MAP display.

If the MS that contains the card with the fault	Do
is the slave MS, Slave or S Free appears under the Clock header	step 13

minor (continued)

If the MS that contains the card with the fault
is the master MS, Master or M Free appears under the Clock header

10 To switch clock mastership, type

>SWMAST

and press the Enter key.

Example of a MAP response:

Request to Switch Clock Mastership MS: 0 submitted. Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command	Do
passed	step 12
failed	step 11

- Perform the procedure *Failure to switch clock mastership* in this document. Complete the procedure and return to this point.
- Wait 10 min to make sure that the MS is stable. Continue this procedure.
- 13 To manually busy the MS that contains the card you must replace, type

>BSY ms_number

and press the Enter key.

where

ms_number

is the number of the slave MS (0 or 1)

Example of a MAP response:

Request to MAN BUSY MS: 0 submitted. Request to MAN BUSY MS: 0 passed.

If the response	Do
is Request to MAN BUSY MS:0 passed	step 14
is Request to MAN BUSY MS:1 passed	step 14
is other than listed here	step 29

minor (continued)

- 14 Perform the correct card replacement procedure in *Card Replacement Procedures.* Complete the procedure and return to this point.
- To access the Shelf level of the MAP display, type 15

```
>SHELF shelf_number
```

and press the Enter key.

where

shelf number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

Example of a MAP display for DMS SuperNode:

```
Shelf 0
                1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
Card 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
Chain
          < > < >
```

Example of a MAP display for DMS SuperNode SE:

```
Shelf 0
                        1 1 1 1
      1 2 3 4 5 6 7 8 9 0 1 2 3
Card
Chain
MS 0
      C C C C C C C C C C C C
MS 1
```

16 Use the information obtained in step 3 to determine if other manual busy cards are present on the slave MS.

If other manual busy cards	Do
are present	step 4
are not present	step 17

At the MAP

17 To access the MS level of the MAP display, type

>MS

and press the Enter key.

18 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

minor (continued)

ms_number

is the number of the manual busy MS (0 or 1)

If the TST command	Do
passed	step 22
passed with Istb, and the system generated a card list	step 19
passed with Istb, and you replaced all the cards on the list	step 29
failed, and the system generated a card list	step 20

19 Record the location, description, slot number, PEC, and PEC suffix of the first card on the list.

Go to step 14.

20 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 29
did not replace all the cards on the list	step 21

Record the location, description, slot number, PEC, and PEC suffix of the first card listed that was not replaced.

Go to step 14.

To return the manual busy MS to service, type

>RTS ms_number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

If the RTS	Do
passed	step 23
failed	step 29

23 To access the Shelf level of the MAP display, type

>SHELF shelf_number

and press the Enter key.

minor (continued)

where

shelf number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

24 Determine if the card you replaced is manual busy. An M under the card number at the Shelf level of the MAP display indicates a manual busy card.

If the card	Do
is manual busy	step 25
is not manual busy	step 27

25 To access the Card level of the MAP display, type

>CARD card_number

and press the Enter key.

where

card number

is the number of the manual busy card

26 To return the manual busy card to service, type

>RTS ms_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that contains the

replaced card

If the RTS command	Do
passed	step 27
failed	step 29

27 Determine if the MBCD minor alarm cleared from under the MS header on the MAP banner.

If the alarm	Do
cleared	step 30
reduced in number (for example, a change from 02MBCD to 01MBCD)	step 2

minor (end)

	If the alarm	Do
	changed to another alarm	step 28
	did not clear	step 29
28	Perform the correct procedure to clear an alarm in this document.	
29	For additional help, contact the next level of support.	
30	The procedure is complete.	
30	The procedure is complete.	

MS MBCH minor

Alarm display

Indication

At the MTC level of the MAP display, a number and MBCH appear under the MS header of the alarm banner. The MBCH indicates an MBCH minor alarm.

Meaning

Port chains for the message switch (MS) are manual busy. Operating company personnel manually removed MS port chains from service.

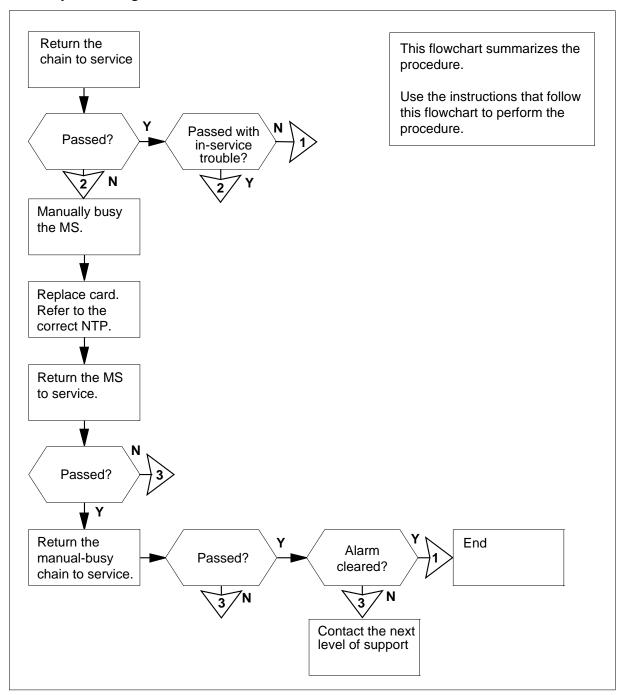
The number under the MS header in the alarm banner indicates the number of port chains affected.

Result

The port chain connects to the subtending node. When a port chain is manual busy, the port chain cannot communicate with the subtending node.

For example, subscriber service is not changed if one port chain that serves an ENET shelf is out of service. Messaging automatically switches to the corresponding port chain on the other MS. Both port chains associated with an ENET plane can be out-of-service. If both port chains are out-of-service, the system automatically diverts messaging to another network plane.

Common procedures


This procedure refers to Failure to switch clock mastership.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

minor (continued)

Summary of clearing an MS MBCH minor alarm

minor (continued)

Clearing an MS MBCH minor alarm

At the MAP terminal

To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP:

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1
                   M Free
MS 0
                            F
MS 1
                   Slave
```

2 To access the Shelf level of the MAP display, type

>SHELF shelf_number

and press the Enter key.

where

shelf number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

Example of a MAP display:

Shelf	0									1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2
Card	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6
Chain						<	>	<	>																	
MS 0						М	M			-	-	-	-	-	_	_										
MS 1										_	_	_	_	_	_	_										

Determine the number of port chains that are manual busy. Determine if the 3 condition affects both MSs.

Note: An M under the card number identifies a manual busy port chain.

If	Do
one port chain is manual busy	step 5
more than one port chain is manual busy	step 4

- 4 Select a port chain to work on.
- 5 To access the Chain level of the MAP display, type

>CHAIN head_card_number

and press the Enter key.

where:

minor (continued)

head card number

is the number of the head card in the chain indicated by brackets (< >) under the card number on the chain line of the MAP display.

- 6 Determine from office records or from operating company personnel why the port chain is manual busy. Determine when you can return the chain to service.
- 7 To return the manual busy chain to service, type

>RTS ms_number

and press the Enter key.

where:

ms_number

is the number of the affected MS (0 or 1)

If the RTS command	Do
passed	step 28
passed with Istb, and the system generated a card list	step 8
failed, and the system generated a card list	step 8
failed, and an entry problem exists	step 30

- Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- 9 To access the MS level of the MAP display, type

>MS

and press the Enter key.

Example of a MAP display:

Mes	ssage	Switch	Clock	Shelf	0	Inter-MS	Link	0	1	
MS	0	•		M Free		F				
MS	1	•		Slave		•				

10 Determine the clocking configuration.

Note: The clocking configuration appears under the Clock header at the MS level of the MAP display.

If the MS that contains the card to replace	Do
is the slave MS, Slave appears under the Clock header	step 14

minor (continued)

If the MS that contains the card to replace	Do
is the master MS, Master or M Free appears under the Clock header	step 11

11 To switch clock mastership, type

>SWMAST

and press the Enter key.

Example of a MAP response:

Request to Switch Clock Mastership MS: 0 submitted. Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command	Do
passed	step 13
failed	step 12

- 12 Perform the procedure Failure to switch clock mastership in this document. Complete the procedure and return to this point.
- 13 Wait 10 min to make sure that the MS is stable. Continue this procedure.
- 14 To manually busy the MS that contains the card you must replace, type

>BSY ms number

and press the Enter key.

where

ms number

is the number of the slave MS (0 or 1)

Example of a MAP response:

Request to MAN BUSY MS: 0 submitted. Request to MAN BUSY MS: 0 passed.

If the response	Do
is Request to MAN BUSY MS:0 passed	step 15
is Request to MAN BUSY MS:1 passed	step 15
is other than listed here	step 30

minor (continued)

- Use the information in step 8 to determine the subsystem that contains the card you must replace.
- To change the card, perform the correct card replacement procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.
- 17 To access the Shelf level of the MAP display, type

>SHELF shelf_number

and press the Enter key.

where

shelf_number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

Use the information you obtained in step 3 to determine if other manual busy port chains are present on the slave MS.

If other manually busy port chains	Do	
are present	step 4	
are not present	step 19	

19 To access the MS level of the MAP display, type

>MS

and press the Enter key.

20 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to TEST OOS MS: 0 submitted. Request to TEST OOS MS: 0 passed. No node faults were found on MS 0.

If the TST command	Do
passed	step 21
passed with Istb, and the system generated a card list	step 16

MS MBCH minor (continued)

If the TST command	Do
passed with Istb, and you replaced all the cards on the list	step 30
failed, and the system generated a card list	step 16
failed, and you replaced all the cards on the list	step 30

21 To return the manual busy MS to service, type

>RTS ms_number

and press the Enter key.

where

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to RTS MS: 0 submitted. Request to RTS MS: 0 passed.

If the RTS command	Do
passed	step 22
failed	step 30

22 To access the Shelf level of the MAP display, type

>SHELF shelf_number

and press the Enter key.

where

shelf_number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

23 To access the Chain level of the MAP display, type

>CHAIN head card number

and press the Enter key.

where

head card number

is the number of the head card in the affected chain

minor (continued)

24 To test the chain, type

>TST ms_number

and press the Enter key.

where

ms_number

is the number of the affected MS (0 or 1)

If the TST command	Do
passed	step 27
passed with Istb, and the system generated a card list	step 25
failed, and the system generated a card list	step 25

25 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 30
did not replace all the cards on the list	step 26

Record the location, description, slot number, PEC, and PEC suffix of the first card listed that you did not replace.

Go to step 9.

To return the manual busy port chain to service, type

>RTS ms_number

and press the Enter key.

where

ms_number

is the number of the affected MS (0 or 1)

If the RTS command	Do
passed	step 28
failed	step 30

MS MBCH minor (end)

To determine if the MBCH minor alarm cleared, check the MS alarm banner of the MAP display. 28

If the alarm	Do
cleared	step 31
changed to another alarm	step 29
reduced in number (for example, if the alarm changed from 02MBCH to 01MBCH)	step 2
did not clear, and you have the same number of MBCH	step 30

- 29 Perform the correct procedure in this document to clear the alarm.
- 30 For additional help, contact the next level of support.
- 31 The procedure is complete.

MS MBCL minor

Alarm display

Indication

At the MTC level of the MAP display, MBCL (preceded by a number) appears under the MS header of the alarm banner. The MBCL indicates an MBCL minor alarm.

Meaning

Channelized links are manual busy. Operating company personnel manually removed the channelized links from service. A channelized link connects a port chain for a message switch (MS) to a subtending node. An enhanced network (ENET) plane is an example of a subtending node.

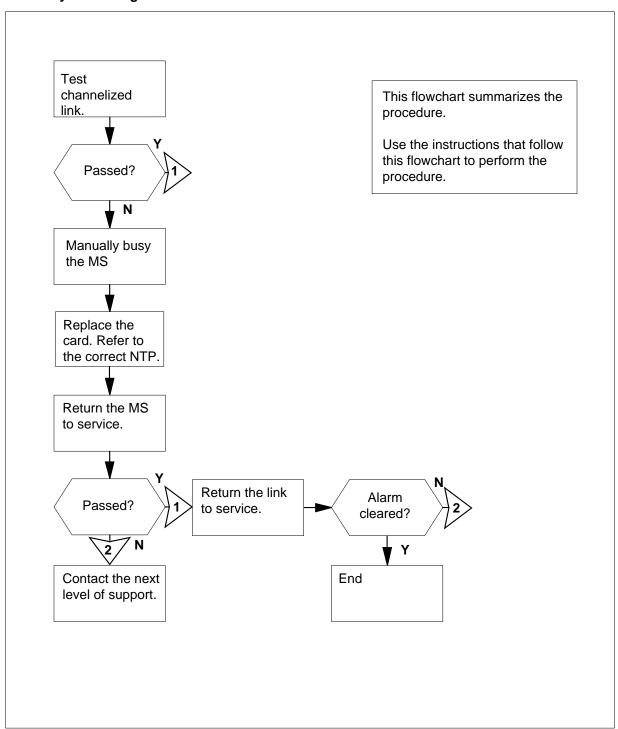
The number under the MS header in the alarm banner indicates the number of channelized links affected.

Result

If a channelized link is out of service, a problem is present in the MS port chain this link serves. The MS port chain cannot communicate with the subtending node to which it connects. If the subtending node is an ENET plane, service is not affected. Messaging with the affected node automatically switches to the corresponding port chain on the other MS.

If the removal from service of both channelized links that serve an ENET plane occurs, the system automatically diverts messaging. The system diverts messaging to the other ENET plane.

Common procedures


This procedure refers to Failure to switch clock mastership.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS MBCL minor (continued)

Summary of clearing an MS MBCL minor alarm

minor (continued)

Clearing an MS MBCL minor alarm

At the MAP terminal

1 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1 MS 0 . M Free F . . MS 1 . Slave . . .
```

2 To access the Shelf level of the MAP display, type

>SHELF shelf number

and press the Enter key.

where

shelf number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

3 Determine the number of manual busy channelized links. Determine if the condition affects both MSs.

Note: The number under the MS header in the alarm banner indicates the number of manual busy channelized links. An F under the Shelf header at the MS level of the MAPdisplay identifies the affected MS.

If	Do
one link is manual busy	step 5
more than one link is manual busy	step 4

4 Select a link to work on.

Note: If manual busy channelized links are present on both MSs, work on the slave MS first. In the MAP display examples in steps 1 and 2, the manual busy channelized link is on the master MS.

5 To access the Chain level of the MAP display, type

>CHAIN head_card_number

and press the Enter key.

where

head_card_number

is the number of the head card

Note: An M under the link number identifies manual busy links.

minor (continued)

6 To test the manual busy channelized link for the chain, type

> >TST ms_number LINK link_number and press the Enter key.

where

ms_number

is the number of the MS (0 or 1) in which the chain is

located

link number

is the number of the manual busy link

If the TST command	Do
passed	step 29
passed with Istb, and a card list generated	step 7
failed, and a card list generated	step 7
is other than listed here	step 34

- 7 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- 8 To access the MS level of the MAP display, type

>MS

and press the Enter key.

Example of a MAP display:

Message	Switch	Clock Si	neli 0	Inter-MS	Link	U	1	
MS 0	•	M I	Free	F				
MS 1	•	Sla	ave	•				

9 Determine the clocking configuration.

> **Note:** The clocking configuration appears under the Clock header at the MS level of the MAP display.

If the MS that contains the card to replace	Do
is the slave MS, and Slave appears under the Clock header	step 13

minor (continued)

If the MS that contains the card to replace	Do
is the master MS, and Master or M Free appears under the Clock header	step 10

10 To switch clock mastership, type

>SWMAST

and press the Enter key.

Example of a MAP display:

Request to Switch Clock Mastership MS: 0 submitted. Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command	Do
passed	step 12
failed	step 11

- Perform the procedure *Failure to switch clock mastership* in this document. Complete the procedure and return to this point.
- Wait 10 min to make sure the MS has stability. Continue this procedure.
- To manually busy the MS that contains the card to replace, type

>BSY ms_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that contains the card to

replace

Example of a MAP response:

Request to MAN BUSY MS: 0 submitted. Request to MAN BUSY MS: 0 passed.

If the response	Do
is Request to MAN BUSY MS:0 passed	step 14
is Request to MAN BUSY MS:1 passed	step 14

minor (continued)

If the response	Do	
is other than listed here	step 34	
Determine subsystem that conta	ins the card to replace.	

If the card	Do
resides in the MS subsystem	step 15
resides in the ENET subsystem	step 21
resides in the JNET subsystem	step 21

- 15 Perform the correct card replacement procedure in *Card Replacement* Procedures in this document. Complete the procedure and return to this
- 16 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

14

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to TEST OOS MS: 0 submitted. Request to TEST OOS MS: 0 passed. No node faults were found on MS 0.

If the TST command	Do
passed	step 23
passed with Istb, and a card list generated	step 19
passed with Istb, and you replaced all the cards on the list	step 33
failed, and a card list generated	step 17

17 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 34

minor (continued)

If you	Do
did not replace all the cards on the list	step 18

Record the location, description, slot number, PEC, and PEC suffix of the first card listed that you did not replace.

Go to step 20.

- 19 Record the location, description, slot number, PEC, and PEC suffix of the next card on the list.
- 20 Determine the subsystem in which the card that needs replacement resides.

If the card	Do
resides in the MS subsystem	step 15
resides in the ENET subsystem	step 21
resides in the JNET subsystem	step 21

- Perform the correct card replacement procedure in *Card Replacement Procedures* in this document. Complete the procedure and return to this point.
- To access the MS level of the MAP display, type

>MS

and press the Enter key.

Go to step 16.

23 To return the manual busy MS to service, type

>RTS ms_number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to RTS MS: 0 submitted. Request to RTS MS: 0 passed.

If the RTS command	Do
passed	step 24
failed	step 34

minor (continued)

To access the Shelf level of the MAP display, type 24

>SHELF shelf_number

and press the Enter key.

where

shelf_number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

25 To access the Chain level of the MAP display, type

>CHAIN head_card_number

and press the Enter key.

where

head_card_number

is the number of the head card

26 To test the channelized link, type

>TST ms_number LINK link_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that contains the chain

link number

is the number of the link tested in step 6

If the TST command	Do
passed	step 29
passed with Istb, and a card list generated	step 27
failed, and a card list generated	step 27
Determine if you replaced all the cards on the list.	

27

If you	Do
replaced all the cards on the list	step 33
did not replace all the cards on the list	step 28

28 Record the location, description, slot number, PEC, and PEC suffix of the first card listed that you did not replace.

Go to step 8.

minor (end)

To return the manual busy link to service, type >RST ms_number LINK link_number and press the Enter key.

where

ms_number

is the number of the MS (0 or 1) that contains the chain

link number

is the number of the manual link determined in step 4

If the RTS command	Do
passed	step 30
passed with Istb, and a card list generated	step 33
failed, and a card list generated	step 33

30 Use the information obtained in step 3 to determine if other manual-busy channelized links exist on the slave MS.

If	Do
other manual-busy links exist	step 3
other manual-busy links do not exist	step 31

31 Determine if the MBCL minor alarm cleared.

If the alarm	Do
cleared	step 35
reduced in number (for example, a change from 02MBCL to 01MBCL)	step 2
changed to another alarm	step 32
did not clear	step 33

- **32** Perform the correct procedure in this document to clear the alarm.
- The fiber link between the MS and its subtending node (ENET or PM shelf) can disconnect or have faults.
- For additional help, contact the next level of support.
- **35** The procedure is complete.

MS MbFb minor

Alarm display

Indication

At the MTC level of the MAP, MbFb (preceded by a number) appears under the MS header of the alarm banner. The MbFb indicates an MbFb minor alarm.

Meaning

A frame transport bus (F-bus) is manual busy.

The number under the MS header in the alarm banner indicates the number of F-buses affected.

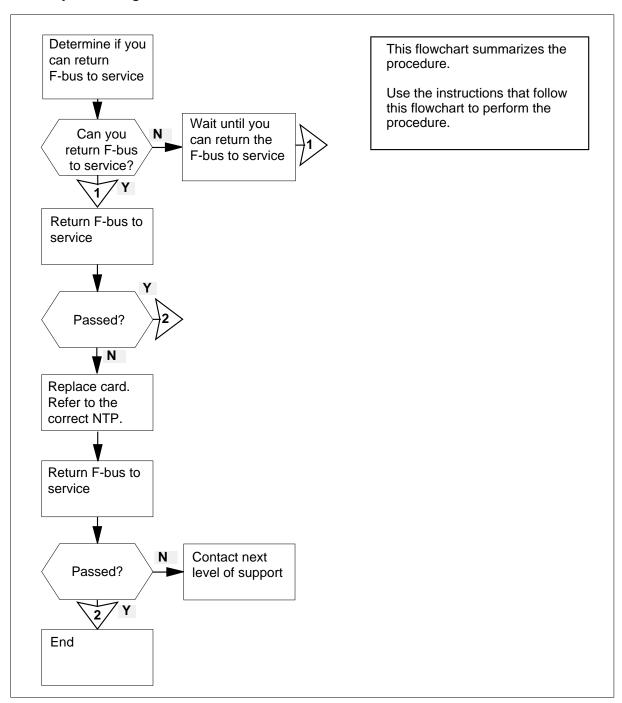
This alarm applies only to SuperNode SE. In the SuperNode SE the F-bus interfaces to the message switch (MS), not the local message switch (LMS).

Result

One F-bus of a pair of F-buses can be manual busy and service is not affected. If both F-buses are manual busy, all application-specific units (ASU) that connect to these F-buses become isolated. CCS7 service terminates.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS MbFb

minor (continued)

Summary of clearing an MS MbFb minor alarm

MS MbFb

minor (continued)

Clearing an MS MbFb minor alarm

At your current location

To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1
MS 0
               M Free
                         F
MS 1
                Slave
```

Note: In the example, F under the Shelf header indicates that you must access the SHELF level.

2 Determine if an F exists under the Shelf header of the MAP display.

If an F	Do
is present	step 3
is not present	step 13

To access the F-bus level of the MAP display, type 3

>SHELF; CARD 12

and press the Enter key.

Example of a MAP display:

											1	1	1	1					
Car	rd	1	2	3	4	5	6	7	8	9	0	1	2	3					
Cha	in	1																	
MS	0							-					F						
MS	1							-											
Car	rd	12					Ι	ŦΒι	ıs	Τa	ap:	:	0		11	12	16	20	
MS	0							N	1				С		C	CCCC	CCCC	CCCC	
MS	1																		

Note: In the example, M under the F-Bus header indicates a manual busy F-bus and (.) indicates an in-service F-bus. Under the F-bus tap numbers (0 to 23), C indicates the F-bus is manual busy. The C can indicate the controlling MS or MS port is system busy or manual busy. A (.) indicates an in-service tap.

Go to step 4.

MS MbFb

minor (continued)

4 Determine which MS connects to the manual busy F-bus.

Note: In the example in step 3, the manual busy F-bus connects to MS 0.

- 5 Consult with operating company personnel. Determine if you can return the manual busy F-bus to service.
- 6 To return the manual busy F-bus to service, type

>RTS ms_number FBUS

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that connects to the

manual busy F-bus

If the RTS command	Do					
passed	step 11					
failed, and a card list generated	step 7					

- 7 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- **8** To change the card, perform the correct card replacement procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.
- **9** To return the manual busy F-bus to service, type

>RTS ms_number FBUS

and press the Enter key.

where

ms_number

is the number of the MS (0 or 1) that connects to the

manual busy F-bus

If the RTS command	Do
passed	step 11
failed and you have not replaced all the cards on the list	step 10
failed and you replaced all the cards on the list	step 13

10 Record the location, description, slot number, PEC, and PEC suffix of the next card on the list.

Go to step 8.

MS MbFb minor (end)

Determine if the MbFb minor alarm cleared. 11

If the alarm	Do
cleared	step 14
reduced in number (for example, a change from 2MbFb to 1MbFb)	step 3
changed to another alarm	step 12
did not clear	step 13

- 12 Perform the correct procedure in this document to clear the alarm.
- 13 For additional help, contact the next level of support.
- 14 The procedure is complete.

MS MBPT minor

Alarm display

Indication

At the MTC level of the MAP, MBPT (preceded by a number) appears under the MS header of the alarm banner. The MBPT indicates an MBPT minor alarm.

Meaning

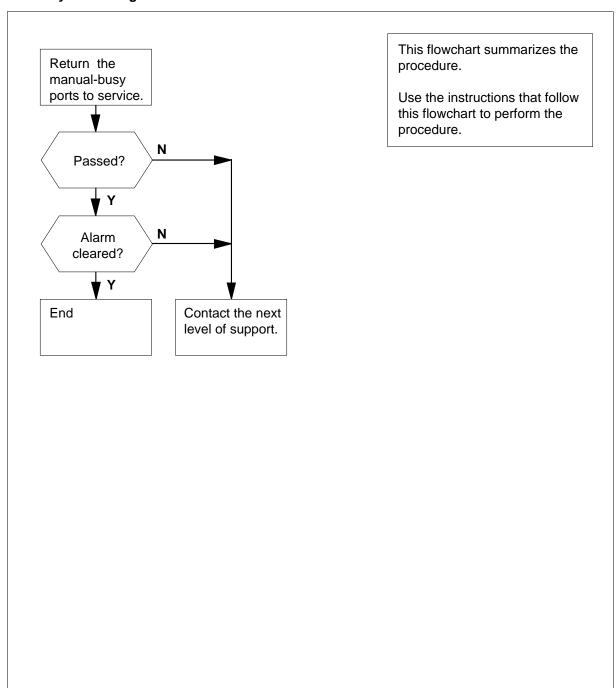
Operating company personnel manually removed message switch (MS) interface card ports from service.

The number under the MS header in the alarm banner indicates the number of interface cards affected.

Result

If a port is manual busy, a problem occurs with the subtending node linked to a port, for example an I/O controller. The subtending node cannot communicate with the MS that contains the affected port card. If the corresponding port on the other MS is out of service, communications with the subtending node end.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS MBPT minor (continued)

Summary of clearing an MS MBPT minor alarm

MS MBPT

minor (continued)

Clearing an MS MBPT minor alarm

At the MAP terminal

1 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1 MS 0 . M Free F . . MS 1 . Slave . . . .
```

2 To access the Shelf level of the MAP display, type

```
>SHELF shelf number
```

where

and press the Enter key

shelf number

is the number of the shelf (0 to 3)

For SuperNode SE, do not enter a shelf number.

Example of a MAP display for DMS SuperNode:

Example of a MAP display for DMS SuperNode:

Shelf	0									1	1	1	1
Card	1	2	3	4	5	6	7	8	9	0	1	2	3
Chain													
MS 0									F				
MS 1													

3 To determine the cards that have an error, examine the status of the cards.

Note: An F at the Shelf level of the MAP indicates the error.

If the problem	Do
affects one card	step 4
affects more than one card	step 5

MS MBPT

minor (continued)

4 To access the Card level of the MAP display for the affected card, type

>CARD card number

and press the Enter key.

where

card number

is the number of the affected port card

Go to step 9.

Choose a card to work on. 5

> **Note 1:** If port are manual busy on both MSs, work on the slave MS first. In the MAP display examples in steps 1 and 2, the card with manual-busy ports is on the master MS (MS 0).

> **Note 2:** The clocking configuration appears under the Clock header at the MS level of the MAP display.

6 To access the Card level of the MAP display, type

>CARD card number

and press the Enter key.

where

card number

is the number of the port card chosen in step 5

- 7 Choose a manual busy port to work on.
- 8 Determine why the port left service. Determine when you can return the port to service.
- 9 To return the manual busy port to service, type

>RTS ms_number PORT port_number and press the Enter key.

where

ms number

is the number of the affected MS (0 or 1)

is the number of the manual busy port (0 to 127)

If the RTS command	Do
passed	step 10
passed with Istb and a card list generated	step 10
failed, and a card list generated	step 14
is other than listed here	step 14

MS MBPT

minor (end)

10 Determine if other manual busy ports is present on the card.

Note: An M under the port number at the Card level of the MAP display identifies a manual busy port.

If other manual busy ports	Do
are present	step 7
are not present	step 11

11 Use the information obtained in step 3 to determine if other interface cards with manual busy ports are present.

Note: Perform this procedure from the Shelf level of the MAP.

If other cards	Do					
are present	step 5					
are not present	step 12					

12 Determine if the MBPT minor alarm cleared.

If the alarm	Do
cleared	step 15
reduced in number (for example, a change from 02MBPT to 01MBPT)	step 2
changed to another alarm	step 13
did not clear	step 14

- Perform the correct procedure in this document to clear the alarm.
- 14 For additional help, contact the next level of support.
- 15 The procedure is complete.

MS MbTp minor

Alarm display

Indication

At the MTC level of the map, MbTp (preceded by a number) appears under the MS header of the alarm banner. The MbTp indicates an MbTb minor alarm.

Meaning

A tap on a frame transport bus (F-bus) is manual busy.

The number under the MS header in the alarm banner indicates the number of F-bus taps affected.

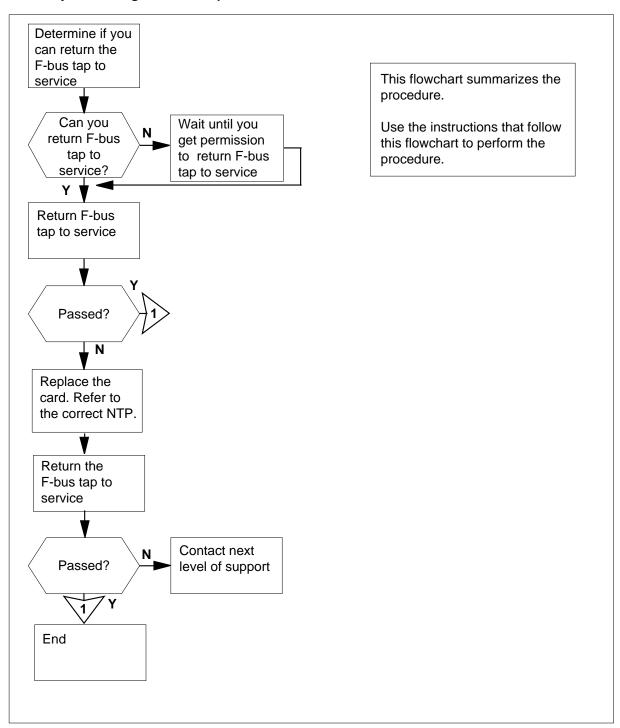
This alarm applies only to SuperNode SE. In a SuperNode SE, the F-bus interfaces to the message switch (MS) not the local message switch (LMS).

Result

To affect service, the taps that connect the application-specific unit (ASU) to the pair of F-buses must be out-of-service. If the taps are out of service, the affected ASU isolates from the system, and CCS7 performance can degrade.

Common procedures

There are no common procedures.


Action

This procedure has a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS MbTp

minor (continued)

Summary of clearing an MS MbTp minor alarm

MS MbTp minor (continued)

Clearing an MS MbTp minor alarm

At your current location

To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

	Me	ssage	Switch	Clock	Shelf	0	Inter-MS	Link	0	1
MS	0			M Free	F					
MS	1			Slave						

Note: In the example, F under the Shelf header indicates that you must access the SHELF level.

2 Determine if an F is present under the Shelf header of the MAP display.

If an F	Do
is present	step 3
is not present	step 14

3 To access the F-bus level of the MAP display, type

>SHELF; CARD 12

and press the Enter key.

Example of a MAP display:

												1	1	1	1			
(ar	d	1	2	3	4	5	6	7	8	9	0	1	2	3			
(Lha	in																
N	1S	0												F				
N	1S	1																
(Car	d	12	FF	3us	3 .	Гаг	: ()	-	11			12	2	16	20	
N	1S	0									M							
N	1S	1																

Note: In the example, (.) under the F-Bus header indicates an in-service F-bus. Under the F-bus tap numbers (0 to 23), M indicates the F-bus tap is manual busy, and (.) indicates an in-service tap.

Go to step 4.

MS MbTp

minor (continued)

4 Determine which MS connects to the F-bus that contains the manual-busy tap.

Note: In the MAP display example in step 3, the F-bus that contains the manual busy tap connects to MS 0.

5 Determine the number of the manual busy tap.

Note: In the MAP display example in step 3, tap 11 on F-bus 0 is manual busy. Message switch 0 controls F-bus 0.

- 6 Consult with maintenance personnel to determine if you can return the manual busy F-bus tap to service.
- 7 To return the manual busy F-bus tap to service, type

>RTS ms_number TAP tap_number

and press the Enter key.

where

ms_number

is the the number of the MS (0 or 1) that connects to

the manual busy F-bus tap

tap number

is the number of the manual busy F-bus tap (0 to 23)

If the RTS command	Do
passed	step 12
failed, and generated a card list	step 8

- 8 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- **9** To change the card, perform the correct card replacement procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.
- To return the manual-busy F-bus tap to service, type

>RTS ms_number TAP tap_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that connects to the manual-busy F-bus tap

tap number

is the number of the manual busy F-bus tap (0 to 23)

If the RTS command	Do
passed	step 12

MS MbTp minor (end)

If the RTS command	Do
failed, and you did not replace all the cards on the list	step 11
failed, and you replaced all the cards on the list	step 14

Record the location, description, slot number, PEC, and PEC suffix of the next card on the list. 11

Go to step 9.

12 Determine if the MbTp minor alarm cleared.

If the alarm	Do
cleared	step 15
reduced in number (for example, a change from 2MbTp to 1MbTp)	step 3
changed to another alarm	step 13
did not clear	step 14

- 13 Perform the correct procedure in this document to clear the alarm.
- 14 For additional help, contact the next level of support.
- 15 The procedure is complete.

MS NOIMSL major

Alarm display

Indication

At the MTC level of the MAP display, NOIMSL appears under the MS header of the alarm banner. The NOIMSL indicates a NOIMSL major alarm.

Meaning

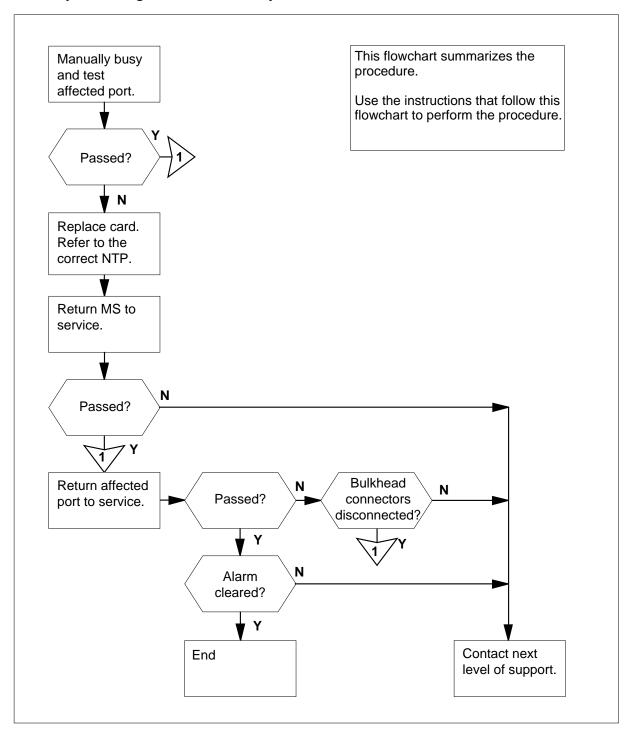
Loss of all four inter-message switch (MS) links occurred.

Result

Different routes for messages are not available.

Common procedures

This procedure refers to Failure to switch clock mastership.


Do not go to the common procedure unless the step action procedure directs you to the common procedure.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS NOIMSL major (continued)

Summary of clearing an MS NOIMSL major alarm

MS NOIMSL

major (continued)

Clearing an MS NOIMSL alarm

At the MAP terminal

1 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

Message	Switch	Clock Shelf	0	Inter-MS	Link	0	1
MS 0		Slave		F		S	S
MS 1		M Free				R	R

- 2 Determine the inter-MS links that are out-of-service.
 - **Note 1:** The state of the inter-MS links appears under the Inter-MS Link Number. An S (for system busy) indicates an out-of-service link. In the example in step one, inter-MS links 0 and 1 are out-of-service.
 - **Note 2:** If both links contain data and are out-of-service, work on a system-busy link in the slave MS first. The data is in software tables.
- **3** Choose an inter-MS Link to work on.
- 4 To access the INTERMS level of the MAP display, type

```
>INTERMS link_number
```

and press the Enter key.

where

link number

is the number of the inter-MS link that is system-busy (0 or 1) chosen in step $\bf 3$

Note: Maintenance of inter-MS link ports occurs at the Card level.

5 To manually busy the system-busy port, type

>BSY ms_number PORT port_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that contains the system busy port

port_number

is the number of the affected port that is system busy (0 to 3)

Example of a MAP response:

MS NOIMSL major (continued)

Request to MANBUSY MS:1 Shelf:0 Card 10 Port: 3 submitted. Request to MANBUSY MS:1 Shelf:0 Card 10 Port: 3 passed.

6 To test the affected port, type

> >TST ms_number PORT port_number and press the Enter key.

where

ms_number

is the number of the MS (0 or 1) that contains the system-busy port

is the number of the port (0 to 3) that contains the inter-MS link

Example of a MAP response:

Request to Test OOS MS:1 Shelf:0 Card 10 Port:3 submitted. Request to Test OOS MS:1 Shelf:0 Card 10 Port:3 submitted.

If the TST command	Do
passed	step 24
failed, and a card list generated	step 7
failed, and another fault exists	step 27
is other than listed here	step 27

- 7 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- 8 To access the MS level of the MAP display, type

>MS

and press the Enter key.

Example of a MAP response:

Mes	ssage	Switch	Clock Shelf	0	Inter-MS	Link	0	1
MS	0	•	Slave		F		S	S
MS	1		M Free				R	R

MS NOIMSL

major (continued)

9 Determine the clocking configuration.

Note: The clocking configuration appears under the Clock header at the MS level of the MAP display.

If the MS that contains the card to replace	Do
is the slave MS, and Slave appears under the Clock header	step 14
is the master MS, and Master or M Free appear under the Clock header	step 10

10 To switch clock mastership, type

>SWMAST

and press the Enter key.

Example of a MAP response:

Request to Switch Clock Mastership MS: 1 submitted. Request to Switch Clock Mastership MS: 1 passed.

If the SWMAST command	Do
passed	step 12
failed	step 11

- Perform the procedure *Failure to switch clock mastership* in this document. Complete the procedure and return to this point.
- Wait 10 min to make sure the MS has stability. Continue this procedure.
- 13 To access the MS level of the MAP display, type

>MS

and press the Enter key.

14 To manually busy the MS that contains the card to replace, type

>BSY ms_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that contains the card to replace Example of a MAP response:

MS NOIMSL major (continued)

Request to MAN BUSY MS: 0 submitted. Request to MAN BUSY MS: 0 passed.

If the response	Do
is Request to MAN BUSY MS:0 passed	step 15
is Request to MAN BUSY MS:1 passed	step 15
is other than listed here	step 27

- Perform the correct procedure in *Card Replacement Procedures* in this document. Complete the procedure and return to this point. 15
- 16 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to TEST OOS MS: 0 submitted. Request to TEST OOS MS: 0 passed.

No node faults were found on MS 0.

If the TST command	Do
passed	step 22
passed with ISTb, and a card list generated	step 19
passed or failed with ISTb and you replaced all the cards on the list	step 20
failed, and a card list generated	step 17
is other than listed here	step 27

MS NOIMSL

major (continued)

17 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 20
did not replace all the cards on the list	step 18

Record the location, description, slot number, PEC, and PEC suffix of the first listed card that you did not replace.

Go to step 15.

19 Record the location, description, slot number, PEC and PEC suffix of the next card on the list.

Go to step 15.

20 Determine the office configuration from office records or from operating company personnel. Check the condition of the bulkhead connectors on both MSs.

If	Do
one or more bulkhead connectors connects	step 21
all bulkhead connectors connect	step 27

- 21 Connect the bulkhead connectors again.
- 22 To return the manual busy MS to service, type

>RTS ms_number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to RTS MS: 0 submitted. Request to RTS MS: 0 passed.

If the RTS command	Do
passed	step 23
failed	step 27

MS NOIMSL major (end)

To access the level of the MAP display where maintenance of inter-MS link 23 ports occurs, type

>INTERMS link number

and press the Enter key.

where

link number

is the number of the inter-MS link that is manual busy (0 or 1)

24 To return the manual busy port to service, type

>RTS ms_number PORT port_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that contains the manual busy

port

port number

is the number of the manual busy port (0 to 3)

Request to RTS MS:1 Shelf: 0 Card:10 Port:3 submitted. Request to RTS MS:1 Shelf: 0 Card:10 Port:3 passed.

If the RTS command	Do
passed	step 25
failed	step 27

25 Determine if the NOIMSL major alarm cleared.

If the alarm	Do
cleared	step 28
changed to another alarm	step 26
did not clear	step 27

- 26 Perform the correct procedure in this document to clear alarms.
- 27 For additional help, contact the next level of support.
- 28 The procedure is complete.

MS pair critical

Alarm display

Indication

At the MS level of the MAP display, MSpair appears under the MS header of the alarm banner. MSpair indicates a critical alarm for a message switch (MS) pair.

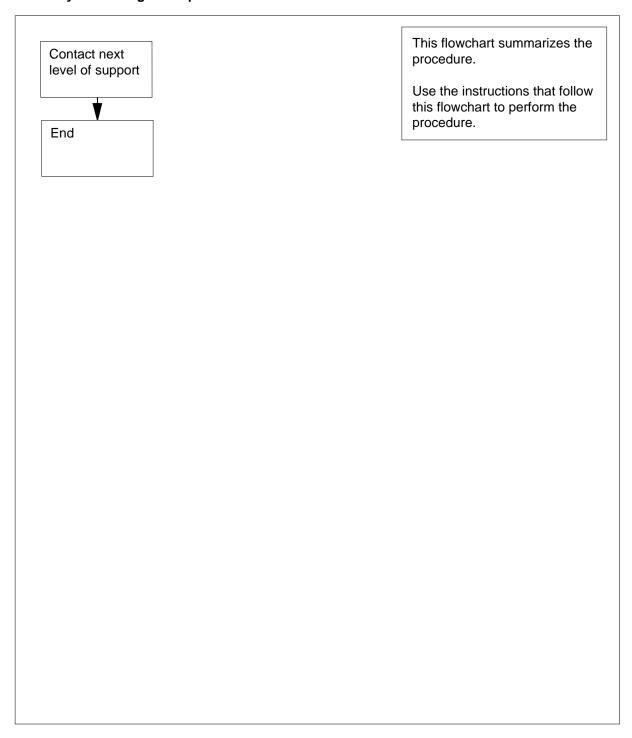
Meaning

Both MSs are out-of-service.

Result

When two MSs are out-of-service, the CM performs a warm restart.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS pair critical (continued)

Summary of clearing an MSpair critical alarm

MS pair critical (end)

Clearing an MSpair critical alarm

At the MAP display

- 1 For additional help, contact the next level of support.
- **2** The procedure is complete.

MS REx minor

Alarm display

Indication

At the MTC level of the MAP display, REx appears under the MS header of the alarm banner. The REx indicates a message switch (MS) REx minor alarm.

Meaning

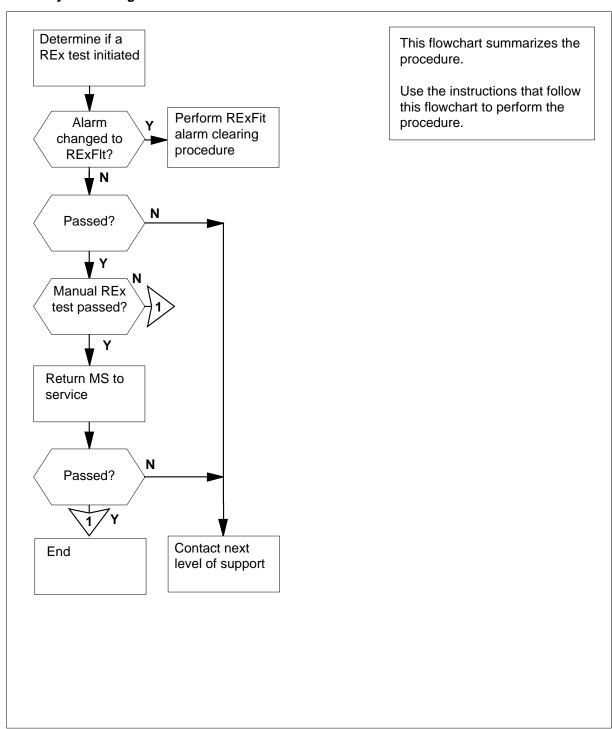
An (MS) has routine exercise (REx) tests in progress.

Result

The condition does not affect service.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS REx

minor (continued)

Summary of clearing an MS REx minor alarm

MS REx

minor (continued)

Clearing an MS REx minor alarm

At your current location

Determine from office records or from operating company personnel if a manual or automatic REx test initiated.

If	Do
a manual REx test was initiated	step 3
the system REx scheduler initiated an automatic REx test	step 2

2 Wait until the REx test ends. Monitor the results.

If the REx test	Do
passed and the REx minor alarm cleared	step 9
failed and the REx minor alarm changed to RExFlt	step 7

3 Wait until the REx test ends. Monitor the results.

If the REx	Do
test passed	step 4
alarm changed to RExFlt	step 7
test failed and the REx minor alarm did not change to RExFlt	step 8

To return the manual busy MS to service, type

>RTS ms_number

and press the Enter key.

where

ms number

is the number of the manual-busy MS (0 or 1)

If the RTS command	Do
passed	step 5
passed with ISTb, and a card list generated	step 5

MS REx minor (end)

If the RTS command	Do
failed, and a card list generated	step 8
other than listed here	step 8
Determine if the REx minor alarm clea	ared.
Determine if the REx minor alarm clea	Do
If the alarm	Do

- 6 Perform the correct procedure to clear an alarm in this document.
- 7 Perform the procedure *Clearing an MS RExFlt minor alarm* in this document.
- **8** For additional help, contact the next level of support.
- **9** The procedure is complete.

MS RExByp minor

Alarm display

Indication

At the MTC level of the MAP display, RExByp appears under the MS header of the alarm banner. The RExByp indicates a message switch (MS) REx bypass minor alarm.

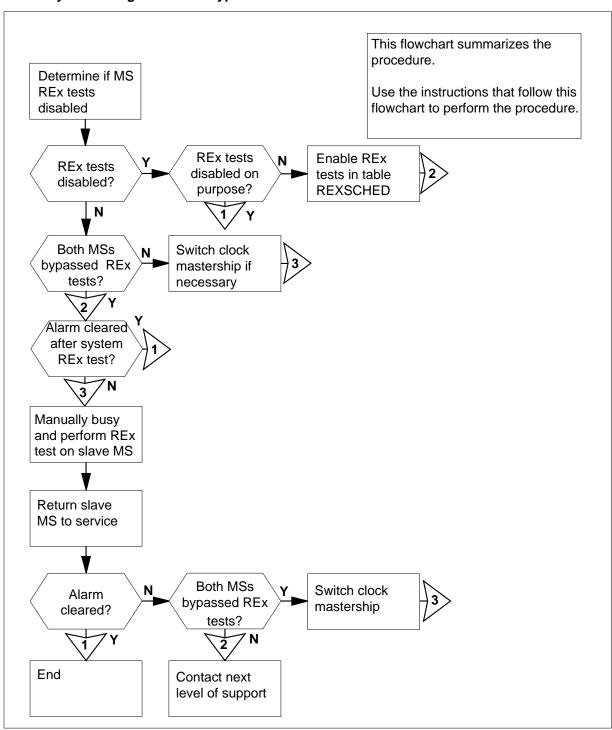
Meaning

The routine exercise (REx) tests for the MS were bypassed. Or, entries in table REXSCHED disabled MS REx tests. If MS REx test has not been disabled and alarm is present, the problem could be with the opposite MS.

Result

Disabled REx tests can result in a fault the system does not detect. This condition can cause loss of service.

Common procedures


This procedure refers to Failure to switch clock mastership.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

minor (continued)

Summary of clearing an MS RExByp minor alarm

minor (continued)

Clearing an MS RExByp minor alarm

DANGER

Possible loss of service

Determine the state and correct the faults of the mate MS before you clear an MS RExByp alarm. An attempt to clear the alarm before you clear the faults can cause the computing module to isolate. An isolated computing module results in a switch restart and loss of service. Check with office personnel to see if you can proceed with the alarm clearing procedure.

At the MAP terminal

- Obtain copies of the last IOAU112 log reports.
- 2 Determine if MS REx tests are disabled. If MS REx tests are disabled, the following message appears in the IOAU112 log report: The CRĬTICAL MS_REX_TEST has been DISABLED INDEFINITELY.

If	Do
MS REx tests are disabled	step 3
MS REx tests are not disabled	step 17

3 Contact the next level of support to determine if MS REx tests are disabled on purpose.

If MS REx tests	Do
are disabled on purpose	step 42
are not disabled on purpose	step 4

To access table REXSCHED, type

>TABLE REXSCHED

and press the Enter key.

Example of a MAP response:

MACHINE NOT IN SYNC - DMOS NOT ALLOWED JOURNAL FILE NOT AVAILABLE- DMOS NOT ALLOWED TABLE: REXSCHED

5 To position on the MS REx test tuple, type

>POS MS REX TEST

and press the Enter key.

minor (continued)

Example of a MAP response:

MS_REX_TEST N 1 1 NONE

6 To activate write access, type

>RWOK ON

and press the Enter key.

Example of a MAP response:

WRITE ACCESS ENABLED FOR RESTRICTED DATA

7 To start the tuple change, type

>CHA

and press the Enter key.

Example of a MAP response:

MACHINE NOT IN SYNC - DMOS NOT ALLOWED JOURNAL FILE NOT AVAILABLE- DMOS NOT ALLOWED ENTER Y TO CONTINUE PROCESSING OR N TO QUIT

8 To set MS REx tests to enabled, type

>Y

and press the Enter key.

9 To enter the time period between MS REx tests, type

><period>

and press the Enter key.

where

<period>

is the minimum number of days between MS REx tests (1 to 7)

Note: If you do not want to change this part of the tuple, do not make an entry and press the Enter key.

To enter the number of MS REx tests to run in parallel, type

><number >

and press the Enter key.

where

<number>

is the maximum number (0 - 99) of MS REx tests to run in parallel

Note: If you do not want to change this part of the tuple, do not make an entry and press the Enter key.

11 To disable the REx test on specified days of the week, type

><daysdsbl>

minor (continued)

and press the Enter key.

where

<daysdsbl

> when the MS REx test is not active (MON, TUE, WED,

THU, FRI, SAT, SUN, ALL or NONE)

Note: If you do not want to change this part of the tuple, do not make an entry and press the Enter key.

12 To confirm the tuple change, type

and press the Enter key.

Example of a MAP response:

TUPLE CHANGED JOURNAL FILE INACTIVE

13 To deactivate write access, type

>RWOK OFF

and press the Enter key.

Example of a MAP response:

WRITE ACCESS DISABLED FOR RESTRICTED DATA

14 To exit table REXSCHED, type

>QUIT

and press the Enter key.

15 To make sure you enable the MS REx tests, review the last IOAU112 log reports.

> **Note:** If you enabled MS REx tests, the message The CRITICAL MS_REX_TEST has been ENABLED. appears in the log report.

If IOAU112 log displays	Do
Enabled D	step 16
Not Enabled	step 41

16 When the next scheduled MS REx test ends, determine if the RExByp alarm cleared.

If the alarm	Do	
cleared	step 42	
changed to another alarm	step 40	

minor (continued)

If the alarm	Do
did not clear	step 17

17 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1 MS 0 . M Free . R . MS 1 . Slave . S .
```

Query the MS to determine the MS (0 or 1) that bypassed a REx test. To query the MS, type

>QUERYMS

and press the Enter key.

Example of a MAP response:

```
MS 0 load contents: product MS-N release 36CJ
MS 1 load contents: product MS-N release 36CJ
There are 12 slots equipped on MS: 0 shelf: 0.
There are 12 slots equipped on MS: 1 shelf: 0.
REx Test last run MS: 0 94:04:12 09:24:33 AUTO SUCCESSFUL
REx Test last run MS: 1 94:04:12 09:42:59 AUTO BY-PASSED
MS node and shelf information:
  Site Flr RPos Bay_id Shf Description Slot EqPEC
  HOST 01 Q14 SCC 0 MS 0
                                          9X01MB
  HOST 01 014 SCC 0 39 MS 0:0
                                         9x0470
  HOST 01 Q14 SCC 0
                      MS 1
                                         9X01MB
  HOST 01 Q14 SCC 0
                          MS 1:0
                                          9X0470
```

19 Determine and record the MS bypassed during REx tests.

Note: In the example in step 18, the bypassed MS is MS 1.

lf	Do
the bypassed MS is MS 0	step 20
the bypassed MS is MS 1	step 20
MS 1 and MS 0 are the bypassed MSs	step 41

MS RExByp minor (continued)

20 Determine the clocking configuration.

Note: Clocking configuration appears under the Clock header at the MS level of the MAP display.

If the bypassed MS	Do
is the slave MS, shown under the Clock header. The slave MS appears as Slave or S Flt	step 23
is the master MS, shown under the Clock header. The master MS appears as Master, M Free, or M Flt	step 21

21 Determine the state of the slave MS.

Note: The state of the slave MS appears under the Message Switch header at the MS level of the MAP display.

If the state of the slave MS	Do
is in service (dot)	step 23
is I (in-service trouble)	step 23
is M (manual busy)	step 41
is S (system busy)	step 23
is T (system tests in progress)	step 22

22 Wait 30 min. Determine the state of the slave MS.

If the slave MS	Do
is in service (dot)	step 23
is I (in-service trouble)	step 23
is M (manual busy)	step 41
is S (system busy)	step 23

23 Query the MS faults to record any faults on the MS. To query the MS faults, type

>QUERYMS FLT

and press the Enter key.

Example of a MAP display:

minor (continued)

```
MS 0 load contents: product MS-U release 11AY
MS 1 load contents: product MS-U release 11AY
There are 14 slots equipped on MS: 0 shelf: 0.
There are 14 slots equipped on MS: 1 shelf: 0.
REx Test last run MS: 0 1998:04:22 01:31::00 AUTO
BY-PASSED
REx Test last run MS: 1 1998:04:22 01:30:04 AUTO (BASE)
SUCCESSFUL
MS 1 has experienced a critical event at:
1998/04/21 15:56:55.261 TUE.
1998/04/21 16:24:47.279 TUE.
MS 0 node faults:
No node faults were found on MS 0.
Soft faults found on system cards:
SHELF 0 CARD 1: Load card (NT9X32) fault at card number
18 (slot24)
SHELF 0 CARD 1: Missing or bad load card in card slot
MS 1 node faults:
No node faults were found on system cards on MS 1.
```

Review MS logs to determine if other MS is stable. Record any logs that indicate a hardware failure.At CI Level:

>LOGUTIL

>OPEN MS

>BACK

and press the Enter key.

Note: Continue to enter BACK until log displays the reason for failure. *Example of MS logs:*

MS RExByp minor (continued)

TASCAPTIVE_D MS267 JAN02 05:43:23 9900 INFO STATE: RETS BY FLT REPORT CODE REF: 0: FLT MAP: 0000 0000 0000 0000 0000 0010 0000 0000 : 0000 0000 0000 0000 0000 0000 0000 0000 MS: 1 SHELF: 0 CARD: 25 SLOT: 31 FRONT PEC: NTPX17AA BACK REC: NT9X20AA FAULT RAISED: CMIC card PS detected 10B12B errors TASCAPTIVE D MS300 JAN02 05:40:36 6500 RTS PORT STATE CHANGE SET FROM SYSB BY SYSTEM ACTION CODE REF: 0: FLT MAP: 0000 0000 0000 0000 0000 MS: 1 SHELF: 0 CARD: 25 SLOT: 31 PORT: 0 FRONT PEC: NT9X17AA BACK PEC: NT9X20AA FAULT CLEARED: A link error detected from CMIC link: unknown code TASCAPTIVE_D * MS303 JAN 02 05:39:35 4300 SYSB PORT STATE CHANGE SET FROM RTS BY FAULT REPORT CODE REF: 0: FLT MAP: 0000 0000 0000 0000 0400 MS: 1 SHELF: 0 CARD: 25 SLOT:31 PORT: 0 FRONT PEC: NT9X17AA BACK PEC: NT9X20AA P-SIDE: MC 1 FAULT RAISED: A link error detected from CMIC link: unknown code TASCAPTIVE B MS304 FEB20 07:41;54 3500 SYSB PORT STATE CHANGE SET FROM PBSY BY P-SIDE ACTION CODE REF: 0 MS: 0 SHELF: 0 CARD: 17 SLTO: 23 PORT:0 FRONT PEC: NT9X17AA BACK PEC 9X23BA

FAULT RAISED: The test via the P-side node failed.

25 Determine the type of failure from information gathered in steps 23 and 24.

If MS logs indicate	Do
P-side node failed	step 26
MC/CMIC link error	step 27
Other failures on Slave MS	step 33
Other failures on Master MS	step 30
No failures	step 29

26 If MS log indicates a P-side failure, troubleshoot the MS slot indicated in the log, or troubleshoot the P-side node affected. Perform appropriate alarm clearing procedures and return to this point.

IfP-side failure cleared	Do
yes	step 27
no	step 41

27 To display MC counts by type >MAPCI; MTC; CM; MC; DISPCNTS and press the Enter key.

P-SIDE: LIM 0

minor (continued)

Determine the stability of the CMIC links. If unstable counts are shown record counts.

If MS links are marked	Do
marked unstable	step 41
not marked unstable	step 29

28 Example of a MAP display:

MC 0 0 52 unstable
MC 0 1 0 .
MC 1 0 0 .
MC 1 1 2 .

29 Determine which MS has the bypass alarm

IfBypass alarm is on	Do	
master	step 30	
slave	step 33	

Make the mastership with the REx alarm the slave MS, switch clock mastership by typing:

>SWMAST

and press the Enter key.

If the SWMAST command	Do
passed	step 32

MS RExByp minor (continued)

If the SWMAST command	Do
failed	step 31

- 31 Perform the procedure Failure to switch clock mastership in this document. Complete the procedure and return to this point.
- 32 Wait 10 min to make sure the MS with the RexByp (or fault) remains the slave. Continue with this procedure.
- To manually busy the slave MS, type 33

>BSY <ms_number>

and press the Enter key.

where

ms number

is the number of the slave MS (0 or 1)

If the response	Do
is Request to MAN BUSY MS:1 passed	step 34
is Request to MAN BUSY MS:0 passed	step 34
is other than listed here	step 41

34 To perform a test on the slave MS, type

>TST <ms_number>

and press the Enter key.

where

<ms number>

is the number of the manual busy MS (0 or 1)

If the test	Do
passed	step 37
failed, and the system generated a card list but no previous hard- ware has been replaced	step 35
failed, and the system generated a card list and hardware has been replaced previously	step 36
is other than listed here	step 41

minor (continued)

- To replace the first card listed, perform the correct procedure in *Card Replacement procedures*. Complete the procedure and return to step 34.
- To replace the next card listed, perform the correct procedure in *Card Replacement procedures*.

If	Do
card has been replaced	step 34
all cards on list have been replaced	step 41

37

WARNING

Possible service degradation

A REx test takes a maximum of 30 min. Initiate REx tests during a period of low traffic to avoid possible service decline. Check with operating company personnel to make sure that a REx test can run at this time.

To perform a REx test on the slave MS, type

>TST <ms_number> REX

and press the Enter key.

where

ms number>

is the number of the manual-busy MS (0 or 1)

If the REx test	Do
passed	step 38
is other than listed here or failed	step 41

To return the manual busy MS to service, type

>RTS <ms_number>

and press the Enter key.

where

ms_number>

is the number of the manual-busy MS (0 or 1)

If the RTS command	Do
passed	step 39

MS RExByp minor (end)

	_
If the RTS command	Do
is other than listed here or failed	step 41
From the MAP display, determine if the	e MS RExByp minor alarm cleared.
If the alarm	Do
cleared	step 42
changed to another alarm	step 40
did not clear	step 41
Perform the correct procedure to clear	the alarm in this document.
For additional help, contact the next le	vel of support.

42

The procedure is complete.

MS RExFlt minor

Alarm display

Indication

At the MTC level of the MAP display, RExFlt appears under the MS header of the alarm banner. The RExFlt indicates an MS RExFlt minor alarm.

Meaning

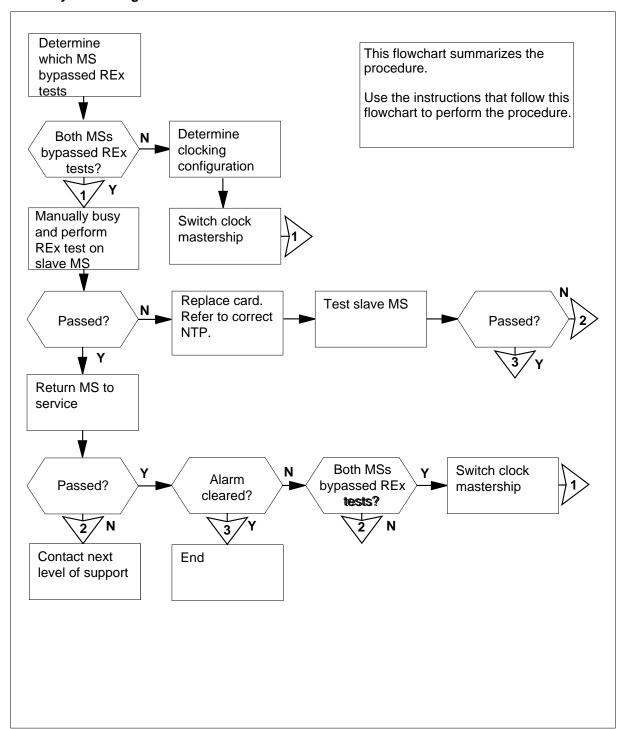
Routine exercise (REx) tests for the message switch (MS) failed as a result of critical or in-service trouble faults.

Result

The condition does not affect subscriber service right away. The condition can affect subscriber service if the fault is critical and continues without correction.

Common procedures

This procedure refers to Failure to switch clock mastership.


Do not proceed to the common procedure unless the step-action procedure directs you to go.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS RExFlt minor (continued)

Summary of clearing an MS RExFlt minor alarm

MS RExFlt

minor (continued)

Clearing an MS RExFlt minor alarm

At the MAP terminal

1 To access the MS level of the MAP, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP:

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1 MS 0 . M Free . R . MS 1 . Slave F S .
```

Query the MS to determine the MS that failed a REx test. To query the MS, type

>QUERYMS

and press the Enter key.

Example of a MAP response:

```
MS 0 load contents: product MS-N release 36CJ
MS 1 load contents: product MS-N release 36CJ
There are 12 slots equipped on MS: 0 shelf: 0.
There are 12 slots equipped on MS: 1 shelf: 0.
REx Test last run MS: 0 94:04:12 09:24:33 AUTO SUCCESSFUL
REx Test last run MS: 1 94:04:12 09:42:59 AUTO SUCCESSFUL
MS node and shelf information:
   Site Flr RPos Bay_id Shf Description Slot EqPEC
  HOST 01 Q14 SCC 0
                           MS 0
                                            9X01MB
  HOST 01 Q14 SCC 0 39 MS 0:0
                                            9x0470
  HOST 01 Q14 SCC 0 MS 1
                                           9X01MB
  HOST 01 Q14 SCC 0
                         MS 1:0
                                           9x0470
```

3 Determine the clocking configuration.

Note: The clocking configuration appears under the Clock header of the MAP display.

If the MS that failed a REx test	Do
is the slave MS, shown as Slave under the Clock header	step 7
is the master MS, shown as Master or M Free under the Clock header	step 4

4 To switch clock mastership, type

>SWMAST

MS RExFlt minor (continued)

and press the Enter key.

Example of a MAP response:

Request to Switch Clock Mastership MS: 0 submitted. Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command	Do
passed	step 6
failed	step 5

- 5 Perform the procedure Failure to switch clock mastership in this document. Complete the procedure and return to this point.
- 6 Wait 10 min to make sure MS has stability. Continue the procedure.
- 7 To manually busy the slave MS, type

>BSY ms_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that bypassed a REx test

If the response	Do
is Request to MAN BUSY MS:0 passed	step 8
is Request to MAN BUSY MS:1 passed	step 8
is other than listed here	step 22

8

WARNING

Possible service degradation

A REx test takes a maximum of 30 min. Initiate REx tests during a period of low traffic to avoid possible service decline. Check with operating company personnel to make sure that a REx test can run at this time.

To perform a REx test on the manual busy MS, type >TST ms_number and press the Enter key.

MS RExFlt

minor (continued)

where

ms_number

is the number of the manual busy MS (0 or 1)

Note: Wait until the routine exercise test ends. Monitor the results.

If the REx	Do
passed	step 19
passed with ISTb, and the system generated a card list	step 19
terminated	step 22
failed, and the system generated a card list	step 9
failed, an error response returned, and the system generated a card list	step 22
is other than listed here	step 22

- 9 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- **10** Determine the clocking configuration.

Note: The clocking configuration appears under the Clock header of the MAP display.

If the MS that contains the card to replace	Do
is the slave MS, shown as Slave under the Clock header	step 14
is the master MS, shown as Master or M Free under the Clock header	step 11

11 To switch clock mastership, type

>SWMAST

and press the Enter key.

Example of a MAP response:

MS RExFIt minor (continued)

Request to Switch Clock Mastership MS: 0 submitted. Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command	Do
passed	step 13
failed	step 12

- 12 Perform the procedure Failure to switch clock mastership in this document. Complete the procedure and return to this point.
- Wait 10 min to make sure MS has stability. Continue the procedure. 13
- 14 Perform the correct card replacement procedure in Card Replacement Procedures in this document. Complete the procedure and return to this point.
- 15 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to TEST OOS MS: 0 submitted. Request to TEST OOS MS: 0 passed. No node faults were found on MS 0.

If the TST command	Do
passed	step 19
passed with ISTb, and the system generated a card list	step 16
passed with ISTb, and you replaced all the cards on the list	step 22
failed, and the system generated a card list	step 17
is other than listed here	step 22

16 Record the location, description, slot number, PEC, and PEC suffix of the next card on the list.

Go to step 14.

MS RExFlt

minor (end)

17 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 22
did not replace all the cards on the list	step 18

Record the location, description, slot number, PEC, and PEC suffix of the first listed card that you did not replace.

Go to step 14.

19 To return the manual busy MS to service, type

>RTS ms_number

and press the Enter key.

where

ms number

is the number of the manual-busy MS (0 or 1)

If RTS command	Do
passed	step 20
passed with ISTb, and the system generated a card list	step 20
failed, and the system generated a card list	step 22
is other than listed here	step 22

20 Determine if the RExFlt minor alarm cleared.

If the alarm	Do
cleared	step 23
changed to another alarm	step 21
did not clear	step 22
is other than listed here	step 22

- 21 Perform the correct procedure to clear the alarm in this document.
- 22 For additional help, contact the next level of support.
- The procedure is complete.

MS SBCD minor

Alarm display

Indication

At the MTC level of the MAP display, SBCD (preceded by a number) appears under the MS header of the alarm banner. The SBCD indicates an SBCD minor alarm.

Meaning

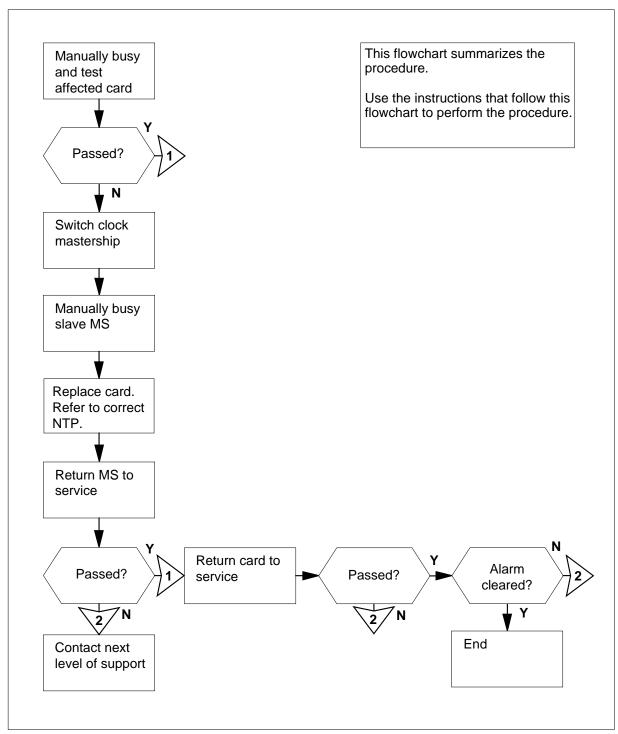
The system automatically removed message switch (MS) port cards from service because of faults detected by the system.

Result

All ports on the affected cards are out of service.

Common procedures

This procedure refers to Failure to switch clock mastership.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS SBCD

minor (continued)

Summary of clearing an MS SBCD minor alarm

MS SBCD

minor (continued)

Clearing an MS SBCD minor alarm

At the MAP terminal:

To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

```
Message Switch Clock Shelf 0 Inter-MS Link 0 1
MS 0
                     M Free
                               F
MS 1
                     Slave
```

2 To access the Shelf level of the MAP display, type

>SHELF shelf number

and press the Enter key.

where

shelf number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

3 Determine the system busy cards from the MAP display. An S under the card number indicates the system busy cards. If two or more system busy cards are present, select a card to work on. If system busy cards are present on both MSs, work on the slave side first.

Example of a MAP display:

Shelf 0																										
										1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2
Card Chain	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6
MS 0													S													
MS 1																										

Example of a MAP display:

Shelf 0													
										1	1	1	1
Card Chain	1	2	3	4	5	6	7	8	9	0	1	2	3
MS 0						S							
MS 1													

4 Select a card to work on.

> Note: If system busy port cards are present on both MSs, work on the slave MS first. In the MAP display examples in steps 1 and 2, the system busy port card is on the master MS.

MS SBCD

minor (continued)

5 To access the Card level of the MAP display for the card you selected, type

>CARD card_number

and press the Enter key.

where

card number

is the number of the system busy card

6 To manually busy the system busy card, type

>BSY ms_number

and press the Enter key.

where

ms_number

is the number of the MS (0 or 1) that contains the system-busy card

Example of a MAP display:

Request to MAN BUSY MS:1 shelf:0 card:6 submitted. Request to MAN BUSY MS:1 shelf:0 card:6 passed.

If the manual busy request	Do
passed	step 7
failed	step 27

7 To test the manual busy card, type

>TST ms_number

and press the Enter key.

where

ms_number

is the number of the MS (0 or 1) that contains the manual busy card Example of a MAP display:

Request to TEST OOS MS: 0 shelf:0 card:6 submitted. Request to TEST OOS MS: 0 shelf:0 card:6 passed.

If the TST command	Do
passed	step 24
failed, and the system generated a card list	step 8

8 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.

minor (continued)

9 Determine the clocking configuration.

> **Note:** The clocking configuration appears under the Clock header of the MAP display.

If the MS that contains the card to replace	Do
is the slave MS, shown as Slave under the Clock header	step 13
is the master MS, shown as Master or M Free under the Clock header	step 10

10 To switch clock mastership, type

>SWMAST

and press the Enter key.

Example of a MAP display:

Request to Switch Clock Mastership MS: 0 submitted. Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command	Do
passed	step 12
failed	step 11

- 11 Perform the procedure Failure to switch clock mastership in this document. Complete the procedure and return to this point.
- 12 Wait 10 min to make sure the MS has stability. Continue this procedure.
- 13 To access the MS level of the MAP display, type

>MS

and press the Enter key.

14 To manually busy the MS that contains the card that you must replace, type

>BSY ms number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that contains the card that you must replace

Example of a MAP display:

minor (continued)

Request to MAN BUSY MS: 0 submitted. Request to MAN BUSY MS: 0 passed.

If the response			Do
is Request t MS:0 passed	O MAN	BUSY	step 15
is Request t MS:1 passed	MAM c	BUSY	step 15
is other than liste	ed here		step 27

- Perform the correct correct replacement procedure in *Card Replacement Procedures* in this document. Complete the procedure and return to this point.
- 16 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

ms number

is the number of the manual-busy MS (0 or 1)

Example of a MAP display:

Request to TEST OOS MS: 0 submitted. Request to TEST OOS MS: 0 passed. No node faults were found on MS 0.

If the TST command	Do
passed	step 20
passed with ISTb, and you must replace more cards on the list	step 17
passed with ISTb, and you replaced all cards on the list	step 27
failed, and the system generated a card list	step 18
is other than listed here	step 27

17 Record the location, description, slot number, PEC, and PEC suffix of the next card on the list.

minor (continued)

Go to step 15.

18 Determine if you replaced all the cards on the list.

If	Do
you replaced all the cards on the list	step 27
you did not replace all the cards on the list	step 19

19 Record the location, description, slot number, PEC, and PEC suffix of the first card listed that was not replaced.

Go to step 15.

20 To return the manual busy MS to service, type

> >RTS ms_number and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

Example of a MAP display:

Request to RTS MS: 0 submitted. Request to RTS MS: 0 passed.

If the RTS command	Do
passed	step 21
failed	step 27

21 To access the Shelf level of the MAP display, type

>SHELF shelf_number

and press the Enter key.

where

shelf number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

22 To access the system busy card, type

> >CARD card_number and press the Enter key. where

minor (continued)

card_number

is the number of the manual busy (M) card

23 To test the card, type

>TST ms_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that contains the manual busy card Example of a MAP display:

Request to TEST OOS MS: 0 shelf:0 card:6 submitted. Request to TEST OOS MS: 0 shelf:0 card:6 passed.

If the TST command	Do
passed	step 24
failed, and the system generated a card list	step 27

24 To return the manual busy card to service, type

>RTS ms_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that contains the manual busy card

If the RTS command	Do
passed	step 25
failed	step 27

25 Determine if the SBCD minor alarm cleared.

If the alarm	Do
cleared	step 28
reduced in number (for example, the alarm changed from 02SBCD to 01SBCD)	step 2
changed to another alarm	step 26
did not clear	step 27

MS SBCD minor (end)

- 26 Perform the correct procedure to clear the alarm in this document.
- 27 For additional help, contact the next level of support.
- 28 The procedure is complete.

MS SBCH minor

Alarm display

Indication

At the MTC level of the MAP display, SBCH (preceded by a number) appears under the MS header of the alarm banner. The SBCH indicates an SBCH minor alarm.

Meaning

Port chains for the message switch (MS) are system busy. The system automatically removed the MS port chains from service because of faults detected by the system.

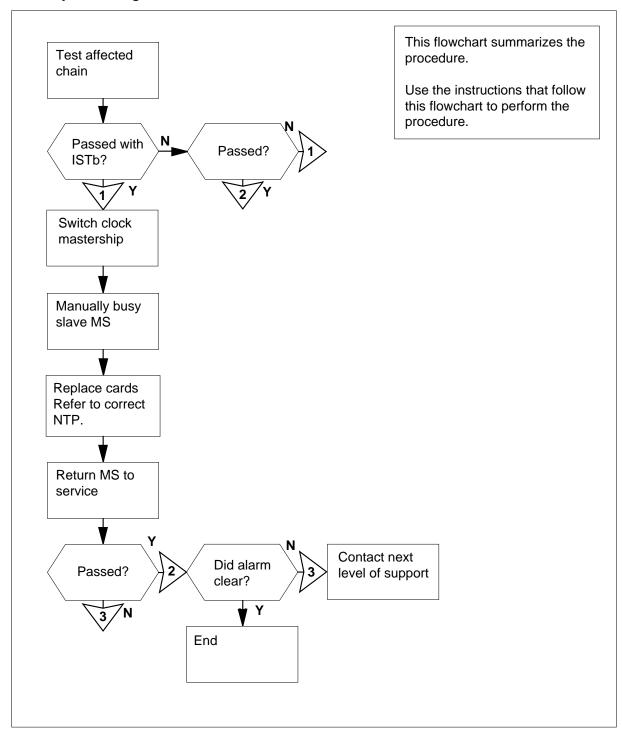
A port chain can not communicate with the subtending node the port chain connects to if the port chain is system busy. An enhanced network (ENET) shelf is an example of a subtending node.

The number under the MS header in the alarm banner indicates the number of port chains affected.

Result

If one port chain that serves an ENET shelf is out of service, service is not affected. Messaging automatically switches to the corresponding port chain on the other MS. If both port chains of an ENET surface are out-of-service, the system automatically diverts messaging to another network surface.

Common procedures


This procedure refers to Failure to switch clock mastership.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

minor (continued)

Summary of clearing an MS SBCH minor alarm

minor (continued)

Clearing an MS SBCH minor alarm

At the MAP terminal

1 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

Message	Switch	Clock	Shelf 0	Inter-MS	Link	0	1
MS 0			M Free			R	
MS 1	•		Slave	F		S	

2 To access the Shelf level of the MAP display, type

>SHELF shelf_number

where

shelf number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

3 To access the Chain level of the MAP, type

>CHAIN head_card_number

and press the Enter key.

where

head_card_number

is the number of the head card

4 To test the affected chain, type

>TST ms_number

and press the Enter key.

where

ms_number

is the number of the affected MS (0 or 1)

Note: An F under the shelf status indicator at the MS level of the MAP display indicates the affected MS.

If the TST command	Do
passed	step 27
passed with ISTb, and the system generated a card list	step 5
failed, and the system generated a card list	step 5

minor (continued)

If the TST command	Do	
is other than listed here	step 29	

- 5 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- 6 To access the MS level of the MAP display, type

>MS

and press the Enter key.

7 Determine the clocking configuration.

> **Note:** The clocking configuration appears under the Clock header at the MS level of the MAP display.

If the MS that contains the card to replace	Do
is the slave MS, shown as Slave under the Clock header	step 11
is the master MS, shown as Masteror M Freeunder the Clock header	step 8

8 To switch clock mastership, type

>SWMAST

and press the Enter key.

Example of a MAP response:

Request to Switch Clock Mastership MS: 0 submitted. Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command	Do
passed	step 10
failed	step 9

- 9 Perform the procedure Failure to switch clock mastership in this document. Complete the procedure and return to this point.
- Wait 10 min to make sure the MS has stability. Continue this procedure. 10
- 11 To manually busy the MS that contains the card that you must replace, type

>BSY ms_number

and press the Enter key.

where

ms_number

is the number of the MS (0 or 1) that contains the card that you

minor (continued)

must replace

Example of a MAP response:

Request to MAN BUSY MS: 0 submitted. Request to MAN BUSY MS: 0 passed.

If the response	Do
is Request to MAN BUSY MS: 0 passed	step 12
is Request to MAN BUSY MS: 1 passed	step 12
is other than listed here	step 29

Determine the subsystem that contains the card that you must replace.the ENET subsystem contains the card

If	Do
the MS subsystem contains the card	step 13
the ENET subsystem contains the card	step 19
the JNET subsystem contains the card	step 19

- Perform the correct card replacement procedure in *Card Replacement Procedures* in this document. Complete the procedure and return to this point.
- To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

ms_number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to TEST OOS MS: 0 submitted. Request to TEST OOS MS: 0 passed. No node faults were found on MS 0.

If the TST command	Do	
passed	step 21	

MS SBCH minor (continued)

passed with ISTb, and the system generated a card list passed with ISTb, and you step 29 replaced all the cards on the list failed, and the system generated a step 15 card list is other than listed here step 29 Determine if you replaced all the cards on the list. If you Do replaced all the cards on the list step 29 did not replace all the cards on the list step 29 did not replace all the cards on the step 16 list Record the location, description, slot number, PEC, and PEC suffix of the card on the list that you did not replace. Go to step 18. Record the location, description, slot number, PEC, and PEC suffix of the card on the list. Determine the subsystem that contains the card that you must replace If Do the MS subsystem contains the step 13 card the ENET subsystem contains the step 19 card the JNET subsystem contains the step 19 card Perform the correct procedure to replace a card in Card Replacemen Procedures in this document. Complete the procedure and return to point. To access the MS level of the MAP display, type MS and press the Enter key. Go to step 14. To return the manual busy MS to service, type	If the TST command	Do
replaced all the cards on the list failed, and the system generated a step 15 card list is other than listed here step 29 Determine if you replaced all the cards on the list. If you Do replaced all the cards on the list step 29 did not replace all the cards on the step 16 list Record the location, description, slot number, PEC, and PEC suffix of the card on the list that you did not replace. Go to step 18. Record the location, description, slot number, PEC, and PEC suffix of the card on the list. Determine the subsystem that contains the card that you must replace If Do the MS subsystem contains the step 13 card the ENET subsystem contains the step 19 card Perform the correct procedure to replace a card in Card Replacement Procedures in this document. Complete the procedure and return to point. To access the MS level of the MAP display, type >MS and press the Enter key. Go to step 14.		n step 17
card list is other than listed here step 29 Determine if you replaced all the cards on the list. If you Do replaced all the cards on the list step 29 did not replace all the cards on the step 16 list Record the location, description, slot number, PEC, and PEC suffix of to card on the list that you did not replace. Go to step 18. Record the location, description, slot number, PEC, and PEC suffix of the card on the list. Determine the subsystem that contains the card that you must replace If Do the MS subsystem contains the step 13 card the ENET subsystem contains the step 19 card the JNET subsystem contains the step 19 card To access the MS level of the MAP display, type MS and press the Enter key. Go to step 14.		step 29
Determine if you replaced all the cards on the list. If you Do replaced all the cards on the list step 29 did not replace all the cards on the step 16 list Record the location, description, slot number, PEC, and PEC suffix of the card on the list that you did not replace. Go to step 18. Record the location, description, slot number, PEC, and PEC suffix of the card on the list. Determine the subsystem that contains the card that you must replace If Do the MS subsystem contains the step 13 card the ENET subsystem contains the step 19 card the JNET subsystem contains the step 19 card Perform the correct procedure to replace a card in Card Replacemen Procedures in this document. Complete the procedure and return to point. To access the MS level of the MAP display, type MS and press the Enter key. Go to step 14.		a step 15
replaced all the cards on the list step 29 did not replace all the cards on the list step 16 list Record the location, description, slot number, PEC, and PEC suffix of the card on the list that you did not replace. Go to step 18. Record the location, description, slot number, PEC, and PEC suffix of the card on the list. Determine the subsystem that contains the card that you must replace if Do the MS subsystem contains the step 13 card the ENET subsystem contains the step 19 card Perform the correct procedure to replace a card in Card Replacemen Procedures in this document. Complete the procedure and return to so access the MS level of the MAP display, type SMS and press the Enter key. Go to step 14.	is other than listed here	step 29
replaced all the cards on the list step 29 did not replace all the cards on the step 16 list Record the location, description, slot number, PEC, and PEC suffix of the card on the list that you did not replace. Go to step 18. Record the location, description, slot number, PEC, and PEC suffix of the card on the list. Determine the subsystem that contains the card that you must replace If Do the MS subsystem contains the step 13 card the ENET subsystem contains the step 19 card Perform the correct procedure to replace a card in Card Replacement Procedures in this document. Complete the procedure and return to coint. To access the MS level of the MAP display, type MS and press the Enter key. Go to step 14.	Determine if you replaced all the c	ards on the list.
did not replace all the cards on the list Record the location, description, slot number, PEC, and PEC suffix of to card on the list that you did not replace. Go to step 18. Record the location, description, slot number, PEC, and PEC suffix of the card on the list. Determine the subsystem that contains the card that you must replace. If Do the MS subsystem contains the step 13 card the ENET subsystem contains the step 19 card the JNET subsystem contains the step 19 card Perform the correct procedure to replace a card in Card Replacemen Procedures in this document. Complete the procedure and return to point. To access the MS level of the MAP display, type MS and press the Enter key. Go to step 14.	If you	Do
Record the location, description, slot number, PEC, and PEC suffix of to card on the list that you did not replace. Go to step 18. Record the location, description, slot number, PEC, and PEC suffix of the card on the list. Determine the subsystem that contains the card that you must replace the MS subsystem contains the step 13 card the ENET subsystem contains the step 19 card the JNET subsystem contains the step 19 car	replaced all the cards on the list	step 29
card on the list that you did not replace. Go to step 18. Record the location, description, slot number, PEC, and PEC suffix of the card on the list. Determine the subsystem that contains the card that you must replace if Do the MS subsystem contains the step 13 card the ENET subsystem contains the step 19 card the JNET subsystem contains the step 19 card Perform the correct procedure to replace a card in Card Replacemen Procedures in this document. Complete the procedure and return to point. To access the MS level of the MAP display, type MS and press the Enter key. Go to step 14.	•	e step 16
Record the location, description, slot number, PEC, and PEC suffix of the card on the list. Determine the subsystem that contains the card that you must replace the MS subsystem contains the step 13 card the ENET subsystem contains the step 19 card the JNET subsystem contains the step 19 card Perform the correct procedure to replace a card in Card Replacement Procedures in this document. Complete the procedure and return to coint. To access the MS level of the MAP display, type MS and press the Enter key. Go to step 14.		
Determine the subsystem that contains the card that you must replace If Do the MS subsystem contains the step 13 card the ENET subsystem contains the step 19 card the JNET subsystem contains the step 19 card Perform the correct procedure to replace a card in Card Replacement Procedures in this document. Complete the procedure and return to boint. To access the MS level of the MAP display, type MS and press the Enter key. Go to step 14.	Go to step 18.	
the MS subsystem contains the card the ENET subsystem contains the step 19 card the JNET subsystem contains the step 19 card Perform the correct procedure to replace a card in Card Replacemen Procedures in this document. Complete the procedure and return to boint. To access the MS level of the MAP display, type MS and press the Enter key. Go to step 14.		
the MS subsystem contains the step 13 the ENET subsystem contains the step 19 card the JNET subsystem contains the step 19 card Perform the correct procedure to replace a card in Card Replacemen Procedures in this document. Complete the procedure and return to point. To access the MS level of the MAP display, type MS and press the Enter key. Go to step 14.		ot number, PEC, and PEC suffix of the r
the ENET subsystem contains the step 19 card the JNET subsystem contains the step 19 card Perform the correct procedure to replace a card in Card Replacemen Procedures in this document. Complete the procedure and return to point. To access the MS level of the MAP display, type MS and press the Enter key. Go to step 14.	card on the list.	
the JNET subsystem contains the step 19 card Perform the correct procedure to replace a card in Card Replacemen Procedures in this document. Complete the procedure and return to point. To access the MS level of the MAP display, type MS and press the Enter key. Go to step 14.	card on the list. Determine the subsystem that con	ntains the card that you must replace.
Perform the correct procedure to replace a card in Card Replacemen Procedures in this document. Complete the procedure and return to point. To access the MS level of the MAP display, type MS and press the Enter key. Go to step 14.	card on the list. Determine the subsystem that con If the MS subsystem contains the	ntains the card that you must replace.
Procedures in this document. Complete the procedure and return to point. To access the MS level of the MAP display, type >MS and press the Enter key. Go to step 14.	card on the list. Determine the subsystem that con If the MS subsystem contains the card the ENET subsystem contains the	Do step 13
>мs and press the Enter key. Go to step 14.	card on the list. Determine the subsystem that con If the MS subsystem contains the card the ENET subsystem contains the card the JNET subsystem contains the	Do step 13 step 19
and press the Enter key. Go to step 14.	card on the list. Determine the subsystem that con If the MS subsystem contains the card the ENET subsystem contains the card the JNET subsystem contains the card Perform the correct procedure to re Procedures in this document. Corrected that corrected the correct procedures in this document.	Do step 13 step 19 step 19 eplace a card in Card Replacement
Go to step 14.	card on the list. Determine the subsystem that con If the MS subsystem contains the card the ENET subsystem contains the card the JNET subsystem contains the card Perform the correct procedure to reprocedures in this document. Corpoint.	Do step 13 step 19 step 19 e step 19 eplace a card in <i>Card Replacement</i> mplete the procedure and return to this
·	card on the list. Determine the subsystem that con If the MS subsystem contains the card the ENET subsystem contains the card the JNET subsystem contains the card Perform the correct procedure to reprocedures in this document. Corpoint. To access the MS level of the MAF	Do step 13 step 19 step 19 e step 19 eplace a card in <i>Card Replacement</i> mplete the procedure and return to this
To return the manual busy MS to service, type	the ENET subsystem contains the card the JNET subsystem contains the card the JNET subsystem contains the card Perform the correct procedure to reprocedures in this document. Corpoint. To access the MS level of the MAF	Do step 13 step 19 step 19 e step 19 eplace a card in <i>Card Replacement</i> mplete the procedure and return to this
	the ENET subsystem contains the card the JNET subsystem contains the card the JNET subsystem contains the card the JNET subsystem contains the card Perform the correct procedure to reprocedures in this document. Corpoint. To access the MS level of the MAF and press the Enter key.	Do step 13 step 19 step 19 e step 19 eplace a card in <i>Card Replacement</i> mplete the procedure and return to this
	ard on the list. Determine the subsystem that con If the MS subsystem contains the card the ENET subsystem contains the card the JNET subsystem contains the card Perform the correct procedure to reprocedures in this document. Corroint. To access the MS level of the MAF MS and press the Enter key. So to step 14.	Do step 13 step 19 step 19 e step 19 eplace a card in <i>Card Replacement</i> mplete the procedure and return to the display, type

minor (continued)

and press the Enter key.

where

ms_number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to RTS MS: 0 submitted. Request to RTS MS: 0 passed.

If the RTS command	Do
passed	step 22
failed	step 29

22 To access the Shelf level of the MAP display, type

>SHELF shelf_number

where

shelf number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

23 To access the Chain level of the MAP display, type

>CHAIN head_card_number

and press the Enter key.

where

head card number

is the number of the head card in the chain

24 To test the affected chain, type

>TST ms_number

and press the Enter key.

where

ms number

is the number of the affected MS

If the TST command	Do
passed	step 27
passed with ISTb, and the system generated a card list	step 25
failed, and the system generated a card list	step 25

MS SBCH minor (end)

If the TST command	Do	
is other than listed here	step 29	
is other than listed here Determine if you replaced all th	·	

If you	Do
replaced all the cards on the list	step 29
did not replace all the cards on the list	step 26

Record the location, description, slot number, PEC, and PEC suffix of the first card on the list that you did not replace. 26

Go to step 6.

25

27 Determine if the SBCH minor alarm cleared.

If the alarm	Do
cleared	step 30
changed to another alarm	step 28
reduced in number (for example, the alarm changed from 02SBCH to 01SBCH)	step 2
did not clear	step 29

- 28 Perform the correct procedure to clear alarms in this document.
- 29 For additional help, contact the next level of support.
- The procedure is complete. 30

MS SBCL minor

Alarm display

Indication

At the MTC level of the MAP, SBCL (preceded by a number) appears under the MS header of the alarm banner. The SBCL indicates an SBCL minor alarm.

Meaning

Channelized links are system busy. The system automatically removed channelized links from service as a result of faults detected by the system. A channelized link connects a message switch (MS) port chain to a subtending node. An enhanced network (ENET) plane is an example of a subtending node.

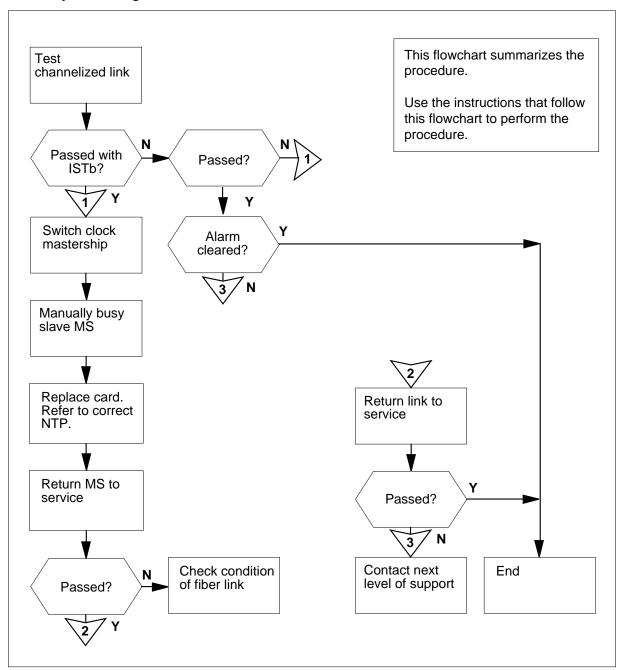
The number under the MS header in the alarm banner indicates the number of affected channelized links.

Result

A channelized link serves an MS port chain. If a channelized link is out of service, the MS port chain cannot communicate with the subtending node. The subtending node connects to the link. If the subtending node is an ENET plane, service is not affected. Messaging with the affected node automatically switches to the corresponding port chain on the other MS.

Both channeled links that serve an ENET surface can be out of service. If both channeled links are out of service, the system automatically diverts messaging to the other ENET plane.

Common procedures


This procedure refers to Failure to switch clock mastership.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS SBCL minor (continued)

Summary of clearing an MS SBCL minor alarm

minor (continued)

How to clear an MS SBCL minor alarm

At the MAP terminal:

1 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key

Example of a MAP display:

Message	Switch	Clock	Shelf	0	Inter-MS	Link	0	1
MS 0		M	Free		F			
MS 1		Sl	ave					

2 To access the Shelf level of the MAP display, type

```
>SHELF shelf number
```

and press the Enter key.

where

shelf number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

Example of a MAP display:

Shelf	0										1	1	1	1
Card		1	2	3	4	5	6	7	8	9	0	1	2	3
Chain														
MS 0						F								
MS 1		_	_		_	_		_				_		

3 Determine the number of port chains with system busy channelized links.

Note: The number of port chains with system busy channelized links appears under the MS header in the alarm banner.

If the condition	Do
affects one chain	step 5
affects more than one chain	step 4

4 Select a link to work on.

Note: If system busy channelized links are present on both MSs, work on the slave MS first. In the example in step 1, MS 1 is the slave MS.

5 To access the Chain level of the MAP display, type

>CHAIN head_card_number

and press the Enter key.

where

minor (continued)

head card number

is the number of the head card in the system busy chain

6 To test the channelized link for the affected chain, type

> >TST ms_number LINK link_number and press the Enter key.

where

ms number

is the number of the affected MS (0 or 1)

link number

is the number of the system busy link

Note: An S under the link number identifies the system busy channelized links.

If the TST command	Do
passed	step 34
passed with ISTb, and the system generated a card list	step 7
failed, and the system generated a card list	step 7

- 7 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- To access the MS level of the MAP display, type 8

>MS

and press the Enter key

Example of a MAP display:

Message	Switch	Clock	Shelf	0	Inter-MS	Link	0	1
MS 0		M	Free		F			
MS 1		S	Lave					

9 Determine the clocking configuration.

> **Note:** The clocking configuration appears under the Clock header at the MS level of the MAP display.

If the MS that contains the card to replace	Do
is the slave MS, shown as Slave under the Clock header	step 13

minor (continued)

If the MS that contains the card to replace	Do
is the master MS, shown as Master or M Free under the Clock header	step 10

10 To switch clock mastership, type

>SWMAST

and press the Enter key.

Example of a MAP display:

Request to Switch Clock Mastership MS: 0 submitted. Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command	Do
passed	step 12
failed	step 11

- Perform the procedure *Failure to switch clock mastership* in this document. Complete the procedure and return to this point.
- Wait 10 min to make sure the MS has stability. Continue this procedure.
- To manually busy the MS that contains the card that you must replace, type

>BSY ms_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that contains the card that you must replace

Example of a MAP display:

Request to MAN BUSY MS: 0 submitted. Request to MAN BUSY MS: 0 passed.

If the response	Do
is Request to MAN B MS: 0 passed	SUSY step 14
is Request to MAN B MS: 1 passed	SUSY step 14

minor (continued)

If the response	Do
is other than listed here	step 36

14 Determine the subsystem that contains the card that you must replace.

If	Do
the MS subsystem contains the card	step 15
the ENET subsystem contains the card	step 21
the JNET subsystem contains the card	step 23

- 15 Perform the correct card replacement procedure in *Card Replacement* Procedures in this document. Complete the procedure and return to this
- 16 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

is the number of the manual busy MS (0 or 1)

Example of a MAP display:

Request to TEST OOS MS: 0 submitted. Request to TEST OOS MS: 0 passed. No node faults were found on MS 0.

If the TST command	Do
passed	step 25
passed with ISTb, and the system generated a card list	step 19
passed with ISTb, and you replaced all the cards on the list	step 36
failed, and the system generated a card list	step 17

minor (continued)

17 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 36
did not replace all the cards on the list	step 18

Record the location, description, slot number, PEC, and PEC suffix of the first card on the list that you did not replace.

Go to step 20.

- 19 Record the location, description, slot number, PEC, and PEC suffix of the next card on the list.
- 20 Determine the subsystem that contains the card that you must replace.

If	Do
the MS subsystem contains the card	step 15
the ENET subsystem contains the card	step 21
the JNET subsystem contains the card	step 23

- Perform the correct card replacement procedure in *Card Replacement Procedures* in this document. Complete the procedure and return to this point.
- 22 To access the MS level of the MAP display, type

>MS

and press the Enter key.

Go to step 16.

- Perform the correct card replacement procedure in *Card Replacement Procedures* in this document. Complete the procedure and return to this point.
- 24 To access the MS level of the MAP display, type

>MS

and press the Enter key.

Go to step 16.

25 To return the manual busy MS to service, type

>RTS ms_number

and press the Enter key.

minor (continued)

where

ms number

is the number of the manual-busy MS (0 or 1)

Example of a MAP display:

Request to RTS MS: 0 submitted. Request to RTS MS: 0 passed.

If the RTS command	Do
passed	step 26
failed	step 36

26 To access the Shelf level of the MAP display, type

>SHELF shelf_number

and press the Enter key.

where

shelf number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

Example of a MAP display:

Shelf	0									1	1	1	1
Card	1	2	3	4	5	6	7	8	9	0	1	2	3
Chain													
MS 0													
MS 1													

27 To access the Chain level of the MAP display, type

>CHAIN head_card_number

and press the Enter key.

where

head card number

is the number of the head card in the affected chain

28 To test the channelized link, type

> >TST ms_number LINK link_number and press the Enter key. where

ms number

is the number of the affected MS (0 or 1)

minor (continued)

link number

is the number of the system busy link chosen in step 4

If the TST command	Do
passed	step 32
passed with ISTb, and the system generated a card list	step 29
failed, and the system generated a card list	step 29

29 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 31
did not replace all the cards on the list	step 30

Record the location, description, slot number, PEC, and PEC suffix of the first card on the list that you did not replace.

Go to step 8.

- A disconnected or damaged fiber link can be present between the MS and the subtending node (ENET or PM shelf).
- To access the Chain level of the MAP display, type

>CHAIN head_card_number

and press the Enter key.

where

head card number

is the number of the head card in the affected chain

33 Determine if other system busy channelized links are present in the chain.

 $\textit{Note:}\$ An S under the link number identifies system busy channelized links .

If other system busy links	Do
are present	step 6
are not present	step 34

MS SBCL minor (end)

34 Determine if the SBCL minor alarm cleared.

f the alarm	Do
cleared	step 37
reduced in number (for example, the alarm changed from 02SBCL to 01SBCL)	step 2
changed to another alarm	step 35
did not clear	step 36

- 35 Perform the correct procedure to clear alarms in this document.
- 36 For additional help, contact the next level of support.
- 37 The procedure is complete.

MS SbFb major

Alarm display

Indication

At the MTC level of the MAP display, SbFb (preceded by a number) appear under the MS header of the alarm banner. The SbFb indicates an SbFb major alarm.

Meaning

The system busied a frame transport bus (F-bus).

The number under the MS header in the alarm banner indicates the number of F-buses affected.

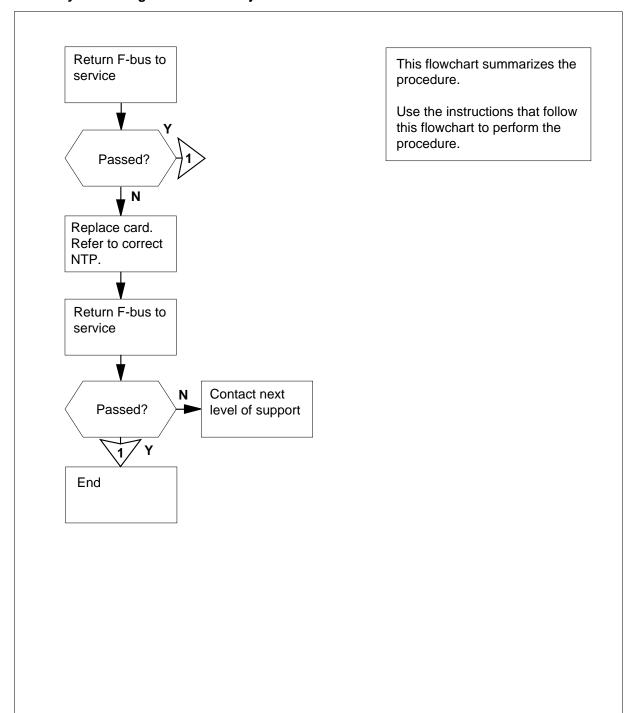
This alarm only applies to SuperNode SE. The F-bus interfaces to the message switch (MS) at SuperNode SE. The F-bus does not interface to the local message switch (LMS).

Result

The condition does not affect service if one F-bus of a pair of F-buses is system busy. All application-specific units that connect to the F-buses become isolated when both F-buses are system busy. Service for the CCS7 terminates when both F-buses are system busy.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS SbFb

major (continued)

Summary of clearing an MS SbFb major alarm

MS SbFb

major (continued)

Clearing an MS SbFb major alarm

At your current location

1 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

Message	Switch Clo	ock Shelf	0 Inter-M	IS Link	0	1
MS 0	•	M Free	e F			
MS 1	•	Slave				

Note: In the example, the F under the Shelf header indicates that you must proceed in the MAP order. To proceed, access the SHELF level.

2 Determine if an F appears under the Shelf header of the MAP display.

If an F	Do
appears	step 3
does not appear	step 13

3 To access the F-bus level of the MAP display, type

>SHELF; CARD 12

and press the Enter key.

Example of a MAP display:

Note: In the example, S under the F-Bus header indicates a system-busy F-bus. A dot (.) indicates an in-service F-bus. Under the F-bus tap numbers (0 to 23), C indicates the F-bus is system busy or manual busy. The letter C can also indicate that the controlling MS or MS port is system busy or manual busy. A dot (.) indicates an in-service tap.

Go to step 4.

4 Determine the MS that connects to the system-busy F-bus.

Note: In the MAP display example in step 3, the system busy F-bus connects to MS 0.

MS SbFb

major (continued)

5 To manually busy the system busy F-bus, type

> >BSY ms_number FBUS and press the Enter key

where

ms_number

is the number of the MS (0 or 1) that connects to the

system busy F-bus

6 To return the manual busy F-bus to service, type

> >RTS ms number FBUS and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that connects to the

manual-busy F-bus

If the RTS command	Do
passed	step 11
failed, and the system generates a card list	step 7

- 7 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- To change the card, perform the correct card replacement procedure in Card 8 Replacement Procedures. Complete the procedure and return to this point.
- 9 To return the manual busy F-bus to service, type

>RTS ms number FBUS and press the Enter key.

where:

ms number

is the number of the MS (0 or 1) that connects to the

manual busy F-bus

If the RTS command	Do
passed	step 11
failed, and you did not replace all the cards on the list	step 10

MS SbFb major (end)

If the RTS command	Do
failed, and you replaced all the cards on the list	step 13

Record the location, description, slot number, PEC, and PEC suffix of the next card on the list.

Go to step 8.

11 Determine if the SbFb major alarm cleared.

If the alarm	Do
cleared	step 14
reduced in number (for example, the alarm changed from 2SbFb to 1SbFb)	step 3
changed to another alarm	step 12
did not clear	step 13

- 12 Perform the correct procedure to clear an alarm in this document.
- For additional help, contact the next level of support.
- 14 The procedure is complete.

MS SBPT minor

Alarm display

Indication

At the MTC level of the MAP display, SBPT (preceded by a number) appears under the MS header of the alarm banner. The SBPT indicates an SBPT minor alarm.

Meaning

Faults detected by the system causes the system to remove card ports for the message switch (MS) interface from service. A link that has faults between the port and the subtending node can cause a system-busy port.

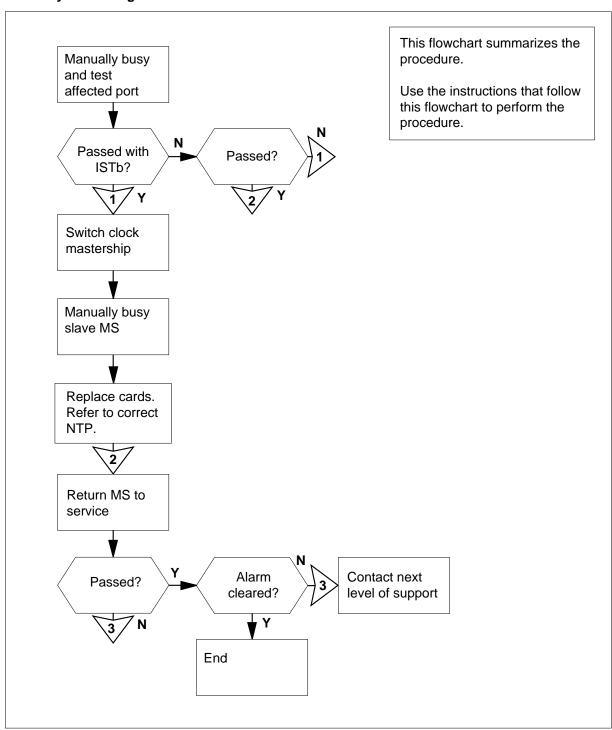
A minor alarm for the MS SBPT also appears when the MS detects a babbling device that persists. The MS anticipates and regulates the message within given limits and a number of occurrences. When the message flow reaches the OCCURRENCE limit, the MS SBPT minor alarm appears.

During the regulation period, MS307 logs for ports generate when babbling faults occur. The babbling faults are RAISED or CLEARED. If the port belongs to a chain card, the MS317 log generates.

Result

A subtending node linked to a system-busy port cannot communicate with the MS that contains the affected port card. An I/O controller is an example of a port. If the port that corresponds on the other MS is out of service, communication with the subtending node ends.

Common procedures


This procedure refers to Failure to switch clock mastership.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

minor (continued)

Summary of clearing an MS SBPT minor alarm

minor (continued)

Clearing an MS SBPT minor alarm

At the MAP terminal

To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

Message	Switch	Clock	Shelf	0	Inter-MS	Link	0	1
MS 0			M Free				R	
MS 1			Slave		F		S	

2 To access the Shelf level of the MAP display, type

>SHELF shelf_number

and press the Enter key

where

shelf number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

3 Record the numbers of the interface cards with system busy ports.

> Note: A port of a system busy interface card appears as an F under the Card number on the MAP display.

If the condition	Do
affects one card	step 5
affects more than one card	step 4

4 Select a card to work on.

> **Note:** If system busy ports are present on both MSs, work on the slave MS first. In the examples in steps 1 and 2, the card with a system busy port is on the master MS (MS 0).

5 To access the Card level of the MAP display, type

>CARD card_number

and press the Enter key

where

is the number of the card with the system busy port recorded in step 3 Example of a MAP display for SuperNode:

minor (continued)

Card 04 CMIC Interface Card Port: 0 1 MS 0 I . S MS 1 I . .

Example of a MAP display for SuperNode SE:

Card	09	Protocol	Port:	0-	 	-3
MS 0		DS30	4		S	
MS 1		DS30	4			

6 Select a system busy port to work on.

Note: An S under the port number indicates a system-busy port.

7 To manually busy the system busy port, type

```
>BSY ms_number PORT port_number and press the Enter key where
```

ms number

is the number of the MS (0 or 1) that contains the affected card

port number

is the number of the port (0 to 127)

Example of a MAP display:

```
Request to MAN BUSY MS:0 shelf:0 card:4 port:2 submitted. Request to MAN BUSY MS:0 shelf:0 card:4 port:2 passed.
```

Note: For a manually busied system busy port, the alarm changes from SBPT to MBPT.

8 To test the manual busy port, type

```
>TST ms_number PORT port_number and press the Enter key where
```

ms number

is the number of the MS (0 or 1) that contains the affected card

port_number

is the number of the manual busy port (0 to 127)

Example of a MAP display:

Request to TEST MS:0 shelf:0 card:4 port:2 submitted. Request to TEST MS:0 shelf:0 card:4 port:2 passed.

If the TST command	Do
passed	step 24

MS SBPT minor (continued)

If the TS	ST command	Do
-	with ISTb, and the sysnerated a card list	step 9
failed, a card l	and the system generated ist	step 9
is other	than listed here	step 30
		-
	ne location, description, slot in the first card	number, product engineering code I on the list.
(PEC), ar		on the list.
(PEC), ar	nd PEC suffix of the first card	on the list.
(PEC), ar To access >MS	nd PEC suffix of the first card	on the list.
(PEC), ar To access >MS and press	nd PEC suffix of the first cards the MS level of the MAP dis	on the list.

11 Determine the clocking configuration.

 $\textit{Note:}\$ The clocking configuration appears under the Clock header at the MS level of the MAP display.

If the MS that contains the card that you must replace	Do
is the slave MS, shown as Slave under the Clock header	step 15
is the master MS, shown as Master or M Free under the Clock header	step 12

12 To switch clock mastership, type

>SWMAST

and press the Enter key

Example of a MAP display:

minor (continued)

Request to Switch Clock Mastership MS: 0 submitted. Request to Switch Clock Mastership MS: 0 passed.

If the SWMAST command	Do
passed	step 14
failed	step 13

- Perform the procedure *Failure to switch clock mastership* in this document. Complete the procedure and return to this point.
- Wait 10 min to make sure MS has stability. Continue this procedure.
- Manually busy the MS that contains the card that you must replace. To manually busy the MS, type

>BSY ms_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that contains the card that you must replace

Example of a MAP display:

Request to MAN BUSY MS: 0 submitted. Request to MAN BUSY MS: 0 passed.

If the response	Do
is Request to MAN BUSY MS: 0 passed	step 16
is Request to MAN BUSY MS: 1 passed	step 16
is other than listed here	step 30

- Perform the correct card replacement procedure in *Card Replacement Procedures* in this document. Complete the procedure and return to this point.
- 17 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

minor (continued)

ms number

is the number of the manual busy MS (0 or 1)

If the TST command	Do
passed	step 21
passed with ISTb, and the system generated a card list	step 18
passed with ISTb, and you replaced all the cards on the list	step 30
failed, and the system generated a card list	step 19
is other than listed here	step 30

18 Record the location, description, slot number, PEC, and PEC suffix of the next card on the list.

Go to step 16.

19 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 30
did not replace all the cards on the list	step 20

Record the location, description, slot number, PEC, and PEC suffix of the first 20 card on the list that you did not replace.

Go to step 16.

21 To return the manual busy MS to service, type

>RTS ms_number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

Example of a MAP display:

minor (continued)

Request to RTS MS: 0 submitted. Request to RTS MS: 0 passed.

If the RTS command	Do
passed	step 22
failed	step 30

22 To access the Shelf level of the MAP display, type

>SHELF shelf_number

and press the Enter key.

where

shelf number

is the number of the shelf (0 to 3)

Note: For SuperNode SE, do not enter a shelf number.

To access the Card level of the MAP display for the affected card, type

>CARD card_number

and press the Enter key

where

card number

is the number of the affected card (5 to 10)

Example of a MAP display for Dms supernode:

Car	rd 04	: CMIC	Interface	CArd	Port:	0	1
MS	0		I				Μ
MS	1		I				

Example of a MAP display for Dms supernode superNode SE:

Car	rd	09	Protocol	Port:	0-	 	-3
MS	0		DS30	4		Μ	
MS	1		DS30	4			

24 To return the manual busy port to service, type

>RTS ms_number PORT port_number and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that contains the affected card

port_number

is the number of the manual busy port (0 to 127)

MS SBPT minor (end)

Example of a MAP display:

Request to RTS MS:0 shelf:0 card:4 port 2 submitted. Request to RTS MS:0 shelf:0 card:4 port 2 passed.

If the RTS command	Do
passed	step 25
failed	step 30

25 Determine if other system busy ports are present on the card.

> Note: The state of the port appears under the Port number of the MAP display. In the example in step 23, port 2 is system busy.

If other system busy ports	Do
are present	step 3
are not present	step 26

26 Determine if more cards are present on the list recorded at step 3.

If other cards	Do
are present	step 4
are not present	step 27

27 Determine if the SBPT minor alarm cleared.

If the alarm	Do
cleared	step 31
changed to another alarm	step 28
reduced in number (for example, the alarm changed from 02SBPT to 01SBPT)	step 2
did not clear	step 29

- 28 Perform the correct procedure in this document to clear an alarm.
- 29 A link that has faults is present between the port and the subtending node. Go to step 30.
- 30 For additional help, contact the next level of support.
- 31 The procedure is complete.

MS SbTp major

Alarm display

Indication

At the MTC level of the MAP display, SbTp (preceded by a number) appear under the MS header of the alarm banner. The SbTp indicates an SbTp major alarm.

Meaning

The system busied a tap on a frame transport bus (F-bus).

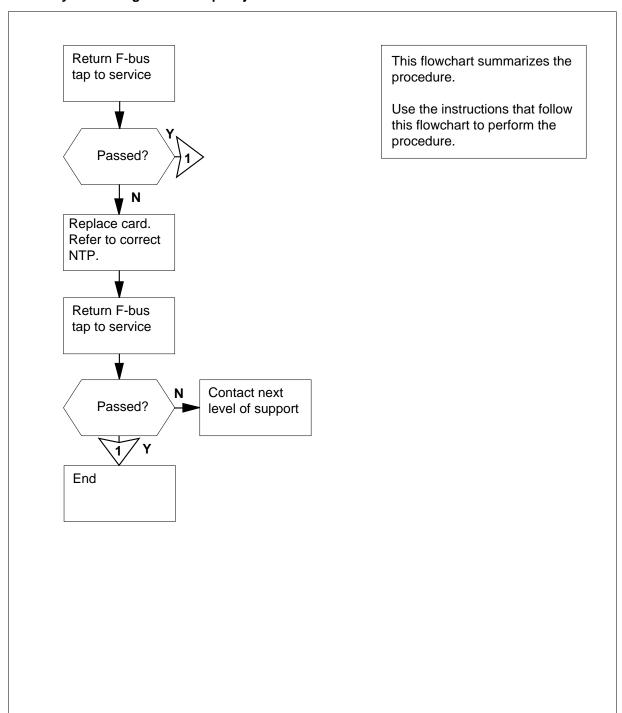
The number under the MS header in the alarm banner indicates the number of F-bus taps affected.

This alarm only applies to SuperNode SE. The F-bus interfaces directly to the message switch (MS) at SuperNode SE, not the local message switch (LMS).

Result

The SbTp alarm does not affect subscriber service unless two taps are out of service. The taps connect the application-specific unit (ASU) to a pair of F-buses. The affected ASU is isolated from the system and CCS7 performance can degrade.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

major (continued)

Summary of clearing an MS SbTp major alarm

major (continued)

Clearing an MS SbTp major alarm

At the MAP terminal

1 To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

Example of a MAP display:

	Mess	sage	Switch	Cloc	ck	Shelf	0	Inter-MS	Link	0	1
MS	0			M E	Free	F					
MS	1			Sla	ave						

Note: In the example, F under the Shelf header indicates that you must proceed in the MAP order. To proceed, access the SHELF level.

2 Determine if an F appears under the Shelf header of the MAP display.

If an F	Do
appears	step 3
does not appear	step 14

3 To access the F-bus level of the MAP display, type

>SHELF; CARD 12

and press the Enter key.

Example of a MAP display:

											1	1	1	1				
Car	rd	1	2	3	4	5	6	7	8	9	0	1	2	3				
Cha	ain	L																
MS	0							-					F					
MS	1							-										
Car	rd	12					I	₹Bι	ıs	Τá	ap	:	0		11	12	16	20
MS	0														S			
MS	1																	

Note: In the example, (.) under the F-Bus header indicates an in-service F-bus. Under the F-bus tap numbers (0 to 23), S indicates the tap of the F-bus is system busy. Under the F-bus tap numbers, (.) indicates an in-service tap.

Go to step 4.

4 Determine which MS controls the F-bus that contains the system busy tap.

Note: The MS 0 controls F-bus 0 and MS 1 controls F-bus 1. In the MAP example in step 3, tap 11 on F-bus 0 is system busy.

major (continued)

5 Determine the number of the system busy tap.

> Note: In the MAP display example in step 3, an S under the tap number indicates the system busy tap.

6 To manually busy the system busy tap of the F-bus, type

> >BSY ms_number TAP tap_number and press the Enter key. where

ms number

is the number of the MS (0 or 1) that connects to the

system busy tap

tap number

is the number of the system busy tap of the F-bus (0 to 23)

7 To return the manual busy tap of the F-bus to service, type

> >RTS ms number TAP tap_number and press the Enter key. where

ms number

is the number of the MS (0 or 1) that connects to the

manual busy tap

tap number

is the number of the manual busy tap of the F-bus (0 to 23)

If the RTS command	Do
passed	step 12
failed, and the system generated a card list	step 8

- 8 Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- 9 To change the card, perform the correct card replacement procedure in Card Replacement Procedures. Complete the procedure and return to this point.
- 10 To return the manual busy tap of the F-bus to service, type

>RTS ms_number TAP tap_number and press the Enter key. where

ms number

is the number of the MS (0 or 1) that connects to the

manual busy tap

major (end)

tap_number

is the number of the manual busy tap of the F-bus (0 to 23)

If the RTS command	Do
passed	step 12
failed, and you did not replace all the cards on the list	step 11
failed, and you replaced all the cards on the list	step 14

11 Record the location, description, slot number, PEC, and PEC suffix of the next card on the list.

Go to step 9.

12 Determine if the SbTp major alarm cleared.

If the alarm	Do
cleared	step 15
reduced in number (for example, the alarm changed from 2SbTp to 1SbTp)	step 3
changed to another alarm	step 3
did not clear	step 14

- To clear an alarm, perform the correct procedure in this document.
- 14 For additional help, contact the next level of support.
- 15 The procedure is complete.

MS SPAN minor

Alarm display

Indication

At the MTC level of the MAP display, SPAN appears under the MS header of the alarm banner. The SPAN indicates a SPAN minor alarm.

Meaning

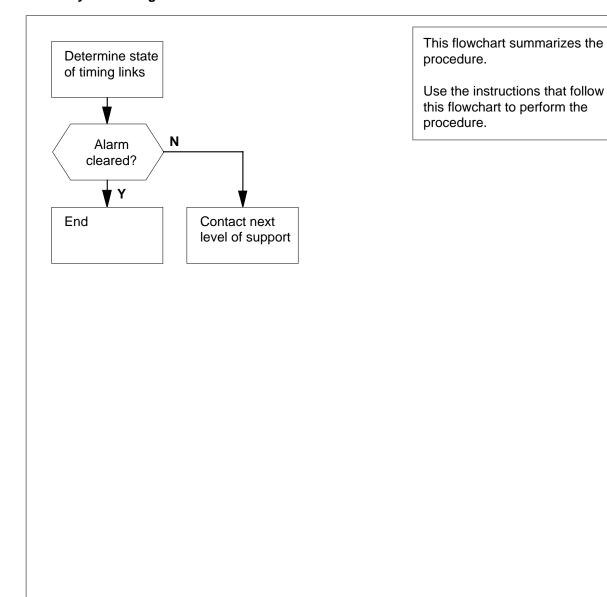
One of the two timing links does not sample, but that link is still in service.

Result

There is no effect on service. System clocking locks to the other link.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS SPAN

minor (continued)

Summary of clearing an MS SPAN minor alarm

MS SPAN

minor (continued)

Clearing an MS SPAN minor alarm

At the MAP terminal

To access the Clock level of the MAP display, type

>MAPCI;MTC;MS;CLOCK

and press the Enter key.

Example of a MAP display:

```
Card 02 Alm Stat %Adj Src | Car Stat Sp PM
                                            CCT
MS 0 . . Syn +00.7 Lk0 | Lk0 I 0 DTC 002 02
MS 1 . . Syn +01.3 Ms0 | Lk1 Smp 0 DTC 001 02
Links Slipping:
                  4 out of 10276
```

2 Determine the state of the timing links.

> Note: The state of the timing links appears under the Car Stat header of the MAP.

If the state of the links	Do
is I (idle)	step 3
is M (manual busy), S (system busy), or O (offline)	step 4
is other than listed here	step 7

3 Bad samples occur on one of the timing links. Wait 10 min. Determine if the SPAN alarm cleared.

If the alarm	Do
cleared	step 8
changed to the CLOCK major alarm	step 5
changed to another alarm	step 6
did not clear	step 4
turns ON and OFF at intervals (in minutes)	step 7

Determine if an alarm appears under the TRKS header on the alarm banner.

If an alarm	Do
appears	step 6

MS SPAN

minor (end)

If an alarm	Do
does not appear	step 7

- 5 Perform the procedure in this document *Clearing an MS CLOCK major alarm.*
- 6 Perform the correct procedure in this document to clear alarms.
- **7** For additional help, contact the next level of support.
- **8** The procedure is complete.

MS SysB major

Alarm display

Indication

At the MTC level of the MAP display, SysB appears under the MS header of the alarm banner. The SysB indicates a SysB major alarm.

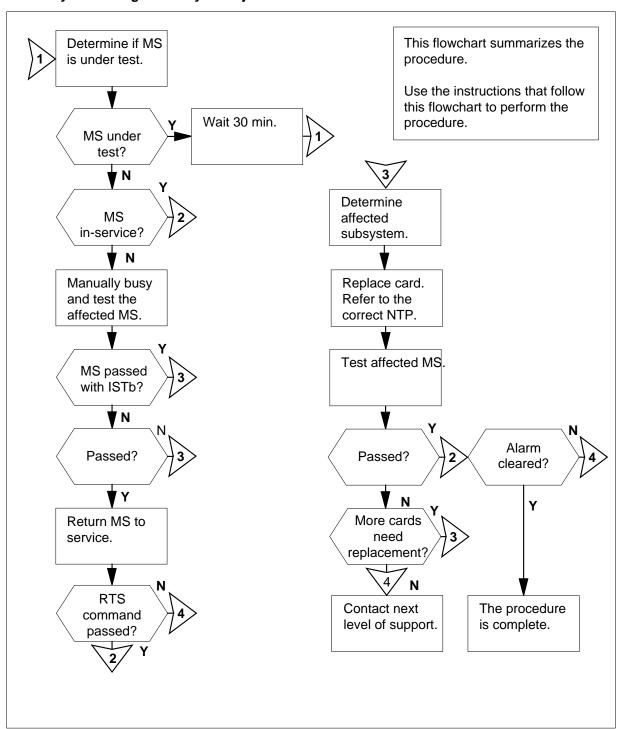
Meaning

The SysB is a major alarm. A fault detected by the system causes the system to automatically remove a message switch (MS) from service. The in-service MS that remains will carry the full message load.

Result

There is no immediate affect on service. If a failure occurs in the MS that remains, the result is the loss of all service.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

major (continued)

Summary of clearing an MS SysB major alarm

major (continued)

Clearing an MS SysB major alarm

At the MAP terminal

To access the MS level of the MAP display, type

>MAPCI;MTC;MS

and press the Enter key.

2 Determine if the MS, that indicates the SysB alarm, is under test or system

Example of a MAP display:

Note: The letter T under the Message Switch header means that the MS is under test. An S under the Message Switch header means that the MS is system busy.

If the state of the MS	Do
is under test (T)	step 3
is system busy (S)	step 4

3 Wait 30 min to determine if the MS recovers.

If the MS	Do
is in-service (.)	step 42
is T	step 44
is S	step 4

To manually busy the system busy MS, type

>BSY ms number

and press the Enter key.

where

ms number

is the number of the system busy MS (0 or 1)

If the response	Do
is Request to MAN BUSY MS:0 passed	step 5

major (continued)

If the response	Do
is Request to MAN BUSY MS:1 passed	step 5
is other than listed here	step 44

5 To test the manual busy MS through the mate, type

>TST ms_number VIAMATE

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to TEST VIA MATE MS:1 passed. No node faults were found on MS:1. No cards were found to be faulty on MS:1 Request to TEST VIA MATE MS:1 submitted.

If	Do
load problems are present	step 15
the test passes	step 27
the test passes with ISTb and the system generates a card list	step 6
the test fails, and the system generates a card list	step 6
is other than listed here	step 44

- Record the location, description, slot number, product engineering code (PEC), and PEC suffix of the first card on the list.
- 7 Determine the subsystem that contains the card that you must replace.

If the card	Do
is in the MS subsystem	step 8
is in the ENET subsystem	step 13
is in the JNET subsystem	step 13

8 Perform the correct procedure in *Card Replacement Procedures* in this document. Complete the procedure and return to this point.

major (continued)

9 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

ms_number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to TEST OOS MS: 0 passed. Request to TEST OOS MS: 0 submitted. No node faults were found on MS 0.

If the TST command	Do
passes	step 27
passes with ISTb and the system generates a card list	step 12
passes with ISTb and you replace all the cards on the list	step 44
fails, and the system generates a card list	step 10
is other than listed here	step 44

10 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 44
did not replace all the cards on the list	step 11

- 11 Record the location, description, slot number, PEC, and PEC suffix of the first card that you did not replace.
 - Go to step 7.
- 12 Record the location, PEC, and PEC suffix of the next card on the list. Go to step 7.
- 13 Perform the correct procedure in Card Replacement Procedures in this document. Complete the procedure and return to this point.
- 14 To access the MS level of the MAP display, type >MS

major (continued)

and press the Enter key.

Go to step 9.

To test the firmware of the manual busy MS, type

>TST ms_number FW

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

Example of MAP response:

Request to Test FIRMWARE MS: 1 submitted. Request to Test FIRMWARE MS: 1 passed. No node faults found on MS 1. No cards found to be faulty on MS:1

If the TST command	Do
passes	step 16
fails	step 44

16 To reload the latest MS image file, type

>LOADMS ms_number

and press the Enter key.

where

ms number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to Load MS:0 submitted. Request to Load MS:0 passed. Loading completed, entry point is #06045FCO

If the LOADMS command	Do
passes	step 17
fails	step 44

To test the manual busy MS through the mate to determine if load problems are present, type

>TST ms_number VIAMATE

and press the Enter key.

where

major (continued)

ms number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to TEST VIA MATE MS:1 submitted. Request to TEST VIA MATE MS:1 passed. No node faults were found on MS:1. No cards were found to be faulty on MS:1

If	Do
load problems are present	step 44
the test passes	step 27
the test passes with ISTb or fails, and the system generates a card list	step 18
is other than listed here	step 44

- 18 Record the location, description, slot number, PEC, and PEC suffix of the first card on the list.
- 19 Determine the subsystem that conains the card that you must replace.

If the card	Do
is in the MS subsystem	step 20
is in the ENET subsystem	step 25
is in the JNET subsystem	step 25

- 20 Perform the correct procedure in Card Replacement Procedures in this document. Complete the procedure and return to this point.
- 21 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

ms_number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

major (continued)

Request to TEST OOS MS:0 submitted. Request to TEST OOS MS:0 passed. No node faults were found on MS 0.

If the TST command	Do
passes	step 27
passes with ISTb and the system generates a card list	step 24
passes with ISTb and you replaced all cards on the list	step 44
fails, and the system generated a card list	step 22
is other than listed here	step 44

22 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 44
did not replace all the cards on the list	step 23

Record the location, description, slot number, PEC, and PEC suffix of the first listed card that you did not replace.

Go to step 19.

Record the location, description, slot number, PEC, and PEC suffix of the next card on the list.

Go to step 19.

- Perform the correct procedure in *Card Replacement Procedures* in this document. Complete the procedure and return to this point.
- 26 To access the MS level of the MAP display, type

>MS

and press the Enter key.

Go to step 21.

Use the out-of-band channel to return the manual busy MS to service. To return the manual busy MS to service, type

>RTS ms_number OOBAND

and press the Enter key.

major (continued)

where

ms_number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to RTS MS:0 submitted. Request to RTS MS:0 passed.

If the RTS command	Do
passes	step 28
fails	step 44

28 Determine if the SysB alarm cleared.

If the alarm	Do
cleared	step 45
changed to another alarm	step 43
did not clear	step 29

29 Determine which MS is system busy.

Example of a MAP display:

Message	Switch	Clock	Shelf	0	Inter-MS	Link	0	1
MS 0	S	Slave						
MS 1		Master					_	

Note: An S under the message switch header indicates the system busy

30 To manually busy the system busy MS, type

>BSY ms_number

and press the Enter key.

where

ms_number

is the number of the system busy MS (0 or 1)

If the response	Do
is Request to MAN BUSY MS:0 passed	step 31

major (continued)

If the response	Do
is Request to MAN BUSY MS:1 passed	step 31
is other than listed here	step 44

31

WARNING

Possible service degradation

A REx test can take a maximum of 30 min. Start REx tests during periods of low traffic to avoid service decline. Check with operating company personnel to make sure that a REx test can run at this time.

To run a routine exercise test on the manual busy MS, type

>TST ms_number REX

and press the Enter key.

where

ms_number

is the number of the manual busy MS (0 or 1)

If the REx test	Do
passes	step 41
passes with ISTb and entry or load problems are present	step 44
passes with ISTb and the system generates a card list	step 32
fails, and the system generates a card list	step 32
is other than listed here	step 44

32 Record the location, description, slot number, PEC, and PEC suffix of the first card on the list.

33 Determine the subsystem that contains the card that you must replace.

If the card	Do	
is in the MS subsystem	step 34	

MS SysB major (continued)

If the card	Do	
is in the ENET subsystem	step 39	
is in the JNET subsystem	step 39	

- 34 Perform the correct procedure in Card Replacement Procedures in this document. Complete the procedure and return to this point.
- 35 To perform an out-of-service test on the manual busy MS, type

>TST ms_number

and press the Enter key.

where

ms_number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to TEST OOS MS:0 submitted. Request to TEST OOS MS:0 passed. No node faults were found on MS 0.

If the TST command	Do
passed	step 41
passed with ISTb and the system generated a card list	step 38
passes with ISTb and you replaced all the cards on the list	step 44
passes with ISTb and the system generated a card list	step 36
is other than listed here	step 44

36 Determine if you replaced all the cards on the list.

If you	Do
replaced all the cards on the list	step 44
did not replace all the cards on the list	step 37

37 Record the location, description, slot number, PEC, and PEC suffix of the first listed card that you did not replace.

Go to step 33.

major (end)

38 Record the location, description, slot number, PEC, and PEC suffix of the next card on the list.

Go to step 33.

- 39 Perform the correct procedure in *Card Replacement Procedures* in this document. Complete the procedure and return to this point.
- 40 To access the MS level of the MAP display, type

>MS

and press the Enter key.

Go to step 35.

To return the manual busy MS to service use the out-of-band channel. To return the manual busy MS to service, type

>RTS ms number OOBAND

and press the Enter key.

where

ms_number

is the number of the manual busy MS (0 or 1)

Example of a MAP response:

Request to RTS MS:0 submitted.

If the RTS command	Do
passed	step 42
failed	step 44

42 Determine if the SysB major alarm cleared.

If the alarm	Do
cleared	step 45
changed to another alarm	step 43
did not clear	step 44

- To clear alarms, perform the correct procedure in this document
- 44 For additional help, contact the next level of support.
- **45** The procedure is complete.

MS TRIstb minor

Alarm display

Indication

At the MTC level of the MAP display, TRIstb appears under the MS header of the alarm banner. The TRIstb indicates a minor alarm for T-bus routing.

Meaning

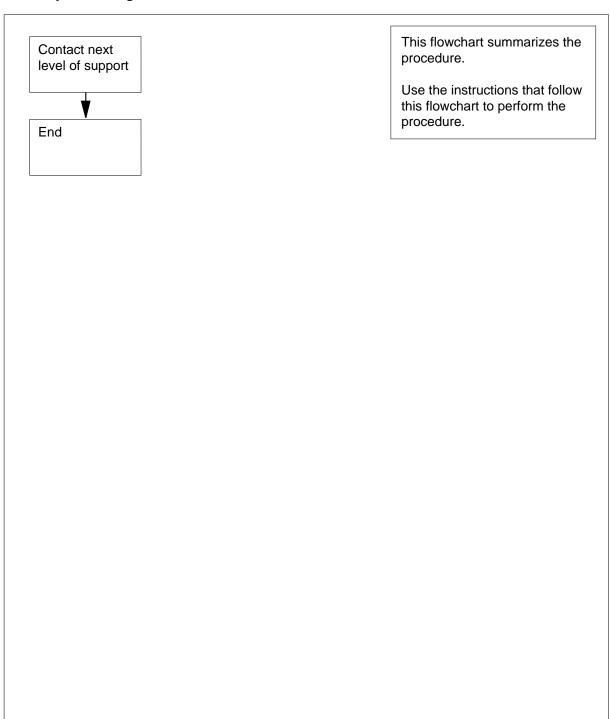
The thresholds are exceeded for mapper unable to map (MUMP).

Result

Loss of messages can occur.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS TRIstb

minor (continued)

Summary of clearing an MS TRIstb minor alarm

MS TRIstb minor (end)

How to clear an MS TRIstb minor alarm

At your current location

- Contact the next level of support. 1
- The procedure is complete. 2

MS TROOS major

Alarm display

Indication

At the MTC level of the MAP display, TROOS appears under the MS header of the alarm banner. The TROOS indicates a major alarm for T-bus routing.

Meaning

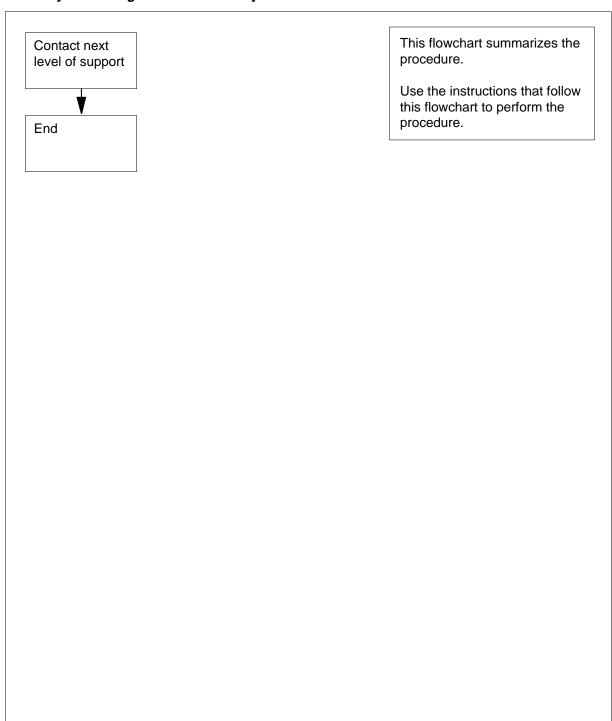
The thresholds are exceeded for mapper unable to map (MUMP).

Result

If the MS that remains is in-service, the affected MS is automatically out of service and a restart occurs. If the MS that remains is already out of service, the affected MS remains in service and loss of messages occurs.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

MS TROOS

major (continued)

Summary of clearing an MS TROOS major alarm

MS TROOS

major (end)

How to clear an MS TROOS major alarm

At your current location

- 1 Contact the next level of support.
- **2** The procedure is complete.

4 Network alarm clearing procedures

Introduction

This chapter provides alarm clearing procedures for the network. Network alarms appear under the Net header of the alarm banner in the MAP display. All procedures contain the following sections:

- Alarm display
- Indication
- Meaning
- Result
- Common procedures
- Action

Alarm display

This section indicates how the alarm appears at the MAP terminal.

Indication

This section indicates the location of the alarm indication, the design of the alarm, the affected subsystem and alarm intensity.

Meaning

This section indicates the cause of the alarm.

Result

This section describes the results of the alarm condition.

Common procedures

This section lists common procedures that you use during the alarm clearing procedure. A common procedure consists of a series of steps that repeat in maintenance procedures. An example of a common procedure is the removal and replacement of a card. Common procedures are in the common procedures chapter in this NTP.

Do not proceed to common procedures unless the step-action procedure directs you to go.

Action

This section provides a summary flowchart of the alarm clearing procedure. A detailed step-action procedure follows the flowchart.

Net Bsy minor

Alarm display

Indication

At the MTC level of the MAP display, Bsy (preceded by a number) appears under the Net subsystem status header of the alarm banner.

Meaning

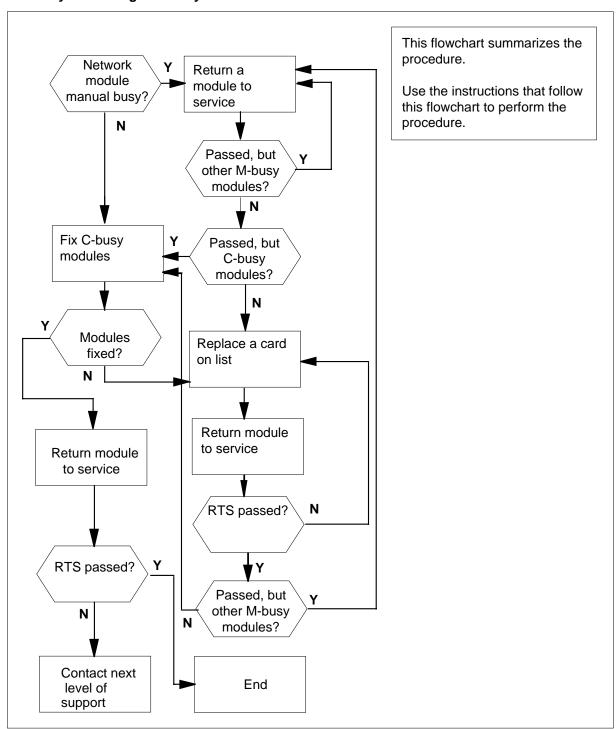
The specified number of network modules are in the manual busy or central-side busy state.

Result

The condition does not affect subscriber service.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net Bsy

minor (continued)

Summary of clearing a Net Bsy minor alarm

Net Bsy

minor (continued)

Clearing a Net Bsy minor alarm

At the MAP terminal

To access the Net level of the MAP display, type

>MAPCI; MTC; NET

and press the Enter key.

Example of a MAP display:

2 If necessary, to silence the alarm, type

>SIL

and press the Enter key.

3 From the MAP display, determine the status of the network modules.

If the status	Do
is manual busy (M)	step 4
is C-side busy (C)	step 12

- 4 When a minimum of one manual busy network module appears at the MAP display, record the number of each manual busy network module. Select one network module to work on.
- Determine from office records or operating company personnel why the 5 network modules in question are manual busy. When you have permission, continue the procedure.
- 6 To return the network module to service, type

```
>RTS plane_no pair_no
and press the Enter key.
where
```

plane_no

is the identification number of the network plane (0 or 1)

Net Bsy

minor (continued)

pair_no
 is the number of the network module (0 to 31)

If the RTS command	Do
passed, but you recorded other manual busy (M) network modules in step 4	step 5
passed, and no other manual busy (M) network modules are present, but network modules that are C-side busy (C) are present	step 12
passed, and other manual-busy (M) or C-side busy (C) network modules are not present	step 19
failed, and the system generated a card list	step 7
failed, and the system did not generate a card list	step 18

- 7 Record the locations, PECs, and PEC suffixes of the cards on the card list.
- **8** To replace the first card on the list,refer to *Card Replacement Procedures*. Return to this point.
- **9** To return the network module to service, type

>RTS plane_no pair_no and press the Enter key.

where

plane_no

is the identification number of the network plane (0 or 1)

pair_no

is the number of the network module (0 to 31)

If the RTS command	Do
passed, but you recorded other manual busy (M) network mod-	step 5
ules in step 4	

Net Bsy minor (continued)

	Time (dentinated)
If the RTS command	Do
passed, and other manual busy (M) network modules are not present, but network modules that are C-side busy (C) are present	step 12
passed, and other manual busy (M) or C-side busy (C) network modules are not present	step 19
failed, and you did not replace all cards that you recorded in step 7	step 10
failed, and you replaced all cards that you recorded in step 7	step 18
o replace the next card on the list, refe complete the procedure and return to	er to Card Replacement Procedures . this point.
Go to step 9.	·
When a minimum of one C-side busy display, perform the following procedulated feach C-side busy network module.	network module appears at the MAP res. Record the identification number Choose one network module to work
The fault is present on the C-side of the switch (MS) that connects to the netwo	
TRNSL plane_no pair_no	
and press the Enter key.	
where	
<pre>plane_no is the identification number of the control of the</pre>	ne network plane (0 or 1)

10

11 12

13

is the number of the network module (0 to 31)

- 14 Record the identification number of the MS that connects to the network module.
- To clear the fault, refer to the correct procedure in this document. Return to 15 this point.
- 16 To access the Net level of the MAP display, type

>MAPCI;MTC;NET

and press the Enter key.

Net Bsy minor (end)

17 Examine the status of the original C-side busy network module. A dot (.) in the status field indicates that the network module is in service.

If the network status	Do
is InSv(.)	step 19
remains C-side busy (C)	step 18

- **18** For additional help, contact the next level of support.
- 19 The procedure is complete.

Alarm display

Indication

At the MAP display, CBsy (preceded by a number) appears under the Net header of the alarm banner.

Meaning

A minimum of one ENET node is in a control-side busy (CBsy) state. The number that precedes CBsy indicates the number of ENET nodes that are control-side (C-side) busy.

A C-side busy ENET node is out of service as a result of a blocked messaging path to the DMS-bus. The messaging path from the ENET node to the DMS-bus consists of links. The links are from an ENET node to both message switches in the DMS-bus. If you or the system close the links, the node becomes C-side busy.

Note: The CBsy alarm always appears with an alarm under the MS header of the MAP.

Result

Any affected ENET nodes are separate from the rest of the system. The separate ENET nodes are out of service.

Common procedures

This procedure refers to Connecting a temporary fiber cable from an ENET to an MS.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

major (continued)

Summary of clearing a Net CBsy major alarm

Net CBsy major (continued)

Clearing a Net CBsy major alarm

At the MAP terminal

To access the Net level of the MAP display, type

>MAPCI; MTC; NET

and press the Enter key.

Example of a MAP display:

```
ENET
          System Matrix Shelf 0 1 2 3
         Fault .
Plane 0
Plane 1
```

2 Determine from the display the node that is control-side (C-side) busy. The letter C in the shelf status fields indicates a C-side busy node.

If a minimum of two nodes are C-side busy, select one node to work on.

3 To access the SYSTEM level of the MAP display, type

>SYSTEM

and press the Enter key.

Example of a MAP display:

SYSTEM		
Shelf	Plane 0	Plane 1
00	С	•
01	_	_
02	_	-
0.3	_	_

4 To display the message switch (MS) for the port card and ENET port information for the ENET node, type

```
>TRNSL plane_number shelf_number
```

and press the Enter key.

where

plane number

is the MS plane (0 or 1) that associates with C-side busy ENET plane

shelf number

is 0 for 16K ENET, 0 or 1 for 64K ENET, or 0 to 7 for 128K ENET

Example of a MAP response:

```
Request to TRNSL ENET Plane: 0 Shelf: 00 passed.
ENET Plane: 0 Shelf: 00 : MS 0 and 1 Card: 06 Link: 00
Port:00
```

major (continued)

5 To access the Card level for the MS card identified in step 4, type

>MS; SHELF; CARD card number

and press the Enter key.

where

card_number

is the number of the card (1 to 26) identified in step 4

Example of a MAP display:

Shelf 0		1 1 1 1	. 1 1 1 1 1	1 1 2 2 2	2 2 2 2
Card 1	2 3 4 5 6 7 8 9	0 1 2 3	8 4 5 6 7 8	8 9 0 1 2	3 4 5 6
Chain					
MS 0 .	S	- :			
MS 1 .					
Card 06	Protocol Port 0	3 4	7 8	11 12_	15
MS 0 S	DS512 64 S	P P P I	P P P P	P P P	P P P
MS 1 .	DS512 64 M	PPP E	PPPP	P P P	PPP

Note: The letters B or P can appear in the Port status field, according to the office standards of the operating company. The B or P indicates a backup port for the primary MS.

- **6** Check the Port status fields for the card identified in step 4. Possible states for each port are as follows:
 - manual busy (M)
 - system busy (S)
 - control-side busy (C)
- Based on the state of the ENET ports, select an MS to work on. The list of port states in step 6 indicates the priority for the selection of a message switch. When an ENET port is manual busy (M), work on the associated MS first. If both ports are manual busy, work on either message switch.
- **8** Determine the state of the ENET ports in the MS that you chose.

If the state of a minimum of one port	Do
is M	step 9
is S	step 16
is C	step 21

9 To access the Chain level of the MAP display, type

>CHAIN card_number

and press the Enter key.

where

major (continued)

card number

is the number of the card (1 to 26) identified in step 4

Example of a MAP display:

Chain 06 Range Link 0 1 MS 0 .06-06 DS512 м. MS 1 . 06-06 DS512

10 Check the Link status field of the MAP display.

If the field	Do
contains M	step 11
is other than listed here	step 12

11 To return the manual busy link to service, type

> >RTS ms_number LINK link_number and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that you selected in step 7

link number

is the number of the manual busy link (0 or 1) identified in step 10

If the RTS command	Do
passed	step 14
failed	step 32

12 To access the Card level of the MAP display, type

>CARD card_number

and press the Enter key.

where

card number

is the number of the card (1 to 26) identified in step 4

13 To return the port to service, type

> >RTS ms_number PORT port_number and press the Enter key. where

ms number

is the number of the MS (0 or 1) that you selected

major (continued)

port_number

is the number of the port (0 to 127)

If the RTS command	Do
passed	step 57
failed	step 45

14 To access the Card level of the MAP display, type

>CARD card_number

and press the Enter key.

where

card number

is the number of the card (1 to 26) identified in step 4

15 Determine the state of the ENET ports in the MS.

If the port state	Do
is in service (.)	step 57
is M	step 9
is S	step 16
is C	step 21

16 To access the Chain level of the MAP display, type

>CHAIN card_number

and press the Enter key.

where

card number

is the number of the card (1 to 26) identified in step 4

Example of a MAP display:

Chain 06 Range Link 0 1 MS 0 . 06-06 DS512 S . MS 1 . 06-06 DS512 . .

17 Check the Link status field of the MAP display.

If the link state	Do
is S (system busy)	step 18
is in service (.)	step 19

Net CBsy major (continued)

18 To return the system busy link to service, type >RTS ms_number LINK link_number and press the Enter key. where

ms_number

is the number of the MS (0 or 1) that you selected

link number

is the number of the system busy link (0 or 1) identified in step 17

If the RTS command	Do
passed	step 14
failed, and the system generated a card list	step 32
failed, and the system did not generate a card list	step 60

19 To access the Card level of the MAP display, type

>CARD card number

and press the Enter key.

where

card number

is the number of the card (1 to 26) identified in step 4

20 To return the port to service, type

> >RTS ms_number PORT port_number and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that you selected

port_number

is the number of the port (0 to 127)

If the RTS command	Do
passed	step 57
failed, and the system generated a card list generated	step 45
failed, and the system did not generate a card list	step 60

21 To access the MS level of the MAP display, type

>MS

and press the Enter key.

major (continued)

22 Check the MS status field of the MAP display. Determine the state of the MS that contains the C-side busy ENET port.

If the state of the MS	Do
is manually busy (M) or system busy (S)	step 23
is in service (.)	step 26

23 To return the MS to service, type

>RTS ms_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that you selected

If the RTS command	Do
passed	step 26
failed	step 24

- To return the message switch to service, use the correct alarm clearing procedure in this document. Complete the procedure and return to this point.
- 25 Go to step 14.
- 26 To access the Shelf level of the MAP display, type

>SHELF

and press the Enter key.

27 Check the status field for the chain that contains the C-side busy ENET port.

If the chain	Do
is manual busy (M) or system busy (S)	step 29
is offline (0)	step 28
is in service (.)	step 14

28 To manually busy the chain, type

>BSY ms_number card_number CHAIN

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that you selected

Net CBsy major (continued)

card number

is the number of the card (1 to 26) identified in step 4

29 To return the chain to service, type

> >RTS ms_number card_number CHAIN

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that you selected

card number

is the number of the card (1 to 26) identified in step 4

If the RTS command	Do
passed	step 14
failed	step 30

- 30 Use the correct alarm clearing procedure in this document to return the chain to service. Complete the procedure and return to this point.
- 31 Go to step 14.
- 32 The failure produced the card list. From the card list, prepare a list of all ENET cards in the order that the cards appear.
- 33 To replace the first card on the list, use the correct procedure Card Replacement Procedures. Complete the procedure and return to this point.
- 34 To access the SYSTEM level of the MAP display, type

>NET; SYSTEM

and press the Enter key.

35 To return the ENET node to service, type

>RTS plane_number shelf_number

and press the Enter key.

where

plane_number

is the MS plane (0 or 1) that associates with C-side busy ENET plane

is 0 for 16K ENET, 0 or 1 for 64K ENET, or 0 to 7 for 128K ENET

If the RTS command	Do
passed	step 37
failed, and the MAP response is Inappropriate ENCLASS in table ENIN	step 36

major (continued)

	If the RTS command	Do
	failed, and you did not replace all cards on the list recorded in step 32	step 33
	failed, and you replaced all cards on the list recorded in step 32	step 41
	The ENET class that you entered in field ENCLASS of table	ENINV is wrong.
	Note: For 16K ENET, enter ENCLASS as PRI16K. For 6 ENCLASS as PRI64K. For 128K ENET, enter ENCLASS	
	Go to step 60.	
•	To access the Card level of the MAP display, type	
	>MS;SHELF;CHAIN card_number	
	and press the Enter key.	
	where	
	card_number is the number of the card (1 to 26) identified in step 4	
	To return the link to service, type	
;	>RTS ms_number LINK link_number	
	and press the Enter key.	
	where	
	ms_number is the number of the MS (0 or 1) that you selected	
	<pre>link_number is the number of link (0 or 1)</pre>	
	If the RTS command	Do

If the RTS command	Do
passed	step 14
failed, and you did not replace all cards on the list recorded in step 32	step 33
failed, and you replaced all cards on the list recorded in step 32	step 41

- To replace the next card on the list, use the correct procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.
- **40** Go to step 34.
- You isolated the problem to the DS512 link. When this link has faults, Northern Telecom personnel must replace the fiber cable between the ENET and the message switch.

major (continued)

42 As a temporary measure, replace the fiber cable that has faults at the ENET node and the message switch with a spare cable. Perform this procedure to return the ENET to service.

Perform the procedure Connecting a temporary fiber cable from an ENET to an MS in this document. Complete the procedure and return to this point.

43 To access the Card level of the MAP display, type

>MS; SHELF; CHAIN card_number

and press the Enter key.

where

card number

is the number of the card (1 to 26) identified in step 4

44 To return the link to service, type

>RTS ms_number LINK link_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that you selected

link number

is the number of link (0 or 1)

If the RTS command	Do
passed	step 14
failed	step 60

- 45 Record the product engineering code (PEC) and location of all MS cards in the order that they appear on the card list.
- 46 To replace the first card on the list, use the correct procedure in the Card Replacement Procedures. Complete the procedure and return to this point.
- 47 To access the SYSTEM level of the MAP display, type

>NET; SYSTEM

and press the Enter key.

48 To return the ENET node to service, type

>RTS plane_number shelf_number

and press the Enter key.

where

plane number

is the MS plane (0 or 1) that associates with C-side busy

ENET plane

major (continued)

shelf number

is 0 for 16K ENET, 0 or 1 for 64K ENET, or 0 to 7

for 128K ENET

If the RTS command	Do
failed, with the following message: C-side links unavailable	step 49
failed for any other reason	step 52

49 To access the Card level of the MAP display, type

>MS; SHELF; CARD card_number

and press the Enter key.

where

card number

is the number of the card (1 to 26) identified in step 4

To return the ENET port to service, type

>RTS ms_number PORT port_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that you selected

port_number

is the number of the port (0 to 127)

If the RTS command	Do
passed	step 14
failed, and you did not replace all cards on the list recorded in step 45	step 51
failed, and you replaced all cards on the list recorded in step 45	step 53
To replace the next card on the list, use the correct procedure Replacement Procedures. Complete the procedure and retrieve	
Go to step 47.	
You isolated a problem on the DS512 link. When this link has Telecom personnel must replace the fiber cable between the message switch.	
As a temporary measure, replace the fiber cable that has fau node. Perform the procedure <i>Connecting a temporary fiber</i>	

51

52 53

54

Net CBsy major (end)

ENET to an MS in this document. Complete the procedure and return to this point.

55 To access the Card level of the MAP display, type

>MS; SHELF; CARD card_number

and press the Enter key.

where

card number

is the number of the card (1 to 26) identified in step 4

56 To return the port to service, type

>RTS ms_number PORT port_number

and press the Enter key.

where

ms number

is the number of the MS (0 or 1) that you selected

port number

is the number of the port (0 to 127)

If the RTS command	Do
passed	step 57
failed	step 60

57 Determine the alarm that appears under the Net header of the alarm banner.

If	Do
an alarm other than CSLk appears	step 58
a CSLk alarm appears	step 59

58 Wait to determine if the alarm cleared.

If the alarm	Do
cleared	step 61
did not clear	step 60

- 59 Perform the procedure *Clearing a Net CSLk minor alarm* in this document. Complete the procedure and return to this point.
- 60 For additional help, contact the next level of support.
- 61 The procedure is complete.

Net CdPr critical

Alarm display

Indication

At the MAP subsystem status display, CdPr (preceded by a number) appears under the Net header of the alarm banner.

Meaning

A minimum of one card pair is out of service in an ENET shelf. The number that precedes CdPr indicates the number of card pairs that are out of service.

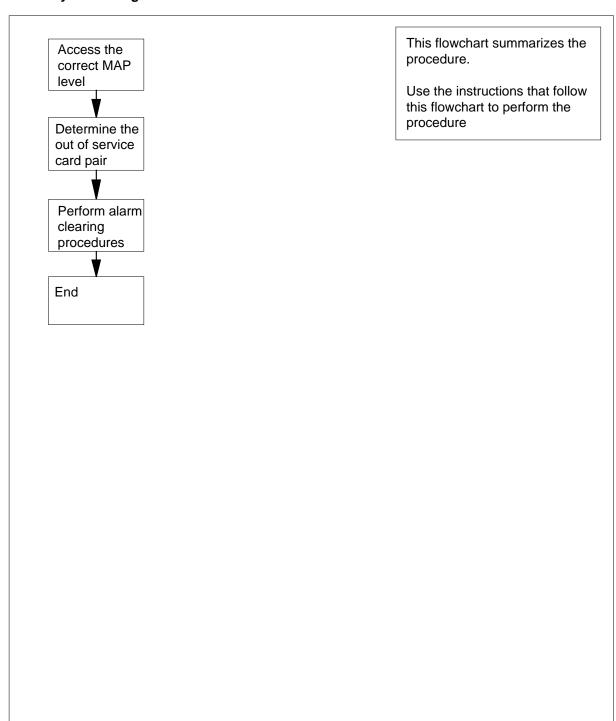
A card pair consists of a card and a second card. The second card is in the corresponding slot position on the other plane of an ENET shelf.

Result

The results that affect service include the following:

- Blockage of all calls that require the out-of-service card pair.
- Separation of any peripheral modules from the network. The peripheral modules connect to the out-of-service card.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net CdPr critical (continued)

Summary of clearing a Net CdPr critical alarm

Net CdPr

critical (continued)

Clearing a Net CdPr critical alarm

At the MAP terminal

1 To access the Net level of the MAP display, type

>MAPCI; MTC; NET

and press the Enter key.

2 Determine the shelf that contains the out-of-service card pair.

The Fault value in the Matrix status field for both planes indicates the shelf that contains the out-of-service card pair. The letter F in the Shelf status fields for both planes indicates the shelf that contains the out-of-service card pair.

Example of a MAP display:

16K, 64K and 128K ENET

```
ENET System Matrix Shelf 0 1 2 3 BLOCKED Plane 0 . Fault F . . . Plane 1 . Fault F . . .
```

3 To access the SHELF level of the MAP display for the shelf that contains the out-of-service card pair, type

```
>SHELF shelf_number
```

and press the Enter key.

where

shelf number

is 0 to 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET

Example of a MAP display:

32k, 64K, and 128K ENET

16K ENET

4 Isolate the out-of-service card pair. The letter S, M or F in both planes of a Slot status field indicates the out-of-service card pair. These letters indicate the following states:

Net CdPr critical (continued)

- S represents system busy
- M represents manual busy
- F indicates a fault status
- 5 If a letter indicates a minimum of two out-of-service card pairs, work on the cards that have Slot status fields. These fields contain an M or S in one plane. Work on the cards until the CdPr alarm disappears.

If the card slot field contains	Do
M	step 8
S	step 10
F	step 6

6 To access the CARD level of the MAP display for the slot that has an F status,

>CARD slot _number

and press the Enter key.

where

slot_number

is 1 to 38 for the 128K ENET and 64K ENET, 12 to 19 and 22

to 29 for the 16K ENET

Example of a MAP display:

64K and 128K ENET

CARD 12	Front:	Back:	DS-30 Links 111111
	Xpt	I/F	0123456789012345
Plane 0		M	CCCC
Plane 1		S	CCCC

16K ENET

CARD	Plane	Front:	Back:
		Xpt	I/F
16	0		M
26	1	•	S

If the Back status field contains	Do
M	step 8
S	step 10
. (in service)	step 7

Net CdPr critical (end)

- 7 This card pair does not cause the CdPr alarm. Return to step 3. Determine if another card pair with S, M, or F is present in both planes of the Slot status field
- 8 Perform the procedure *Clearing a Net MBCd minor alarm* in this document. Complete the procedure and return to this point.
- **9** Go to step 12.
- Perform the procedure *Clearing a Net SBCd major alarm* in this document. When the procedure is complete, return to this point.
- **11** Go to step 12.
- **12** Determine if the CdPr alarm cleared.

If CdPr	Do
appears under the Net header	step 1
does not appear under the Net header	step 13

13 The procedure is complete.

Net CSLk minor

Alarm display

Indication

At the MAP subsystem status display, CSLk (preceded by a number) appears under the Net header of the alarm banner.

Meaning

A control-side (C-side) (CSLk) link from an ENET node to a message switch (MS) is out of service. The number that precedes CSLk indicates the number of nodes with an out-of-service C-side link.

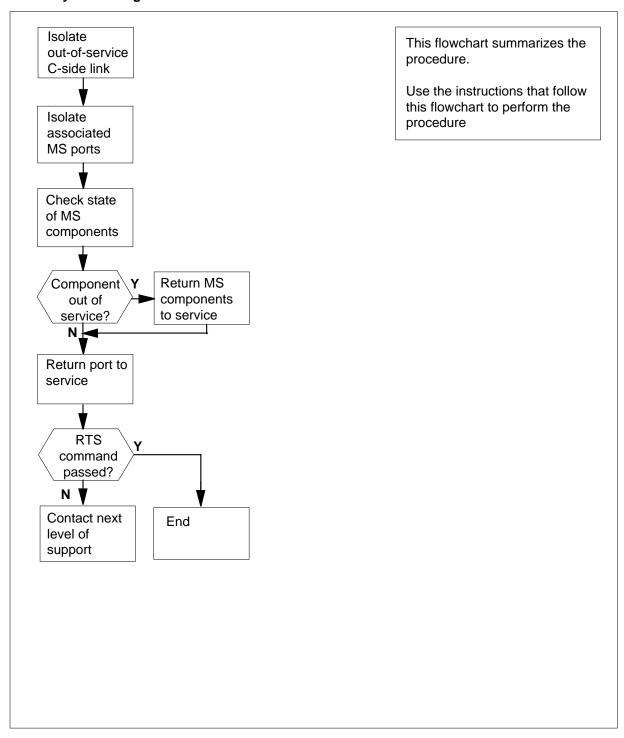
The MS subsystem can contain the fault condition that generates the CSLk alarm. The DS512 fiber link from the ENET node to the MS also can contain the fault condition.

Note: An associated message switch alarm always appears with the CSLk alarm.

Result

The CSLk alarm does not affect subscriber service.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

minor (continued)

Summary of clearing a Net CSIk minor alarm

minor (continued)

How to clear a Net CSLk minor alarm

At the MAP terminal

To access the SYSTEM level of the MAP display, type

```
>MAPCI; MTC; NET; SYSTEM
```

and press the Enter key.

Example of a MAP display:

```
SYSTEM
  Shelf
           Plane 0
                                 Plane 1
  0.0
                 CSLink 0 closed
```

- 2 Determine the node that has an out-of-service C-side link. The maintenance status CSLink n closed indicator appears on the right of the Plane status field.
- Determine the message switch that attaches to the out-of-service link. The number (n) in the maintenance status CSLink n closed indicates the out-of-service message switch.
- To identify the MS card and port numbers that associate with the ENET node, type

```
>TRNSL plane_number shelf_number
and press the Enter key.
where
   plane_number
     is 0 or 1
   shelf number
     is 0
```

Example of a MAP response:

```
Request to TRNSL ENET Plane: 1 Shelf:00 submitted.
Request to TRNSL ENET Plane: 1 Shelf:00 passed.
ENET Plane: 0 Shelf: 00 : MS 0 and 1 Card: 05 Link: 00
Port:00
```

- 5 Record the card and port numbers that you obtained in step 4.
- 6 To access the MS CARD level of the MAP display, type

```
>MS; SHELF; CARD card_number
```

and press the Enter key.

where

card number

is the slot number that you recorded in step 5.

Example of a MAP display:

minor (continued)

Note: The letters B or P can appear in the Port status field to indicate a backup port for the primary MS. The indication appears, according to the office standards of the operating company.

7 Check the Port status fields for the port that you recorded in step 5.

If the port status	Do
is M	step 8
is S	step 17
is C	step 30

8 To access the MS CHAIN level of the MAP display, type

>SHELF; CHAIN card_number

and press the Enter key.

where

card number

is the slot number that you recorded in step 5.

Example of a MAP display:

9 Check the link status field of the MAP display to determine the state of the link.

If the link	Do
is M (manual busy)	step 10
is other than listed here	step 11

10 To return the link to service, type

>RTS ms_number LINK link_number

and press the Enter key.

where

ms_number is 0 or 1.

minor (continued)

link number

is the link that displays M in step 9.

If the RTS command	Do
passed	step 14
failed	step 40

11 To access the MS CARD level of the MAP display, type

>SHELF; CARD card_number

and press the Enter key.

where

card number

is the slot number that you recorded in step 5.

12 To return the port to service, type

>RTS ms_number PORT port_number

and press the Enter key.

where

ms_number

is 0 or 1

port_number

is the value that you obtained in step 4.

If the RTS command	Do
passed	step 14
failed	step 13

- 13 Perform the procedure that clears an MBPt alarm in this document. Complete the procedure and return to this point.
- 14 To access the MS CARD level of the MAP display, type

>MAPCI;MTC;MS;SHELF;CARD card_number

and press the Enter key.

where

card number

is the slot number that you recorded in step 5.

Example of a MAP display:

Card	05	Protocol	Port	. ()		_3	4_			7	8_		1	.1	12		1	.5
MS 0		DS512	64	S	Ρ	Ρ	Ρ	P	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
MS 1		DS512	64																

minor (continued)

15 Check the status of the port. A dot (.) in the status field indicates that the port is in service.

If the port	Do
is in service (.)	step 41
is not in service	step 16

16 Continue this procedure according to the following steps.

If the port status	Do
is M	step 8
is S	step 17
is C	step 30

17 To access the MS CHAIN level of the MAP display, type

>SHELF; CHAIN card_number

and press the Enter key.

where

card_number

is the slot number that you recorded in step 5.

Example of a MAP display:

Chain 05 Range Link 0 1 MS 0
$$\cdot$$
 05-07 DS512 S . MS 1 \cdot 05-07 DS512 \cdot \cdot

Check the Link status field of the MAP display to determine the state of the link. A dot (.) in the status field indicates that the link is in service.

If the link	Do
is system busy (S)	step 19
is in service (.)	step 26

19 To return the link to service, type

>RTS ms_number LINK link_number and press the Enter key.

where

ms_number is 0 or 1.

minor (continued)

link number

is the link that displays S in step 18.

	If the RTS command	Do
	passed	step 14
	failed with a card list	step 20
	failed, and the system did not generate a card list	step 40
Record the product engineering codes (PECs) and location of all cards on the list.		
Note the first card that remains on the list recorded in step 20.		list recorded in step 20.
To replace MS cards, use the correct procedure in <i>Card Replacement Procedures</i> . Complete the procedure and return to this point.		
Cross the replaced card off the list that you recorded in step 20.		
To confirm that you are at the MS CHAIN level of the MAP display, type		
>MAPCI;MTC;MS;SHELF;CHAIN card_number		ard_number
	and press the Enter key.	

is the slot number that you recorded in step 5

25 To return the link to service, type

> >RTS ms_number LINK link_number and press the Enter key.

where

where

20

21 22

23 24

> ms_number is 0 or 1.

link number

is the link that displays S in step 18.

If the RTS command	Do
passed	step 14
failed, and cards remain on the list recorded in step 20	step 21
failed, and cards do not remain on the list recorded in step 20	step 40

26 To access the MS CARD level of the MAP display, type >SHELF; CARD card_number

minor (continued)

and press the Enter key.

where

card number

is the slot number recorded in step 5.

To return the port to service, type

>RTS ms_number PORT port_number

and press the Enter key.

where

ms_number

is 0 or 1.

port number

is the the value obtained in step 4.

If the RTS command	Do
passed	step 14
failed	step 28

- Perform the procedure that clears an SBPt alarm in this document. Complete the procedure and return to this point.
- 29 Go to step 14.
- 30 To access the MS level of the MAP display, type

>MS

and press the Enter key.

Check the MS status field of the MAP display. Determine the status of the MS with the C-side busy port. A dot (.) in the status field indicates that the MS is in service.

If the RTS command	Do
is manual busy (M) or system busy (S)	step 32
is in service (.)	step 34

32 To return the MS to service, type

>RTS ms_number

and press the Enter key.

where

Net CSLk minor (continued)

ms number is 0 or 1.

If the RTS command	Do
passed	step 34
failed	step 33

- 33 Use the correct procedure in this document. Complete the procedure and return to this point.
- 34 To access the MS SHELF level of the MAP display, type

>MAPCI;MTC;MS;SHELF

and press the Enter key.

35 Check the status field of the chain with the C-side busy port. A dot (.) in the status field indicates that the chain is in service.

If the chain status	Do
is manual busy (M) or system busy (S)	step 37
is offline (O)	step 36
is in service (.)	step 14

36 To busy the chain, type

> >BSY ms_number card_number CHAIN and press the Enter key.

where

ms number

is 0 or 1.

card number

is the slot number that you recorded in step 5.

37 To return the chain to service, type

> >RTS ms_number card_number CHAIN and press the Enter key.

where

ms_number

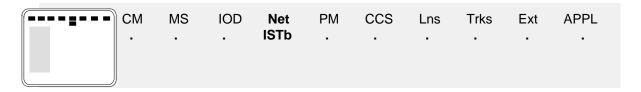
is 0 or 1.

card_number

is the slot number that you recorded in step 5.

Example of a MAP response:

Net CSLk minor (end)


Request to RTS MS:0 Shelf:0 Chain:05 submitted. Request to RTS MS:0 Shelf:0 Chain:05 passed.

If the RTS command	Do
passed	step 14
failed	step 38

- 38 Use the correct procedure in this document. Complete the procedure and return to this point.
- **39** Go to step 14.
- **40** For additional help, contact the next level of support.
- 41 The procedure is complete.

Net ISTb in ENET minor

Alarm display

Indication

At the MAP display, ISTb appears under the Net header of the alarm banner.

Meaning

A component in the ENET has trouble. The component remains in service.

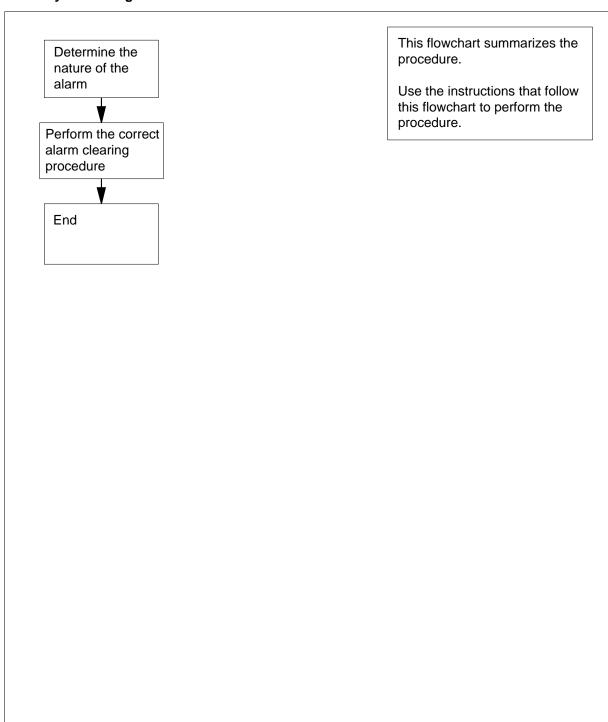
The ISTb alarm can appear in response to fault conditions on the ENET components as follows:

- system cards
- crosspoint cards
- links

Result

The ISTb alarm does not affect service.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net ISTb in ENET minor (continued)

Summary of clearing a Net ISTb in ENET minor alarm

Net ISTb in ENET minor (end)

Clearing a Net ISTb in ENET minor alarm

At the MAP terminal

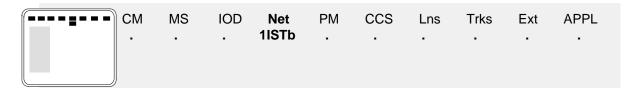
To access the Net level of the MAP display, type

>MAPCI; MTC; NET

and press the Enter key.

Example of a MAP display:

ENET Matrix Shelf 0 System Plane 0 F Istb . Plane 1 Istb Ι


2 Determine the type of the 1stb alarm.

If the	Do
System status field contains Istb, and a Shelf status field contains the letter I	step 3
Matrix status field contains Istb, and a Shelf status field contains the letter F	step 4
Matrix status field contains Istb, and a Shelf status field contains the letter L	step 5

- Refer to the procedure Clearing a Net ISTb alarm on a system card in this 3 document. Complete the procedure and return to this point.
 - Go to step 7.
- Refer to the procedure Clearing a Net ISTb alarm on a crosspoint card in this 4 document. Complete the procedure and return to this point.
 - Go to step 7.
- 5 Refer to the procedure Clearing a Net ISTb alarm on a link in this document. Complete the procedure and return to this point.
 - Go to step 7.
- For additional help, contact the next level of support. 6
- 7 The procedure is complete.

Net ISTb in JNET minor

Alarm display

Indication

ISTb, preceded by a number, under the Net subsystem status header of the MAP display indicates a network in-service trouble alarm.

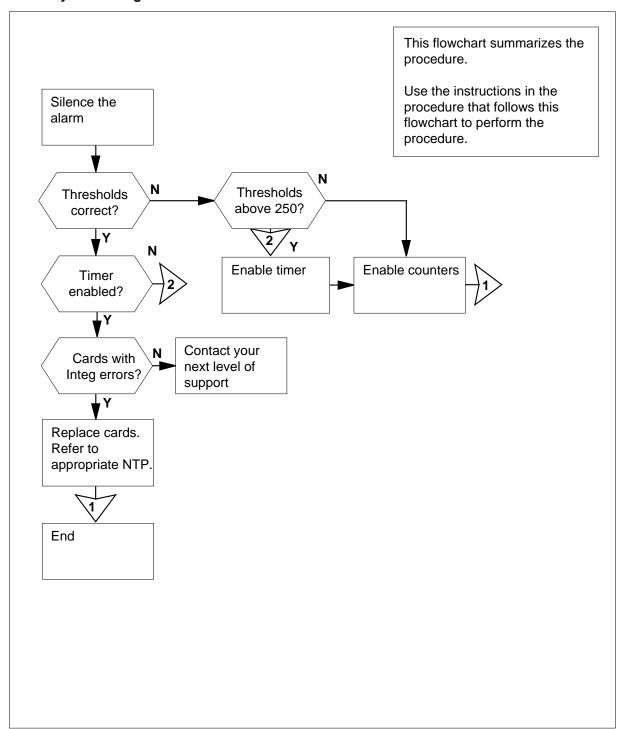
Meaning

The indicated number of network modules are in the in-service trouble state. A network module is set to the in-service trouble state when the integrity failure threshold or the parity failure threshold of the link, the junctor, or the crosspoint is reached.

Impact

This alarm does not affect subscriber service.

Common procedures


Not applicable

Action

The following flowchart is only a summary of the procedure. Use the instructions in the step-action procedure that follows the flowchart to clear the alarm.

Net ISTb in JNET minor (continued)

Summary of Clearing a Net ISTb in JNET minor alarm

Net ISTb

in JNET minor (continued)

Clearing a Net ISTb in JNET minor alarm

At the MAP terminal

1

CAUTION

Loss of service

Perform the following procedure only during periods of low traffic.

Access the Net level of the MAP display by typing

>MAPCI; MTC; NET

and pressing the Enter key.

Example of a MAP display:

Net 11111 11111 22222 22222 33 Plane 01234 56789 01234 56789 01234 56789 01 0....S 1.. JCTR:

2 If required, silence the alarm by typing

>SIL

and pressing the Enter key.

3 Access the INTEG level of the MAP display by typing

>INTEG

and pressing the Enter key.

Example of a MAP display:

Posted Net: None Timer: Enabled Mode: Inter Logbuff Contents: Net102
All Inter-pair faults will be pegged (Normal Mode)
Net102 Logs will be stored in the Logbuff
The automatic counter/logbuff timed clear is enabled INTEG:

4 View the current integrity failure and parity failure threshold values by typing

>HELP UPTH

and pressing the Enter key.

Example of a MAP display:

Net ISTb in JNET minor (continued)

```
Upth: Update threshold values, (0 = infinity)
Parms: <LINK_TH> {0 TO 999}
   <XPNT_TH> {0 TO 999}
    <JCTR_TH> {0 TO 999}
current thresholds : links = 250 jctrs = 250 xpnts = 250
```

- 5 Verify that the thresholds displayed at the MAP display are correct by referring to the values listed in office records. If no records of thresholds values exist, then assume the default value of 250 to be correct.
- 6 Depending on the threshold values, proceed according to the instructions in the following table.

If the threshold values are	Do
set correctly	step 8
below the correct threshold	step 7
above the correct threshold	step 8

7 Reset thresholds to the correct value by typing

>RSTI

and pressing the Enter key.

Go to step 23.

8 Verify that the timer is enabled by typing

>TIMER QUERY

and pressing the Enter key.

If timer is	Do	
enabled	step 12	
disabled	step 9	

- 9 Determine from office records or from other office personnel why the timer is disabled. Continue with this procedure only after you have been given permission to do so by the person who disabled the timer.
- 10 Enable the timer by typing

>TIMER ENABLE

and pressing the Enter key.

11 Enable the counters by typing

>RSTI

and pressing the Enter key.

Go to step 23.

Net ISTb

in JNET minor (continued)

- 12 Record the number of each in-service trouble network module and select one on which to work.
- Post the selected network module (NM) by typing

>POST plane_no pair_no

and pressing the Enter key.

where

plane_no

is the identification number of the network plane (0 or 1)

pair no

is the identification number of the network module (0 to 31)

14 Display the thresholds of the posted NM by typing

>DISP THRESH

and pressing the Enter key.

15 Display a list of parity errors by card type by typing

>ANALYZE COUNTS PARITY

and pressing the Enter key.

If there are	Do
cards with parity errors	step 16
no cards with parity errors	step 22

- Record the locations and PECs, including suffixes, of the cards identified as having parity errors.
- 17 Busy the network module containing the suspect cards by typing

>BSY plane_no pair_no

and pressing the Enter key.

where

plane no

is the identification number of the network module plane

pair_no

is the identification number of the network module pair

18

CAUTION

Integrity errors

To avoid producing a large number of integrity errors, wait 30 min before replacing cards in the busied network module.

Net ISTb in JNET minor (end)

See Card Replacement Procedures to replace the first card on the list, then return to this point.

19 Return the network module to service by typing

> >RTS plane_no pair_no and pressing the Enter key. where

> > plane_no

is the identification number of the network module plane

pair_no

20

21 22


23

is the identification number of the network module pair

	If the RTS command	Do
•	passed, but you recorded other in-service trouble network modules in step 12	step 13
	passed, and there are no other in-service trouble network modules	step 23
	failed, and you have not replaced all the cards recorded in step 16	step 20
	failed, and you have replaced all the cards listed in step 16	step 22
	See <i>Card Replacement Procedures</i> to return to this point.	replace the first card on the list, then
(Go to step 19.	
	For further assistance, contact the pers support.	sonnel responsible for the next level of
,	You have completed this procedure.	

Net ISTb on a crosspoint card minor

Alarm display

Indication

At the MAP display, ISTb appears under the Net header of the alarm banner.

At the NET level of the MAP display, ISTb appears in the Matrix status field. The letter F appears in a Shelf status field.

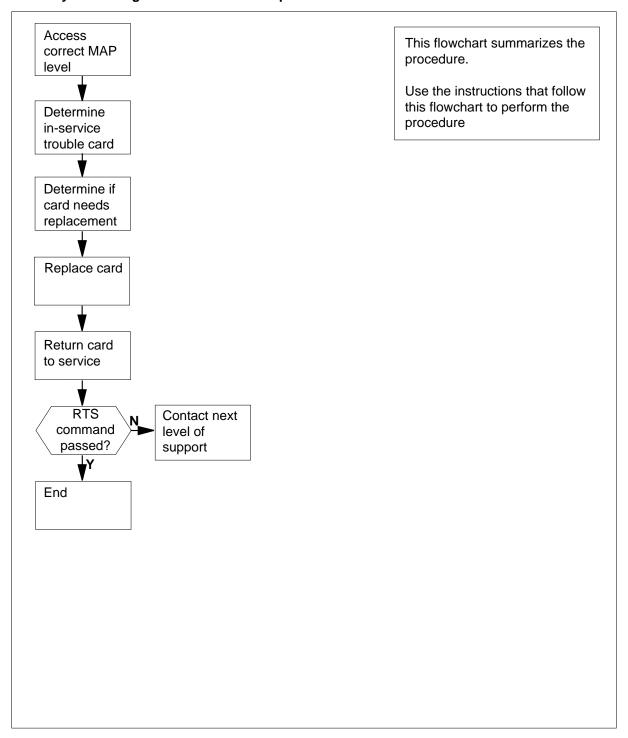
Meaning

A crosspoint card in the ENET has trouble. The crosspoint card remains in service.

Result

This alarm does not affect service.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net ISTb on a crosspoint card minor (continued)

Summary of clearing a Net ISTb on a crosspoint card minor alarm

Net ISTb on a crosspoint card

minor (continued)

Clearing a Net ISTb on a crosspoint card minor alarm

At the MAP terminal

1 To access the Net level of the MAP display, type

```
>MAPCI; MTC; NET
```

and press the Enter key.

Example of a MAP display:

- Determine the network node that contains a crosspoint card that has in-service trouble. The ISTb in the Matrix status field indicates the in-service trouble state. The letter F in a Shelf status field indicates the in-service trouble state.
- To access the SHELF level of the MAP display for the node that has in-service trouble, type

```
>SHELF shelf_number
```

and press the Enter key.

where

shelf number

is 0 or 1 for 64k ENET, 0 to 7 for 128k ENET, or 0 for 16k or 32k ENET Example of a MAP display:

```
SHELF 00 Power LIU ENET-Plane 0 ENET-Plane 1 LIU Power 11 11111111 22 22222222 333 333333 Slot 123456 789 01 23456789 01 23456789 012 345678
```

- 4 Determine and record the location of the crosspoint card that has in-service trouble. The letter I in a Slot status field indicates the crosspoint card that has in-service trouble.
- 5 To access the INTEG level of the MAP display, type

>NET; INTEG

and press the Enter key.

```
ENET System Matrix Shelf 0 1 2 3
Plane 0 . . . . . .
Plane 1 . Istb F . . .

AUDIT: ON Audit Time: 09:45 INTEGRITY Logs: ON
```

Net ISTb on a crosspoint card minor (continued)

6 To display integrity information for the crosspoint card that has in-service trouble, type

> >DISPLAY SLOT plane number shelf number slot number and press the Enter key.

where

plane number is 0 or 1

shelf number

is 0 or 1 for 64k ENET, 0 to 7 for 128k ENET, or 0 for 16k or

32k ENET

slot number

is 9 to 38 for 32k, 64k and 128K ENET, 12 to 19 and 22 to 29

for 16K ENET

Example of a MAP display:

PARITY + INTEGRITY SLOT SWTCH..INPUT OUTPUT V-BUS H-BUS SOFTFLT HARD TRAPPED TOTAL 0 0 0 0 0 0 0 1 0 1

7 Determine if the fields H-Bus, Softflt, Hard, and Trapped contain a value of 0 (zero).

If all fields	Do
contain a value of 0	step 8
do not contain a value of 0	step 9

8 Action is not necessary in response to this alarm. The daily integrity audit clears the alarm. When the integrity counters reach the specified threshold, the alarm also clears.

Go to step 15.

- 9 To replace the card, use the correct procedure in Card Replacement *Procedures.* Complete the procedure and return to this point.
- 10 To access the SHELF level of the MAP display, type

>MAPCI;MTC;NET;SHELF shelf_number

and press the Enter key.

where

shelf number

is 0 or 1 for 64k ENET, 0 to 7 for 128k ENET, or 0 for 16k or

Net ISTb on a crosspoint card minor (end)

32k ENET

11 To return the card to service, type

>RTS plane_number slot_number and press the Enter key.

where

plane_number is 0 or 1

slot number

is 9 to 38 for 32k, 64k and 128K ENET, 12 to 19 and 22 to 29 for 16K ENET

If the RTS command	Do
passed	step 12
failed	step 14

12 Determine if the Net ISTb alarm cleared.

If the Net ISTb alarm	Do
cleared	step 15
did not clear	step 13

- Perform the procedure *Clearing a Net ISTb minor alarm procedure* in this document. Complete the procedure and return to this point.
- 14 For additional help, contact the next level of support.
- 15 The procedure is complete.

Net ISTb on a link minor

Alarm display

Indication

At the MAP display, ISTb appears under the Net header of the alarm banner.

At the NET level of the MAP display, ISTb is in the Matrix status field. The letter L is in a Shelf status field.

Meaning

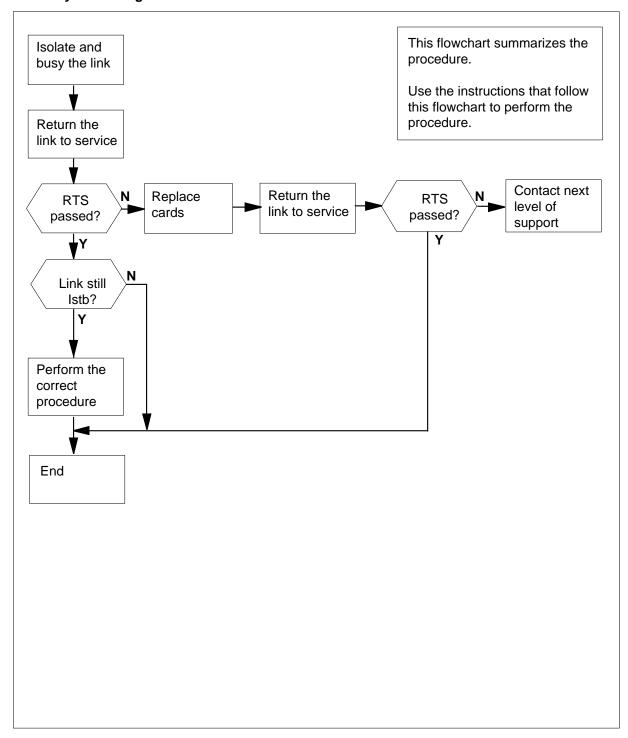
A peripheral-side (P-side) link component of the ENET has trouble. The P-side link component remains in service.

Result

This alarm does not affect service.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net ISTb on a link

minor (continued)

Summary of clearing a Net ISTb on a link minor alarm

Net ISTb on a link minor (continued)

Clearing an Net ISTb on a link minor alarm

At the MAP terminal

To access the Net level of the MAP display, type

>MAPCI; MTC; NET

and press the Enter key.

Example of a MAP display:

```
ENET
                                0 1 2 3
        System Matrix Shelf
Plane 0
                Istb
                                L . . .
Plane 1
```

- 2 Determine the node with a link component that has in-service trouble. The ISTb in the Matrix status field indicates in-service trouble. The letter L in a Shelf status field indicates in-service trouble.
- 3 To access the SHELF level of the MAP display for the node that has in-service trouble, type

```
>SHELF shelf_number
```

and press the Enter key.

where

shelf number

is 0 or 1 for 64k ENET, 0 to 7 for 128k ENET, or 0 for 16k or

32k ENET

Example of a MAP display:

```
LIU ENET-Plane 0 ENET-Plane 1 LIU Power
11 11111111 22 2222222 333 333333
789 01 23456789 01 23456789 012 345678
SHELF 00 Power
                                                                                            333333
Slot
               123456
                             789 01
                                                                                             345678
                                                                  ....F..
                                             . . . . . . . . . . .
```

- Identify the location of the link that has in-service trouble. The letter L in a Slot status field indicates in-service trouble.
- Access the CARD level of the MAP display for the slot that has the in-service 5 trouble link. To access the CARD level, type

```
>CARD slot_number
```

and press the Enter key.

where

slot_number

is 1 to 38

Example of a MAP display:

64K and 128K ENET

Net ISTb on a link

minor (continued)

- Isolate the link that has the in-service trouble. The letter I in the Links status field indicates the link that has in-service trouble.
- 7 To busy the link that has in-service trouble, type

```
>BSY plane_number LINK link_number and press the Enter key.

where
```

```
plane_number is 0 or 1
```

link number

is 0 to 15 for DS30 links, 0 to 3 or 16 to 18 for DS512 fiber links

MAP response:

```
Request to MAN BUSY ENET Plane:1 Shelf:00 Slot:11 Link:3 submitted.
Request to MAN BUSY ENET Plane:1 Shelf:00 Slot:11 Link:3 passed.
```

8 To return the link to service, type

```
>RTS plane_number LINK link_number and press the Enter key.

where
```

plane_number is 0 or 1

link number

is 0 to 15 for DS30 links, 0 to 3 or 16 to 18 for DS512 fiber links

MAP response:

Net ISTb on a link minor (continued)

Request to RTS ENET Plane:1 Shelf:00 Slot:11 Link:3 passed.

If the RTS command	Do
passed, and the link is not ISTb	step 21
passed, and the link remains ISTb	step 15
failed	step 9

- 9 Record the product engineering codes (PECs) and location of all cards on the list.
- 10 Note the first card that remains on the list that you recorded in step 9.
- 11 To replace the card, use the correct procedure in *Card Replacement Procedures.* Complete the procedure and return to this point.
- 12 Cross the replaced card off the list that you recorded in step 9.
- 13 To confirm the location at the CARD level of the MAP display, type >MAPCI;MTC;NET;SHELF shelf_number;CARD slot_number and press the Enter key.

where

shelf_number

is 0 or 1 for 64k ENET, 0 to 7 for 128k ENET, or 0 for 16k or 32k ENET

slot number

is 1 to 38

14 To return the link to service, type

>RTS plane_number LINK link_number

and press the Enter key.

where

plane_number

is 0 or 1

link number

is 0 to 15 for DS30 links, 0 to 3 or 16 to 18 for DS512 fiber links

MAP response:

Request to RTS ENET Plane:1 Shelf:00 Slot:11 Link:3 submitted.

If the RTS command	Do
passed	step 21

Net ISTb on a link

minor (continued)

	Do	
failed, and cards remain on the list recorded in step 9	step 11	
failed, and cards do not remain on the list recorded in step 9	step 15	
The RTS command runs the diagnostic procedures. The diagnostic procedures can not clear the alarm. The required action depends on the reason for the in-service trouble.		
Go to step 16.		
To determine the reason for the in-service trouble, type		
>QUERYEN plane_number LIN	K link_number ISTB	
and press the Enter key.		
where		
plane_no is 0 or 1		
link_no	3 or 16 to 18 for DS512 fiber links	

If the response received	Do	
is FAULT DETECTED ON SPEECH CHANNEL OF MESSAGE LINK	step 17	
is MESSAGE TEST FAILED ON PATH THROUGH MS n	step 18	
is BACKUP MESSAGE PATH THROUGH MS n HAD A FAULT	step 18	
is A DS30 EQUIVALENT ON FIBER IS Istb	step 18	
is A DS30 EQUIVALENT ON FIBER IS SysB	step 18	
is A DS30 EQUIVALENT ON FIBER IS CBsy	step 18	
The resources required to execute the RTS command were not present at the time of submission. Repeat step 14 until the RTS passes, or fails with a different message.		

17

Net ISTb on a link minor (end)

18 Check the MS header of the MAP display.

If an alarm	Do
appears under the MS header	step 19
does not appear under the MS header	step 23

- 19 Follow the correct alarm clearing procedure in this document. Complete the procedure and return to this point.
- 20 To confirm that you are at the CARD level of the MAP display, type >MAPCI;MTC;NET;SHELF shelf_number;CARD slot_number and press the Enter key.

where

shelf number

is 0 or 1 for 64k ENET, 0 to 7 for 128k ENET, or 0 for 16k or 32k ENET

slot number

is 1 to 38

Go to step 7.

21 Determine if the Net ISTb alarm cleared.

If the Net ISTb alarm	Do
cleared	step 24
did not clear	step 22

- 22 Perform the procedure Clearing a Net ISTb minor alarm in this document. Complete the procedure and return to this point.
- 23 For additional help, contact the next level of support.
- 24 The procedure is complete.

Net ISTb on a system card minor

Alarm display

Indication

At the MAP display, ISTb appears under the Net header of the alarm banner.

At the NET level of the MAP display, ISTb appears in the System status field. The letter I appears in a Shelf status field.

Meaning

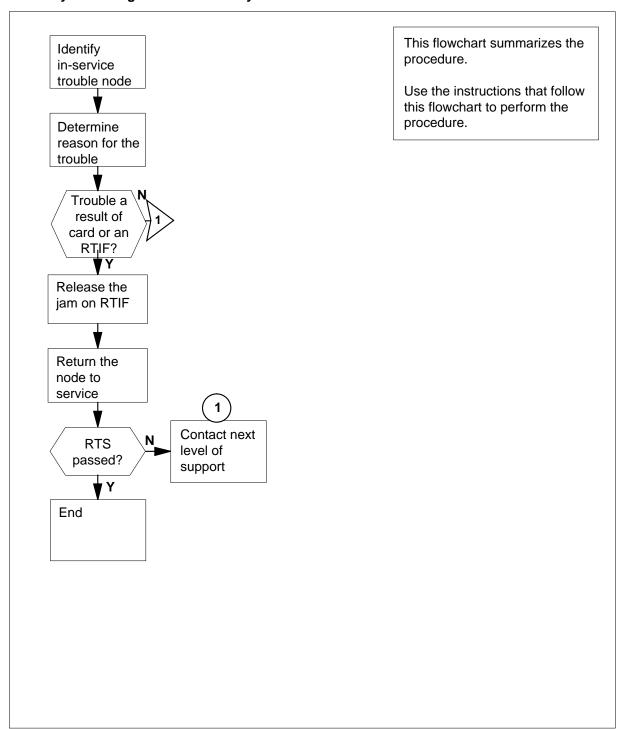
A minimum of one system card within an ENET node has trouble. The system card remains in service.

The ISTb system alarm occurs when an ENET system card fails the in-service audit tests. The system runs the test at 4-min intervals.

Result

This alarm does not affect service.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net ISTb on a system card minor (continued)

Summary ofclearing a Net ISTb on a system card minor alarm

Net ISTb on a system card

minor (continued)

Clearing a Net ISTb on a system card minor alarm

At the MAP terminal

1 To access the Net level of the MAP display, type

>MAPCI; MTC; NET

and press the Enter key.

Example of a MAP display:

- Determine the location of the node that has in-service trouble. The letter I in a Shelf status field of the display indicates the node that has in-service trouble.
- 3 To access the SYSTEM level of the MAP display, type

>SYSTEM

and press the Enter key.

4 To determine the reason for the in-service trouble on the node, type

```
>QUERYEN plane_number shelf_number ISTE and pressing the Enter key.
```

where

plane number

is the node with in-service trouble

shelf number

is 0 or 1 for 64k ENET, 0 to 7 for 128k ENET, or 0 for 16k or 32k ENET

5 The source of the alarm is the NT9X13 CPU card in the node.

Go to step 11.

- The entry for the CPU card that is in field CPPEC of table ENCDINV is wrong. Go to step 18.
- 7 The source of the alarm is the NT9X26 RTIF card in the node, or the RTIF terminal manually jammed.

At the RTIF terminal

8 Check the RTIF terminal. The top right-hand status field and the prompt \RELEASE JAM indicate a manually jammed RTIF terminal.

Example of an RTIF display

Net ISTb on a system card minor (continued)

\BOOT<> EN1 A1 Out-of-service Cpu ClkOK 9X26OK ManJam \RESTART<> \RELEASE JAM \HELP

If the RTIF terminal	Do
manually jammed	step 10
did not manually jam	step 9

9 The source of the alarm is the NT9X26 RTIF card in the node. Go to step 11.

At the RTIF terminal

10 To release the jam, type >\RELEASE JAM and press the Enter key. Go to step 13.

At the ENET shelf

11 To replace the card, use the correct procedure in *Card Replacement* Procedures. When the procedure is complete, return to this point.

At the MAP terminal

12 To confirm that you are at the SYSTEM level of the MAP display, type >MAPCI; MTC; NET; SYSTEM and press the Enter key.

13 To return the ENET node to service, type

> >RTS plane_number shelf_number and press the Enter key. where

plane number

is the node with in-service trouble

shelf_number

is 0 or 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET

Map response:

Net ISTb on a system card minor (end)

Request to RTS ENET Plane: 0 Shelf: 00 submitted. Request to RTS ENET Plane: 0 Shelf: 00 passed.

If the RTS command	Do
passed	step 15
failed, and the MAP response is Incorrect ENCLASS in table ENINV	step 14
failed for any other reason	step 18

14 The ENET class you entered in field ENCLASS of table ENINV was wrong.

Note: For 16K ENET, enter ENCLASS as PRI16K. For 64K ENET, enter ENCLASS as PRI64K. For 128K ENET, enter ENCLASS as PRI.

Go to step 18.

15 Determine if the Net ISTb alarm cleared.

If the Net ISTb alarm	Do
cleared	step 19
did not clear	step 16

- Perform the procedure *How to clear a Net ISTb minor alarm* in this document. Complete the procedure and return to this point.
- Wait 5 min to determine if the PSLk alarms cleared.

If the PSIk alarms	Do
cleared	step 19
did not clear	step 18

- 18 For additional help, contact the next level of support.
- 19 The procedure is complete.

Net JcTr minor

Alarm display

Indication

At the maintenance level of the MAP display, Jctr (preceded by a number) appears under the Net subsystem status header. The Jctr indicates a network junctor alarm.

Meaning

The following are the possible states of the indicated network junctors:

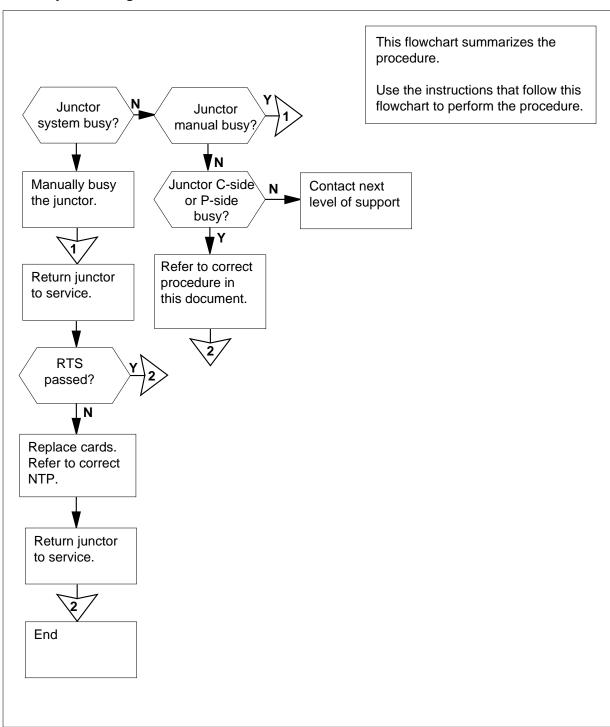
- system busy
- C-side busy
- manual busy
- P-side busy

Result

The Jctr alarm does not affect subscriber service.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net JcTr

minor (continued)

Summary of clearing a Net JcTr minor alarm

Net JcTr minor (continued)

Clearing a Net JcTr minor alarm

At the MAP terminal

To access the NET level of the MAP display, type

>MAPCI; MTC; NET

and press the Enter key.

2 If necessary, to silence the alarm, type

>SIL

and press the Enter key.

- 3 If a minimum of two network modules have a junctor alarm (status code J), choose one network module to work on.
- 4 To display the status of the junctors in the selected network module, type

>JCTRS pair_no

and press the Enter key.

where

pair_no

is the identification number of the network pair (0 to 31)

5 Examine the status codes of the junctors of the selected network module.

If the status code	Do
is system busy (S)	step 6
is C-side busy (C)	step 14
is manual busy (M)	step 19
is P-side busy (P)	step 29

- Record the number of each system busy junctor. When a minimum of two 6 system busy junctors appear at the MAP, choose one junctor to work on.
- 7 To manually busy the selected junctor display, type

```
>BSY plane_no
               junctor_no
```

and press the Enter key.

where

is the identification number of the network plane (0 or 1)

junctor no

is the identification number of the junctor (0 to 63)

8 To return the junctor to service, type

>RTS plane_no junctor_no

and press the Enter key.

Net JcTr minor (continued)

where

plane_no

is the identification number of the network plane (0 or 1)

is the identification number of the junctor (0 to 63)

If the RTS command	Do
passed, but you recorded other system busy junctors in step 6	step 6
passed, and other system busy junctors are not present	step 35
failed, and the system generated a card list	step 9
failed, and the system did not generate a card list	step 34
Record the locations, PECs, and PEC suffixes of the cards on the card list.	

- 9
- 10 To replace the first card on the card list, refer to Card Replacement Procedures. Return to this point.
- 11 To return the junctor to service, type

>RTS plane_no junctor_no and press the Enter key.

where

plane_no

is the identification number of the network plane (0 or 1)

junctor_no

is the identification number of the junctor (0 to 63)

If the RTS command	Do
passed, and other system busy junctors are not present	step 35
passed, but you recorded other system busy junctors in step 6	step 7
failed, and you did not replace all cards recorded in step 9	step 12
failed, and you replaced all cards recorded in step 9	step 34

Net JcTr

minor (continued)

- 12 See Card Replacement Procedures to replace the next card on the list. Complete the procedure and return to this point.
- 13 Go to step 11.
- Record the number of each C-side busy junctor. When a minimum of two 14 C-side busy junctors appear at the MAP display, choose one junctor to work
- 15 To determine the network module that connects to the C-side busy junctor, type

>TRNSLC

and press the Enter key.

- 16 Record the number of the network module that connects to the C-side busy junctor.
- 17 To clear the fault in the other network module, refer to the correct alarm clearing procedure in this document. Return to this point.
- To display the status of the original C-side busy junctor, type 18

>JCTRS pair_no

and press the Enter key.

where

pair no

is the identification number of the network pair (0 to 31)

If the junctor	Do	
is InSv (.), but you recorded other C-side busy junctors in step 14	step 15	
is InSv (.), and other C-side busy junctors are not present	step 35	
remains C-side busy (C)	step 34	

- 19 When more than one manual busy junctor appears at the MAP display, record the number of each manual busy junctor. Select one junctor to work on.
- Determine from office records or operating company personnel why the 20 network module is manual busy. When you have permission, continue the procedure.
- 21 To test the manual busy junctor, type

junctor_no >TST

and press the Enter key.

where

Net JcTr minor (continued)

junctor no

is the identification number of the manual busy junctor (0 to 63)

If the TST command	Do
passed	step 23
failed, and the system generated a card list	step 22
failed, and the system did not generate a card list	step 34

- 22 To replace the first card on the card list, refer to Card Replacement *Procedures*. Return to this point.
- 23 To return the junctor to service, type

>RTS plane_no junctor_no and press the Enter key.

where

plane_no

is the identification number of the network module plane (0 or1)

junctor_no

is the identification number of the junctor (0 to 63)

, , , , , , , , , , , , , , , , , , , ,		
If the RTS command	Do	
passed, but you recorded other manual busy junctors in step 19	step 20	
passed, but no other C-side busy junctors are not present	step 35	
failed, and the system generated a card list	step 24	
failed, and the system did not generate a card list	step 34	
Record the locations, PECs, and PEC	suffixes of the cards on the card list.	
To replace the first card on the card list	st, refer to Card Replacement	

- 24
- 25 *Procedures.* Complete the correct procedure and return to this point.
- 26 To return the junctor to service, type

>RTS plane_no junctor_no and press the Enter key. where

Net JcTr minor (continued)

plane_no

is the identification number of the network module plane (0 or1)

is the identification number of the junctor (0 to 63)

is the factual and the factor (c to co)		
If the	RTS command	Do
-	d, and other manual busy	step 35
-	d, but you recorded other al busy junctors in step 19	step 20
	, and you did not replace rds recorded in step 24	step 27
	, and you replaced all cards led in step 24	step 34
	ace the next card on the list, rete the procedure and return to	fer to Card Replacement Procedures. this point.
Go to st	tep 26.	
When n P-side l	nore than one P side busy junct ousy junctor. Select one juncto	or appears, record the number of each or to work on.
To dete type	rmine the network module that	connects to the P-side busy junctor,
>TRNSI	L P	
and pre	ss the Enter key.	
Record junctor.	the number of the network mo	dule that connects to the P-side busy
To clear in this n	the fault in the other network nanual . Return to this point.	module, refer to the correct procedure
To displ	ay the status of the original P-	side busy junctor, type
>JCTR	s pair_no	
and pre	ss the Enter key.	
where		
pai	r_no	

is the identification number of the network pair (0 to 31)

If the junctor	Do
is InSv, but you recorded other P-side busy junctors in step 29	step 30

Net JcTr minor (end)

If the junctor	Do
is InSv, and no other P-side busy junctors are not present	step 35
remains P-side busy	step 34

34 For additional help, contact the next level of support.

35 The procedure is complete.

Net Link minor

Alarm display

Indication

At the MAP display, Link (preceded by a number) appears under the Net subsystem status header of the alarm banner. The Link indicates a network links alarm.

Meaning

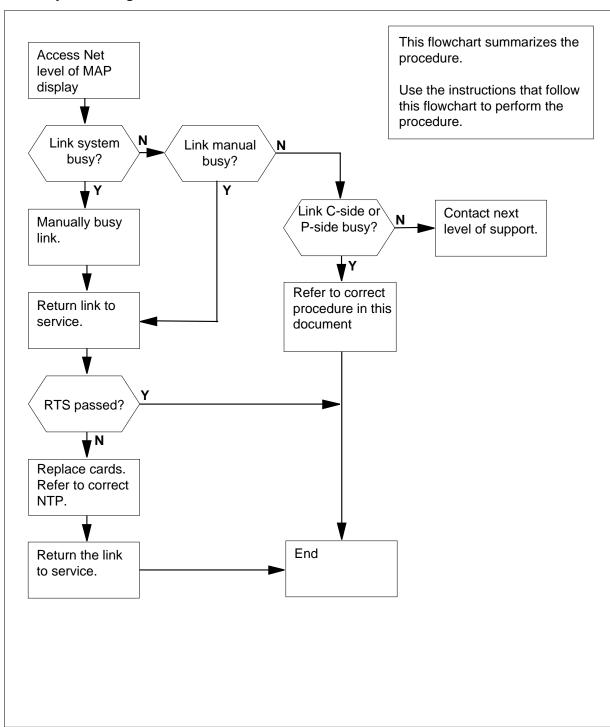
The indicated network modules have links that are in one of the following states:

- system busy
- C-side busy
- manual busy
- P-side busy

Result

This alarm does not affect subscriber service.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

minor (continued)

Summary of clearing a Net Link minor alarm

Net Link minor (continued)

Clearing a Net Link minor alarm

At the MAP terminal

To access the Net level of the MAP display, type

>MAPCI; MTC; NET

and press the Enter key.

2 If necessary, to silence the alarm, type

>SIL

and press the Enter key.

- 3 If a minimum of two network modules have the status code L, select one network module to work on.
- 4 To display the status of the links of the selected network module, type

>LINKS pair_no

and press the Enter key.

where

pair_no

is the identification number of the network module pair (0 to 31)

5 Examine the status codes in the links status display. Proceed according to the following table.

If the links	Do
are system busy (S)	step 6
are C-side busy (C)	step 38
are manual busy (M)	step 23
are P-side busy (P)	step 43

- 6 When a minimum of two system busy links appear at the MAP display, record the number of each system busy link. Choose one link to work on.
- 7 To test the selected link, type

>TST plane_no link_no

and press the Enter key.

where

plane no

is the identification number of the network module plane (0 or 1)

minor (continued)

link_no
 is the identification number of the link (0 to 63)

If the TS	ST command	Do
passed		step 8
failed a	nd the system generated	step 12
	and the system did not e a card list	step 48
Determine	e if the system returned the I	ink to service.
If the sy	stem	Do
returned	the link to service	step 9
did not	return the link to service	step 10
Determine	e if you recorded other syste	m-busy links in step 6.
If you		Do
recorde	d other system busy links	step 6
did not	record other system busy	step 49
To busy th	ne link that is system busy, ty	/pe
>BSY p	lane_no link_no	
and press	the Enter key.	
where		
plane is t	_ no he identification number of tl	ne plane (0 or 1)
link_ı is t	no he identification number of tl	ne link (0 to 63)
To return	the link to service, type	
>RTS p	lane_no link_no	
and press the Enter key.		
where		
plane is t	no he identification number of tl	ne network plane (0 or 1)

Net Link minor (continued)

link no is the identification number of the link (0 to 63)

If the RTS command	Do
passed, but you recorded other system busy links in step 6	step 7
passed and other system busy links are not present	step 49
failed and the system generated a card list	step 12
failed and the system did not generate a card list	step 48
Record the locations, PECs, and PEC	suffixes of the cards on the card list.
To access the Net level of the MAP dis	splay, type
>NET	
and press the Enter key.	
To busy the network module that conta	ains the cards that have faults, type
>BSY plane_no pair_no	
and press the Enter key.	
where	

is the identification number of the network plane (0 or 1)

pair no

is the identification number of the network pair (0 to 31)

15

12 13

14

WARNING Integrity errors

Do not produce a large number of integrity errors. Wait 30 min before you replace cards in the busied network module.

To replace the first card on the card list, refer to Card Replacement *Procedures*. Return to this point.

16 To return the network module to service, type

> >RTS plane_no pair_no and press the Enter key.

minor (continued)

```
where
           plane_no
              is the identification number of the network plane (0 or 1)
              is the identification number of the network pair (0 to 31)
17
        To access the LINK level of the MAP display, type
        >LINKS pair_no
        and press the Enter key.
        where
              is the identification number of the network module pair (0 to 31)
18
        To return the link to service, type
        >RTS plane_no link_no
        and press the Enter key.
        where
           plane_no
              is the identification number of the network plane (0 or 1)
              is the identification number of the link (0 to 63)
```

•	If the RTS command	Do
•	passed, but you recorded other system busy links in step 6	step 7
	passed, and other system busy links are not present	step 49
	failed, and you did not replace all cards that you recorded in step 12	step 19
	failed, and you replaced all cards that you recorded in step 12	step 48
	To access the Net level of the MAP dis	splay, type
,	>NET	
;	and press the Enter key.	
	To busy the network module that conta	ains the cards that have faults, type
	>BSY plane_no pair_no	
;	and press the Enter key.	
	where	

19

20

minor (continued)

plane no

is the identification number of the network plane (0 or 1)

is the identification number of the network pair (0 to 31)

- 21 To replace the next card on the card list, refer to Card Replacement *Procedures.* Complete the procedure and return to this point.
- 22 Go to step 16
- When a minimum of two manual busy links appear at the MAP display, record 23 the number of each manual busy link. Choose one link to work on.
- 24 Determine from office records or operating company personnel why the link is manual busy. When the person that disables the timer gives you permission, continue this procedure.
- 25 To test the manual busy link, type

>TST plane_no link_no

and press the Enter key.

where

plane no

is the identification number of the network plane (0 or 1)

link no

is the identification number of the manual busy link (0 to 63)

If the TST command	Do
passed	step 26
failed, and the system generated a card list	step 27
failed, and the system did not generate a card list	step 48

26 To return the link to service, type

>RTS plane_no link_no

and press the Enter key.

where

plane no

is the identification number of the network plane (0 or 1)

is the identification number of the network pair (0 to 31)

If the RTS command	Do
passed, but you recorded other manual busy links in step 23	step 24

minor (continued)

	If the RTS command	Do
	passed, and other manual busy links are not present	step 49
	failed, and the system generated a card list	step 27
	failed and the system did not generate a card list	step 48
27	Record the locations, PECs, and PEC	suffixes of the cards on the card list.
28	To access the Net level of the MAP display, type	
	>NET	1 3/ 31
	and press the Enter key.	
29	To busy the network module that conta	ains the cards that have faults, type
	>BSY plane_no pair_no	
	and press the Enter key.	
	where	
	<pre>plane_no is the identification number of the identification number</pre>	ne network plane (0 or 1)
	<pre>pair_no is the identification number of the identification number</pre>	ne network pair (0 to 31)
30	To replace the first card on the card list <i>Procedures</i> . Return to this point.	t, refer to Card Replacement
31	To return the network module to service	ce, type
	>RTS plane_no pair_no	
	and press the Enter key.	
	where	
	<pre>plane_no is the identification number of the identification number</pre>	ne network plane (0 or 1)
	<pre>pair_no is the identification number of the identification number o</pre>	ne network pair (0 to 31)
32	To access the LINK level of the MAP of	lisplay, type
	>LINKS pair_no	
	and press the Enter key.	
	where	
	<pre>pair_no is the identification number of the identification number o</pre>	ne network module pair (0 to 31)

Net Link minor (continued)

```
33
       To return the link to service, type
       >RTS plane_no link_no
       and press the Enter key.
       where
           plane_no
```

is the identification number of the network plane (0 or 1)

is the identification number of the network pair (0 to 31)

If the RTS command	Do
passed, but you recorded other manual busy links in step 23	step 24
passed, and other manual busy links are not present	step 49
failed, and you did not replace all the cards that you recorded in step 27	step 34
failed, and you replaced all the cards that you recorded in step 27	step 48

34 To access the Net level of the MAP display, type

>NET

and press the Enter key.

35 To busy the network module that contains the cards that have faults, type

```
>BSY plane_no pair_no
```

and press the Enter key.

where

is the identification number of the network plane (0 or 1)

pair no

is the identification number of the network pair (0 to 31)

- 36 To replace the next card on the card list, refer to Card Replacement *Procedures.* Complete the procedure and return to this point.
- 37 Go to step 33.
- 38 Record the number of each C-side busy link. When a minimum of two C-side busy links appear at the MAP terminal, select a link to work on.

minor (continued)

39 Determine the message switch (MS) that connects to the network module with the C-side busy link, type

>NET; TRNSL plane_no pair_no

and press the Enter key.

where

plane no

is the identification number of the network plane (0 or 1)

pair no

is the identification number of the network pair (0 to 31)

- Record the number of the message switch (MS) that connects to the network module.
- To clear the fault, refer to the correct procedure in this document. Complete the procedure and return to this point.
- To display the status of the original C-side busy link, type

>LINKS pair_no

and press the Enter key.

where

pair no

is the identification number of the network module pair (0 to 31)

If the link	Do
is InSv (.) but you recorded other C-side busy links in step 14	step 39
is InSv (.) and other C-side busy links are not present	step 49
remains C-side busy (C)	step 48

- When a minimum of 2 P-side busy links appear, record the number of each P-side busy link. Select one link to work on.
- To determine the peripheral module that connects to the P-side busy link, type

>TRNSL P

and press the Enter key.

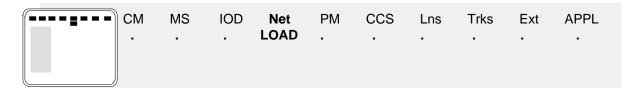
- Record the number and type of the peripheral module that connects to the P-side busy link.
- To clears the PM fault, refer to the correct procedure in this document. Complete the procedure and return to this point.
- To display the status of the original P-side busy link, type

>LINKS pair_no

and press the Enter key.

Net Link minor (end)

where


pair_no is the identification number of the network pair (0 to 31)

If the link	Do
is in service, but you recorded other P-side busy links in step 43	step 44
is in service, and other P-side busy links exist are not present	step 49
remains P-side busy	step 48

- 48 For additional help, contact the next level of support.
- 49 The procedure is complete.

Net LOAD minor

Alarm display

Indication

At the MAP display, LOAD appears under the Net header of the alarm banner.

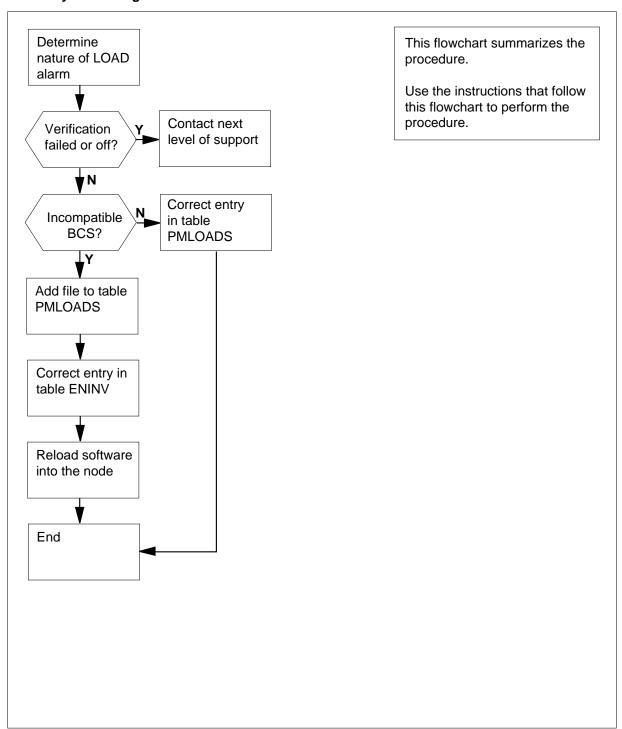
Meaning

You cannot open the image file. The entry in table PMLOADS is wrong, or the file has faults.

Result

The system cannot start the ENET. The result is some or total power failure.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

minor (continued)

Summary of clearing a Net LOAD minor alarm

minor (continued)

Clearing a Net LOAD minor alarm

At your current location

1

WARNING Loss of service

To avoid service interruption, perform this procedure during periods of low traffic.

Determine if the alarm is the result of a new BCS application.

If the alarm	Do
is the result of a new application	step 2
is not the result of a new application	step 4

Wait until the alarm clears. You do not need to perform any actions. Go to step 58.

At the MAP terminal

3 To access the CI level of the MAP display, type

>MAPCI

and press the Enter key.

4 To determine the type of the LOAD alarm, type

>PMLOADER QUERY ALARM

and press the Enter key.

Example of a MAP response:

A MINOR alarm is being raised by table PMLOADS for the following reasons:

ENX34BH Incompatible BCS

- 5 Record the tuples that have any of the following error messages:
 - Incompatible BCS
 - Verification failed
 - Verification off
 - Bad FID

minor (continued)

- Bad volume ID
- Directory cannot scan

If the error message	Do
is Incompatible BCS	step 6
is Verification off	step 57
is Verification failed	step 57
is other than listed here	step 41

6 To access table ENINV, type

>TABLE ENINV

and press the Enter key.

7 To display all tuples in table ENINV, type

>LIST ALL

and press the Enter key.

8 Determine if the file names under the LOAD0 or LOAD1 headings are the same as the file names recorded in step 5.

If the file names	Do	
are the same	step 9	
are not the same	step 36	

- 9 From the office log book, determine the correct file name of the latest image file. If the office log book does not have this information, contact the next level of support
- To access table PMLOADS, type 10

>TABLE PMLOADS

and press the Enter key.

11 To add the correct file name, type

>ADD file_name

and press the Enter key.

where

file name

is the file name determined in step 9

Example of a MAP response:

ENTER Y TO CONTINUE PROCESSING OR N TO QUIT

minor (continued)

```
12
       To confirm the addition, type
       >YES
       and press the Enter key.
13
       To confirm the current device type, press the Enter key.
       Example of a MAP response:
       TUPLE TO BE ADDED:
                           file_name dev_type
       ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.
14
       To confirm the addition, type
       and press the Enter key.
15
       To exit the table PMLOADS, type
       >QUIT
       and press the Enter key.
16
       To access the table ENINV, type
       >TABLE ENINV
       and press the Enter key.
17
       To position on the shelf tuple, type
       >POS
             0
       and press the Enter key.
18
       To change the load entry, type
       >CHA LOAD plane no file name
       and press the Enter key.
       where
           plane no
             is 0 or 1
           file name
             is the file name that you determined in step 9
       Example of a MAP response:
       TUPLE TO BE CHANGED:
                           file_name
                                          dev_type
       ENTER Y TO CONTINUE PROCESSING OR N TO QUIT
19
       To confirm the addition, type
       >YES
       and press the Enter key.
20
       To confirm the current device type, press the Enter key.
```

minor (continued)

```
TUPLE TO BE CHANGED:
                          file_name
                                        dev_type
      ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT.
21
       To confirm the addition, type
       >YES
       and press the Enter key.
22
       To exit the table ENINV, type
       >QUIT
       and press the Enter key.
23
       To access the SYSTEM level of the MAP display, type
       >MAPCI; MTC; NET; SYSTEM
       and press the Enter key.
24
       To busy the node, type
       >BSY plane_number shelf_number
       and press the Enter key.
       where
          plane_no
             is 0 or 1
          shelf number
             is 0 or 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET
25
       To load software into the node, type
       >LOADEN plane_number shelf_number
       and press the Enter key.
       where
          plane no
             is 0 or 1
          shelf number
             is 0 or 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET
       MAP response:
     WARNING Any software load in the ENET will be destroyed.
     Please confirm ("YES" or "NO"):
26
       To confirm the addition, type
       >YES
       and press the Enter key.
```

Example of a MAP response:

minor (continued)

27 To return the node to service, type

>RTS plane_number shelf_number

and press the Enter key.

where

plane_no

is 0 or 1

shelf number

is 0 or 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET

Example of a MAP response:

Request to RTS ENET Plane: 0 Shelf: 00 submitted. Request to RTS ENET Plane: 0 Shelf: 00 passed.

If the RTS command	Do
passed	step 56
failed	step 28

28 Determine from the MAP response if the system generated a card list.

If the system	Do
generated a card list	step 29
did not generate a card list	step 57

- Record the product engineering code (PEC) and location of all cards in the order that they appear on the list.
- To replace the first card on the list, refer to *Card Replacement Procedures*. Return to this point.
- 31 Cross the replaced card off the list that you recorded in step 29.
- **32** To return the node to service, type

>RTS plane_number shelf_number

and press the Enter key.

where

plane_no

is 0 or 1

shelf number

is $\overline{0}$ or 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET

If the RTS command	Do
passed	step 56

minor (continued)

	If the RTS command	Do						
	failed	step 33						
	Determine if any cards remain on the	ist that you recorded in step 29.						
	If any cards	Do						
•	are on the list	step 34						
	are not on the list	step 57						
To replace the next card on the list, refer to <i>Card Replacement Procedures</i> . Return to this point.								
	Go to step 31.							
	To access table PMLOADS, type							
	>TABLE PMLOADS							
	and press the Enter key.							
To position on the wrong file name, type								
	>POSITION old_file_name							
	and press the Enter key.							
	where							
	<pre>old_file_name is the different file name that yo</pre>	u determined in step 8.						
-	To delete the wrong file name, type							
	>DEL old_file_name							
	and press the Enter key.							
	where							
	<pre>old_file_name is the different file name that yo</pre>	u determined in step 8.						
	MAP response:							
	ENTER Y TO CONTINUE PROCESSI	ING OR N TO QUIT						
	To confirm the addition, type							
	>YES							
	and press the Enter key.							
	To exit the table PMLOADS, type							
	>QUIT							
	and press the Enter key.							
(Go to step 56.							

minor (continued)

41 To access the table PMLOADS, type

>TABLE PMLOADS

and press the Enter key.

To position on the file name you found in step 5, type

>POSITION file_name

and press the Enter key.

where

file_name

is the file name you found in step 5.

- 43 Note the device and volume name.
- 44 To exit table PMLOADS, type

>QUIT

and press the Enter key.

45 To access the disk utility, type

>DISKUT

and press the Enter key.

List the files in the volume found in step 43 to determine if the file that you noted in step 5 is present. To list the files, type

>LISTFL disk_volume_name

and press the Enter key

where

disk_volume_name

is the name of the disk of SLM 0 (S00D) and the name of the volume on S00D. The volume contains the CM and MS image files

Example input:

>LISTFL S00DIMAGE1

Example of a MAP response:

Net LOAD minor (continued)

File information for volume S00DIMAGE1:

{NOTE: 1 BLOCK = 512 BYTES }

LAST	FILE	-		I	0	FILE	NUM OF	MAX	FILE NAME
MODIFY	CODE	R	E	Т	Р	SIZE	RECORDS	REC	
DATE		G	С	0	Ε	IN	IN	LEN	
				С	N	BLOCKS	FILE		
930215	0	I	F			12744	6372	1020	930215_CM
930215	0	I	F			188180	94090	1020	930215_MS
930212	0	Ο	F			13460	6730	1020	APX35CG
930212	0	0	F			7154	3577	1020	ERS35CG
930216	0	0	F			33936	16968	1020	FPX35CG
930216	0	0	F			5334	2667	1020	LRC35CG
930215	0	0	F			5334	2667	1020	LCC35CG
930129	0	0	F			12	24	256	ASN1UI\$LD
920109	0	I	F			5464	2732	1020	LRS35CD
930212	0	I	F			9104	4552	1020	LPX35CG
930212	0	Ι	F			13432	7160	1024	930212_CM
930212	0	I	F			189272	93136	1024	930212_MS

If the file	Do
is present	step 57
is not present	step 47

47 To list the other volumes, one at a time, type

>LV vol_name

and press the Enter key.

where

vol_name

is one of the other volumes

48 To list the files on the first volume on the list, type

>LF vol_name

and press the Enter key.

where

vol_name

is the first volume on the list

If the file	Do		
is present	step 50		

minor (continued)

	If the file	Do					
	is not present	step 49					
49	Cross off the volume that you checked.						
	If you	Do					
	need to check more volumes	step 48					
	do not need to check more volumes	step 57					
50	To leave the disk utility, type						
	>QUIT						
	and press the Enter key.						
51	To access table PMLOADS, type						
	>TABLE PMLOADS						
	and press the Enter key.						
52	To change the old volume to the new						
	>CHA old_volume new_volume						
	and press the Enter key.						
	where						
	<pre>old_volume is the old volume</pre>						
	new volume is the new volume that contains	s the file					
	MAP response:						
	ENTER Y TO CONTINUE PROCESSI	ING OR N TO QUIT					
53	To confirm the addition, type						
	>YES						
	and press the Enter key.						
54	To exit table PMLOADS, type						
	>QUIT						
	and press the Enter key.						
55	To access the MTC level of the MAP	display, type					
	>MAPCI;MTC						
	and press the Enter key.						

Net LOAD minor (end)


56 Check the Net header to determine if the alarm cleared.

If the LOAD alarm	Do
cleared	step 4
did not clear	step 58

- 57 For additional help, contact the next level of support.
- 58 The procedure is complete.

Net MBCd minor

Alarm display

Indication

At the MAP display, MBCd (preceded by a number) appears under the Net header of the alarm banner.

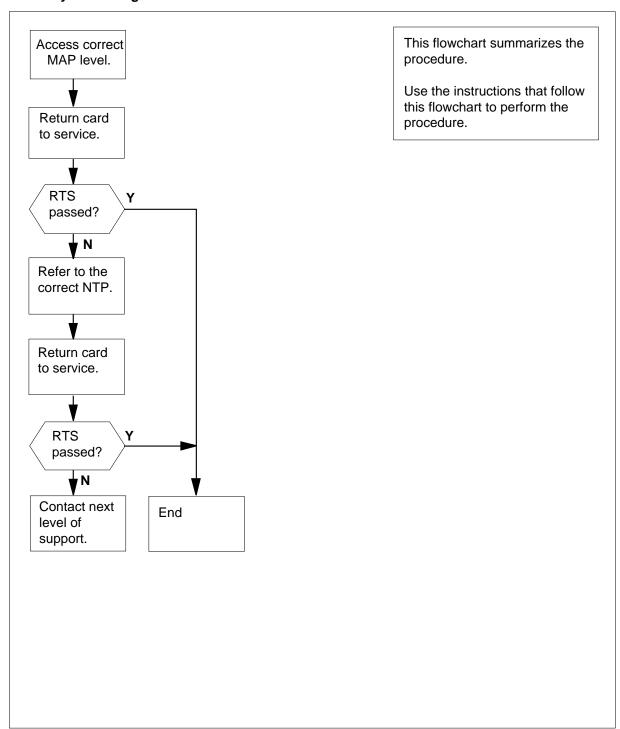
Meaning

The number that precedes MBCd indicates the number of crosspoint cards that are manually busy. This alarm occurs in response to manual action on a minimum of one ENET component.

Result

The alarm does not affect service. Removal of a component in the other plane causes network blockage.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net MBCd minor (continued)

Summary of clearing a Net MBCd minor alarm

Net MBCd

minor (continued)

Clearing a Net MBCd minor alarm

ATTENTION

Consult with other operating company personnel. Determine the reason for the performance of the manual action. Proceed only to override this manual action.

At the MAP terminal

1 To access the Net level of the MAP display, type

>MAPCI; MTC; NET

and press the Enter key.

Example of a MAP display:

ENET		System	Matrix	Shelf	0	1	2	3
Plane	0				F			
Plane	1							

- 2 Determine from the display the node that contains the manually- busy crosspoint card. The letter F in the Shelf status fields indicates the node that contains the manually- busy crosspoint card.
- 3 To access the SHELF level of the MAP display for the shelf that has fault (F) status, type

```
>SHELF shelf_number
```

and press the Enter key.

where

shelf number

is 0 or 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET

Example of a MAP display:

64K and 128K ENET:

16K ENET:

Net MBCd

minor (continued)

4 Determine from the display the location of the manually-busy crosspoint card. An M or an F in a Slot status field indicates the location of the manuallybusy crosspoint card.

Example of a MAP display:

SHELF 01	Slot		1111111	11122222	22222333	333333
	123456	78	90123456	78901234	56789012	345678
Plane 0			FM			
Plane 1						

In the example above, slot 16 on plane 0 of shelf 1 is manually busy. The F indication in slot 13 can indicate a manually-busy paddle board (back). The F indication in slot 13 also can indicate a problem with one of the links. Access the card level to determine the cause of the fault status.

A minimum of two slot status fields can contain an M or F. In this event, first access the card level for the Slot status field that contains an M.

5 To access the CARD level of the MAP display for the slot status field that contains an M or F, type

>CARD slot number

and press the Enter key.

where

slot number

is 1 to 38 for 64K ENET and 128K ENET, 12 to 19 and 22 to 29

for 16K ENET

Example of a MAP display:

64K and 128K ENET:

CARD 16	Front:	Back:	DS-30 Links 111111
	Xpt	I/F	0123456789012345
Plane 0		M	CCCC
Plane 1		•	

16K ENET:

CARD	Plane	Front:	Back:DS-30 Links 111111
		Xpt	I/F 0123456789012345
15	0	-	M CCCC
25	1		

6 Determine from the status display if the front (crosspoint) card, back (paddle board) card, or both cards, are manually busy. An M in the status field indicates that the card is manually busy.

If the front or back status field	Do
contains an M	step 4

Net MBCd

minor (continued)

If the front or back status field	Do
does not contain an M	step 7

7 To return the card to service, type

>RTS plane_number component

and press the Enter key.

where

plane_number

is 0 or 1

component

is one of FRONT, BACK, or BOTH

Example of a MAP display:

Request to RTS ENET Plane: 0 Shelf: 00 Slot: 16 submitted.

If the RTS command	Do
passed	step 14
failed, and the system generated a card list	step 8
failed	step 13

- 8 Record the product engineering code (PEC) and location of the first card on the card list.
- To replace the card, use the correct procedure in *Card Replacement Procedures*. Complete the procedure and return to this point.
- To confirm that you are at the CARD level of the MAP display, type

>MAPCI;MTC;NET;SHELF shelf_number;CARD slot_number and press the Enter key.

where

shelf number

is 0 or 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET

slot number

is 1 to 38 for 64K ENET and 128K ENET, 12 to 19 and 22 to 29 for 16K ENET

11 To return the replacement card to service, type

>RTS plane_number component

and press the Enter key.

where

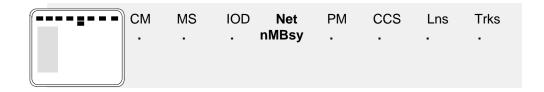
Net MBCd minor (end)

plane_number is 0 or 1

component

is one of FRONT, BACK, or BOTH

Example of a MAP display:


Request to RTS ENET Plane: 0 Shelf: 01 Slot: 16 submitted.

If the RTS command	Do
passed	step 14
failed, and you replaced all cards on the list that the system generated in step 7	step 13
failed, and you did not replace all cards on the list that the system generated in step 7	step 12

- Record the product engineering code (PEC) and location of the next card on the card list. 12
 - Go to step 9.
- For additional help, contact the next level of support. 13
- 14 The procedure is complete.

Net MBsy minor

Alarm display

Indication

At the MAP display, MBsy (preceded by a number) appears under the Net header of the alarm banner.

Meaning

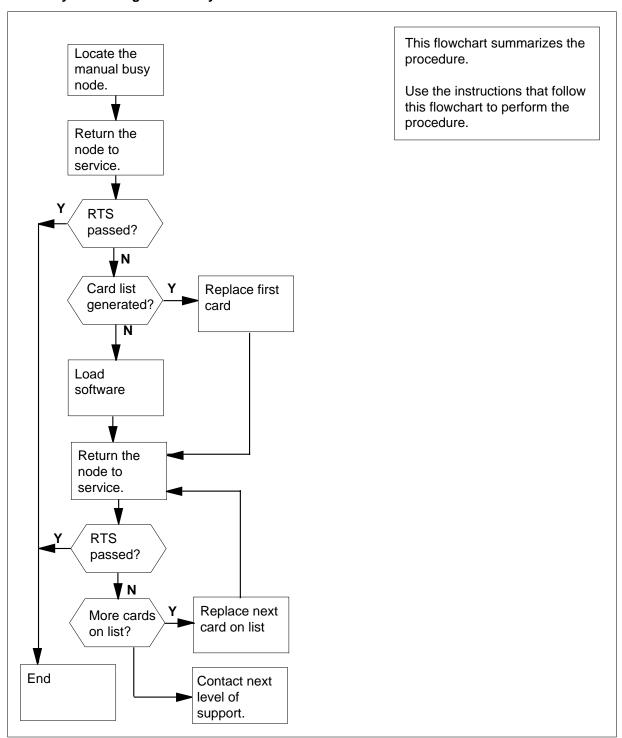
A minimum of one ENET node is manual busy. The number that precedes MBsy indicates the number of nodes that are manual busy.

This alarm occurs in response to manual action.

Result

The Net MBsy alarm does not affect subscriber service. The removal from service of any component in the other plane of the shelf causes network blockage.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net MBsy minor (continued)

Summary of clearing a Net MBsy minor alarm

Net MBsy

minor (continued)

Clearing a Net MBsy minor alarm

ATTENTION

Consult with other operating company personnel. Determine the cause of the performance of the manual action. Proceed only to override this manual action.

At the MAP terminal

1 To access the SYSTEM level of the MAP display, type

>MAPCI; MTC; NET; SYSTEM

and press the Enter key.

Example of a MAP display:

SYSTEM		
Shelf	Plane 0	Plane 1
00	M	•
01		•
02	•	•
0.3		

- Determine from the display the node that is manually busy. The letter M in the Plane status field indicates the manually- busy node.
- 3 To return the ENET node to service, type

>RTS plane_number shelf_number and press the Enter key.

where

plane_number is 0 or 1

shelf_number

is $\overline{0}$ or 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET

If the RTS command	Do
passed	step 14
failed, and the system generated a card list	step 5
failed, and the MAP response indicated missing software	step 8

Net MBsy minor (continued)

	If the RTS command	Do
	failed, and the MAP response is Wrong ENCLASS in table ENINV	step 4
4	The ENET class that you entered in fie	ld ENCLASS of table ENINV is wrong.
	Note: For 16K ENET, enter ENCLA ENCLASS as PRI64K. For 128K E	ASS as PRI16K. For 64K ENET, enter NET, enter ENCLASS as PRI.
	Go to step 13.	
5	Record the product engineering code (card list.	PEC) and location of the cards on the
6	To replace the first card on the list, use Replacement Procedures. Complete	e the correct procedure in <i>Card</i> the procedure and return to this point.
7	To confirm that you are at the SYSTEM	M level of the MAP display, type
	>MAPCI;MTC;NET;SYSTEM	
	and press the Enter key.	
	Go to step 10.	
8	To load software into the ENET node,	,,
	· · · · · · · · · · · · · · · · · · ·	_number
	and press the Enter key.	
	where	
	<pre>plane_number is 0 or 1</pre>	
	shelf_number is 0 or 1 for 64K ENET, 0 to 7 for	or 128K ENET, 0 for 16K ENET
	Example of a MAP response:	
	WARNING Any software load in Please confirm ("YES" or "NO"	the ENET will be destroyed.
9	To confirm the LOADEN command, ty	pe
	>YES	
	and press the Enter key.	
10	To return the ENET node to service, ty	vpe
	>RTS plane_number shelf_nu	mber
	and press the Enter key.	
	where	
	plane_number is 0 or 1	

Net MBsy minor (end)

shelf_number
is 0 or 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET

	If the RTS command	Do
	passed	step 14
	failed, and you replaced all cards on the list that the system generated in step 3	step 13
	failed, and you did not replace all cards on the list that the system generated in step 3	step 11
11	To replace the next card on the list, us Replacement Procedures. Complete	se the correct procedure in <i>Card</i> the procedure and return to this point.
12	Go to step 10.	
13	For additional help, contact the next le	evel of support.
14	The procedure is complete	

- 12
- 13
- 14 The procedure is complete.

Alarm display

Indication

At the maintenance level of the MAP display, Pair (preceded by a number) appears under the Net subsystem status header of the alarm banner. The Pair indicates a network pair alarm.

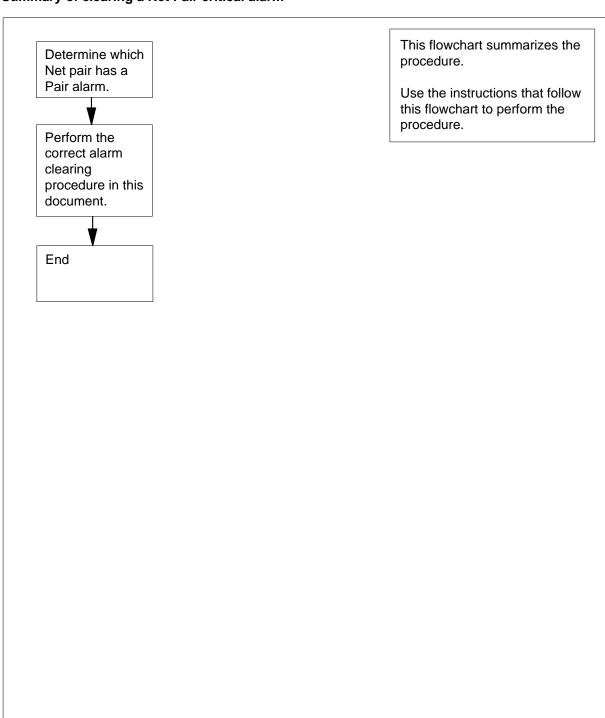
Meaning

The indicated network module pairs are out of service. The network Pair alarm is a critical alarm.

Result

When you use the network module pair with the alarm, a loss of calls results. This condition requires immediate warning.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net Pair critical (continued)

Summary of clearing a Net Pair critical alarm

Net Pair critical (continued)

Clearing a Net Pair critical alarm

At the MAP terminal

To access the Net level of the MAP display, type

>MAPCI; MTC; NET

and press the Enter key.

Example of a MAP display:

```
11111 11111 22222 22222 33
Net
            01234 56789 01234 56789 01234 56789 01
   Plane
     0
     1
            . . . . .
JCTR:
```

2 If necessary, to silence the alarm, type

>SIL

and press the Enter key.

- 3 Record the identification number of each network module pair that is out of service. Record the status of each network module in the pair. Select one network module pair to work on.
- Examine the status of the network modules (NM) in the network module pair. 4 Proceed according to the following table.

If	Do
both NMs are system busy (S)	step 5
both NMs are C-side busy (C)	step 8
one NM is system busy (S) and the other NM is manually busy (M)	step 11
one NM is system busy (S) and the other NM is C-side busy (C)	step 16
one NM is C-side busy (C) and the other NM is manually busy (M)	step 21

- 5 Select one system busy network module of the network module pair to work
- Perform the procedure that clears a Net SysB minor alarm in this document. 6 Complete the procedure and return to this point.

Net Pair critical (continued)

7 Examine the status of the network module of the network module pair. Proceed according to the following table.

If	Do
one network module of the pair is InSv, but the other module is SysB	step 6
both network modules are InSv, but you recorded other SysB pairs in step 3	step 5
both network modules are InSv, other SBsy pairs are not present, and a Pair alarm remains	step 4
both network modules are InSv, CBsy busy pairs are not present, and the pair alarm cleared	step 24

- **8** From the network module pair, select one of the C-side busy NMs to work on.
- 9 Perform the procedure that clears a Net Bsy alarm in this document. Complete the procedure and return to this point.
- Examine the status of the network module pair. Proceed according to the following table.

If	Do
one network module of the pair is InSv, but the other module is CBsy	step 8
both network modules are InSv, but you recorded other CBsy pairs in step 3	step 9
both network modules are InSv and other CBsy pairs are not present, but a Pair alarm remains	step 4
both network modules are InSv, CBsy busy pairs are not present, and the pair alarm cleared	step 24

- 11 Work on the manual busy network module first.
- Perform the procedure that clears a Net Bsy minor alarm in this document. Complete the procedure and return to this point.
- Examine the status of the NMs of the network module pair. Proceed according to the following table.

If	Do
one network module of the pair is InSv, but the other module is SysB	step 14

Net Pair critical (continued)

	Do		
both network modules of the pair are InSv, but you recorded other SysB-ManB pairs in step 3	step 11		
both network modules are InSv and other ManB-SysB pairs are not present, but a pair alarm remains	step 4		
both network modules are InSv, ManB-SysB pairs are not present, and the pair alarm cleared	step 24		
Perform the procedure that clears a Net SysB minor alarm in Complete the procedure and return to this point.	this document.		
Go to step 13.			
Work on the C-side busy network module first.	lita da e		
Perform the procedure that clears a Net Bsy minor alarm in t Complete the procedure and return to this point.	nis document.		
Examine the status of the NMs of the network module pair. Proceed according to the following table.			
If	Do		
one network module of the pair is InSv, but the other module is SysB	step 19		
both network modules of the pair are InSv, but you recorded other system-busy or C-side busy pairs in step 3	step 16		
both network modules are InSv and other system	step 4		
busy or C-side busy pairs are not present, but a pair alarm remains			
busy or C-side busy pairs are not present, but a pair	step 24		
busy or C-side busy pairs are not present, but a pair alarm remains both network modules are InSv, manually busy or system busy pairs are not present, and the pair alarm	•		
busy or C-side busy pairs are not present, but a pair alarm remains both network modules are InSv, manually busy or system busy pairs are not present, and the pair alarm cleared Perform the procedure that clears a Net SysB minor alarm in	•		
busy or C-side busy pairs are not present, but a pair alarm remains both network modules are InSv, manually busy or system busy pairs are not present, and the pair alarm cleared Perform the procedure that clears a Net SysB minor alarm in Complete the procedure and return to this point.	•		

Net Pair critical (end)

23 Examine the status of the network modules of the network module pair. Proceed according to the following table.

If	Do
one network module of the pair is in service (InSv), but the other module is C-side busy (C)	step 22
both network modules of the pair are in service (.), but you recorded other manually- busy or C side busy pairs in step 3	step 21
both network modules are in service (.) and other manually- busy or C side busy pairs are not present, but a pair alarm remains	step 4
both network modules are in service (.), manually- busy or C side busy pairs are not present, and the pair alarm cleared	step 24

The procedure is complete.

Net PSLk minor

Alarm display

Indication

At the MAP display, PSLk (preceded by a number) appears under the Net header of the alarm banner.

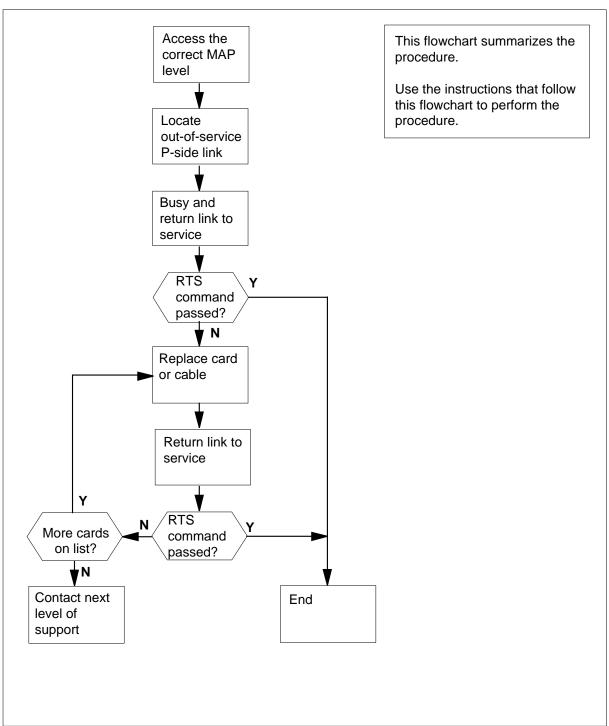
Meaning

A minimum of one peripheral-side (P-side) link between the ENET and a peripheral module (PM) is out of service. The number that precedes PSLk indicates the number of P-side links that are out of service.

Result

The Net PSLk alarm does not affect subscriber service. The removal from service of a speech link to the PM results in the loss of network redundancy to the PM. The removal of the link isolates the PM and results in the loss of the subscriber service. The subscriber service depends on the PM.

Common procedures


This procedure refers to Connecting a temporary fiber cable from an ENET to *a PM*.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

minor (continued)

Summary of clearing a Net PSIk minor alarm

minor (continued)

Clearing a Net PSLk minor alarm

At the MAP terminal

To access the Net level of the MAP display, type

>MAPCI; MTC; NET

and press the Enter key.

Example of a MAP display:

```
ENET
                    Matrix Shelf
                                    0 1 2 3
         System
Plane 0
Plane 1
                    Fault
                                    F . . .
```

- 2 Determine from the display the node that has the out-of-service P-side link. The letter F in the Shelf status field indicates the node with the out-of-service
- You can access the SHELF level of the MAP display for the node that has the 3 out-of-service P-side link. To access the SHELF level, type

```
>SHELF shelf_number
```

and press the Enter key.

where

shelf number

is 0 or 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET.

Example of a MAP display:

64K and 128K ENET:

```
SHELF
       02 Slot
                1111111 11122222 22222333 333333
        123456 78 90123456 78901234
                                   56789012 345678
           . .. S..F.... -----
Plane 0
                                      . . . . . . . .
               .. M..F.... -----
Plane 1
                                      ....F.. . .
```

16K ENET:

```
SHELF 00 Power LIU ENET-Plane 0 ENET-Plane 1 LIU Power
                    11 11111111 22 22222222 333 333333
Slot
        123456 789
                    01 23456789 01 23456789 012 345678
                         ..F... .. S..F...
```

- Determine from the display the card that associates with the PSLk alarm. 4 The letter F in the Slot status fields indicates the card that associates with the PSLk alarm. Note the slot number.
- 5 You can access the CARD level of the MAP display for the slot that associates with the PSLk alarm. To access the CARD level, type

```
>CARD slot_number
```

and press the Enter key.

minor (continued)

where

slot_number

is 1 to 38

Example of a MAP display:

64K and 128K ENET:

CARD 3	0	Front:	Back:	D	S-30	Links	11111	1
		Xpt	I	/F	0	1234567890	12345	
Plane	0	•						
Plane	1	•					M-	

16K ENET:

CARD	Plane	Front:	Back:DS-30	Links 111111
	Хр	t	I/F 012345	5789012345
15	0 .			
25	1	•		M-

6 Determine from the MAP display the link number and the type of link that has faults.

If the link	Do
is DS-30	step 26
is DS512	step 7

7 From the DS512 Links field, determine the type of the link problem.

If the link	Do
is system busy (S)	step 8
is manually busy (M)	step 9
has faults (F)	step 34

8 To busy the affected link, type

>BSY plane_number LINK link_number

and press the Enter key.

where

plane_number

is 0 or 1

link_number

is 0 to 3 and 16 to 18 for DS512 fiber links

Note: If all links have problems, replace LINK link_number with ALL for the link commands that precede and follow this note.

Net PSLk minor (continued)

Example of a MAP display:

Request to MAN BUSY ENET Plane: 1 Shelf: 0 Slot: 30 Link: 0 submitted. Request to MAN BUSY ENET Plane: 1 Shelf: 0 Slot: 30 Link: 0 passed.

9 To return the link to service, type

> >RTS plane_number LINK link_number and press the Enter key.

where

plane_number is 0 or 1

link number

is 0 to 3 and 16 to 18 for DS512 fiber links

Example of a MAP display:

Request to RTS ENET Plane: 1 Shelf: 00 Slot: 30 Link: 0 submitted.

If the RTS command	Do
passed	step 37
failed, and the system generated a card list	step 10
failed, and the system did not generate a card list	step 36

- 10 Record the product engineering code (PEC) and location of all cards in the order that they appear on the list.
- 11 Determine if the first element on the card lists a DS512 fiber cable.

If the first element	Do
is a DS512 cable	step 14
is not a DS512 cable	step 12

- 12 Use the correct procedure in Card Replacement Procedures. Complete the procedure and return to this point.
- 13 Go to step 22.
- 14 When the DS512 link has faults, Northern Telecom personnel must replace the fiber cable between the ENET and the PM. Contact the next level of support. The next level of support informs the correct Northern Telecom

minor (continued)

office. Replace the fiber cable that has faults to return the ENET to service during a limited time. To replace the cable, continue from step 15.

15 Determine the status of the out-of-service link.

If the link status field	Do
contains M	step 17
is other than listed here	step 16

To busy the affected link before you replace the fiber cable, type

>BSY plane_number LINK link_number and press the Enter key.

where

plane_number is 0 or 1

link_number

is 0 to 3 and 16 to 18 for DS512 fiber links

Example of a MAP display:

Request to MAN BUSY ENET Plane: 1 Shelf: 0 Slot: 30 Link: 0 submitted.
Request to MAN BUSY ENET Plane: 1 Shelf: 0 Slot: 30 Link: 0 passed.

17 To take the link offline, type

>OFFL plane_number LINK link_number and press the Enter key.

where

plane_number is 0 or 1

link_number

is 0 to 3 and 16 to 18 for DS512 fiber links

Example of a MAP display:

Request to OFFLINE ENET Plane:1 Shelf:0 Slot:30 Link:0 submitted.
Request to OFFLINE ENET Plane:1 Shelf:0 Slot:30 Link:0 passed.

- Perform the procedure *Connecting a temporary fiber cable from an ENET to a PM* in this document. Complete the procedure and return to this point.
- You can access the CARD level of the MAP display for the card that has the out-of-service link. To access the CARD level, type

>MAPCI;MTC;NET;SHELF shelf_number;CARD slot_number

Net PSLk

minor (continued)

```
and press the Enter key.
where
   shelf number
     is 0 or 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET.
   slot_number
     is 1 to 38
Example of a MAP display:
64K and 128K ENET:
CARD 12
             Front: Back: DS-30 Links 111111
               Xpt I/F
                                 0123456789012345
Plane 0
Plane 1
                                   ....----M-
16K ENET:
CARD
         Plane Front: Back:DS-30 Links 111111
                            I/F 0123456789012345
                   Xpt
15
            0
                            . . . . . - - - - - - - -
25
            1
                            . ....----M-
To busy the affected link before you return the link to service, type
>BSY plane_number LINK link_number
and press the Enter key.
where
   plane number
     is 0 or 1
   link number
     is 0 to 3 and 16 to 18 for DS512 fiber links
Cross the replaced fiber cable off the card list.
Go to step 24.
Cross the replaced card off the card list.
You can access the CARD level of the MAP display for the card that has the
out-of-service link. To access the CARD level, type
>MAPCI;MTC;NET;SHELF shelf_number;CARD slot_number
and press the Enter key.
where
   shelf_number
```

is 0 or 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET.

20

21

22

23

slot number is 1 to 38 Example of a MAP display:

Net PSLk

minor (continued)

64K and 128K ENET:

CARD 30	Front:	Back:	DS-30 Links	111111
	Xpt	I/F	012345678901	2345
Plane 0	•	•		
Plane 1		•		M-

16K ENET:

24 To return the link to service, type

>RTS plane_number LINK link_number and press the Enter key.

where

plane_number is 0 or 1

link number

is 0 to 3 and 16 to 18 for DS512 fiber links

Example of a MAP display:

Request to RTS ENET Plane:0 Shelf:00 Slot:30 Link:0 submitted.

If the RTS command	Do
passed	step 37
failed, and you replaced all cards on the list that the system gener- ated in step 9	step 36
failed, and you did not replace all cards on the list that the system generated in step 9	step 25

25 Record the product engineering code (PEC) and location of the next card on the card list.

Go to step 11.

26 To return the link to service, type

>RTS plane_number LINK link_number and press the Enter key.

Net PSLk minor (continued)

where

plane_number

is 0 or 1

link number

is 0 to 15 for DS30 links, and 0 to 3 and 16 to 18 for DS512 fiber links

MAP response:

Request to RTS ENET Plane:0 Shelf:00 Slot:30 Link:0 submitted.

If the RTS command	Do
passed	step 37
failed, and the system generated a card list	step 27
failed	step 36

- 27 Record the product engineering code (PEC) and location of all cards in the order that they appear on the list.
- 28 Replace the first card on the list. Use the appropriate procedure in Card Replacement Procedures. Complete the procedure and return to this point.
- 29 Cross the replaced card off the card list.
- 30 You can access the CARD level of the MAP display for the card that has the out-of-service link. To access the CARD level, type

>MAPCI;MTC;NET;SHELF shelf_number;CARD slot_number and press the Enter key.

where

shelf_number

is 0 or 1 for 64K ENET, 0 to 7 for 128K ENET, 0 for 16K ENET.

slot_number

is 1 to 38

Example of a MAP display:

64K and 128K ENET:

CARD 30	Front:	Back:	DS-30 Links 111111
	Xpt	I/F	0123456789012345
Plane 0			
Plane 1			M-

16K ENET:

Net PSLk

minor (continued)

31 To return the link to service, type

>RTS plane_number LINK link_number
and press the Enter key
where

plane_number is 0 or 1

link_number

is 0 to 15 for DS30 links

Example of a MAP display:

Request to RTS ENET Plane:0 Shelf:00 Slot:30 Link:0 submitted.

If the RTS command	Do
passed	step 37
failed, and you replaced all cards on the list that the system generated in step 26	step 33
failed, and you did not replace all cards on the list that the system generated in step 26	step 32

Record the product engineering code (PEC) and location of the next card on the card list.

Go to step 10.

- Contact installation services to schedule the replacement of the DS30 cable.Go to step 37.
- To access the DS30-equivalent status display for the link with the fault, type

>LINK link_number

and press the Enter key.

where

link number

is 0 to 3 and 16 to 18 for DS512 fiber links

Example of a MAP display:

Net PSLk minor (end)

Link 0 111111 0123456789012345s...s...

Note: The letter ${\tt S}$ or ${\tt M}$. indicates faults on the DS30-equivalent links.

35 Wait 15 min for the system to run an internal audit.

If the internal audit	Do
cleared all faults indicated by the letters M and S	step 37
did not clear all faults indicated by the letters M and S	step 36

- 36 For additional help, contact the next level of support.
- 37 The procedure is complete.

Net REx minor

Alarm display

Indication

At the MAP display, the alarm code REx (followed by a number) appears under the Net header of the alarm banner.

Meaning

A routine exercise (REx) test runs on the plane of the ENET. The number that follows REx indicates the plane that the REx test runs on.

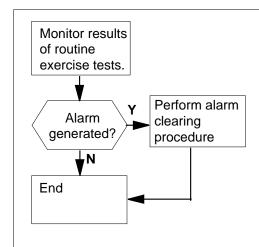
Result

The Net REx alarm does not affect subscriber service. Routine exercises can cause a temporary loss of redundancy in the node.

Manual or system removal of a component in the other plane, while the tests run, causes network blockage.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net REx

minor (continued)

Summary of clearing a NetREx minor alarm

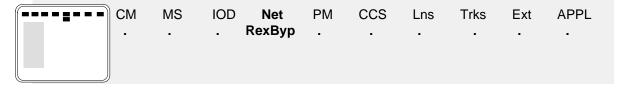
This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.

Net REx minor (end)

Clearing a NetREx minor alarm

At your current location


1 Monitor the results of athe REx test.

If the REx test	Do
finds a fault, and the system generates a higher-priority ENET alarm and an ENET500 series log	step 2
concludes normally, and REx disappears from the Net header	step 3

- Refer to the task list in this document. Find the correct procedure in this document to clear the fault. Complete the procedure and return to this point.
- **3** The procedure is complete.

Net RexByp

Alarm display

Indication

At the MTC level of the MAP display, RexByp appears under the NET header of the alarm banner, and indicates an ENET Rex bypass minor alarm.

Meaning

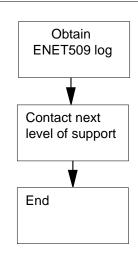
The RexByp minor alarm indicates Enhanced Network (ENET) subsystem REX test abandonment due to the instability of the mate plane's components. The specific fault reason is found in the ENET509 log.

An ENET plane is deemed unstable if at least one of its nodes, cards, paddleboards or p-side links has gone SBsy one or more times within the last 12 to 24 hours.

Impact

Subscriber service is not affected.

Common procedures


Not applicable

Action

The ENET RexByp minor alarm will stay active until the next successful ENET Rex test start-up, at which time the alarm will clear. No operator action is required to clear this alarm.

Net RexByp (continued)

Summary of clearing a Net RexByp alarm

This flowchart summarizes the procedure.

Use the instructions in the procedure that follows this flowchart to perform the procedure.

Net RexByp (end)

Clearing a Net RexByp alarm

At the MAP terminal

- Obtain the most recent ENET509 log.
- For further assistance, contact the personnel responsible for the next level of support.
- 3 You have completed this procedure.

Net RExOff minor

Alarm display

Indication

At the MAP display, RExOff appears under the Net header of the alarm banner.

Meaning

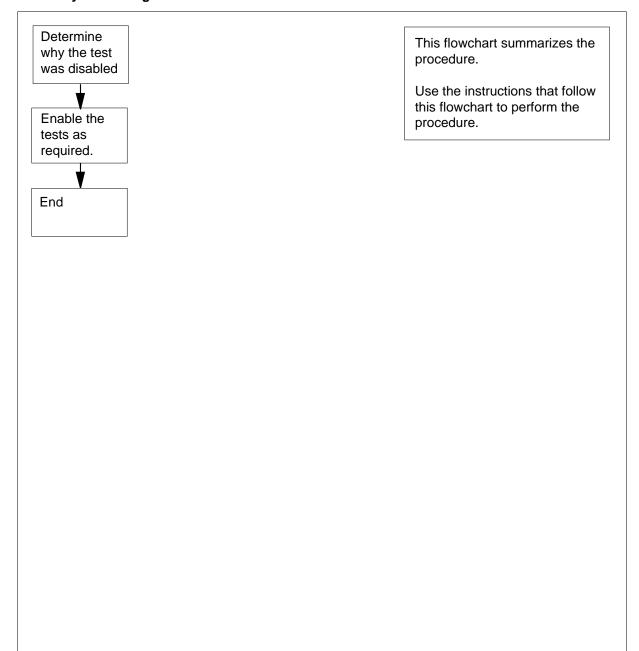
A manually disabled scheduled routine exercise test.

Result

The alarm does not affect subscriber service.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net RExOff

minor (continued)

Summary of clearing a Net RExOFf minor alarm

Net RExOff

minor (end)

Clearing a Net RExOff minor alarm

At the MAP display terminal

- 1 Consult with operating company personnel. Determine why the routine exercise test is disabled.
- 2 To access the Net level of the MAP display, type

```
>MAPCI;MTC;NET
```

and press the Enter key.

Example of a MAP display:

3 To determine the days that the routine exercise (REx) test is disabled on, type

```
>REXTST QUERY
```

and press the Enter key.

Example of a MAP display:

```
Scheduled ENET REx test:
MON TUES WED THU FRI SAT SUN
ON ON ON ON OFF OFF
```

4 To ENABLE the REx test for the day that the REx test runs, type

```
>REXTST SYSREX ENABLE week_day
```

and press the Enter key.

where

week day

is a three-letter abbreviation for the day of the week

MON, TUE, WED, THU, FRI, SAT, or SUN, or ALL to enable

the test for the whole week

- **5** For additional help, contact the next level of support.
- **6** The procedure is complete.

Net RExSch minor

Alarm display

Indication

At the MTC level of the MAP display, RExSch (preceded by a number) appears under the Net header of the alarm banner. The RExSch indicates an ENET REx schedule minor alarm.

Meaning

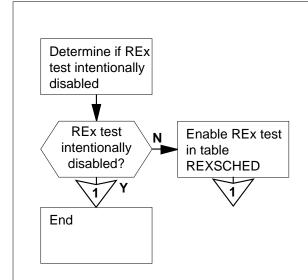
This alarm indicates that entries in table REXSCHED disabled routine exercise (REx) testing on the enhanced network (ENET).

Result

If the system disables REx testing, the system does not always detect a fault. This condition results in a loss of service.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps perform the procedure.

Net RExSch

minor (continued)

Summary of clearing a NetRExSch minor alarm

This flowchart summarizes the procedure.

Use the instructions that follow this flowchart to perform the procedure.

Net RExSch minor (continued)

Clearing a NetRExSch minor alarm

At the MAP terminal

Contact the next level of support to determine if the system disabled ENET REx testing.

If the system	Do
disabed ENET REx testing on purpose	step 16
did not disable ENET REx testing on purpose	step 2

2 To access table REXSCHED, type

>TABLE REXSCHED

and press the Enter key.

Example of a MAP response:

MACHINE NOT IN SYNC - DMOS NOT ALLOWED JOURNAL FILE NOT AVAILABLE- DMOS NOT ALLOWED TABLE: REXSCHED

3 To position on the ENET REx test tuple, type

>POS ENET REX TEST

and press the Enter key.

Example of a MAP response:

1 ENET_REX_TEST 1 NONE

4 To activate write access, type

>RWOK ON

and press the Enter key.

Example of a MAP response:

WRITE ACCESS ENABLED FOR RESTRICTED DATA

5 To start the tuple change, type

>CHA

and press the Enter key.

Example of a MAP display response:

Net RExSch

minor (continued)

MACHINE NOT IN SYNC - DMOS NOT ALLOWED JOURNAL FILE NOT AVAILABLE- DMOS NOT ALLOWED ENTER Y TO CONTINUE PROCESSING OR N TO QUIT

6 To confirm the command, type

>Y

and press the Enter key.

Example of a MAP response:

ENABLE: N

7 To set ENET REx testing to enabled, type

>Y

and press the Enter key.

Example of a MAP response:

PERIOD: 1

8 To enter the time period between ENET REx tests, type

>period

and press the Enter key.

where

period

is the minimum number of days between ENET REx tests (1 to 7)

Note: If you prefer to not change this part of the tuple, press the Enter key. Do not make an entry.

Example of a MAP response:

PARALLEL: 1

9 To enter the number of ENET REx tests that run in parallel, type

>number

and press the Enter key.

where

number

is the maximum number of ENET REx tests (0 to 99) that run in parallel

Note: If you prefer to not change this part of the tuple, press the Enter key. Do not make an entry.

Example of a MAP response:

DAYSDSBL: NONE

Net RExSch **minor** (continued)

10 To enter the days of the week that the system disables the ENET REx, type >daysdsbl

and press the Enter key.

where

daysdsbl

is the days that the system disables the ENET REx test (MON, TUE, WED, THU, FRI, SAT, SUN, ALL, or NONE)

Note: If you prefer to not change this part of the tuple, press the Enter key. Do not make an entry.

Example of a MAP response:

TUPLE TO BE CHANGED: ENET_REX_TEST N 1 1 NONE ENTER Y TO CONFIRM, N TO REJECT OR E TO EDIT

11 To confirm the tuple change, type

>Y

and press the Enter key.

Example of a MAP response:

TUPLE CHANGED JOURNAL FILE INACTIVE

12 To exit table REXSCHED, type

>QUIT

and press the Enter key.

13 To verify that system has enabled ENET REx testing, review the most recent IOAU112 log reports.

> Note: If the system enabled ENET REx testing, the message The CRITICAL ENET_REX_TEST has been ENABLED. appears in the log report.

If the system	Do
confirms enabled	step 14
does not confirm enabled	step 15

14 When the next scheduled ENET REx test completes, determine if the RExSch alarm cleared.

If the RExSch alarm	Do
cleared	step 16
did not clear	step 15

Net RExSch

minor (end)

- 15 For additional help, contact the next level of support.
- 16 The procedure is complete.

Alarm display

Indication

At the MAP display, SBC (preceded by a number) appears under the Net header of the alarm banner.

The system removed one or more crosspoint cards from service. The number that precedes SBCd indicates the number of crosspoint cards that are system busy.

Result

The alarm does not affect service. The removal of a component in the other plane from service results in the loss of subscriber service. Network blockage causes the loss of subscriber service. The removal of the component isolates any peripheral modules that require this card from the network.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

major (continued)

Summary of clearing a Net SBCd major alarm

major (continued)

Clearing a Net SBCd major alarm

At the MAP terminal

To access the Net level of the MAP display, type

>MAPCI; MTC; NET

and press the Enter key.

Example of a MAP display:

```
ENET
      System Matrix Shelf
                            0 1 2 3
Plane 0 . Fault
                            F . . .
Plane 1
```

- 2 Determine from the display the node that has a system busy crosspoint card. The letter F in a Shelf status field indicates the node with the system busy crosspoint card.
- 3 To access the SHELF level of the MAP display for the shelf that has fault (F) status, type

```
>SHELF shelf_number
```

and press the Enter key.

where

shelf number

is 0 for 16K ENET, 0 or 1 for 64K ENET, 0 to 7 for 128K ENET

Example of a MAP display:

16K ENET

```
SHELF 00 Power LIU ENET-Plane 0 ENET-Plane 1 LIU Power
                   11 11111111 22 2222222 333 333333
Slot
       123456 789 01
                       23456789 01 23456789 012 345678
                   .. ...F... .. ..S....
```

64K and 128K ENET

```
SHELF 01 Slot
               1111111 11122222 22222333 333333
      123456 78 90123456 78901234 56789012 345678
. . . . . . . . . . .
Plane 1 .
                       _____
```

4 Determine from the display the slot that has a system busy crosspoint card. An S or an F in a Slot status field indicates the slot.

Example of a MAP display:

SHELF	01	Slo	ot		11	11111	11122	2222	2222	2333	333	3333
		123	456	78	901	23456	78901	.234	5678	9012	345	678
Plane	0				1	FS						
Plane	1											

major (continued)

In the above example, slot 16 on plane 0 of shelf 1 is system busy.

The F indication in slot 12 can indicate one of the following:

- · a system busy paddle board
- a problem with one of the links.

You can access the card level to determine the cause of the fault status. A minimum of two Slot status fields can contain an S or an F at the same time. In this event, access the card level for the Slot status field that contains an S first.

- 5 Record the slot numbers with a status of S or F.
- You can access the CARD level of the MAP display for the Slot status field that contains an S or F. To access the CARD level, type

```
>CARD slot_number
```

and press the Enter key.

where

slot number

is 1 to 19 or 22 to 29 for 16K ENET, 1 to 38 for 64K ENET and

128K ENET

Example of a MAP display:

16K ENET

CARD	Plane	Front:	Back:	DS-30 Links 111111
		Xpt	I/F	0123456789012345
15	0	-	S	CCCC
25	1	_	_	

64K and 128K ENET

CARD	12	Front:	Back:	DS-30 Links 111111
		Xpt	I/F	0123456789012345
Plane	0		S	CCCC
Plane	1		•	

7 Determine from the status display if the Front card (crosspoint), Back card (paddle board), or both cards, are system busy. The letter S in the correct field indicates the cards that are system busy.

If the Front and Back status fields do not contain an S, this card does not cause the SBCd alarm indication. Go back to step 4 and access another card

8 To manually busy the card, type

>BSY plane_number

and press the Enter key.

where

major (continued)

plane number

is 0 or 1

MAP response:

Request to MAN BUSY ENET Plane: 0 Shelf: 00 Slot: 12 submitted.

Request to MAN BUSY ENET Plane: 0 Shelf: 00 Slot: 12 passed.

9 To return the card to service, type

>RTS plane_number

and press the Enter key.

where

plane number

is 0 or 1

MAP response:

Request to RTS ENET Plane: 0 Shelf: 00 Slot: 12 submitted.

If the RTS command	Do
passed	step 16
failed, and the system generated a card list	step 10

- 10 Record the product engineering code (PEC) and location of the first card on the card list.
- 11 To replace the card, use the correct procedure in Card Replacement *Procedures.* Complete the procedure and return to this point.
- 12 To confirm that you are at the CARD level of the MAP display, type >MAPCI;MTC;NET;SHELF shelf_number;CARD slot_number

and press the Enter key.

where

shelf number

is 0 for 16K ENET, 0 or 1 for 64K ENET, 0 to 7 for 128K ENET

is 1 to 19 or 22 to 29 for 16K ENET, 1 to 38 for 64K ENET and

128K ENET

13 Return the replacement card to service, type

> >RTS plane_number component

and press the Enter key.

major (end)

where

plane_number is 0 or 1

component

is one of FRONT, BACK, or BOTH, as specified in step 9

If the RTS command	Do
passed	step 14
failed	step 15

Wait 5 min until the other alarms that this procedure generated clear. Continue the procedure.

If you	Do
recorded one slot in step 5	step 16
recorded a minimum of two slots in step 5	step 6

- 15 For additional help, contact the next level of support.
- 16 The procedure is complete.

Net SBsy major

Alarm display

Indication

At the MAP display, SBsy (preceded by a number) appears under the Net header of the alarm header.

Meaning

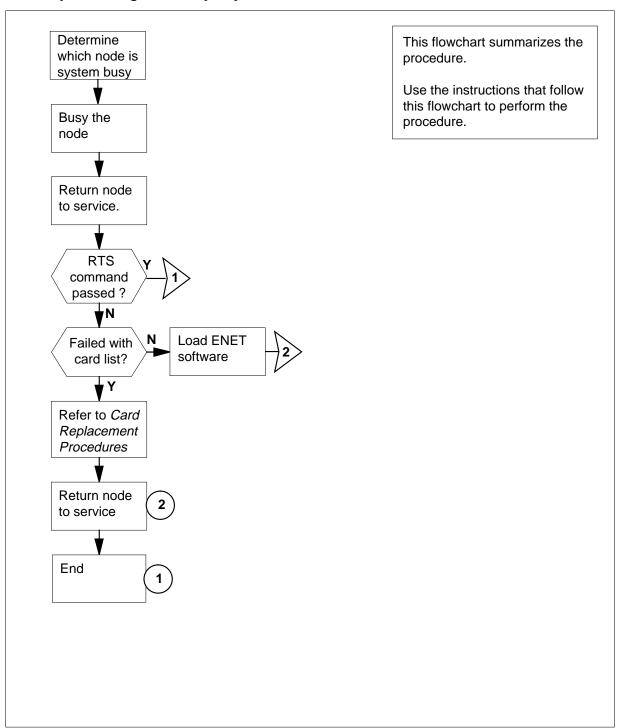
The system removed a minimum of one ENET node from service. The number that precedes SBsy indicates the number of ENET nodes that are system busy.

Result

The condition does not affect service. Removal of any components in the other plane from service cause network blockage.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net SBsy

major (continued)

Summary of clearing a Net SBsy major alarm

Net SBsy major (continued)

Clearing a Net SBsy major alarm

At the MAP terminal

To access the SYSTEM level of the MAP display, type

>MAPCI; MTC; NET; SYSTEM

and press the Enter key.

Example of a MAP display:

SYSTEM				
Shelf	Plane	0	Plane	1
00	S			
01				
02	-		_	
0.3	_		_	

- 2 Determine from the display the node that is system busy. The letter S in a Plane status field indicates the system busy node.
- 3 To manually busy the node that you identified in step 2, type

```
>BSY plane_number
                      shelf_number
and press the Enter key.
where
```

plane_number is 0 or 1

shelf number

is 0 for 16K ENET, 0 or 1 for 64K ENET, 0 to 7 for 128K ENET

To return the node to service, type

>RTS plane_number shelf_number and press the Enter key. where

plane_number is 0 or 1

shelf_number

is 0 for 16K ENET, 0 or 1 for 64K ENET, 0 to 7 for 128K ENET

If the RTS command	Do
passed	step 13
failed, and the system generated a card list	step 6
failed, and the MAP response indicated missing software	step 9

Net SBsy

major (continued)

	If the RTS command	Do
	failed, and the MAP response is Wrong ENCLASS in table ENINV	step 5
5	The ENET class entry in field ENCLAS	SS of table ENINV is wrong.
	Note: For 16K ENET, enter ENCLASS as PRI64K. For 128K E	ASS as PRI16K. For 64K ENET, enter NET, enter ENCLASS as PRI.
	Go to step 12.	
6	Record the product engineering code the card list.	(PEC) and location of the first card on
7	To replace the card, use the correct preprocedures. Complete the procedure	ocedure in <i>Card Replacement</i> and return to this point.
8	To confirm that you are at the SYSTEI	M level of the MAP display, type
	>MAPCI;MTC;NET;SYSTEM	
	and press the Enter key.	
	Go to step 11.	
9	To load software into the ENET node,	type
	>LOADEN plane_number shelf	_number
	and press the Enter key.	
	where	
	plane_number is 0 or 1	
	<pre>shelf_number is 0 for 16K ENET, 0 or 1 for 64</pre>	K ENET, 0 to 7 for 128K ENET
	MAP response:	
	WARNING Any software load in Please confirm ("YES" or "NO")	the ENET will be destroyed.
10	To confirm the command, type	
	>YES	
	and press the Enter key.	
11	To return the ENET node to service, ty	/pe
	>RTS plane_number shelf_nu	mber
	and press the Enter key.	
	where	
	<pre>plane_number is 0 or 1</pre>	

Net SBsy major (end)

shelf_number is 0 for 16K ENET, 0 or 1 for 64K ENET, 0 to 7 for 128K ENET

If RTS command	Do
passed	step 13
failed, and you replaced all the cards on the list that the system generated in step 4	step 12
failed, and you did not replace all the cards on the list that the system generated in step 4	step 6
failed, and the system did not generate a card list	step 12

- 12 For additional help, contact the next level of support.
- 13 The procedure is complete.

Net Shlv critical

Alarm display

Indication

At the MAP display, Shlv (preceded by a number) appears under the Net header of the alarm banner.

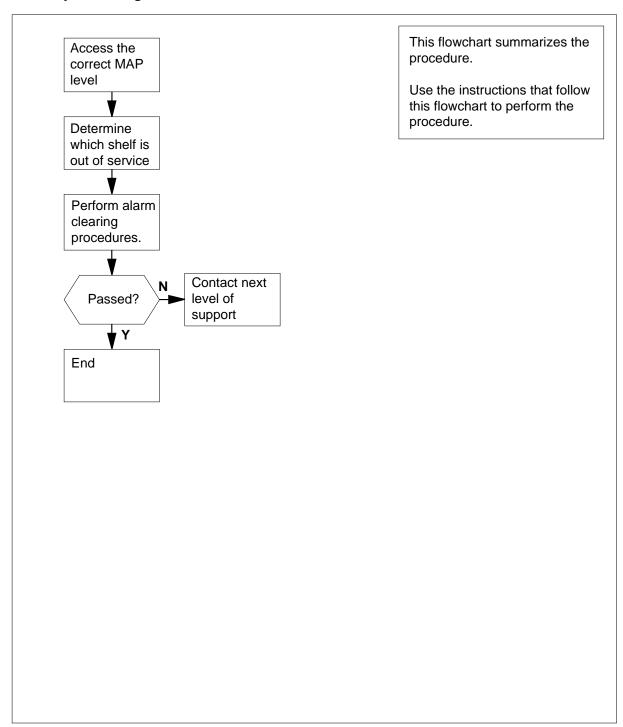
Meaning

Both planes of an ENET shelf are out of service. The number that precedes Shlv indicates the number of affected shelves.

Result

The result is the separation of peripheral modules (PM) from the rest of the system. The affected PMs have links to the out-of-service shelf. Another result is the loss of subscriber service that depends on the PMs.

Common procedures


There are no common procedures.

Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net Shlv critical (continued)

Summary of clearing a Net Shlv critical alarm

Net Shlv critical (continued)

Clearing a Net Shlv critical alarm

At the MAP display

1 To access the Net level of the MAP display, type

>MAPCI; MTC; NET

and press the Enter key.

Example of a MAP display:

ENET	System	Matrix	Shelf	0	1	2	3	BLOCKED
Plane 0	Fault	•		S				
Plane 1	Fault			M				

- 2 Check the Shelf status field of the node on Plane 0 to determine if the status field is system busy (S), or manually busy (M).
- 3 Perform the correct procedure to return the node to service.

If the Shelf field	Do
contains S	step 4
contains M	step 5

4 Perform the procedure *Clearing a Net SBsy major alarm*. Complete the procedure and return to this point.

Go to step 6.

- 5 Perform the procedure Clearing a Net MBsy major alarm. Complete the procedure and return to this point.
- 6 Check the Shelf field of the node in Plane 1. Determine if the status of the Shelf field is system busy (S) or manually busy (M).

If the Shelf field	Do
contains S	step 7
contains M	step 8

7 Perform the procedure *Clearing a Net SBsy major alarm*. Complete the procedure and return to this point.

Go to step 9.

8 Perform the procedure *Clearing a Net MBsy major alarm*. Complete the procedure and return to this point.

Go to step 9.

Net Shlv critical (end)

9 Check the Net header to determine if the Shlv alarm cleared.

If the alarm	Do
cleared	step 11
did not clear	step 10

- 10 For additional help, contact the next level of support.
- 11 The procedure is complete.

Net SysB major

Alarm display

Indication

At the MAP display, SysB (preceded by a number) appears under the (Net) subsystem status header of the alarm banner. The SysB indicates a major alarm that is network system busy.

Meaning

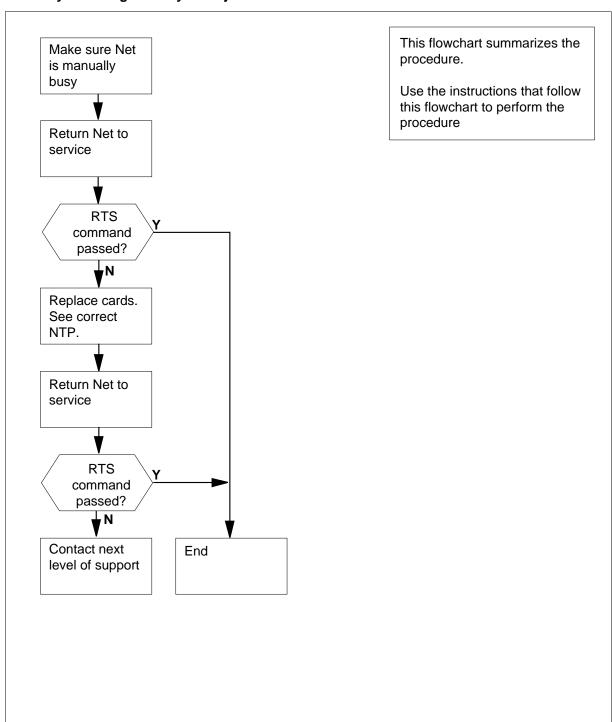
The number of network modules indicated are system busy.

Result

The alarm does not affect subscriber service. The other network plane supports the network module. If the other plane fails, a network pair alarm results. Subscribers served by the plane experience loss of service.

Common procedures

There are no common procedures.


Action

This procedure contains a summary flowchart and a list of steps. Use the flowchart to review the procedure. Follow the steps to perform the procedure.

Net SysB

major (continued)

Summary of claring a Net SysB major alarm

Net SysB

major (continued)

Clearing a Net SysB major alarm

At the MAP terminal

1 To access the Net level of the MAP display, type

```
>MAPCI; MTC; NET
```

and press the Enter key.

Example of a MAP display:

```
Net 11111 11111 22222 2222 33
Plane 01234 56789 01234 56789 01
0 ....S
1 .....
JCTR:
```

2 To silence the alarm, type

>SIL

and press the Enter key.

- When a minimum of two system busy network modules appear at the MAP display, record the number of each system busy (S) network module. Select a network module to work on.
- 4 To manually busy the selected network module, type

```
>BSY plane_no pair_no
and press the Enter key.

where

plane_no
    is the identification number of the network plane (0 or 1)

pair_no
    is the identification number of the network pair (0 to 31)
```

5 To return the network module to service, type

```
>RTS plane_no pair_no
and press the Enter key.

where

plane_no
    is the identification number of the network plane (0 or 1)

pair_no
    is the identification number of the network pair (0 to 31)
```

```
passed, but you recorded other step 4 system busy (S) network modules in step 3
```

Net SysB major (end)

If the RTS command	Do
passed, and other system busy network modules are not present	step 12
failed, and the system generated a card list	step 6
failed, and the system did not generate a card list	step 11
Record the locations, PECs, and PEC suffixes of the cards on the card list.	

- 6
- 7 To replace the card on the list, refer to Card Replacement Procedures. Return to this point.
- 8 To return the network module to service, type

>RTS plane_no pair_no

and press the Enter key.

where

9

10 11

12

plane_no

is the identification number of the network plane (0 or 1)

pair_no

is the identification number of the network pair (0 to 31)

If the RTS command	Do	
passed, but you recorded other system busy (S) network modules in step 3	step 4	
passed, and other system busy network modules are not present	step 12	
failed, and you did not replace all cards recorded in step 6	step 9	
failed, and you replaced all cards recorded in step 6	step 11	
To replace the next card on the list, refer to <i>Card Replacement Procedures</i> . Return to this point.		
Go to step 8.		
For additional help, contact the next level of support.		

The procedure is complete.

Index

A	CM E2A
Activating CCS7 links Vol. 4, 4-16	minor Vol. 1, 3-37
Activity switch with memory match	CM EccOn
Vol. 4, 4-26	minor Vol. 1, 3-41
alarm clearing	CM IMAGE
APPL CallP	critical Vol. 1, 3-46
major Vol. 1, 1-3	CM Image
CCS LK	minor Vol. 2, 4-125
minor Vol. 1, 2-24	CM JInact
CCS LKM	minor Vol. 1, 3-49
major Vol. 1, 1-7, Vol. 1, 1-11, Vol. 1, 2-52	CM LowMem
CCS LSSM	critical Vol. 1, 3-52
major Vol. 1, 2-78	CM LowSpr
CCS PC	major Vol. 1, 3-60
minor Vol. 1, 2-87	minor Vol. 1, 3-68
CCS PCC	CM MBsyMC
critical Vol. 1, 2-91	major Vol. 1, 3-76
CCS RSC	CM MC Tbl
critical Vol. 1, 2-95	minor Vol. 1, 3-84
CCS RSM	CM MemCfg
major Vol. 1, 2-101	minor Vol. 1, 3-96
CCS RSSC	CM MemCor
critical Vol. 1, 2-106	Major Vol. 1, 3-109
CCS RTRC	minor Vol. 1, 3-115
critical Vol. 1, 2-115	CM MemFlt
CCS RTRM	minor Vol. 1, 3-118
major Vol. 1, 2-124	CM MemLim
CM AutoLd	minor Vol. 1, 3-123 CM NoBrst
minor Vol. 1, 3-3	
CM CBsyMC	minor Vol. 1, 3-139
major Vol. 1, 3-6	CM NoOvr
CM ClkFlt	minor Vol. 1, 3-146 CM NoSYNC
major Vol. 1, 3-14	
CM CMFlt	major Vol. 1, 3-153
major Vol. 1, 3-21	CM NoTOD
CM CMTrap	critical Vol. 1, 3-159 CM PMCFlt
major Vol. 1, 3-34	
·9· · · · · · · · ·	major Vol. 1, 3-166

CM PMCTbl CIOE cabinet with MSP shelf major minor Vol. 1, 3-176 Vol. 1, 4-153 CIPE cabinet with MSP shelf major CM PrcOpt Vol. 1, 4-160 major Vol. 1, 3-185 CISM, CMTA and CTME cabinet with an CM RExFlt MSP shelf major Vol. 1, 4-167 major Vol. 1, 3-188 CPDC cabinet major Vol. 1, 4-174 CM RExSch DCE frame major Vol. 1, 4-182 minor Vol. 1, 3-191 DPCC cabinet major Vol. 1, 4-191 CM RExTst DSNE frame major Vol. 1, 4-201 minor Vol. 1, 3-197 DTE frame major Vol. 1, 4-210 CM SBsyMC IDTE frame major Vol. 1, 4-210 major Vol. 1, 3-202 IOE frame major Vol. 1, 4-219 CM SLMLIM LPP cabinet major Vol. 1, 4-242 major Vol. 1, 3-213 major Vol. 1, 4-125 CM SLMLim MEX frame major Vol. 1, 4-250 minor Vol. 1, 3-216 MS7E frame major Vol. 1, 4-265 CM SRAMFL NET0, NET1 (circuit breakers and fuses) major Vol. 1, 3-219 major Vol. 1, 4-274 CM SramFl NET0, NET1 frame (fuses only) major minor Vol. 1, 3-226 Vol. 1, 4-283 E911_LDT_CRITICAL NETC frame major Vol. 1, 4-292 critical Vol. 1, 4-67 PDC frame major Vol. 1, 4-301 E911_LDT_MAJOR Ext FSP major major Vol. 1, 4-71 CTME cabinet with FSP Vol. 1, 4-341 Ext CPPOOL TME frame Vol. 1, 4-341 critical Vol. 1, 4-42 Ext Maj major Vol. 1, 4-47 major Vol. 1, 4-12 Ext Crit Ext Min critical Vol. 1, 4-3 minor Vol. 1, 4-34 EXT E911_ALI_MAJOR IOD DDUOS on an IOM Major Vol. 1, 4-57 major or minor Vol. 2, 1-178 EXT E911_ALI_MINOR IOD DEVBnn Minor Vol. 1, 4-62 critical, major, or minor Vol. 2, 1-76 EXT E911_PSAP_OFFHK IOD DMNTnn minor Vol. 1, 4-93 minor Vol. 2, 1-79 EXT E911_RCER IOD HOLDnn minor alarm Vol. 1, 4-105 minor Vol. 2, 1-85 EXT E911_RCER_MAJOR IOD ITOC Major Vol. 1, 4-100 critical Vol. 2, 1-88 EXT E911_SRDB_MEMORY minor Vol. 2, 1-95 Minor Vol. 1, 4-110 IOD KEEPn Ext FSP minor Vol. 2, 1-103 APC cabinet major Vol. 1, 4-128 IOD MPCLNK CCC frame major Vol. 1, 4-137 minor Vol. 2, 1-106 CDSN cabinet major Vol. 1, 4-201 IOD MTDOS in an IOC CDSN cabinet with MSP shelf major minor Vol. 2, 1-235 Vol. 1, 4-146 IOD nCKEr CIOE cabinet major Vol. 1, 4-219 minor Vol. 2, 1-126

IOD nCKOS	IOD ssys MP
major or minor Vol. 2, 1-142	critical Vol. 2, 1-389
IOD nDDUOS	IOD ssys P
major or minor Vol. 2, 1-164	critical Vol. 2, 1-389
IOD nDPCOS	IOD XMITn
minor Vol. 2, 1-191	minor Vol. 2, 1-398
IOD nIOCOS	LCM ringing generator (LRG)
major or minor Vol. 2, 1-196	critical Vol. 3, 1-645
IOD nMPCOS	Lns DF
major or minor Vol. 2, 1-211	in a remote oscillator shelf Vol. 2, 2-3
IOD nMPCOS on an IOM	Lns DIAG
major or minor Vol. 2, 1-222	in a remote oscillator shelf Vol. 2, 2-7
IOD nnAMA	Lns FAC
critical, major, or minor Vol. 2, 1-260	in a remote oscillator shelf Vol. 2, 2-11
IOD nnJF	Lns HZD
critical, major, or minor Vol. 2, 1-264 IOD nnOM	in a remote oscillator shelf Vol. 2, 2-15 Lns IMAJ
critical, major, or minor Vol. 2, 1-268 IOD NO AMA on device type DISK	in a remote oscillator shelf Vol. 2, 2-19 Lns IMIN
critical Vol. 2, 1-272	in a remote oscillator shelf Vol. 2, 2-23
IOD NO AMA on device type TAPE	Lns LCARD
critical Vol. 2, 1-281	in a remote oscillator shelf Vol. 2, 2-27
IOD NO ssys on device type DISK	Lns LSET
critical, major, or minor Vol. 2, 1-295	in a remote oscillator shelf Vol. 2, 2-31
IOD NO ssys on device type TAPE	Lns MCARD
critical Vol. 2, 1-304	in a remote oscillator shelf Vol. 2, 2-35
IOD nSVC	Lns MSET
critical Vol. 2, 1-317	in a remote oscillator shelf Vol. 2, 2-39
IOD PnnVnn	Lns NDIAG
minor Vol. 2, 1-323	in a remote oscillator shelf Vol. 2, 2-43
IOD POOLnn	Lns OMAJ
minor Vol. 2, 1-333	critical, major, or minor Vol. 2, 2-47
IOD SENDn	Lns OMIN
minor Vol. 2, 1-344	critical, major, or minor Vol. 2, 2-51
IOD SLMbsy	Lns PSDF
major Vol. 2, 1-349	in a remote oscillator shelf Vol. 2, 2-55
minor Vol. 2, 1-355	Lns PSPD
IOD SLMoff	in a remote oscillator shelf Vol. 2, 2-59
minor Vol. 2, 1-361	Lns QDIAG
IOD SLMtbl	in a remote oscillator shelf Vol. 2, 2-63
minor Vol. 2, 1-367	Lns SDIAG
IOD ssys B	in a remote oscillator shelf Vol. 2, 2-67
minor Vol. 2, 1-373, Vol. 2, 1-374	Lns TCM
IOD ssys E	in a remote oscillator shelf Vol. 2, 2-71
minor Vol. 2, 1-377	Monitoring system maintenance
IOD ssys F	PM Vol. 4, 4-139
minor Vol. 2, 1-381	MS CLOCK
IOD ssys 1	major Vol. 2, 3-8
minor Vol. 2, 1-384	

MS CMIC MS SysB minor Vol. 2, 3-11 major Vol. 2, 3-191 MS DDM MS TRIstb major Vol. 2, 3-24 minor Vol. 2, 3-203 MS IMSL MS TROOS minor Vol. 2, 3-35 major Vol. 2, 3-206 MS ISTB Net Bsy minor Vol. 2, 4-3 minor Vol. 2, 3-43 MS ManB Net CBsy major Vol. 2, 3-57 major Vol. 2, 4-9 MS MaxPt Net CdPr minor Vol. 2, 3-61 critical Vol. 2, 4-22 MS MBCD Net CSLk minor Vol. 2, 3-64 minor Vol. 2, 4-27 MS MBCH Net ISTb minor Vol. 2, 3-73 minor Vol. 2, 4-40 MS MBCL Net Istb minor Vol. 2, 3-82 minor Vol. 2, 4-37 MS MbFb Net Istb (on a crosspoint card) minor Vol. 2, 4-46 minor Vol. 2, 3-91 MS MBPT Net Istb (on a link) minor Vol. 2, 4-51 minor Vol. 2, 3-96 MS MbTp Net Istb (on a system card) minor Vol. 2, 3-101 minor Vol. 2, 4-58 MS MSpair Net JcTr critical Vol. 2, 3-114 minor Vol. 2, 4-63 MS NOIMSL Net Link major Vol. 2, 3-106 minor Vol. 2, 4-71 MS REx Net LOAD minor Vol. 2, 3-117 minor Vol. 2, 4-82 MS RExByp Net MBCd minor Vol. 2, 3-121 minor Vol. 2, 4-94 MS RExFlt Net MBsy minor Vol. 2, 4-100 minor Vol. 2, 3-134 MS SBCD Net Pair minor Vol. 2, 3-141 critical Vol. 2, 4-105 MS SBCH Net PSLk minor Vol. 2, 3-150 minor Vol. 2, 4-111 MS SBCL Net REx minor Vol. 2, 4-122 minor Vol. 2, 3-158 MS SbFb Net RExOff major Vol. 2, 3-168 minor Vol. 2, 4-128 MS SBPT Net RExSch minor Vol. 2, 3-173 minor Vol. 2, 4-131 MS SbTp Net SBCd major Vol. 2, 3-182 major Vol. 2, 4-137 MS SPAN Net SBsy minor Vol. 2, 3-187 major Vol. 2, 4-143

Net Shlv	PM HSLR
critical Vol. 2, 4-148	critical Vol. 3, 1-542
Net SysB	PM IPML
minor Vol. 2, 4-152	major Vol. 3, 1-560
PM APU	minor Vol. 3, 1-560
critical Vol. 3, 1-111	PM ISTb
major Vol. 3, 1-134	minor Vol. 3, 1-568
minor Vol. 3, 1-153	minor (in an OSNM) Vol. 3, 1-579
PM CBSY	PM LCM
major Vol. 3, 1-178	critical Vol. 3, 1-585
PM DCH	major Vol. 3, 1-600
major Vol. 3, 1-182	minor Vol. 3, 1-613
minor Vol. 3, 1-192	PM LCME
PM DCH (in a TMS)	major Vol. 3, 1-633
major Vol. 3, 1-211	PM LGC
PM DCH (in a TMS))	critical Vol. 3, 1-656
minor Vol. 3, 1-220	major Vol. 3, 1-676
PM DTC	minor Vol. 3, 1-698
critical Vol. 3, 1-229	PM LIM
major Vol. 3, 1-249	critical Vol. 3, 1-713
minor Vol. 3, 1-270	major Vol. 3, 1-725
PM EIU	minor Vol. 3, 1-739
critical Vol. 3, 1-283	PM LIMF
major Vol. 3, 1-310	critical Vol. 3, 1-749
minor Vol. 3, 1-334	major Vol. 3, 1-758
PM ETMS_OCDL_OOS	PM LIMREX
major Vol. 4, 1-251	minor Vol. 3, 1-766
PM EXND	PM LIU7
minor Vol. 3, 1-360	critical Vol. 3, 1-767
PM FP	major Vol. 3, 1-783, Vol. 4, 1-19
CPUFlt minor Vol. 3, 1-380	minor Vol. 3, 1-797, Vol. 4, 1-33
critical Vol. 3, 1-365	PM LMDrwr
device-related fault minor Vol. 3, 1-387	major Vol. 3, 1-816
JInact minor Vol. 3, 1-402	minor Vol. 3, 1-816
LowMem minor Vol. 3, 1-405	PM LMPr
major Vol. 3, 1-371	critical Vol. 3, 1-821
MemCor minor Vol. 3, 1-413	PM LMRex
MemFlt minor Vol. 3, 1-419	minor Vol. 3, 1-830
MMThrs minor Vol. 3, 1-425	PM LMRGen
NoOvr minor Vol. 3, 1-428	major Vol. 3, 1-834
NoSync minor Vol. 3, 1-434	minor Vol. 3, 1-834
PrtFlt minor Vol. 3, 1-440	PM LTC
PrtTbl minor Vol. 3, 1-445	critical Vol. 3, 1-838
Trap minor Vol. 3, 1-454	major Vol. 3, 1-858
PM FRIU	minor Vol. 3, 1-879
major on an LPP Vol. 3, 1-470	PM LTCI
minor (on an SSLPP) Vol. 3, 1-517	critical Vol. 3, 1-892
minor on an LPP Vol. 3, 1-482	major Vol. 3, 1-892
PM HLIU	minor Vol. 3, 1-892
critical Vol 3 1-528	

PM MSB6, MSB7	Trks CB
critical Vol. 4, 1-52	critical, major, or minor Vol. 4, 2-55
major Vol. 4, 1-52	Trks CC
minor Vol. 4, 1-52	critical Vol. 4, 2-61
PM NIU	Trks CE
critical Vol. 4, 1-82	critical, major, or minor Vol. 4, 2-69
major Vol. 4, 1-101	Trks CG
minor Vol. 4, 1-116	minor Vol. 4, 2-74
PM PMLOAD	Trks CM
minor Vol. 4, 1-145	major Vol. 4, 2-81
PM SDM	Trks CR C and CR M
major Vol. 1, 1-5	critical Vol. 4, 2-88
minor Vol. 1, 1-6	Trks CS
PM STC	critical, major, or minor Vol. 4, 2-96
major Vol. 4, 1-156	Trks EX
minor Vol. 4, 1-156	critical, major, or minor Vol. 4, 2-102
PM SysB	Trks GC, GM, and G
major Vol. 4, 1-168	critical, major, or minor Vol. 4, 2-106
Major (in an OSNM) Vol. 4, 1-182	Trks MB
PM TMS	critical, major, or minor Vol. 4, 2-115
critical Vol. 4, 1-209	Trks MJ C and MJ M
major Vol. 4, 1-227	critical or major Vol. 4, 2-120
minor Vol. 4, 1-240	Trks MN C and MN M
PM TPC	critical or major Vol. 4, 2-128
critical Vol. 4, 1-267	Trks SB
PM TPC (integrated for MP and virtual for	critical, major, or minor Vol. 4, 2-137
MPX-IWS)	Allocating a volume Vol. 4, 4-34
minor Vol. 4, 1-332	APPL CallP
PM TPC (integrated for MP)	major
critical Vol. 4, 1-292	clearing Vol. 1, 1-3
PM TPC (virtual for MPX-IWS)	clearing voi. 1, 1 3
major Vol. 4, 1-310	C
PM VLCM	
minor Vol. 4, 1-381	C7BERT
PM VPU	Running Vol. 4, 4-211
critical Vol. 4, 1-385	cable, temporary fiber
major Vol. 4, 1-410	connecting ENET to MS Vol. 4, 4-91
minor Vol. 4, 1-432	connecting ENET to PM Vol. 4, 4-80
PM XLIU	connecting MS to SSLPP Vol. 4, 4-69
critical Vol. 4, 1-458	card replacement common procedures
major Vol. 4, 1-472	Correcting a load mismatch Vol. 4, 4-103
minor Vol. 4, 1-485	CCS LK
talk battery	minor
minor Vol. 4, 1-198	clearing Vol. 1, 2-24
Talk battery (TB)	CCS LKM
critical Vol. 4, 1-186	major
Trks C	clearing Vol. 1, 1-7, Vol. 1, 1-11, Vol. 1, 2-52
minor Vol. 4, 2-49	7.50. 1, 1 7, 701. 1, 1 11, 701. 1, 2 52

CCS LSSM	CM Image
major	minor
clearing Vol. 1, 2-78	clearing Vol. 2, 4-125
CCS PC	CM JInact
minor	minor
clearing Vol. 1, 2-87	clearing Vol. 1, 3-49
CCS PCC	CM LowMem
critical	critical
clearing Vol. 1, 2-91	clearing Vol. 1, 3-52
CCS RSC	CM LowSpr
critical	major
clearing Vol. 1, 2-95	clearing Vol. 1, 3-60
CCS RSM	minor
major	clearing Vol. 1, 3-68
clearing Vol. 1, 2-101	CM MBsyMC
CCS RSSC	major
critical	clearing Vol. 1, 3-76
clearing Vol. 1, 2-106	CM MC Tbl
CCS RTRC	minor
critical	clearing Vol. 1, 3-84
clearing Vol. 1, 2-115	CM MemCfg
CCS RTRM	minor
major	clearing Vol. 1, 3-96
clearing Vol. 1, 2-124	CM MemCor
CM AutoLd	Major
minor	clearing Vol. 1, 3-109
clearing Vol. 1, 3-3	minor
CM CBsyMC	clearing Vol. 1, 3-115 CM MemFlt
major	minor
clearing Vol. 1, 3-6 CM ClkFlt	clearing Vol. 1, 3-118
major	CM MemLim
clearing Vol. 1, 3-14	minor
CM CMFlt	clearing Vol. 1, 3-123
major	CM NoBrst
clearing Vol. 1, 3-21	minor
CM CMTrap	clearing Vol. 1, 3-139
major	CM NoOvr
clearing Vol. 1, 3-34	minor
CM E2A	clearing Vol. 1, 3-146
minor	CM NoSYNC
clearing Vol. 1, 3-37	major
CM EccOn	clearing Vol. 1, 3-153
minor	CM NoTOD
clearing Vol. 1, 3-41	critical
CM IMAGE	clearing Vol. 1, 3-159
critical	
clearing Vol. 1, 3-46	
- · · · · · · · · · · · · · · · · · · ·	

CM PMCFIt	LCM
major	Clearing ringing generator faults Vol. 4, 4-63
clearing Vol. 1, 3-166	LME frame
CM PMCTbl	checking the fuse unit Vol. 4, 4-38
minor	major
clearing Vol. 1, 3-176	Clearing PM C-side faults Vol. 4, 4-47
CM PrcOpt	minor
major	Clearing PM C-side faults Vol. 4, 4-47
clearing Vol. 1, 3-185	PM
CM RExFlt	Loading Vol. 4, 4-131
	Resetting a volume Vol. 4, 4-150
major	Restoring LIM unit cross links Vol. 4, 4-43
clearing Vol. 1, 3-188	RLM frame
CM RExSch	
minor	checking the fuse unit Vol. 4, 4-38
clearing Vol. 1, 3-191	XSG
CM RExTst	moving to a spare XLIU Vol. 4, 4-144
minor	critical
clearing Vol. 1, 3-197	Clearing PM C-side faults Vol. 4, 4-47
CM SBsyMC	_
major	D
clearing Vol. 1, 3-202	Deallocating a volume Vol. 4, 4-118
CM SLMLIM	Deanocating a volume vol. 4, 4 110
major	E
clearing Vol. 1, 3-213	
CM SLMLim	E911_LDT_CRITICAL
minor	critical
clearing Vol. 1, 3-216	clearing Vol. 1, 4-67
CM SRAMFL	E911_LDT_MAJOR
major	major
clearing Vol. 1, 3-219	clearing Vol. 1, 4-71
CM SramFl	Ext CPPOOL
	critical
minor	clearing Vol. 1, 4-42
clearing Vol. 1, 3-226	major
common procedures	clearing Vol. 1, 4-47
Activating CCS7 links Vol. 4, 4-16	Ext Crit
Activity switch with memory match	critical
Vol. 4, 4-26	clearing Vol. 1, 4-3
Allocating a volume Vol. 4, 4-34	EXT E911_ALI_MAJOR
cable, temporary fiber	
connecting ENET to MS Vol. 4, 4-91	Major
connecting ENET to PM Vol. 4, 4-80	clearing Vol. 1, 4-57
connecting MS to SSLPP Vol. 4, 4-69	EXT E911_ALI_MINOR
critical	Minor
Clearing PM C-side faults Vol. 4, 4-47	clearing Vol. 1, 4-62
Deallocating a volume Vol. 4, 4-118	EXT_E911_PSAP_OFFHK
Failure to switch clock mastership	minor
Vol. 4, 4-122	clearing Vol. 1, 4-93

EXT E911_RCER	MS7E frame major
minor alarm	clearing Vol. 1, 4-265
clearing Vol. 1, 4-105	NET0, NET1 (circuit breakers and fuses)
EXT E911_RCER_MAJOR	major
Major	clearing Vol. 1, 4-274
clearing Vol. 1, 4-100	NET0, NET1 frame (fuses only) major
EXT E911_SRDB_MEMORY	clearing Vol. 1, 4-283
Minor	NETC frame major
clearing Vol. 1, 4-110	clearing Vol. 1, 4-292
Ext FSP	PDC frame major
APC cabinet major	clearing Vol. 1, 4-301
clearing Vol. 1, 4-128	Ext Maj
CCC frame major	major
clearing Vol. 1, 4-137	clearing Vol. 1, 4-12
CDSN cabinet major	Ext Min
clearing Vol. 1, 4-201	minor
CDSN cabinet with MSP shelf major	clearing Vol. 1, 4-34
clearing Vol. 1, 4-146	<u></u>
CIOE cabinet major	F
clearing Vol. 1, 4-219	Failure to switch clock mastership Vol. 4, 4-122
CIOE cabinet with MSP shelf major	1
clearing Vol. 1, 4-153	1
CIPE cabinet with MSP shelf major	IOD DDUOS on an IOM
clearing Vol. 1, 4-160	
CISM, CMTA and CTME cabinet with an	major or minor clearing Vol. 2, 1-178
MSP shelf major	IOD DEVBnn
clearing Vol. 1, 4-167	
CPDC cabinet major	critical, major, or minor
clearing Vol. 1, 4-174	clearing Vol. 2, 1-76 IOD DMNTnn
DCE frame major	minor
clearing Vol. 1, 4-182	clearing Vol. 2, 1-79
DPCC cabinet major	IOD HOLDnn
clearing Vol. 1, 4-191 DSNE frame major	minor
clearing Vol. 1, 4-201	clearing Vol. 2, 1-85
DTE frame major	IOD ITOC
clearing Vol. 1, 4-210	critical
IDTE frame major	clearing Vol. 2, 1-88
clearing Vol. 1, 4-210	minor
IOE frame major	clearing Vol. 2, 1-95
clearing Vol. 1, 4-219	IOD KEEPn
LPP cabinet major	minor
clearing Vol. 1, 4-242	clearing Vol. 2, 1-103
major	IOD MPCLNK
clearing Vol. 1, 4-125	minor
MEX frame major	clearing Vol. 2, 1-106
clearing Vol 1 4-250	

IOD MTDOS in an IOC	IOD PnnVnn
minor	minor
clearing Vol. 2, 1-235	clearing Vol. 2, 1-323
IOD nCKEr	IOD POOLnn
minor	minor
clearing Vol. 2, 1-126	clearing Vol. 2, 1-333
IOD nCKOS	IOD SENDn
major or minor	minor
clearing Vol. 2, 1-142	clearing Vol. 2, 1-344
IOD nDDUOS	IOD SLMbsy
major or minor	major
clearing Vol. 2, 1-164	clearing Vol. 2, 1-349
IOD nDPCOS	minor
minor	clearing Vol. 2, 1-355
clearing Vol. 2, 1-191	IOD SLMoff
IOD nIOCOS	minor
major or minor	clearing Vol. 2, 1-361
clearing Vol. 2, 1-196	IOD SLMtbl
IOD nMPCOS	minor
major or minor	clearing Vol. 2, 1-367
clearing Vol. 2, 1-211	IOD ssys B
IOD nMPCOS on an IOM	minor
major or minor	clearing Vol. 2, 1-373, Vol. 2, 1-374
clearing Vol. 2, 1-222	IOD ssys E
IOD nnAMA	minor
critical, major, or minor	clearing Vol. 2, 1-377
clearing Vol. 2, 1-260	IOD ssys F
IOD nnJF	minor
critical, major, or minor	clearing Vol. 2, 1-381
clearing Vol. 2, 1-264	IOD ssys 1
IOD nnOM	minor
critical, major, or minor	clearing Vol. 2, 1-384
clearing Vol. 2, 1-268	IOD ssys MP
IOD NO AMA on device type DISK	critical
critical	clearing Vol. 2, 1-389
clearing Vol. 2, 1-272	IOD ssys P
IOD NO AMA on device type TAPE	critical
critical	clearing Vol. 2, 1-389
	IOD XMITn
clearing Vol. 2, 1-281 IOD NO ssys on device type DISK	minor
critical, major, or minor clearing Vol. 2, 1-295	clearing Vol. 2, 1-398
IOD NO ssys on device type TAPE	1
critical	L
	LCM
clearing Vol. 2, 1-304	Clearing ringing generator faults Vol. 4, 4-63
IOD nSVC	LCM ringing generator (LRG)
critical	critical
clearing Vol. 2, 1-317	clearing Vol. 3, 1-645

LME frame	Lns QDIAG
checking the fuse unit Vol. 4, 4-38	in a remote oscillator shelf
Lns DF	clearing Vol. 2, 2-63
in a remote oscillator shelf	Lns SDIAG
clearing Vol. 2, 2-3	in a remote oscillator shelf
Lns DIAG	clearing Vol. 2, 2-67
in a remote oscillator shelf	Lns TCM
clearing Vol. 2, 2-7	in a remote oscillator shelf
Lns FAC	clearing Vol. 2, 2-71
in a remote oscillator shelf	
clearing Vol. 2, 2-11	M
Lns HZD	major
in a remote oscillator shelf	Clearing PM C-side faults Vol. 4, 4-47
clearing Vol. 2, 2-15	minor
Lns IMAJ	Clearing PM C-side faults Vol. 4, 4-47
in a remote oscillator shelf	Monitoring system maintenance
clearing Vol. 2, 2-19	PM
Lns IMIN	
in a remote oscillator shelf	clearing Vol. 4, 4-139 MS CLOCK
clearing Vol. 2, 2-23	
Lns LCARD	major
in a remote oscillator shelf	clearing Vol. 2, 3-8 MS CMIC
clearing Vol. 2, 2-27	minor
Lns LSET	
in a remote oscillator shelf	clearing Vol. 2, 3-11 MS DDM
clearing Vol. 2, 2-31	major
Lns MCARD	clearing Vol. 2, 3-24
in a remote oscillator shelf	MS IMSL
clearing Vol. 2, 2-35	minor
Lns MSET	clearing Vol. 2, 3-35
in a remote oscillator shelf	MS ISTB
clearing Vol. 2, 2-39	minor
Lns NDIAG	clearing Vol. 2, 3-43
in a remote oscillator shelf	MS ManB
clearing Vol. 2, 2-43	major
Lns OMAJ	clearing Vol. 2, 3-57
critical, major, or minor	MS MaxPt
clearing Vol. 2, 2-47	minor
Lns OMIN	clearing Vol. 2, 3-61
critical, major, or minor	MS MBCD
clearing Vol. 2, 2-51	minor
Lns PSDF	clearing Vol. 2, 3-64
in a remote oscillator shelf	MS MBCH
clearing Vol. 2, 2-55	minor
Lns PSPD	clearing Vol. 2, 3-73
in a remote oscillator shelf	MS MBCL
clearing Vol. 2, 2-59	minor
	clearing Vol. 2, 3-82

MS MbFb		MS TRIstb
minor		minor
	Vol. 2, 3-91	clearing Vol. 2, 3-203
MS MBPT		MS TROOS
minor		major
•	Vol. 2, 3-96	clearing Vol. 2, 3-206
MS MbTp		
minor		N
clearing	Vol. 2, 3-101	Net Bsy
MS MSpair		minor
critical		clearing Vol. 2, 4-3
clearing	Vol. 2, 3-114	Net CBsy
MS NOIMSL		· · · · · · · · · · · · · · · · · · ·
major		major
· ·	Vol. 2, 3-106	clearing Vol. 2, 4-9 Net CdPr
MS REx	, ,	
minor		critical
	Vol. 2, 3-117	clearing Vol. 2, 4-22
MS RExByp	VOI. 2, 3 117	Net CSLk
minor		minor
	Vol. 2, 3-121	clearing Vol. 2, 4-27
MS RExFlt	VOI. 2, 3-121	Net ISTb
minor		minor
	Vol. 2, 3-134	clearing Vol. 2, 4-40
MS SBCD	VOI. 2, 3-134	Net Istb
_		minor
minor	W-1 2 2 141	clearing Vol. 2, 4-37
MS SBCH	Vol. 2, 3-141	Net Istb (on a crosspoint card)
		minor
minor	W.1 2 2 150	clearing Vol. 2, 4-46
MS SBCL	Vol. 2, 3-150	Net Istb (on a link)
		minor
minor	W 1 2 2 150	clearing Vol. 2, 4-51
	Vol. 2, 3-158	Net Istb (on a system card)
MS SbFb		minor
major		clearing Vol. 2, 4-58
	Vol. 2, 3-168	Net JcTr
MS SBPT		minor
minor		clearing Vol. 2, 4-63
•	Vol. 2, 3-173	Net Link
MS SbTp		minor
major		clearing Vol. 2, 4-71
	Vol. 2, 3-182	Net LOAD
MS SPAN		minor
minor		clearing Vol. 2, 4-82
clearing	Vol. 2, 3-187	Net MBCd
MS SysB		minor
major		clearing Vol. 2, 4-94
· ·	Vol. 2, 3-191	Cicarring voi. 2, 4-74
9		

Net MBsy		minor
minor		clearing Vol. 3, 1-192
clearing	Vol. 2, 4-100	PM DCH (in a TMS)
Net Pair		major
critical		clearing Vol. 3, 1-211
clearing	Vol. 2, 4-105	minor
Net PSLk		clearing Vol. 3, 1-220
minor		PM DTC
clearing	Vol. 2, 4-111	critical
Net REx		clearing Vol. 3, 1-229
minor		major
clearing	Vol. 2, 4-122	clearing Vol. 3, 1-249
Net RExOff		minor
minor		clearing Vol. 3, 1-270
clearing	Vol. 2, 4-128	PM EIU
Net RExSch		critical
minor		clearing Vol. 3, 1-283
clearing	Vol. 2, 4-131	major
Net SBCd		clearing Vol. 3, 1-310
major		minor
	Vol. 2, 4-137	clearing Vol. 3, 1-334
Net SBsy		PM ETMS_OCDL_OOS
major		major
clearing	Vol. 2, 4-143	clearing Vol. 4, 1-251
Net Shlv		PM EXND
critical		minor
clearing	Vol. 2, 4-148	clearing Vol. 3, 1-360
Net SysB		PM FP
minor		CPUFlt minor
clearing	Vol. 2, 4-152	clearing Vol. 3, 1-380
		critical
Р		clearing Vol. 3, 1-365
PM		device-related fault minor
Loading V	Jol 4 4 131	clearing Vol. 3, 1-387
PM APU	v 01. 4, 4-131	JInact minor
critical		clearing Vol. 3, 1-402
	Wol 2 1 111	LowMem minor
major	Vol. 3, 1-111	clearing Vol. 3, 1-405
· ·	Vol. 3, 1-134	major
minor	VOI. 3, 1-134	clearing Vol. 3, 1-371
	Vol. 3, 1-153	MemCor minor
PM CBSY	VOI. 3, 1-133	clearing Vol. 3, 1-413
major		MemFlt minor
· ·	Vol. 3, 1-178	clearing Vol. 3, 1-419
PM DCH	v UI. 3, 1-1/0	MMThrs minor
		clearing Vol. 3, 1-425
major	Vol. 3, 1-182	NoOvr minor
Clearing	v 01. 3, 1-182	clearing Vol. 3, 1-428

NoSync minor	PM LIM		
clearing Vol. 3, 1-434	critical		
PrtFlt minor	clearing Vol. 3, 1-713		
clearing Vol. 3, 1-440	major		
PrtTbl minor	clearing Vol. 3, 1-725		
clearing Vol. 3, 1-445	minor		
Trap minor	clearing Vol. 3, 1-739		
clearing Vol. 3, 1-454	PM LIMF		
PM FRIU	critical		
major on an LPP	clearing Vol. 3, 1-749		
clearing Vol. 3, 1-470	major		
minor (on an SSLPP)	clearing Vol. 3, 1-758		
clearing Vol. 3, 1-517	PM LIMREX		
minor on an LPP	minor		
clearing Vol. 3, 1-482	clearing Vol. 3, 1-766		
PM HLIU	PM LIU7		
critical	critical		
clearing Vol. 3, 1-528	clearing Vol. 3, 1-767		
PM HSLR	major		
critical	clearing Vol. 3, 1-783, Vol. 4, 1-19		
clearing Vol. 3, 1-542	minor		
PM IPML	clearing Vol. 3, 1-797, Vol. 4, 1-33		
major	PM LMDrwr		
clearing Vol. 3, 1-560	major		
minor	clearing Vol. 3, 1-816		
clearing Vol. 3, 1-560	minor		
PM ISTb	clearing Vol. 3, 1-816		
minor	PM LMPr		
clearing Vol. 3, 1-568	critical		
minor (in an OSNM)	clearing Vol. 3, 1-821		
clearing Vol. 3, 1-579	PM LMRex		
PM LCM	minor		
critical	clearing Vol. 3, 1-830		
clearing Vol. 3, 1-585	PM LMRGen		
major	major		
clearing Vol. 3, 1-600	clearing Vol. 3, 1-834		
minor	minor		
clearing Vol. 3, 1-613	clearing Vol. 3, 1-834		
PM LCME	PM LTC		
major	critical		
clearing Vol. 3, 1-633	clearing Vol. 3, 1-838		
PM LGC	major		
critical	clearing Vol. 3, 1-858		
clearing Vol. 3, 1-656	minor		
major	clearing Vol. 3, 1-879		
clearing Vol. 3, 1-676	PM LTCI		
minor	critical		
clearing Vol. 3, 1-698	clearing Vol. 3, 1-892		

major		PM TPC (integrated for MP and virtual for
clearing	Vol. 3, 1-892	MPX-IWS)
minor		minor
clearing	Vol. 3, 1-892	clearing Vol. 4, 1-332
PM MSB6, M	ISB7	PM TPC (integrated for MP)
critical		critical
clearing	Vol. 4, 1-52	clearing Vol. 4, 1-292
major		PM TPC (virtual for MPX-IWS)
	Vol. 4, 1-52	major
minor		clearing Vol. 4, 1-310
clearing	Vol. 4, 1-52	PM VLCM
PM NIU		minor
critical		clearing Vol. 4, 1-381
clearing	Vol. 4, 1-82	PM VPU
major	,	critical
	Vol. 4, 1-101	clearing Vol. 4, 1-385
minor	,	major
clearing	Vol. 4, 1-116	clearing Vol. 4, 1-410
PM PMLOAI		minor
minor		clearing Vol. 4, 1-432
clearing	Vol. 4, 1-145	PM XLIU
PM SDM	,	critical
major		clearing Vol. 4, 1-458
	Vol. 1, 1-5	major
minor	,	clearing Vol. 4, 1-472
	Vol. 1, 1-6	minor
PM STC	,	clearing Vol. 4, 1-485
major		• • • • • • • • • • • • • • • • • • •
•	Vol. 4, 1-156	R
minor		
clearing	Vol. 4, 1-156	Resetting a volume Vol. 4, 4-150
PM SysB		Restoring LIM unit cross links Vol. 4, 4-43
major		RLM frame
-	Vol. 4, 1-168	checking the fuse unit Vol. 4, 4-38
Major (in a		_
•	Vol. 4, 1-182	Т
PM TMS		talk battery
critical		minor
clearing	Vol. 4, 1-209	clearing Vol. 4, 1-198
major		Talk battery (TB)
•	Vol. 4, 1-227	critical
minor		clearing Vol. 4, 1-186
clearing	Vol. 4, 1-240	Trks C
PM TPC		minor
critical		clearing Vol. 4, 2-49
	Vol. 4, 1-267	Trks CB
		critical, major, or minor
		clearing Vol. 4, 2-55
		•

```
Trks CC
  critical
     clearing Vol. 4, 2-61
Trks CE
  critical, major, or minor
     clearing Vol. 4, 2-69
Trks CG
  minor
     clearing Vol. 4, 2-74
Trks CM
  major
     clearing Vol. 4, 2-81
Trks CR C and CR M
  critical
     clearing Vol. 4, 2-88
Trks CS
  critical, major, or minor
     clearing Vol. 4, 2-96
Trks EX
  critical, major, or minor
     clearing Vol. 4, 2-102
Trks GC, GM, and G
  critical, major, or minor
     clearing Vol. 4, 2-106
Trks MB
  critical, major, or minor
     clearing Vol. 4, 2-115
Trks MJ C and MJ M
  critical or major
     clearing Vol. 4, 2-120
Trks MN C and MN M
  critical or major
     clearing Vol. 4, 2-128
Trks SB
  critical, major, or minor
     clearing Vol. 4, 2-137
X
XSG
  moving to a spare XLIU Vol. 4, 4-144
```

DMS-100 Family

North American DMS-100

Alarm Clearing and Performance Monitoring Procedures Volume 2 of 4

Product Documentation - Dept. 3423 Nortel Networks P.O. Box 13010 RTP, NC 27709-3010 Telephone: 1-877-662-5669

email: cits@nortelnetworks.com

Copyright © 1996-2001 Nortel Networks, All Rights Reserved

NORTEL NETWORKS CONFIDENTIAL: The information contained herein is the property of Nortel Networks and is strictly confidential. Except as expressly authorized in writing by Nortel Networks, the holder shall keep all information contained herein confidential, shall disclose the information only to its employees with a need to know, and shall protect the information, in whole or in part, from disclosure and dissemination to third parties with the same degree of care it uses to protect its own confidential information, but with no less than reasonable care. Except as expressly authorized in writing by Nortel Networks, the holder is granted no rights to use the information contained herein.

Information is subject to change without notice. Nortel Networks reserves the right to make changes in design or components as progress in engineering and manufacturing may warrant. Changes or modification to the DMS-100 without the express consent of Nortel Networks may void its warranty and void the user's authority to operate the equipment.

Nortel Networks, the Nortel Networks logo, the Globemark, How the World Shares Ideas, Unified Networks, DMS, DMS-100, Helmsman, MAP, Meridian, Nortel, Northern Telecom, NT, Supernode, and TOPS are trademarks of Nortel Networks.

Publication number: 297-8021-543 Product release: LET0015 and up Document release: Standard 14.02

Date: May 2001

Printed in the United States of America

