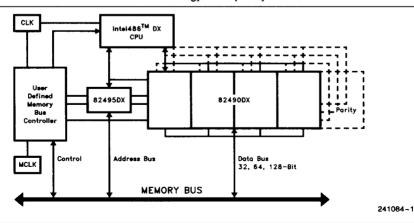


Intel486TM DX CPU-CACHE CHIP SET

50 MHz Intel486™ DX Microprocessor, 82495DX Cache Controller, and 82490DX Dual Ported Intelligent Cache SRAM


- 50 MHz Intel486™ DX CPU
 - RISC Integer Core with Frequent Instructions Executing in One Clock
 - 160 Mbyte/Sec Burst Bus
 - -41 Dhrystone MIPs
 - 11.5M Double Precision Whetstones/Sec.
 - On-Chip Cache and FPU
- Highly Flexible
 - Supports 128 Kbyte, 256 Kbyte, and 512 Kbyte Configurations
 - Complete MESI Protocol Support
 - 32-, 64- or 128-Bit Memory Bus Width
 - Synchronous, Asynchronous, and Strobed Memory Bus Protocols
 - Variable Cache Line Sizes and Sectoring
 - Cache Parity Option

- **High Performance Second Level Cache**
 - Two-Way Set Associative
 - Write-Back or Write Through Cache
 - Zero Wait State Cache Access
 - Concurrent CPU Bus, Memory Bus, and Internal Array Operation
- **Full Multiprocessing Support**
 - Implements MESI Write-Back Cache Protocol
 - Low Bus Utilization
 - Automatically Maintains 1st Level Cache Consistency
 - Supports Read-for-Ownership, Write-Allocation, and Cache-to-Cache Transfers

The 50 MHz Intel486 DX CPU-Cache Chip Set provides a high performance solution for servers and high-end desktop systems. This binary compatible solution has been optimized to provide 50 MHz, zero wait state performance. The CPU-Cache chip set combines the 50 MHz Intel486 Microprocessor with the 82495DX/82490DX cache subsystem. It delivers integer performance of 41 V1.1 Dhrystone MIPs and a SPEC integer rating of 27.9. The cache subsystem features the 82495DX Cache Controller and the 82490DX Dual Ported Data RAM. Dual ported buffers and registers of the 82490DX allow the 82495DX Cache Controller to concurrently handle CPU bus, memory bus, and internal cache operations for maximum performance.

The CPU-Cache Chip Set offers many features that are ideal for multiprocessor based systems. The Write-Back feature provides efficient memory bus utilization by reducing bus traffic through eliminating unnecessary writes to main memory. The CPU-Cache chip set also supports MESI protocol and monitors the memory bus to guarantee cache coherency.

The 50 MHz Intel486 DX CPU and 82495DX/82490DX Cache subsystem are produced on Intel's latest CHMOS V process which features submicron technology and triple layer metal.

October 1991 Order Number: 241084-002

Intel486™ DX CPU-Cache Chip Set

CONTENTS	PAGE
1.0 PINOUTS	2-477
1.1 i486TMDX CPU Pinouts	2-477
1.2 82495DX Pinouts	2-479
1.3 82490DX Pinouts	2-481
1.4 Pin Cross Reference Tables	2-483
1.4.1 i486TMDX Microprocessor Chip Set Version Pin	2-483
1.4.2 82495DX Quick Pin Referer by Name	
1.4.3 82490DX Quick Pin Referer by Name	
2.0 QUICK PIN REFERENCE	2-486
2.1 Pin State During Reset	2-494
2.2 CPU-Cache Chip Set Output Pins	2-496
2.3 CPU-Cache Chip Set Input/Outp	
Pins	2-496
2.4 CPU-Cache Chip Set Input Pins	2-497
3.0 ARCHITECTURAL OVERVIEW	2-498
3.1 Introduction	2-498
3.2 CPU-Cache Chip Set Description	2-498
3.2.1 CPU	
3.2.2 Cache Controller	
3.2.3 Cache SRAM	2-498

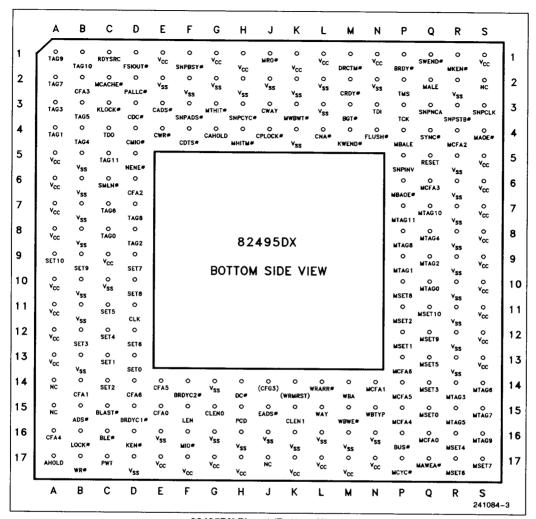
CONTENTS	PAGE
3.3 Secondary Cache Features	. 2-500
3.4 Chip Set Design and Operation .	. 2-500
3.5 CPU Bus Interface	. 2-500
3.6 Secondary Cache Interface	. 2-500
3.7 Memory Bus Interface	. 2-501
3.8 Test	. 2-502
4.0 ELECTRICAL DATA	. 2-502
4.1 Background	. 2-502
4.2 Maximum Ratings	. 2-502
4.3 DC Specifications	. 2-503
4.4 AC Specifications	. 2-504
4.5 Optimized and External Interface Specifications	. 2-512
4.6 Capacitive Derating	. 2-522
5.0 THERMAL DATA	. 2-523
6.0 MECHANICAL SPECIFICATIONS	2-525

1.0 PINOUTS

1.1 i486TM DX CPU Pinouts

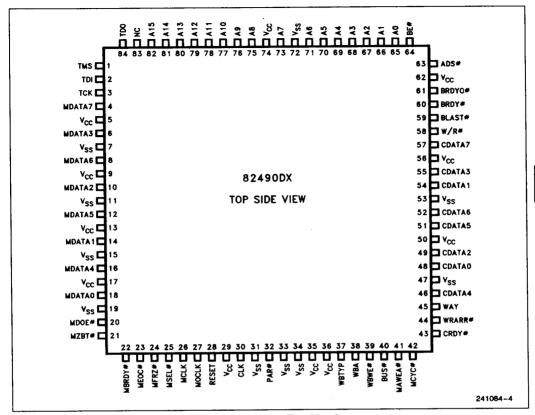
	s	R	Q	Р	N	М	L	к	J	Н	G	F	E	D	С	В	A	
1	O A27	O A28	O A31	O D0	O D2	0	o V _{SS}	0	o v _{cc}	0	o v _{ss}	O DP1	o V _{SS}	O D9	O D11	O D19	O D20	ነ 1
2	O A26	O A25	o v _{ss}	O A29	O D1	v _{ss} o v _{cc}	O D6	v _{ss} o v _{cc}	O D5	V _{SS} O D3	o v _{cc}	O D8	o v _{cc}	O D13	O D18	O D21	O D22	2
3	O A23	o V _{CC}	O A17	O A30	O DP0	O D4	O 07	D14	O D16	O DP2	O D12	O D15	O 010	O D17	CLK	o V _{SS}	O TCK	3
4	O BRDYC#	v _{ss}	O A19												Q V _{CC}	o V _{SS}	O 023	4
5	O A14	0 A18	O A21												v _{cc}	o v _{ss}	O DP3	5
6	o V _{SS}	o V _{CC}	O A24												O D27	O D25	O D24	6
7	O A12	O A15	O A22			_									O D26	o v _{cc}	o v _{ss}	7
8	o V _{ss}	o V _{CC}	O A20		i4	86 ¹	M D	ХМ	IICR	OPR	OCE	SSO	R		O D28	0 D31	O D29	8
9	o V _{ss}	ο̈́ v _{cc}	O A16		5	0 M	Hz	CHI	P S	ET V	ER:	SION			O D30	o v _{cc}	o v _{ss}	9
10	o v _{ss}	ο V _{cc}	O A13				T	OP S	SIDE	VIE	W				O NC	Õ NC	NC NC	10
11	v _{ss}	ο̈́ v _{cc}	O A9												O NC	o v _{cc}	o v _{ss}	11
12	o v _{ss}	0 A11	O A5												O NC	NC	O NC	12
13	O A10	O 88	O A7												O NC	O NC	O NC	13
14	o V _{SS}	o v _{cc}	O A2												O FERR#	O TMS	O TDI	14
15	O A6	0 A3	O BREQ	O HLDA	O LOCK#	O D/C#	O PWT	O BEO#	O BE2#	O BRDY#	NC NC	O KEN#	HOLD	O A20M4	O FLUSH#	O NMI	O IGNNE#	15
16	0 A4	O BLAST#	LEN	o V _{CC}	O M/10#	v _{cc}	v _{cc}	o V _{CC}	O BE1#	o v _{cc}	v _{cc}	O RDY#	v _{cc}	O BS8#	O RESET	O TDO	O INTR	16
17	O ADS#	O NC	O PCHK#	o v _{ss}	W/R#	v _{ss}	o V _{SS}	v _{ss}	PCD	v _{ss}	v _{ss}	O BE3#	o V _{SS}	O BOFF#	O BS16#	O EADS#	O AHOLD	17
	S	R	Q	Р	N	М	L	K	J	Н	G	F	Ε	D	С	В	A 241084	4-34

Intel486™ DX CPU Pinout (Top View)

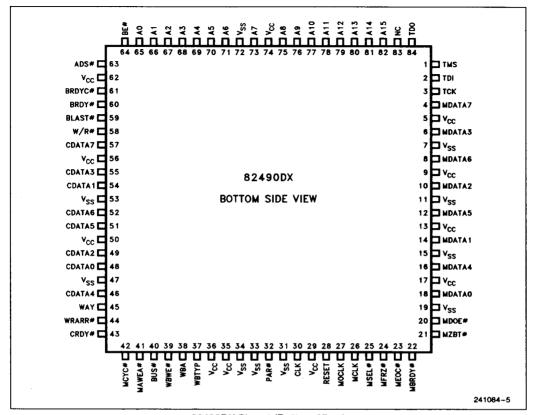

	Α	В	С	D	E	F	G	Н	J	К	L	М	N	Р	Q	R	s	
1 [O D20	0	O 011	0	o V _{SS}	0	o V _{SS}	0	o v _{cc}	0	o V _{SS}	0	O 02	0	O A31	0	O A27	1
2	O 022	D19 O D21	O 018	D9 O D13	o V _{CC}	DP1 O D8	o v _{cc}	V _{SS} O D3	O 05	v _{ss} o	O 06	V ss 0	O D1	0	o v _{ss}	A28 O A25	O A26	2
3	O TCK	0	O CLK	0	O D10	0	O D12	ο O DP2	O D16	V _{CC} O D14	O D7	V _{CC} 0	O DP0	A29 O	O A17	0	O A23	3
4	O D23	v _{ss} o	o v _{cc}	017		D15		UPZ		014		U4		A30	O A19		O BRDYC#	4
5	O DP3	v _{ss} o	o v _{cc}												O A21	V _{SS} O A18	O A14	5
6	O 024	V _{SS} O D25	O D27												O A24	0	o v _{ss}	6
7	o v _{ss}	0	O D26												O A22	V _{CC} O A15	O A12	7
8	O D29	V _{CC} O D31	O D28		i4	86 ^T	M D	X M	IICR	OPR	OCE	SSC	R		O A20	0	o v _{ss}	8
9	o V _{SS}	0	O D30		5	50 M	ΙΗz	СНІ	P S	ET \	/ERS	SION	1		O A16	V _{CC}	o v _{ss}	9
10	O NC	V _{CC} O NC	O NC				вот	ТОМ	SII	DE V	/IEW	1			O A13	v _{cc} o v _{cc}	o v _{ss}	10
11	o v _{ss}	0	O NC												O A9	v _{cc}	o v _{ss}	11
12	NC NC	V _{CC} O NC	O NC												O A5	*CC O A11	o v _{ss}	12
13	O NC	O NC	O NC												O A7	O AB	O A10	13
14	O TDI	O	O FERR#												O A2	0	o v _{ss}	14
15	O IGNNE#	O	O FLUSH#	O A20M#	O	O KEN#	0	O BRDY#	O BE2#	O BEO#	O PWT	O D/C#	O LOCK#	O HLDA	O BREQ	V _{CC} O A3	O A6	15
16	O INTR	O	O RESET	O BS8#	o v _{cc}	O RDY#	o v _{cc}	0	O BE1#	0	o v _{cc}	0	O M/IO#	O V _{CC}	O LEN	O BLAST#	0 A4	16
17	O AHOLD	O EADS#	O BS16#	O BOFF#	o v _{ss}	O BE3#	o v _{ss}	v _{cc} o v _{ss}	O PCD	v _{cc} o v _{ss}	o v _{ss}	v _{cc} o v _{ss}	O W/R#	V _{SS}	O PCHK#	O NC	O ADS#	17
	Α	В	С	D	Ε	F	G	Н	J	K	L	М	N	Р	Q	R	S 241084	. 1–35

Intel486™ DX CPU Pinout (Bottom View)

1.2 82495DX Pinouts


	s	R	Q	Р	N	М	L	К	J	н	G	F	Ε	D	С	В	A	
1	v _{cc}	O MKEN#	O SWEND#	O BRDY#	o v _{cc}	O DRCTM#	o v _{cc}	o V _{cc}	O MRO#	o v _{cc}	v _{cc}	O SNPBSY#	o V _{CC}	O FSIOUT#	O RDYSRC	O TAG10	TAG9	1
2	NC	o V _{SS}	MALE	O TMS	o v _{ss}	O CRDY#	o v _{ss}	O PALLC#	O MICACHE#	O CFA3	O TAG7	2						
3	O SNPCLK	O SNPSTB#	SNPNCA	о. тск	O TDI	O BGT#	v _{ss}	O MWBWT#	CWAY	O SNPCYC#	O MTHIT#	O SNPADS#	CADS#	O CDC#	KLOCK#	O TAG5	O TAG3	3
4	O MAGE#	O MCFA2	O SYNC#	MBALE	O FLUSH#	O KWEND#	O CNA#	o V _{SS}	O CPLOCK	О # МНІТМ#	CAHOLD	CDTS#	CWR#	O CMIO#	O TDO	O TAG4	O TAG1	4
5	v _{cc}	o v _{ss}	RESET	O SNPINV										O NENE#	O TAG11	v _{ss}	v _{cc}	5
6	v _{cc}	o V _{SS}	MCFA3	O MBAOE#									ļ	CFA2	O SMLN#	o V _{SS}	o Vcc o	6
7	v _{cc}	o V _{SS}	MTAG10	O MTAG11										O TAGB	TAG6	v _{ss}	v _{cc}	7
8	v _{cc}	v _{ss}	O MTAG4	O MTAG8				82	495	DX				TAG2	TAGO	v _{ss}	v _{cc}	8
9	V _{CC}	v _{ss}	MTAG2	MTAG1				гор	SIDE	VIE	N		ļ	SET7	v _{cc}	SET9	SET10	9
10	v _{cc}	o V _{SS}	MTAGO	O MSET8										SET8	v _{ss}	v _{ss}	v _{cc}	10
11	ν _{cc}	v _{ss}	MSET 10	MSET2	1									CLK	SETS O	v _{ss}	v _∞	12
12	v _{cc}	v _{ss}	MSET9	MSET1	į									SET6	SET4	SET3	v _{cc}	13
13	v _{cc}	v _{ss}	MSET5	MCFA6	<u> </u>	0	•			•	۰	•	_ <u>_</u>	SET0	SET 1	v _{ss}	v _{cc} o	14
14	MTAG6	MTAG3	MSET3	MCFA5	MCFA1	WBA O	WRARR	(WRMRS	0	DC#	v _{ss}	9RDYC2#	CFA5	CFA6	SET2	CFA1	NC O	15
15	MTAG7	MTAG5	MSETO	MCFA4	WBTYP	WBWE#	WAY	CLEN1	EADS#		CLENG	LEN O	CFA0	BRDYC1	0	ADS#	NC O	16
16	MTAG9	MSET4	MCFAO	BUS#	v _{ss}	V _{SS}	v _{ss}	v _{ss}	v _{ss}	v _{ss}	v _{ss}	MIO#	v _{ss}	KEN#	BLE#	LOCK#	CFA4	17
17	MSET7	MSET6	MAWEA		V _{cc}	v _{cc}	Vcc	v _{cc}	NC .	Υ _{cc}	Vcc	v _{cc}	Vcc	٧ _{SS}	PWT	WR#	AHOLD] ''
	S	R	Q	P	N	М	L	K	J	Н	G	F	Ε	D	С	В	A 241084	-2

82495DX Pinout (Top View)



82495DX Pinout (Bottom View)

1.3 82490DX Pinouts

82490DX Pinout (Top View)

82490DX Pinout (Bottom View)

1.4 Pin Cross Reference Tables

1.4.1 I486™ DX MICROPROCESSOR CHIP SET VERSION PIN TABLE

1.4.1 1400 D	X MICHOPHOOLS
Pin	Location
A2	Q14
A3	R15
A4	S16
A 5	Q12
A6	S15
A7	Q13
A8	R13
A9	Q11
A10	S13
A11	R12
A12	S7
A13	Q10
A14	S 5
A15	R7
A16	Q9
A17	Q3
A18	R5
A19	Q4
A20	Q8
A21	Q5
A22	Q7
A23	S3
A24	Q6
A25	R2
A26	S2
A27	S1
A28	R1
A29	P2
A30	P3
A31	Q1
A20M#	D15
ADS#	S17
AHOLD	A17
BE0#	K15
NC	A10, A12, A13, B10, B12, B13, C10, C11, C12, C13, G15, R17

R CHIP SET	VERSION PIN TAB
Pin	Location
BE1#	J16
BE2#	J15
BE3#	F17
BLAST#	R16
BOFF#	D17
BRDY#	H15
BRDYC#	S4
BREQ	Q15
BS16#	C17
BS8#	D16
CLK	C3
D/C#	M15
D0	P1
D1	N2
D2	N1
D3	H2
D4	M3
D5	J2
D6	L2
D7	L3
D8	F2
D9	D1
D10	E3
D11	C1
D12	G3
D13	D2
D14	К3
D15	F3
D16	J3
D17	D3
D18	C2
D19	B1
D20	A1
D21	B2
D22	A2
VCC	B11, B7, B9, C4, C5, E16, E2, G16, G2, H16, J1, K16, K2, L16, M16, M2, P16, R10, R11, R14, R3, R6, R8, R9
L	, ,

Pin	Location
D23	A4
D24	A6
D25	B6
D26	C7
D27	C6
D28	C8
D29	A8
D30	C9
D31	B8
DP0	N3
DP1	F1
DP2	H3
DP3	A5
EADS#	B17
FERR#	C14
FLUSH#	C15
HLDA	P15
HOLD	E15
IGGNE#	A15
INTR	A16
KEN#	F15
LEN	Q15
LOCK#	N15
M/IO#	N16
NMI	B15
PCD	J17
PCHK#	Q17
PWT	L15
RDY#	F16
RESET	C16
TCK	A3
TDI	A14
TDO	B16
TMS	B14
W/R#	N17
VSS	A11, A7, A9, B3, B4, B5, E1, E17, G1, G17, H1, H17, K1, K17, L1, L17, M1, M17, P17, O2, R4, S10, S11, S12, S14, S6, S8, S9

1.4 Pin Cross Reference Tables

1.4.2 82495DX QUICK REFERENCE BY NAME

Signal	Location
(CFG3)	J14
ADS#	B15
AHOLD	A17
BGT#(CLDRV)	M03
BLAST#	C15
BLE#	C16
BRDY#	P01
BRDYC1#	D15
BRDYC2#	F14
BUS#	P16
CADS#	E03
CAHOLD	G04
CDC#	D03
CDTS#	F04
CFA0	E15
CFA1	B14
CFA2	D06
CFA3	B02
CFA4	A16
CFA5	E14
CFA6	D14
CLEN0	G15
CLEN1	K15
CLK	D11
CMIO#	D04
CNA#(CFG0)	L04
CPLOCK# (PLOCKEN)	J04
CRDY#(SLFTST#)	M02
CWAY	J03
CWR#	E04
DC#	H14
DRCTM#	M01
EADS#	J15
FLUSH#	N04
FSIOUT#	D01
KEN#	D16
KLOCK#	C03

Cinnal	1 41
Signal	Location
KWEND#(CFG2)	M04
LEN	F15
LOCK#	B16
MALE(WWOR#)	Q02
MAOE#	S04
MAWEA#	Q17
MBALE(HIGHZ#)	P04
MBAOE#	P06
MCACHE#	C02
MCFA0	Q16
MCFA1	N14
MCFA2	R04
MCFA3	Q06
MCFA4	P15
MCFA5	P14
MCFA6	P13
MCYC#	P17
MHITM#	H04
MIO#	F16
MKEN#	R01
MRO#	J01
MSET0	Q15
MSET1	P12
MSET2	P11
MSET3	Q14
MSET4	R16
MSET5	Q13
MSET6	R17
MSET7	S17
MSET8	P10
MSET9	Q12
MSET10	Q11
MTAG0	Q10
MTAG1	P09
MTAG2	Q09
MTAG3	R14
MTAG4	Q08
MTAG5	R15

0:	
Signal	Location
MTAG6	S14
MTAG7	S15
MTAG8	P08
MTAG9	S16
MTAG10	Q07
MTAG11	P07
MTHIT#	G03
MWBWT#	K03
NENE#	D05
PALLC#	D02
PCD	H15
PWT	C17
RDYSRC	C01
RESET	Q05
SET0	D13
SET1	C13
SET2	C14
SET3	B12
SET4	C12
SET5	C11
SET6	D12
SET7	D09
SET8	D10
SET9	B09
SET10	A09
SMLN#	C06
SNPADS#	F03
SNPBSY#	F01
SNPCLK(SNPMD)	S03
SNPCYC#	H03
SNPINV	P05
SNPNCA	Q03
SNPSTB#	R03
SWEND#(CFG1)	Q01
SYNC#(MALDRV)	Q04
TAG0	C08
TAG1	A04
TAG2	D08

1.4.2 82495DX QUICK REFERENCE BY NAME (Continued)

Signal	Location
TAG3	A03
TAG4	B04
TAG5	B03
TAG6	C07
TAG7	A02
TAG8	D07
TAG9	A01
TAG10	B01
TAG11	C05
TCK	P03
TDI	N03
TDO	C04
TMS	P02
WAY	L15
WBA (SEC2#)	M14
WBTYP (LR0)	N15
WBWE# (LR1)	M15
(WRMRST)	K14
WR#	B17
WRARR#	L14
NC	A14, A15, J17, S01, S02
Vcc	A05-A08, A10-A13, E01, E17, H01, H17, K01, K17, L01, L17, C09, N17, F17, G01, G17, M17, N01, S01, S05-S13
Vss	B05-B08, B10-B11, B13, D17, E02, E16, F02, G14, H02, H16, J02, J16, K02, K04, K16, L02-L03, L16, C10, N16, G02, G16, R02, R05-R10, M16, N02, R11-R13

1.4.3 82490DX QUICK REFERENCE BY NAME

Signal	Location
A0	65
A1	66
A2	67
A3	68
A4	69
A5	70
A6	71
A7	73
A8	75
A9	76
A10	77
A11	78
A12	79
A13	80
A14	81
A15	82
ADS#	63
BE#	64
BLAST#	59
BRDY#	60
BRDYC#	61
BUS#	40
CDATA0	48
CDATA1	54
CDATA2	49
CDATA3	55
CDATA4	46
CDATA5	51
CDATA6	52
CDATA7	57
CLK	30
CRDY#	43
MAWEA#	41
MBRDY# (MISTB)	22
MCLK (MSTBM)	26

Signal	Location
MCYC#	42
MDATA0	18
MDATA1	14
MDATA2	10
MDATA3	6
MDATA4	16
MDATA5	12
MDATA6	8
MDATA7	4
MDOE#	20
MEOC#	23
MFRZ# (MDLDRV	24
MOCLK (MOSTB)	27
MSEL# (MTR4/8	25 #)
MZBT# (MX4/8#	21
PAR#	32
RESET	28
тск	3
TDI	2
TDO	84
TMS	1
WAY	45
WBA	38
WBTYP	37
WBWE#	39
WR#	58
WRARR#	44
NC	83
Vcc	5, 9, 13, 17, 29, 35, 36, 50, 56, 62, 74
V _{SS}	7, 11, 15, 19, 31, 33, 34, 47, 53, 72

2-485

2.0 QUICK PIN REFERENCE

What follows is a brief pin description of the memory bus controller interface. Parentheses refer to signal function at reset. For detailed signal descriptions, please refer to the product hardware reference manual.

Symbol	Туре	Name and Function
A20M#	_	A20 MASK is connected to the A20M# pin of the Intel486™ CPU. Please refer to the Intel486 DX CPU data sheet for details.
BGT# (CLDRV)	-	BUS GUARANTEED TRANSFER (Cache LOW Drive) is generated by the memory bus controller (MBC) to indicate that it is committed to completing a given memory bus cycle. Until BGT# is active, the CPU-cache chip set owns the cycle and may abort the cycle upon an intervening bus snoop. Once BGT# is asserted, the MBC owns the cycle, freeing the chip set for other operations. For proper operation, BGT# must meet the setup and hold time t ₃₀ and t ₃₁ .
		During RESET, BGT# becomes the CLDRV input. CLDRV determines the driving strength of the connections between the internal components. Please refer to the chip set layout specifications for information how to use CLDRV. For proper operation, CLDRV must meet the setup and hold times t ₁₀ and t ₃₁ .
BRDY#	l	BURST READY is generated by the memory bus controller (MBC) to strobe data into or out of the Intel486 CPU. The MBC BRDY# is internally connected to all of the CPU-cache chip set components including the CPU. BRDY# provides the same function as described in the Intel486 DX CPU data sheet. The CPU-cache chip set also uses BRDY# for burst tracking to increment the CPU latch burst counter. For proper operation, BRDY# must meet the setup and hold times t ₃₀ and t ₃₁ .
CADS#	0	CACHE ADDRESS STROBE is generated by the CPU-cache chip set to request that the memory bus controller execute a memory bus cycle. When active, CADS ≠ indicates that the cache address, control and attribute signals are valid.
CAHOLD	0	CACHE AHOLD is generated by the CPU-cache chip set to track the CPU AHOLD signal during warm reset and LOCKed sequences. CAHOLD also provides information relevant to 82495DX built-in self-test (BIST).
CD/C#	0	CACHE DATA/CONTROL is driven by the CPU-cache chip set to indicate whether a requested memory bus cycle needs data or code. CD/C# is valid with CADS#.
CDTS#	0	CACHE DATA STROBE indicates to the memory bus controller that the data path is ready. In read cycles, CDTS# indicates that the memory bus controller can generate the first BRDY# in the next CLK. For write cycles, CDTS# indicates that data is available on the memory bus. CDTS# permits independent address and data strobes (CADS#, SNPADS#).
(CFG3)	1	CACHE CONFIGURATION BITS 0-3 are used to configure the CPU-cache chip set in any of four modes that determine chip set/Intel486 CPU line ratio, cache tag size (4K or 8K) and lines per sector. For proper operation, CFG3 must meet the setup and hold times t ₁₀ and t ₁₁ .
CLEN0-1	0	The CYCLE LENGTH INDICATION bits are memory bus controller interface signals which indicate the length of a CPU-initiated memory bus cycles. CLEN0 and CLEN1 are valid with CADS# and are used to indicate cycles of one, two or four transfers in length.
CLK	1	CLOCK provides fundamental timing for the CPU-cache chip set and all of its components. The chip set's clock inputs must be provided with minimal skew.
CM/IO#	0	CACHE MEMORY/IO is driven by the CPU-cache chip set to indicate whether a requested memory bus cycle is for memory or for I/O. CM/IO is valid with CADS#.

Symbol	Type	Name and Function
CNA# (CFG0)		NEXT ADDRESS REQUEST (Configuration Pin 0) is driven by the memory bus controller to dynamically pipeline CPU-cache chip set cycles. If a cycle is pending and CNA# is given, a new CADS# is driven with the new cycle information. For proper operation, CNA# must meet the setup and hold times t ₃₀ and t ₃₁ . During the falling edge of RESET, CNA# functions as the chip set's CFG0 input.
		Cache Configuration Bits 0-3 are used to configure the CPU-cache chip set in any of four modes that determine chip set/Intel486 CPU line ratio, cache tag size (4K or 8K) and lines per sector. For proper operation, CFG0 must meet the setup and hold times t ₁₀ and t ₁₁ .
CPLOCK# (PLOCKEN)	0	CACHE PLOCK # (Enable PLOCK Function) tracks the CPU PLOCK # output but is only generated for write cycles. If write cycles are PLOCKed together, snooping is disabled between these cycles.
		PLOCK# can be disabled by setting CPLOCK LOW during reset. For proper operation, PLOCKEN must meet the setup and hold times t ₁₀ and t ₁₁ .
CRDY# (SLFTST#)		CACHE MEMORY BUS READY (CPU-cache Self Test) is generated by the memory bus controller to indicate to the CPU-cache chip set that a memory bus cycle has completed and make chip set resources available for the next cycle. For proper operation, CRDY # must meet the setup and hold times t ₂₈ and t ₂₉ .
		If SLFTST# is sampled LOW (active) during the falling edge of RESET while MBALE is HIGH (active), chip set self-test is invoked. For proper operation, SLFTST# must meet the setup and hold times t ₁₀ and t ₁₁ .
CWAY	0	CACHE WAY is driven by the CPU-cache chip set to indicate to the memory bus controller in which cache "way" the line will be loaded during line fills or during write-backs. CWAY is valid with CADS# and is used to facilitate external tracking tags.
CW/R#	0	CACHE WRITE/READ is driven by the CPU-cache chip set to indicate a requested memory bus cycle requires a read or a write. CW/R # is valid with CADS #.
DRCTM#	1	MEMORY BUS DIRECT TO [M] STATE allows the memory bus to inform the CPU-cache chip set of a request to skip the [E] state and move a line directly to the [M] state. DRCTM# allows the chip set to support read-for-ownership and cache-to-cache transfers, and is sampled when SWEND# is asserted. For proper operation, DRCTM# must meet the setup and hold times t ₆₇ and t ₆₈ only during SWEND# assertion.
FERR#	I	FLOATING-POINT ERROR is connected to the Intel486 CPU FERR # pin. Please refer to the Intel486 DX CPU data sheet for details.
FLUSH#	l	FLUSH causes the CPU-cache chip set to execute a write-back to main memory of any modified cache lines and then invalidate all chip set cache tag locations. For proper operation, FLUSH# must meet the setup and hold times t ₁₂ and t ₁₃ , or t ₁₄ if used asynchronously. FLUSH# is also an input to the Intel486 DX CPU. See the Intel486 DX CPU data sheet for details.
FSIOUT#	0	FLUSH/SYNC/INITIALIZATION OUTPUT indicates the start and end of Flush, Sync and Initialization operations.
HOLD/HLDA	1/0	Intel486 CPU HOLD/HLDA are connected to the Intel486 CPU and used during warm-reset to ensure that the Intel486 CPU has completed any current cycle before resetting. Please refer to the Intel486 DX CPU data sheet for details.
IGNNE#	1	IGNORE NUMERIC ERROR is connected to the Intel486 CPU IGNNE # pin. Please refer to the Intel486 DX CPU data sheet for details.

Symbol	Туре	Name and Function	
INTR	1	INTERRUPT REQUEST is connected to the Intel486 CPU INTR pin. Please refer to the Intel486 DX CPU data sheet for details.	
KLOCK#	0	CACHE LOCK # indicates to the memory bus controller that a request for atomic read-modify-write sequences is present. KLOCK # tracks the LOCK # signal of the Intel486 CPU.	
KWEND# (CFG2)		CACHEABILITY WINDOW END (Configuration Pin 2) is generated by the memory bus controller to indicate to the CPU-cache chip set that the cacheability window (the period during which cacheability is determined) has expired. When KWEND# is asserted, the CPU-cache chip set latches the memory cacheability signal (MKEN#) and makes determinations based on the cacheability attribute (e.g. whether a line is cacheable, is read-only, requires a replacement, requires an allocation). The Memory Read-Only Signal (MRO#) is also sampled at this point. For proper operation, KWEND# must meet the setup and hold times t ₃₀ and t ₃₁ .	
		During the falling edge of RESET, KWEND# becomes the CFG2 input. Cache Configuration Bits 0-3 are used to configure the CPU-cache chip set in any of four modes that determine chip set/Intel486 CPU line ratio, cache tag size (4K or 8K) and lines per sector. For proper operation, CFG2 must meet the setup and hold times t ₁₀ and t ₁₁ .	
LMBE0-3#	0	LATCHED MEMORY BYTE ENABLES are latched versions of the Intel486 CPU byte enable outputs, BE0#-BE3#. They are driven through a SN74F377D latch. Please see the Intel486 CPU data sheet for details.	
LPCD	0	LATCHED PAGE CACHEABILITY ATTRIBUTE is the latched Intel486 CPU PC attribute to give the memory bus controller direct access. It is driven through a SN74F377D latch. PCD is used to determine cacheability and overrides MKEN Please refer to the Intel486 DX CPU data sheet for more information about PCD	
LPWT	0	LATCHED PAGE WRITE-THROUGH ATTRIBUTE is the latched CPU PWT attribute to give the memory bus controller direct access. It is driven through a SN74F377D latch. PWT is used to determine write-through and overrides MWB/WT#. Please refer to the Intel486 DX CPU data sheet for more information about PWT.	
MALE (WWOR#)	1	MEMORY BUS ADDRESS LATCH ENABLE (Weak Write Ordering) is generated by the memory bus controller to control transparent address latches (resembling 373-series TTL logic) within the CPU-cache chip set. CADS # generates a new address at the input of the internal address latch. If MALE and MAOE # are both active, the address flows to the memory bus. When MALE becomes inactive (LOW), the address is latched. WWOR # configures the CPU-cache chip set into strong and weak write ordering modes. In strong ordering mode, the chip set writes data to memory in the order in which it was received from the Intel486 CPU. For proper operation, WWOR #	
MAOE#	1	must meet the setup and hold times t_{10} and t_{11} . MEMORY BUS ADDRESS OUTPUT ENABLE is generated by the memory bus controller to control the output buffers of the CPU-cache chip set's memory bus address latches. If MAOE# is active (LOW), the chip set drives the memory bus address lines. If MAOE# is inactive (HIGH), the CPU-cache chip set's address inputs are driven to the hi-z state. Snoops are enabled only while MAOE# is inactive. MAOE# must meet setup times $t_{62a, b, c}$ and hold times $t_{63a, b, c}$ during snoop cycles for proper operation.	

Symbol	Туре	Name and Function
MBALE (HIGHZ#)		MEMORY BUS 82495DX SUB-LINE-ADDRESS LATCH ENABLE (HIGH-Impedance Output) functions like MALE but only controls the CPU-cache chip set's sub-line addresses. MBALE is generated by the memory bus controller to control transparent address latches (resembling 373-series TTL logic) within the CPU-cache chip set. CADS# generates a new address at the internal address latch input. If MBALE and MBAOE# are both active, the sub-line address flows to the memory bus. If MBALE becomes inactive (LOW), the sub-line address is latched. A separate subline control input is provided because the CPU-cache chip set ony provides the starting sub-line address.
		If active along with SLFTST#, HIGHZ# causes the chip set to float its MSET, MTAG, and MCFA address outputs. For proper operation, HIGHZ# must meet the setup and hold times t ₁₀ and t ₁₁ .
MBAOE#		MEMORY BUS SUB-LINE ADDRESS OUTPUT ENABLE functions like MAOE # but only controls the CPU-cache chip set's sub-line addresses. If MBAOE # is active (LOW), the chip set drives the sub-line portion of the address onto the memory bus. Otherwise, the CPU-cache chip set's sub-line address is driven to the hi-z state. MBAOE # is also sampled during snoop cycles. If MBAOE # is sampled inactive in conjunction with SNPSTB #, snoop write-back cycles begin at the sub-line address provided. If MBAOE # is sampled active with SNPSTB #, snoop write-back cycles begin at sub-line address 0. A separate sub-line control input is provided because the CPU-cache chip set only provides the starting sub-line address. MBAOE # must meet setup time te2a, b, c and hold times te3a, b, c during snoop cycles for proper operation.
MBRDY# MISTB	1	MEMORY BUS READY (Memory Input Strobe) is used to clock data into and out of the CPU-cache chip set. When active (LOW), MBRDY # indicates that the CPU-cache chip set should increment the burst counter and output or accept the next data. For proper operation, MBRDY # must meet the setup and hold time t ₃₈ and t ₃₉ . In strobed memory bus mode, MISTB is the CPU-cache chip set's input data strobe. On each edge of MISTB, the chip set latches data and increments the burst counter. MISTB must meet high and low times t ₈₅ and t ₈₆ for proper operation.
MCACHE#	0	CACHE INTERNAL CACHEABILITY is driven during read cycles to indicate whether the current cycle is potentially cacheable. During write operations, MCACHE# is only active for write-back cycles. MCACHE# is inactive during I/O, special and locked cycles.
MCLK (MSTBM)		MEMORY BUS CLOCK (Memory Bus Strobed Mode) is the memory bus clock input to the CPU-cache chip set while in clocked memory bus mode. Here, memory bus signals and data are sampled on the rising edge of MCLK. During clocked memory bus writes, data is driven off MCLK or MOCLK, depending on configuration. MCLK inputs to each 82490DX must be within proper skew specifications. If inactive (HIGH) during reset, MSTBM indicates that the memory bus will be standed if MSTBM in transitions.
		strobed. If MSTBM is toggling at reset, the memory bus will be clocked. For proper operation, MSTBM must meet the setup and hold times t ₁₀ and t ₁₁ .
MDATA7-0	I/O	The MEMORY DATA PINS are each of the CPU-cache chip set's 82490DX data I/O pins. Together with other 82490DX components, they form a 32-, 64-, or 128-bit wide memory bus. In clocked memory bus mode, MDATA is sampled with the rising edge of MCLK. New data is driven out on these pins with MEOC#, with the rising edge of MCLK or with MOCLK while MBRDY# is active. In strobed memory bus mode, MDATA is sampled on each MISTB edge. New data is driven with each MOSTB edge. In clocked mode MDATA must follow setup and hold times t ₄₂ and t ₄₃ , and in strobed mode, t ₁₀₀ and t ₁₀₁ .

Symbol	Type	Name and Function
MDOE#	ı	MEMORY DATA OUTPUT ENABLE controls the way the CPU-cache chip set drives data onto the memory bus. When MDOE# is inactive (HIGH), the MDATA pins are tristated. When MDOE# is active (LOW), the MDATA pins drive data. Because it is unrelated to CLK and MCLK, MDOE# functions the same during strobed and clocked memory bus operations.
MDPTY3-0	1/0	The MEMORY DATA PARITY pins provide the four bits needed to store parity information for the CPU-cache chip set's parity option. MDPTY bits are sampled and driven exactly as MDATA bits are. In clocked mode MDPTY3 -0 must follow setup and hold times t_{42} and t_{43} , and in strobed mode, t_{100} and t_{101} .
MEOC#	1	MEMORY END OF CYCLE ends the current cycle. Because it is synchronous with the memory bus, MEOC# can end a memory bus cycle and begin a new cycle without waiting for Intel486 CPU CLK synchronization. MEOC# also causes data to be latched or driven and resets the memory burst counter. In clocked mode MEOC# must follow setup and hold times t ₃₆ and t ₃₇ , and in strobe mode, t ₆₇ and t ₈₈ .
MFRZ# (MDLDRV)	1	MEMORY FREEZE (Memory Data Bus LOW Drive) is used during write cycles that could cause allocation cycles. When MFRZ# is active (LOW), write data is latched within the CPU-cache chip set. The subsequent allocation will not overwrite latched data, thereby avoiding the memory write on the memory bus. Because memory is not updated, the allocated line must be cached in the [M] state. In clocked mode MFRZ# must follow setup and hold times t40 and t41, and in strobed mode, t98 and t99.
		During the falling edge of RESET, MDLDRV is sampled to indicate the memory data bus driver strength of the CPU-cache chip set, which offers normal and HIGH drive capability buffers. For proper operation, MDLDRV must meet the setup and hold times t_{10} and t_{11} .
MHITM#	0	MEMORY BUS HIT TO MODIFIED LINE is driven during snoop cycles to indicate whether snooping addresses hit a modified cache line within the CPU-cache chip set. When snoop hits to [M] occur, the chip set automatically schedules the writeback of modified lines. MHITM# is valid in the CLK following SNPCYC# and remains valid until the next SNPSTB#.
MKEN#	1	MEMORY BUS CACHEABILITY is driven by the memory bus controller to indicate to the CPU-cache chip set whether the current memory bus cycle is cacheable to both the CPU cache and chip set cache. MKEN# is sampled when KWEND# is asserted. For proper operation MKEN# must meet the setup and hold times t ₆₇ and t ₆₈ only during KWEND# assertion.
MOCLK (MOSTB)	ŀ	MEMORY OUTPUT CLOCK (Memory Output Strobe) controls a transparent latch at the CPU-cache chip set's data outputs. MDATA hold time may be increased through a clock input skewed from MCLK. MOCLK must be within the proper skew specifications.
MRO#	1	In strobe bus mode, each edge of MOSTB outputs new data to the memory bus. MEMORY BUS READ-ONLY indicates to the CPU-cache chip set that an accessed line is READ-ONLY. READ-ONLY lines are non-cacheable in the first level cache and are cached within the chip set in the [S] state if MKEN# is sampled active during KWEND#. MRO# is sampled with KWEND# assertion. Subsequent writes to read-only lines are not updated but instead posted to the memory system. For proper operation, MRO# must meet the setup and hold times t ₆₇ and t ₆₈ only during KWEND# assertion.

Symbol	Туре	Name and Function	
MSEL# (MTR4/8#)	ı	MEMORY SELECT (Memory Transfer) is a chip select input which provides three functions. (1) MSEL# qualifies the MBRDY# CPU-cache chip set input. (2) If MSEL# is active with MEOC#, is sampled for the next cycle. (3) If MSEL# is inactive, the CPU-cache chip set's memory burst counter is reset. In clocked mode MSEL# must follow setup and hold times t ₃₈ and t ₃₉ , and in strobed mode, t ₉₂ , t ₉₃ and t ₉₄ . MTR4/8# determines the number of transfers needed on the memory bus for each cache line. If MTR4/8# is HIGH, there are four transfers for each cache line; if LOW,	
		there are eight transfers. For proper operation, MTR4/8 # must meet the setup and hold times t ₁₀ and t ₁₁ .	
MSET10-0 MTAG11-0 MCFA6-0	1/0	The MEMORY ADDRESS lines are used along with the CPU-cache chip set's byte enables to define the areas of memory or I/O to be accessed. They are driven during normal memory bus cycles and are inputs during snoop operations. The memory address outputs must meet setup times t _{62a, b, c} and hold times t _{63a, b, c} during snoop cycles for proper operation.	
MTHIT#	0	MEMORY BUS TAG HIT is driven by the CPU-cache chip set during snoop cycles to indicate whether a snooping address hits an exclusive, shared or modified cache line. MTHIT# is valid in the CLK following SNPCYC# and remains valid until the next SNPSTB#.	
MWB/WT#	l :	MEMORY BUS WRITE POLICY allows the memory bus to dynamically indicate to the CPU-cache chip set whether the write policy is write-through or write-back. MWB/WT# is also asserted to change the tag state to shared when the line is detected in another cache. MWB/WT# is sampled when SWEND# becomes active. For proper operation, MWB/WT# must meet the setup and hold times t ₆₇ and t ₆₈ only during SWEND# assertion.	
MZBT# (MX4/8#)	l l	When sampled active with MSEL# or MEOC#, MEMORY ZERO BASED TRANSFER (Memory I/O Bit) indicates that burst location 0 of the memory bus cycle should be the starting sub-line address independent of the sub-line address requested by the Intel486 CPU. In clocked mode MZBT# must follow setup and hold times t ₄₀ and t ₄₁ , and in strobed mode, t ₉₆ and t ₉₇ . MX4/8# determines the number of I/O pins to be used for the memory bus. If MX4/8#	
		is HIGH, four I/O pins are used. If MX4/8 \neq is LOW, eight I/O pins are used. For proper operation, MX4/8 \neq must meet the setup and hold times t_{10} and t_{11} .	
NENE#	0	NEXT NEAR allows the memory bus controller (MBC) to take advantage of paged or static column DRAMs by indicating whether a requested memory address is "near" the previously generated address (i.e. within the same 2K DRAM page). NENE# is valid with CADS#.	
NMI	ł	NON-MASKABLE INTERRUPT is connected to the Intel486 CPU NMI pin. Please refer to the Intel486 DX CPU data sheet for details.	
PALLC#	0	POTENTIAL ALLOCATE indicates to the memory bus controller that the current write cycle could allocate a cache line. PALLC# is active for miss cycles in which PCD and PWT are inactive.	
(PAR#)	I	PARITY CONFIGURATION, when sampled active during RESET, causes the 82490DX to be configured solely as a parity device. PAR ≠ must meet setup and hold times t ₁₀ and t ₁₁ for proper operation.	
PCHK#	0	PARITY CHECK is the Intel486 CPU'S parity check output. Please refer to the Intel486 DX CPU data sheet for details.	
RDYSRC	0	READY SOURCE indicates the source of Intel486 CPU BRDY generation. If RDYSRC is HIGH, the memory bus controller must generate BRDY#; if RDYSRC is LOW, the CPU-cache chip set generates BRDY#.	

Symbol	Туре	Name and Function
RESET	1	RESET is asynchronous to the CPU-cache chip set. RESET initiates chip set execution at a known state. The falling edge samples the state of the configuration pins. For proper operation, RESET must meet the setup and hold times t ₇ and t ₈ or t ₉ if used asynchronously.
		The following CPU-cache pins are sampled during the falling edge of RESET:
:		CNA# (CFG0). CFG0 line of the configuration inputs.
		SWEND# (CFG1). CFG1 line of the configuration inputs.
		KWEND# (CFG2). CFG2 line of the configuration inputs.
		(CFG3). Used to configure CPU-cache chip set cache parameters—define lines per sector, line ration, number of tags.
		CPLOCK# (PLOCKEN). Permits handling of PLOCK# cycles—active HIGH.
		BGT# (C8LDRV). Indicates driving strength of internal CPU-cache chip set interface.
		SYNC# (MALDRV). Indicates the CPU-cache chip set's memory address bus driving strength.
		SNPCLK (SNPMD). Indicates whether the snoop mode is synchronous clocked, or strobed.
		MALE (WWOR #). Enforces strong or weak write ordering consistency.
		MBALE (HIGHZ#). Tristates CPU-cache chip set outputs if active with SLFTST#.
		MZBT# (MX4/8#). Determines whether each 82490DX uses 4 or eight I/O pins on the memory bus.
		MSEL# (MTR4/8#). Determines the number of memory bus transfers needed to fill each cache line—four transfers if HIGH, eight if LOW.
		MCLK (MSTBM). Indicates the memory bus configuration—strobed if inactive (HIGH), clocked if toggling.
		MFRZ# (MDLDRV). Indicates the CPU-cache chip set's memory data bus driving strength.
		(PAR #). Configures the 82490DX as a parity device.
SMLN#	0	SAME CACHE LINE indicates to the memory bus controller that the current cycle accesses the same CPU-cache chip set line as the previous cycle. SMLN# is valid with CADS# and can be used to selectively activate SNPSTB# for other caches. For example, SMLN# can prevent consecutive snoops to the same line.
SNPADS#	0	CACHE SNOOP ADDRESS STROBE functions exactly like CADS# but is generated only on snoop write-back cycles. Because snoop write-back cycles must be immediately serviced on the memory bus, the separate address strobe eases memory bus controller (MBC) implementation. When SNPADS# is active, the MBC aborts all pending cycles (i.e. those for which BGT# has not been issued; after BGT#, snoops are not acknowledged). The CPU-cache chip set may re-issue cycles following snoop completion.
SNPBSY#	0	When inactive (HIGH), SNOOP BUSY indicates that the CPU-cache chip set is not ready to accept another snoop cycle. SNPBSY# is activated when a snoop hits a modified line or when back-invalidation is needed for a snoop in progress. CPU-cache does not perform lookups until SNPBSY# is deactivated.
SNPCLK (SNPMD)	l	SNOOP CLOCK (Snoop Mode) provides the CPU-cache chip set with a snoop clock so the MBC can snoop at its own rate. During clocked mode, SNPSTB#, SNPINV, SNPNCA, MBAOE#, MAOE# and all address lines are sampled by SNPCLK.
		When HIGH during reset, SNPMD indicates strobed snooping mode. If LOW during reset, SNPMD indicates synchronous snooping mode. In clocked snooping mode, SNPCLK is connected to the snoop clock source.

Symbol	Туре	Name and Function
SYPCYC#	0	SNOOP CYCLE indicates when a snoop look-up is occurring within the CPU-cache chip set's tag RAM. MHITM# and MTHIT# are valid during the clock following SNPCYC#.
SNPINV	ı	SNOOP INVALIDATION is sampled with SNPSTB# and indicates the state of a cache line following a snoop hit cycle. If active, SNPSTB# forces the line to become invalid. SNPINV must meet setup times t _{62a, b, c} and hold times t _{63a, b, c} during snoop cycles for proper operation.
SNPNCA	1	SNOOP NON-CACHING DEVICE ACCESS is sampled with SNPSTB # and indicates to the CPU-cache chip set whether a bus master is a non-caching device (e.g. a DMA controller). SNPNCA helps prevent the chip set from unnecessarily changing cache line states from exclusive to shared. SNPNCA must meet setup times t _{62a, b, c} and hold times t _{63a, b, c} during snoop cycles for proper operation.
SNPSTB#	I	SNOOP STROBE causes the snoop address and parameters to be latched and initiates a snoop. The CPU-cache chip set supports clocked, strobed and synchronous latching modes. In clocked mode, address and attribute signals are latched when SNPSTB # becomes active with the rising edge of SNPCLK. In strobed mode, addresses and attributes are latched at the falling edge of SNPSTB #. In synchronous mode, address and attribute signals are latched when SNPSTB # becomes active with the rising edge of CLK. SNPSTB # must meet setup times t _{62a} and t _{62c} and hold times t _{63a} and t _{63c} for proper operation.
SWEND# (CFG1)	1	SNOOP WINDOW END (Configuration Pin 1) is generated to the memory bus controller to indicate to the CPU-cache chip set that the snoop window has expired. When SWEND# is asserted, the chip set latches the Write Policy (MWB/WT#) and Direct to Memory Transfer (DRCTM#) attributes. By the end of the window, all devices have snooped the bus master address and generated bus address caching attributes. When a cycle begins, the chip set prevents snooping until it receives SWEND#. The chip set can then update its tag RAM. For proper operation, SWEND# must meet the setup and hold times t ₃₀ and t ₃₁ .
		During the falling edge of RESET, SWEND# becomes the CFG1 input. Cache Configuration Bits 0-3 are used to configure the CPU-cache chip set in any of four modes that determine chip set/Intel486 CPU line ratio, cache tag size (4K or 8K) and lines per sector. For proper operation, CFG1 must meet the setup and hold times t ₁₀ and t ₁₁ .
SYNC# (MALDRV)	l	SYNCHRONIZE CPU-CACHE (Memory Address Bus LOW Drive) synchronizes the CPU-cache chip set tag array with main memory. All cache lines modified by the CPU-cache chip set are written back to main memory. SYNC# differs from FLUSH# in that it does not invalidate the CPU-cache chip set or the Intel486 CPU tag array. All E, I and S state lines remain in the E, I and S states while all modified cache lines (M state) become non-modified (E state). For proper operation, SYNC# must meet the setup and hold times t ₁₂ and t ₁₃ or t ₁₄ if used asynchronously.
		During the falling edge of RESET, MALDRV is sampled to determine the CPU-cache chip set's memory address bus driving strength. For proper operation, MALDRV must meet the setup and hold times \mathfrak{t}_{10} and \mathfrak{t}_{11} .
TCK	ı	TESTABILITY CLOCK is the boundary scan testability clock for all CPU-cache chip set components.
TDI	ı	TESTABILITY SERIAL INPUT is the boundary scan serial test data input for all CPU-cache chip set components. For proper operation, TDI must meet the setup and hold times t_{126} and t_{127} .
TDO	0	TESTABILITY SERIAL OUTPUT is the boundary scan serial test data output for all CPU- cache chip set components.
TMS	1	TESTABILITY CONTROL is the boundary scan test mode select input for all CPU-cache chip set components. For proper operation, TMS must meet the setup and hold times t_{126} and t_{127} .
WRMRST	ı	WARM-RESET is an input to the 82495DX that indicates that the Intel486 CPU is being reset without the rest of the cache chip set. WRMRST must be connected to the RESET pin of the Intel486 CPU.

2.1 Quick Pin Reference (Optimized Interface)

The table below lists and describes the pins that comprise the optimized interface. This is the interface between the i486 CPU, 82495DX Cache Controller, and the 82490DX SRAM that has been refined and optimized to allow zero wait state operation at 50 MHz.

Intel provides a recommended Intel486 DX CPU-Cache chip set layout for each possible cache size. Intel strongly recommends that this layout be used. The information provided in the table below is helpful in identifying the pins that make up the optimized interface to facilitate interface layout and debugging.

Symbol	Ty	/pe	Name and Function
A2-A31 A0-A15	0 -	i486 490	The i486 CPU Address Outputs A2-A31 are connected to the 82490DX address inputs A0-A15 and to the 82495DX address inputs of SET, TAG, and CFA.
ADS#	0	i486 495 490	The i486 CPU Address Strobe output is connected to the 82495DX and 42490DX ADS# inputs and indicates the start of a CPU cycle. Please refer to the i486 DX CPU data sheet for details.
AHOLD	- 0	i486 495	Address Hold is driven by the 82495DX to the i486 CPU AHOLD input during back-invalidation cycles. Please refer to the i486 DX CPU data sheet for details.
BE0#-BE3# BE#	0	i486 latch 490	The i486 CPU Byte Enable outputs are driven to an external latch controlled by the 82495DX. Each byte enable also goes to an 82490DX to control partial write cycles. Please refer to the i486 DX CPU data sheet for details.
BLAST#	0	i486 495 490	The i486 CPU Burst Last output is driven to indicate the end of a cycle. It is connected to the 82495DX and 82490DX BLAST # inputs. Please refer to the i486 DX CPU data sheet for details.
BLE#	0 –	495 latch	The 82495DX asserts Byte Latch Enable to latch PCD, PWT, and BE0# – BE3# from the CPU
BOFF#	1	i486	The BOFF# input is sampled by the i486 CPU during RESET to enable Chip Set Mode. BOFF# may not be used in any other way.
BRDYC#	1	i486 490	Burst Ready Cache is a second BRDY# input to the i486 CPU from the cache used for cache hit cycles. It is connected to the 82595DX BRDYC1# output. BRDYC# is an input to the 82490DX that is connected to the 82495DX BRDYC2# output and is used for tracking these hit cycles.
BRDYC1#	0	495	Burst Ready Cache 1 is output by the 82495DX to the i486 CPU BRDYC # input during cache hit and posted cycles.
BRDYC2#	0	495	Burst Ready Cache 2 is output by the 82495DX to the 82490DX BRDYC # input during cache hit and posted cycles.
B\$16#	1	i486	The BS16# input is sampled by the i486 CPU during RESET to enable Chip Set Mode. BS16# may not be used in any other way.
BS8#	1	i486	The BS8# input is sampled by the i486 CPU during RESET to enable Chip Set Mode. BS8# may not be used in any other way.
BUS#	0	495 490	The Bus/Array Select output of the 82495DX multiplexes either the memory bus path or array path to the CPU bus of the 82490DX.
CDATA0-7	1/0	490	Cache Data I/O pins are the 8 bits comprising the I/O data bus interface between each 82490DX and the i486 CPU data bus.
CFA0-CFA6	1/0	495	Cache Function and Address pins of the 82495DX are multiplexed to the i486 CPU address according to the 82495DX configuration.
D/C#	0	i486 495	The Data/Code output of the i486 CPU is used by the 82495DX to decode special cycles. Please refer to the i486 DX CPU data sheet for details.

2.1 Quick Pin Reference (Optimized Interface) (Continued)

Symbol		уре	Name and Function
D0~D31	1/0	i486	The i486 CPU Data Bus pins are distributed to each 82490DX. Please refer to the i486 DX CPU data sheet for details.
DP0-DP3	1/0	i486	The i486 CPU Data Parity Bus pins are distributed to each 82490DX. Please refer to the i486 DX CPU data sheet for details.
EADS#	0	i486 495	The i486 CPU External Invalidation Address Strobe is driven by the 82495DX during back-invalidation cycles to maintain inclusion. Please refer to the i486 DX CPU data sheet for details.
KEN#	0	i486 495	The i486 CPU Cache Enable input is driven by the 82495DX during cacheable cycles. Please refer to the i486 DX CPU data sheet for details.
LEN	0	i486 495	The i486 CPU drives the Length pin active to indicate a cycle of 2 transfers. With LEN inactive, the cycle length is 1 transfer. If a cycle is cacheable, LEN is undefined and the cycle length is 4 transfers.
LOCK#	0	i486 495	The Cycle Lock pin of the i486 CPU is driven to the 82495DX which in turn drives the memory bus KLOCK # output. Please refer to the i486 DX CPU data sheet for details.
M/IO#	0	i486 495	The i486 CPU Memory/IO pin is used by the 82495DX to decode memory and I/O cycles. Please refer to the i486 DX CPU data sheet for details.
MAWEA#	0	495 490	The 82495DX asserts Memory Bus Array Write Enable or Allocation signal to the 82490DX to indicate that the data in the memory buffers should be written to the array, or that an allocation should occur.
MCYC#	0	495 490	The 82495DX asserts Memory Bus Cycle to the 82490DX to indicate that the current cycle will use the memory buffers.
PCD	0	i486 495 latch	The i486 CPU Page Cacheability Disable attribute bit is driven on PCD to indicate cacheability. PCD active causes the 82495DX to make the current cycle non-cacheable. Please refer to the i486 DX CPU data sheet for details.
PWT	0	i486 495 latch	The i486 CPU Page Write-Through attribute is driven on PWT to indicate write-through. PWT active causes the 82495DX to make the current cycle write-through. Please refer to the i486 DX CPU data sheet for details.
RDY#	1	i486	The RDY# pin must remain unused and unconnected.
SET0-10	1/0	495	The 82495DX Set Address pins are connected to 11 bits of the CPU address.
TAG0-11	1/0	495	The 82495DX Tag Address pins are connected to 12 bits of the CPU address.
W/R#	0	i486 495 490	The i486 CPU Write/Read pin is driven to the 82495DX and 82490DX to indicate a read or write cycle. Please refer to the i486 DX CPU data sheet for details.
WAY	0	495 490	The 82495DX Way indication is used by the 82490DX to properly load and store buffers as well as update the MRU bit.
WBA (SEC2#)	0	495 490	The Write Back Buffer Address (2 lines per sector) pin is driven by the 82495DX to indicate which line is loaded by the 82490DX. The 82495DX drives SEC2# during RESET to the 82490DX to pass along lines/
WBTYP	0	495	sector information. If active, SEC2# indicates 2 lines per sector. The 82495DX Write Back Cycle Type (Line Ratio 0) pin is driven to the
(LR0)	1	490	82490DX to indicate a write-back or snoop write-back cycle. LR0 is driven by the 82495DX to the 82490DX at RESET to pass along line ratio information.
WBWE# (LR1)	0	495 490	The 82495DX Write-Back Buffer Write Enable (Line Ratio 1) pin is used in conjunction with the WBA pin to load the write-back buffers. LR1 is driven by the 82495DX to the 82490DX at RESET to pass along line ratio information.
WRARR#	0	495 490	The 82495DX Write to 82490DX Array signal controls the writing of data into the 82490DX array and updating of the MRU bit.

The following pins have internal pull-ups and will be disabled during the tri-state output testing sequence:

8249	95DX:	8249	ODX:
BGT#	SNPCLK	ADS#	MZBT#
CNA#	SNPSTB#	BOFF#	PAR#
DRCTM#	SWEND#	MCLK	TMS
FLUSH#	SYNC#	MFRZ#	TDI
KWEND#	TCK	MOCLK	TCK
MRO#	ŤDI		
	TMS		

The following signals are glitch-free and are always valid following RESET:

CADS#

CDTS#

SNPADS#

SNPCYC#

KLOCK#

Table 1.1. Pin State During RESET

Pin Name	Pin State During RESET
CADS#, CDTS#, SNPADS#	High
CW/R#, CD/C#, CM/IO#, MCACHE#, CLEN0, CLEN1	Undefined
RDYSRC, PALLC#, CWAY	Undefined
NENE#, SMLN#	Undefined
KLOCK#	High
MSET, MTAG, MCFA	High
CAHOLD	(Note 1)
MHITM#, MTHIT#	High
SNPCYC#, SNPBSY# FSIOUT#	High Low
TDO	(Note 2)

NOTES:

- 1. The state of CAHOLD depends on whether self-test is selected.
- 2. The state of TDO is determined by boundary scan which is independent of all other signals including RESET.

Table 1.2. CPU-Cache Chip Set Output Pins

Active
Low
High
High
Low

Name	Active
RDYSRC	High
CLEN0	_
CLEN1	-
CWAY	_
NENE#	Low
SMLN#	Low
PALLC#	Low
CAHOLD	High
FISOUT#	Low
SNPBSY#	Low
MHITM#	Low
MTHIT#	Low
LMBE0-3#	Low
HLDA	High

Table 1.3. CPU-Cache Chip Set Input/Output Pins

Name	Active	Synch/Asynch	When Floated			
MSET, MTAG, MCFA	_	(Note 2)	MAOE# = High			
MDATA	_	— (Note 2)		MDOE# = High, Rese		
MDPTY	_	(Note 2)	MDOE# High, Reset			
CPLOCK# (PLOCKEN)	_					

2

Table 1.4. CPU-Cache Chip Set Input Pins

Name	Active	Synch/Asynch
CLK		_
RESET	High	Asynchronous
CFG3		_
MCLK	_	Asynchronous
TCK	_	Asynchronous
TDI	_	(Note 3)
TMS	_	(Note 3)
HOLD	High	Synchronous
NMI	High	Asynchronous
INTR	High	Asynchronous
IGNNE#	Low	Asynchronous
A20M#	Low	Asynchronous
BRDY#	Low	Synchronous
CNA# (CFG0)	Low	Synchronous
MKEN#	Low	(Note 1)
MWB/WT#	_	(Note 1)
DRCTM#	Low	(Note 1)
MRO#	Low	(Note 1)
BGT# (CLDRV)	Low	Synchronous
KWEND# (CFG2)	Low	Synchronous
SWEND# (CFG1)	Low	Synchronous
CRDY# (SLFTST#)	Low	Synchronous
FLUSH#	Low	Asynchronous
SYNC# (MALDRV)	Low	Asynchronous
MAOE#	Low	Asynchronous
MBAOE#	Low	Asynchronous
MALE	High	Asynchronous
MBALE	High	Asynchronous
MDOE#	Low	Asynchronous
MSEL# (MTR4/8#)	Low	(Note 2)
MEOC#	Low	(Note 2)
MOCLK		(11016 2)
MFRZ#	Low	(Note 2)
MZBT# (MX4/8#)	Low	(Note 2)
MBRDY# (MSTBM)	Low	(Note 2)
SNPCLK (SNPMD)	- LOW	(14019.2)
SNPSTB#	Low	(Nictor 4)
SNPINV	High	(Note 4)
SNPNCA	High	(Note 4) (Note 4)

NOTES

3. These signals are synchronous with TCK.

^{1.} MWB/WT# and DRCTM# must be synchronous to CLK while SWEND# is active. MKEN# and MRO# must be synchronous to CLK while KWEND# is active.

^{2.} In clocked memory bus mode, these pins are synchronous to MCLK. In strobed memory bus mode, these pins are asynchronous.

^{4.} These signals are sampled differently depending on the snoop mode.

3.0 ARCHITECTURAL OVERVIEW

3.1 Introduction

The Intel486TM CPU-cache chip set provides a tightly coupled processing engine based on the Intel486 microprocessor and a cache subsystem comprised of the 82495DX cache controller and multiple 82490DX cache components. Figure 3.1 diagrams the basic configuration.

The cache subsystem provides a gateway between the CPU and the memory bus. All CPU accesses that can be serviced locally are transparent to the memory bus and serve to avoid bus traffic. As a result, the cache chip set reduces memory bus bandwidth to both increase Intel486 processor performance and support efficient multiprocessor systems.

The cache subsystem also decouples the CPU from the memory bus to provide zero-wait-state operation at high clock frequencies while allowing relatively slow and inexpensive memories.

The CPU-cache chip set prevents latency and bandwidth bottlenecks across a variety of uniprocessor and multiprocessor designs. The processor's onchip cache supports a very wide CPU data bus and high-speed data movement. The second-level cache greatly extends the capabilities of the on-chip cache resources, enabling a larger portion of memory cycles to be satisfied independently of the memory bus.

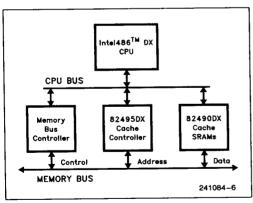


Figure 3.1. Basic CPU-Cache Subsystem

3.2 CPU-Cache Chip Set Description

The chip set is comprised of three functional blocks:

3.2.1 CPU

The chip set includes a special version of the Intel486TMDX microprocessor at 50 MHz. The Intel486TMDX Microprocessor Data Sheet provides complete component specifications.

3.2.2 CACHE CONTROLLER

The 82495DX cache controller is the main control element for the chip set, providing tags and line states, and determining cache hits and misses. The 82495DX executes all CPU bus requests and coordinates all main memory accesses with the memory bus controller (MBC).

The 82495DX controls the data paths of the 82490DX cache components for cache hits and misses and furnishes the CPU with needed data. The controller dynamically adds wait states as needed using the most recently used (MRU) prediction algorithm.

The 82495DX also performs memory bus snoop operations in shared memory systems and drives the cycle address and other attributes during memory bus accesses. Figure 3.2 diagrams the 82495DX.

3.2.3 CACHE SRAM

Multiple 82490DX cache components provide the cache SRAM and data path. Each component includes the latches, muxes and logic needed to work in lock step with the 82495DX to efficiently serve both hit and miss accesses. The 82490DX components take full advantage of VLSI silicon flexibility to exceed the capabilities of discrete implementations. The 82490DX components support zero-wait-state hit accesses and concurrent CPU and memory bus accesses, and they replicate MRU bits for autonomous way prediction. During memory bus cycles, the 82490DX components act as a gateway between CPU and memory buses. Figure 3.3 diagrams an 82490DX cache component.

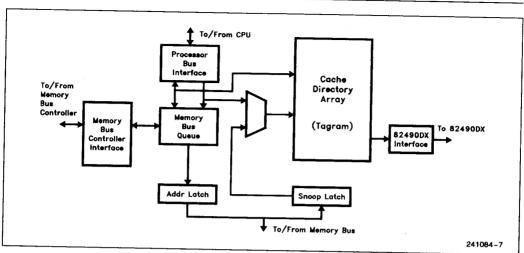


Figure 3.2. 82495DX Block Diagram

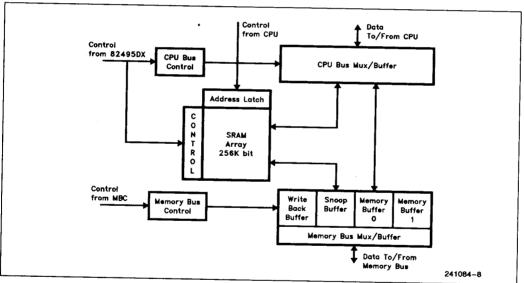


Figure 3.3. 82490DX Block Diagram

3.3 Secondary Cache Features

The 82495DX cache controller and 82490DX cache components provide a unified, software transparent secondary data and instruction cache. The cache enables a high-speed processor core that provides efficient performance even when paired with a significantly slower memory bus.

The secondary cache interprets CPU bus cycles and can service most memory read and write cycles without accessing main memory. I/O and other special cycles are passed directly to the memory bus. The cache has a dual-port structure that permits concurrent CPU and memory bus operation.

The 82495DX cach controller contains the 8K tag entries and logic needed to a cache as large as 512K. Combinations of between 4 and 18 82490DX cache SRAMs are used to create caches ranging from 128K to 512K, with or without data parity.

The MBC provides logic needed to interface the CPU, 82495DX and 82490DX to the memory bus. Because the MBC also affects system performance, its design can be the basis of product differentiation.

The secondary cache offers the following major features:

- Tracks the speed of the Intel486 microprocessor
- · 4K or 8K tags
- 1 or 2 lines per sector
- · 4 or 8 transactions per line
- 32-, 64- or 128-bit memory bus
- 128K, 256K or 512K cache
- Data parity support
- Write-Back cache with full multiprocessing consistency support
- Supports MESI cache consistency protocol
- Monitors memory bus to ensure cache consistency
- Maintains inclusion
- Write-protection
- Two-way set-associativity with MRU prediction algorithm
- Zero-wait-state hit cycles on MRU way, one waitstate on MRU misses
- Concurrent CPU and memory bus transactions
- Supports synchronous, clocked and strobed memory bus architectures
- Strong and weak write ordering enforcement

- Single-level write posting
- Optional single-level memory bus pipelining

The secondary cache is highly flexible, providing many configuration options. The system designer can select among physical configurations (such as line size and sectoring), snooping modes and memory bus modes. The cache can be used in a variety of design applications spanning uniprocessor, dual processor and large-scale multiprocessor systems.

Cache configurations are determined by the 82495DX and 82490DX pin settings at reset only. To conserve pins, a number of configuration inputs become 82495DX and 82490DX I/O pins following reset.

The physical cache can be organized to support a number of basic cache configurations as shown in Figure 3.4.

3.4 Chip Set Design and Operation

The Intel486TMDX microprocessor, 82495DX and 82490DX are specifically designed to enable a high-performance chip set. The component interfaces have been carefully evaluated by Intel to arrive at an optimal layout. The memory bus definition is, however, completely determined by the system designer.

3.5 CPU Bus Interface

The CPU bus interface connects the 82495DX and 82490DX to the CPU. This interface is optimized to provide zero-wait-state accesses at 50 MHz. Intel provides a proven high-performance layout recommendation. If a different layout is required, limited A.C. Timings and a set of design rules are provided also.

3.6 Secondary Cache Interface

Intel has carefully optimized the interface between the 82495DX cache controller and 82490DX cache memories to provide a high-speed interconnect that supports zero-wait-state operations. The interface enables the 82495DX to control how the 82490DX components load, store and move data between their internal buffers, the CPU bus and the memory bus.

The secondary cache interface is considered highly optimized, and Intel strongly recommends its example layout specification.

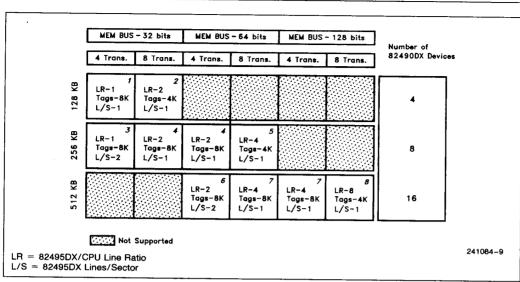


Figure 3.4. Cache Configurations

3.7 Memory Bus/MBC Interface

The MBC is a user-implemented set of components that adapt the CPU and cache subsystem to a specific memory bus protocol. While the 82495DX and 82490DX provide address and data paths, the MBC provides the basic path for control signals accessing the memory bus and the system. The MBC controls cycle sequencing and accommodates the timing requirements of the cache, CPU and other devices on the memory bus.

MBC design complexity can vary according to the application, from single-CPU systems employing a

write-through cache to complex multiprocessor systems with external tags. The CPU-cache chip set is highly flexible, and its precise operation is largely determined by the design of the MBC.

The MBC adapts the CPU-cache chip set to a specific memory bus protocol and coordinates with the 82495DX for operations such as line fills, flushes and write-backs. The controller also handles all cycle control, data transfers, snooping and any needed synchronization. The MBC invites product differentiation and allows the designer to easily adapt the 82495DX cache subsystem to specific architectures. Figure 3.5 diagrams one of many possible MBC designs.

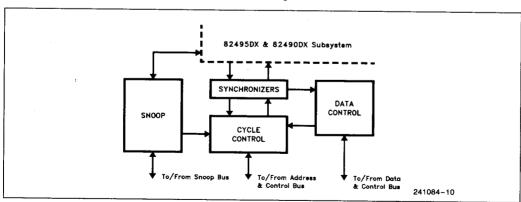


Figure 3.5. MBC Block Diagram Example

3.8 Test

The cache subsystem supports built-in self-test (BIST) and boundary scan. The designer may elect to use BIST as part of the system test procedure, to be initiated along with Intel486 processor BIST at RESET. Boundary scan utilizes dedicated 82495DX boundary scan pins which provide test hooks that conform to the IEEE Standard Test Access Port and Boundary Scan Architecture (IEEE Std. 1149.1).

4.0 ELECTRICAL DATA

4.1 Background

The 82495DX cache controller provides four main interfaces, one each to the CPU bus, memory bus controller, memory bus and 82490DX cache components. The memory bus controller (MBC) is typically implemented using programmable logic devices (PLDs). As a result, MBC interface signal timings are generated based on readily available PLD specifications. The memory bus interface is specified to suit a generic memory interface that operates at frequencies as high as the CPU frequency.

In the chip set implementation, the Intel486 CPU provides the following inputs and outputs, which are accessed by the MBC: CLK, RESET, PCHK#HOLD, HLDA, BRDY#, A20M#, FLUSH#, NMI, FERR#, IGGNE#, INTR, BS8#, BS16# and

BOFF#. The AC and DC characteristics of these signals are listed here but are not valid for the 50 MHz Intel486 DX component version.

The following A.C. and D.C. parameters are not tested but rather are guaranteed by design characterization:

V_{IL} min V_{IH} max Pin Capacitance Clock Rise and Fall Times Clock Stability Float Delays

4.2 Maximum Ratings

Table 4.1 refers to stress ratings only, and functional operation at these maximum ratings cannot be guaranteed. Functional operation is given by the AC and DC specifications.

Table 4.1a. Absolute Maximum Ratings 82495DX and 82490DX

Case Temperature Under Bias 65°C to + 100°C
Storage Temperature65°C to +150°C
Pin Voltage with Respect to Ground -0.5 V to $V_{CC} + 0.5$ V
Supply Voltage with Respect to VSS0.5V to +6.5V

4.3 DC Specifications

Table 4.1. DC Specifications

	$V_{CC} = 5V \pm 5\%$, $T_{CASE} = 0^{\circ}C$ to $+85^{\circ}C$								
Symbol	Parameter	Min	Max	Unit	Notes				
VIL	Input Low Voltage	-0.3	+ 0.8	V	TTL Level				
V _{IH}	Input High Voltage	2.0	V _{CC} + 0.3	V	TTL Level				
V _{OL}	Output Low Voltage		0.45	V	TTL Level(1)				
V _{OH}	Output High Voltage	2.4		V	TTL Level(2)				
Icc	Power Supply Current		1000 600 300 480	mA	i486DX CPU @ 50 MHz ⁽³⁾ 82495DX @ 50 MHz ⁽³⁾ 82490DX @ Typical Cycle Mix @ 50 MHz ⁽⁴⁾ 82490DX @ Atypical Cycle Mix @ 50 MHz ⁽⁴⁾				
լլ	Input Leakage Current		± 15	μА	0 < V _{IN} < V _{CC}				
ILO	Output Leakage Current		±15	μА	0 ≤ V _{OUT} ≤ V _{CC} Tristate				
I _{IL}	Input Leakage Current		200	μΑ	$V_{IN} = 0.45V(5)$				
C _{IN}	Input Capacitance		13 14 5	pF	for i486 DX CPU for 82495DX for 82490DX				
Co	Output Capacitance		17 18 15	pF	for i486 DX CPU for 82495DX for 82490DX				
C _{I/O}	I/O Capacitance		17 18 15	pF	for i486 DX CPU for 82495DX for 82490DX				
C _{CLK}	CLK Input Capacitance		15 11 5	pF	for i486 DX CPU for 82495DX for 82490DX				
C _{TIN}	Test Input Capacitance		15 15 10	pF	for i486 DX CPU for 82495DX for 82490DX				
C _{TOUT}	Test Output Capacitance		20 15 10	pF	for i486 DX CPU for 82495DX for 82490DX				
C _{TCK}	Test Clock Capacitance		15 15 10	pF	for i486 DX CPU for 82495DX for 82490DX				

NOTES:

^{1.} Parameter measured at 4 mA I_{load}. For MCFA6-MCFA0, MSET10-MSET0, and MTAG11-MTAG0, this parameter is

measued at 12 mA l_{load}.
2. Parameter measured at 1 mA l_{load}. For MCFA6-MCFA0, MSET10-MSET0, and MTAG11-MTAG0, this parameter is measued at 2 mA I_{load}.

3. Represents maximum power consumption given a worst case cycle mix.

4. The 82490DX's maximum I_{CC} varies depending on the type of cycles performed. The 82490DX consumes the **atypical cycle mix maximum I_{CC}** by running back-to-back single word read cycles. Normally, applications will not exercise the 82490DX in this way over sustained periods of time. the **typical cycle mix maximum I_{CC}** is defined for an instruction mix of 1/3 read hits, 1/3 write hits and 1/3 idle cycles. One MRU read hit cycle (two clocks), one Write-Back write hit (two cycles) and two idle clocks implements this mix. The table below illustrates a typical 82490DX's supply current for various cycle types under typical conditions ($V_{CC} = 5V$, $V_{CASE} = 25^{\circ}C$):

Cycle Type	lcc*
Idle	77 mA
Read hit; Burst = 1 (Atypical Cycle Mix)	388 mA
Read hit; Burst = 4	304 mA
Write hit; Burst = 1	223 mA
Write hit; Burst = 4	240 mA
Write Through; non-cacheable; Burst = 1	180 mA
Line fill: Cacheable: Burst = 4	275 mA
Cache Flush	117 mA
Typical Cycle Mix (1/3 Read, 1/3 Write, 1/3 Idle)	244 mA
*These values are neither tested nor guaranteed by Intel.	

^{5.} This parameter is for input with pullup.

4.4 AC Specifications

All TTL timing specifications are measured at 1.5V for logic levels 0 and 1.

Table 4.2. Clock, Reset and Configuration

$ m V_{CC}=5V\pm5\%$, $ m T_{CASE}=0^{\circ}C$ to $+85^{\circ}C$ $ m C_{L}=0$ pF Unless Otherwise Specified. All inputs and Outputs are TTL Level.								
Symbol	Parameter	Min	Max	Unit	Figure	Notes		
t ₀	CLK, MCLK, MOCLK Frequency	25	50	MHz		1 × clock		
t ₁	CLK, MCLK, MOCLK Stability		0.1	%				
t ₂	CLK, MCLK, MOCLK Period	20	40	ns	4.1			
t ₃	CLK, MCLK, MOCLK High Time	7		ns	4.1	(Note 1)		
t ₄	CLK, MCLK, MOCLK Low Time	7		ns	4.1	(Note 1)		
t ₅	CLK, MCLK, MOCLK Rise Time		2	ns		(Note 1)		
t ₆	CLK, MCLK, MOCLK Fall Time		2	ns		(Note 1)		
t ₇	RESET Setup Time	6		ns	4.4			
t ₈	RESET Hold Time	2		ns	4.4			
tg	RESET Duration	8 × t ₂ 15 × t ₂		ns	4.4	for 82495DX ⁽²⁾ for 82490DX and i486 DX CPU		
t ₁₀	All Configurations CFG3-CFG0, SNPMD, PLOCKEN, MALDRV, MDLDRV, CLDRV, HIGHZ#, SLFTST# Setup Time	10 × t2		ns	4.4	(Notes 3, 4)		
t ₁₁	All Configurations CFG3-CFG0, SNPMD, PLOCKEN, MALDRV, MDLDRV, CLDRV, HIGHZ#, SLFTST# Hold Time	0 -		ns	4.4	(Notes 3, 5)		
t ₁₂	FLUSH#, SYNC# Setup Time	8		ns	4.3	for 82495DX ⁽⁵⁾		
t ₁₃	FLUSH#, SYNC# Hold Time	1		ns	4.3	for 82495DX ⁽⁷⁾		
t ₁₄	FLUSH#, SYNC# Duration	2 × t ₂		ns		(Note 8)		
t ₁₅	MOCLK Falling Edge to Rising Edge of MCLK	2		ns				
t ₁₆	FLUSH#, A20M#, NMI, INTR, IGNNE#, BS8#, BS16#, BOFF# Setup Time	5		ns	10-3	for i486 DX CPU		

Table 4.2. Clock, Reset and Configuration (Continued)

$V_{CC}=5V\pm5\%$, $T_{CASE}=0^{\circ}C$ to $+85^{\circ}C$ $C_{L}=0$ pF Unless Otherwise Specified. All Inputs and Outputs are TTL Level.							
Symbol	Parameter	Min	Max	Unit	Figure	Notes	
t ₁₇	FLUSH#, A20M#, NMI, INTR, IGNNE#, BS8#, BS16#, BOFF# Hold Time	2		ns	10-3	for i486 DX CPU	
t ₁₈	FERR#, HLDA Valid Delay	2	12	ns	10-2		
t ₁₉	FERR#, HLDA Float Delay		20	ns			
t ₂₀	HOLD Setup Time	5		ns	10-3		
t ₂₁	HOLD Hold Time	2	-	ns	10-3		

NOTES:

- 1. Rise/Fall, High/Low times measured between 0.8V and 2.0V.
- 2. Power-up reset duration should be 1 ms after $V_{\rm CC}$ and CLK become stable. If configuration inputs with pullups are left floated, 10 μs RESET duration is required.
- 3. Timing is referenced to the falling edge of reset.
- 4. 8 ns setup time is required to guarantee recognition on next clock.
- 5. 1 ns hold time is required to guarantee recognition on next clock.
- 6. To guarantee recognition on next clock.
- 7. Synchronous mode only.
- 8. Asynchronous mode only. To guarantee recognition.

Table 4.3. 82495DX/82490DX Memory Bus Controller Interface

$V_{CC}=5V\pm5\%, T_{CASE}=0^{\circ}C$ to $+85^{\circ}C$ $C_{L}=0$ pF Unless Otherwise Specified. All Inputs and Outputs are TTL Level.							
Symbol	Parameter	Min	Max	Unit	Figure	Notes	
t ₃₀	BRDY#, CRDY#, KWEND#, SWEND#, BGT#, CNA#, [WRMRST] Setup Time	8		ns	4.3	82495DX	
t _{30a}	BRDY#, CRDY# Setup	7		ns	4.3	82490DX	
t _{30b}	BRDY # Setup	5		ns	4.3	i486 DX CPU	
t ₃₁	BRDY#, CRDY#, KWEND#, SWEND#, BGT#, CNA#, [WRMRST] Hold Time	1		ns	4.3		
t _{31a}	BRDY# Hold	2		ns	4.3	i486 DX CPU	
t ₃₂	CW/R#, CD/C#, CMI/O#, CLEN0, CLEN1, RDYSRC, MCACHE#, KLOCK#, BLE#, CPLOCK#, PALLC#, CAHOLD, CWAY, FSIOUT#, CADS#, CDTS#, SNPADS# Valid Delay	2	10	ns	4.2		
t ₃₃	NENE#, SMLN# Valid Delay	2	- 14	ns	4.2		
t ₃₄	MDATA Setup to CLK (Clock before BRDY # Active)	6		ns	4.3	(Note 1)	
t ₃₅	MDATA Valid Delay from CLK (CLK from CDTS # Valid, MDOE # Active)	2	13	ns	4.2		
t ₃₆	MDATA Valid Delay from MDOE # Active		8	ns	4.2		
t ₃₇	MDATA Float Delay from MDOE # Inactive	0	14	ns			

NOTE:

1. Even if MBRDY# or MISTB is not used for this cycle, the data still must be held according to t43.

2-505

Table 4.4. 82495DX Memory Interface

 $V_{CC}=5V~\pm5\%, T_{CASE}=0^{\circ}C~to~+85^{\circ}C$ $C_{L}=0~pF$ Unless Otherwise Specified. All inputs and Outputs are TTL Level.

Symbol	Parameter	Min	Max	Unit	Figure	Notes
t ₅₀	SNPCLK Frequency	8	50	MHz		1 × clock(10)
t ₅₁	SNPCLK Period	20	125	ns	4.1	(Note 11)
t ₅₂	SNPCLK High Time	7		ns	4.1	
t ₅₃	SNPCLK Low Time	7		ns	4.1	
t ₅₄	SNPCLK Rise Time		2	ns		(Note 1)
t ₅₅	SNPCLK Fall Time		2	ns		(Note 1)
t ₅₆	MCFA6-MCFA0, MSET10-MSET0, MTAG11-MTAG0 Valid Delay	2	11	ns	4.5	(Notes 2, 3)
t ₅₇	MCFA6-MCFA0, MSET10-MSET0, MTAG11-MTAG0 Float Delay	2	15	ns	4.5	(Note 4)
t ₅₈	MCFA6-MCFA0, MSET10-MSET0, MTAG11-MTAG0 Valid Delay	2	13	ns	4.5	(Note 5)
t ₆₀	MCFA6-MCFA0, MSET10-MSET0, MTAG11-MTAG0 Valid Delay	2	13	ns	4.2	(Note 6)
t _{62a}	MCFA6-MCFA0, MSET10-MSET0, MTAG11-MTAG0, SNPINV, SNPNCA, MAOE#, MBAOE#, SNPSTB# Setup Time	8		ns	4.3	(Note 7a)
t _{62b}	MCFA6-MCFA0, MSET10-MSET0, MTAG11-MTAG0, SNPINV, SNPNCA, MAOE#, MBAOE# Setup Time	1		ns	4.3	(Note 7b)
t _{62c}	MCFA6-MCFA0, MSET10-MSET0, MTAG11-MTAG0, SNPINV, SNPNCA, MAOE#, MBAOE#, SNPSTB# Setup Time	8		ns	4.3	(Note 7c)
^t 63a	MCFA6-MCFA0, MSET10-MSET0, MTAG11-MTAG0, SNPINV, SNPNCA, MAOE#, MBAOE#, SNPSTB# Hold Time	1		ns	4.3	(Note 7a)
t _{63b}	MCFA6-MCFA0, MSET10-MSET0, MTAG11-MTAG0, SNPINV, SNPNCA, MAOE#, MBAOE# Hold Time	8		ns	4.3	(Note 7b)
t _{63c}	MCFA6-MCFA0, MSET10-MSET0, MTAG11-MTAG0, SNPINV, SNPNCA, MAOE#, MBAOE#, SNPSTB# Hold Time	1		ns	4.3	(Note 7c)
t ₆₄	SNPSTB# Setup Time	8		ns	4.3	(Note 8)
t ₆₅	SNPSTB# Hold Time	1		ns	4.3	(Note 8)
t ₆₆	SNPSTB# Active/Inactive Time	8		ns	4.3	(Note 9)
t ₆₇	MRO#, MKEN#, DRCTM#, MWB/WT# Setup Time	8		ns	4.3	

Table 4.4. 82495DX Memory Interface (Continued)

$V_{CC}=5V\pm5\%$, $T_{CASE}=0^{\circ}C$ to $+85^{\circ}C$ $C_{L}=0$ pF Unless Otherwise Specified. All Inputs and Outputs are TTL Level.							
Symbol	Parameter	Min	Max	Unit	Figure	Notes	
t ₆₈	MRO#, MKEN#, DRCTM#, MWB/WT# Hold Time	1		ns	4.3		
t ₆₉	MTHIT#, MHITM#, SNPBSY# Valid Delay	2	12	ns	4.2		
t _{69a}	SNPCYC# Valid Delay	2	10	ns	4.2		

NOTES:

- 1. Rise/fall times measured between 0.45V and 2.4V.
- 2. See capacitive derating curves for additional loading delay.
- 3. Valid delay from MAOE#, MBAOE# going active (low).
- 4. Float delay from MAOE#, MBAOE# going inactive (high).
- 5. Valid delay from MALE or MBALE if both MAOE#, MBAOE# are active.
- 6. Valid delay from CLK only if MALE or MBALE, MAOE# and MBAOE# are active.
- 7a. In clocked mode referenced to SNPCLK rising edge.
- 7b. In strobed mode referenced to SNPSTB# falling edge.
- 7c. In synchronous mode, refer to CLK.
- 8. Asynchronous clocked mode only. Timings referenced to SNPCLK.
- 9. Asynchronous signal. Time to guarantee recognition on next clock.
- 10. SNPCLK is only used for the clocked memory bus mode. SNPCLK Min frequency is not tested.
- 11. t₅₁ ≥ t₂

Table 4.5. 82490DX Clocked Mode

$V_{CC}=5V\pm5\%$, $T_{CASE}=0^{\circ}C$ to $+85^{\circ}C$ $C_{L}=0$ pF Unless Otherwise Specified. All inputs and Outputs are TTL Level.						
Symbol	Parameter	Min	Max	Unit	Figure	Notes
t ₃₈	MBRDY#, MSEL#, MEOC# Setup to MCLK	5		ns	4.3	
t ₃₉	MBRDY#, MSEL#, MEOC#, Hold from MCLK	2		ns	4.3	
t ₄₀	MZBT#, MFRZ# Setup to MCLK	5		ns	4.3	
t ₄₁	MZBT#, MFRZ# Hold from MCLK	2		ns	4.3	
t ₄₂	MDATA Setup to MCLK	5		ns	4.3	
t ₄₃	MDATA Hold from MCLK	2		ns	4.3	
t ₄₄	MDATA Valid Delay from MCLK•MBRDY#	2	14	ns	4.2	
t ₄₅	MDATA Valid Delay from MCLK•MEOC# MCLK•MSEL#	2	20	ns	4.2	(Notes 1, 2)
t ₄₆	MDATA Valid Delay from MOCLK	2	10	ns	4.2	(Note 3)

NOTES:

- Since MEOC # causes the 82490DX to end a cycle and switch to the next pending cycle, MDATA may be driven from the next MCLK•MEOC edge.
- 2. Since MSEL# can be used to restart a cycle (by resetting the burst counter), MDATA may be driven from the MCLK+MSEL#+MRDY# edge.
- 3. Since MOCLK controls a transparent latch on MDATA, MOCLK activation may be the gating signal for MDATA valid.

Table 4.6. 82490DX Strobed Mode

$V_{CC}=5V\pm5\%$, $T_{CASE}=0^{\circ}C$ to $+85^{\circ}C$ $C_{L}=0$ pF Unless Otherwise Specified. All inputs and Outputs are TTL Level.							
Symbol	Parameter	Min	Max	Unit	Figure	Notes	
t ₈₅	MISTB, MOSTB High Time	12		ns	4.6		
t ₈₆	MISTB, MOSTB Low Time	12		ns	4.6		
t ₈₇	MEOC# High Time	8		ns	4.6		
t ₈₈	MEOC# Low Time	8		ns	4.6		
t ₈₉	MxSTB, MEOC# Rise Time		2	ns		(Note 1)	
t ₉₀	MxSTB, MEOC# Fall Time		2	ns		(Note 1)	
t ₉₁	MSEL# High Time for Restart	8		ns	4.6		
t ₉₂	MSEL# Setup before Transition on MxSTB	5		ns	4.8		
t ₉₃	MSEL# Hold after Transition on MxSTB	10		ns	4.8		
t ₉₄	MSEL# Hold after Transition on MEOC#	2		ns	4.8		
t ₉₅	MxSTB Transition to/from MEOC# Falling Transition	10		ns			
t ₉₆	MZBT# Setup to MSEL# or MEOC# Falling Edge	5		ns	4.7		
t ₉₇	MZBT# Hold from MSEL# or MEOC# Falling Edge	2	- 1.	ns	4.7		
t ₉₈	MFRZ# Setup to MEOC# Falling Edge	5		ns	4.7		
t99	MFRZ# Hold from MEOC# Falling Edge	2		ns	4.7		
t ₁₀₀	MDATA Setup to MxSTB or MEOC# Falling Transition	5		ns	4.7		
t ₁₀₁	MDATA Hold from MxSTB or MEOC# Falling Transition	2		ns	4.7	 .	
t ₁₀₂	MDATA Valid Delay from MxSTB Transition	2	14	ns	4.9		
t ₁₀₃	MDATA Valid Delay from MEOC # Falling Transition or MSEL # Deactivation	2	20	ns	4.9		

NOTE:

1. Rise/fall times measured between 0.8V and 2.0V.

Table 4.7. Test Mode All Components

	$V_{CC}=5V\pm5\%$, $T_{CASE}=0^{\circ}C$ to $+85^{\circ}C$ $C_{L}=0$ pF Unless Otherwise Specified. All Inputs and Outputs are TTL Level.							
Symbol	Parameter	Min	Max	Unit	Figure	Notes		
t ₁₂₀	TCK Frequency	TBD		MHz		1 × clock		
t ₁₂₁	TCK Period	TBD		ns				
t ₁₂₂	TCK High Time	TBD		ns				
t ₁₂₃	TCK Low Time	TBD		ns				
t ₁₂₄	TCK Rise Time	TBD		ns				
t ₁₂₅	TCK Fall Time	TBD		ns	·			
t ₁₂₆	TDI, TMS Setup Time	TBD		ns	4.10			
t ₁₂₇	TDI, TMS Hold Time	TBD		ns	4.10			
t ₁₂₈	TDO Valid Delay	TBD		ns	4.10			
t ₁₂₉	TDO Float Delay	TBD						
t ₁₃₀	All Outputs Valid Delay	TBD		ns	4.10			
t ₁₃₁	All Outputs Float Delay	TBD		ns	4.10			

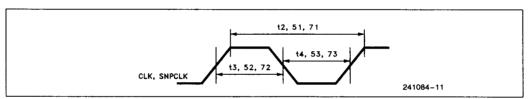


Figure 4.1. Clock Waveform

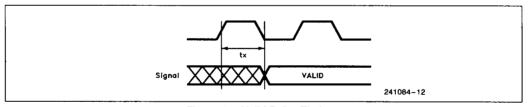


Figure 4.2. Valid Delay Timings

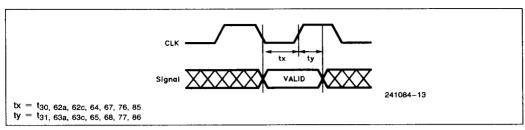


Figure 4.3. Setup and Hold Timings

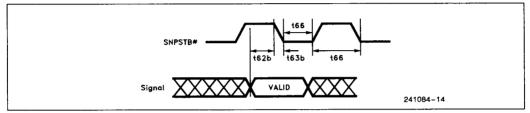


Figure 4.3a. Setup and Hold Timings in Strobed Snooping Mode

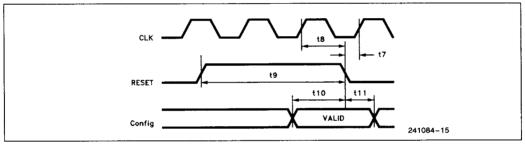


Figure 4.4. Reset and Configuration Timings

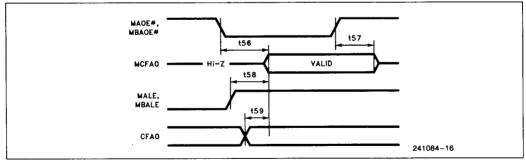


Figure 4.5. Memory Interface Signals



Figure 4.6. Active/Inactive Timing

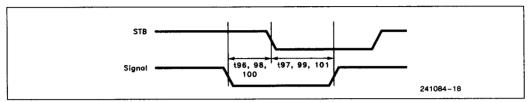


Figure 4.7. Setup and Hold Timing

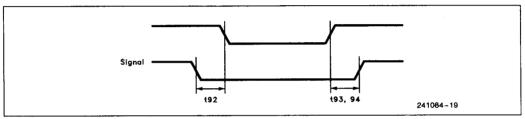


Figure 4.8. Setup and Hold Timing

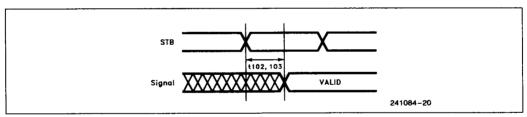


Figure 4.9. Valid Delay Timing

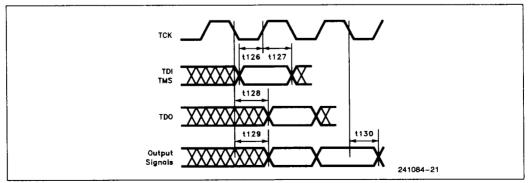


Figure 4.10. Test Timings

2-511

4.5 Optimized and External Interface Specifications

OPTIMIZED INTERFACE

The optimized interface is the high-performance interconnect between the Intel486 DX CPU, 82495DX cache controller and 82490DX SRAM. This interface is tuned for the known configuration options of the chip set and includes specially designed (non-standard) input and output buffers optimized for the defined electrical environment of each signal path. The specification of this interface is also non-standard; this section describes the signal flight times, signal quality and buffer types parameters used throughout this interface.

The Intel486 DX CPU-Cache Chip Set Hardware Reference Manual (HRM) details recommended layouts for the different cache size configurations.

These thoroughly tested layouts are available in industry standard formats. However, the system designer may choose an alternate component layout; in designing this layout the designer must carefully simulate each optimized interface signal path and ensure that signal timings and quality meet the specified limits.

The specifications that follow define the requirements of each path in the optimized interface. As outlined in Table 4.8 there are three classes of specifications: flight time to guarantee signal timing; signal quality to guarantee reliable operation; and buffer models to specify completely flight time and signal quality. For instructions on how to apply the data in designing, verifying and debugging the interface, please refer to the Intel486 DX CPU-Cache Chip Set Hardware Reference Manual. Tables 4.8–4.14 define the optimized interface for the 256 Kbyte configuration of the Intel486 DX CPU-Cache Chip Set.

Table 4.8. The Three Specification Classes, Their Purpose and the New Parameters

Specification Class	Purpose	Parameter			
Flight	Guarantee Timing	Maximum Flight Time			
Signal Quality	Guarantee Reliable Operation	Absolute Maximum Signal Overshoot (Undershoot) Maximum Group Average Overshoot (Undershoot) Absolute Maximum Time Beyond the Supply Maximum Group Average Time Beyond the Supply Maximum Signal Ring-back Maximum Settling Time			
Buffer Models Completely Specify Flight Time and Signal Quality		C _{IN} - Input Capacitance Lp - Package Inductance Cp - Package Capacitance dV/dt - Voltage Source Rate of Change R _O - Output Impedance C _O - Output Capacitance			

THE FLIGHT TIME SPECIFICATION

The first new parameter is flight time. Upon analysis, it can be determined that the flight time is dependent on many parameters. The most straight forward definition of flight time (for a low to high transition) is the time difference between the 1/2 V_{CC} level of an unloaded output signal and the 1/2 V_{CC} level of a receiving signal whose 1/2 V_{CC} to 3/4 V_{CC} level rise time is less than 1V/ns as illustrated in Figure 4.11. Receiving signals with slower rise times must be derated as illustrated in Figure 4.12 where the 75% V_{CC} point is extrapolated back to the 50% V_{CC} point using a 1V/ns reference slope.

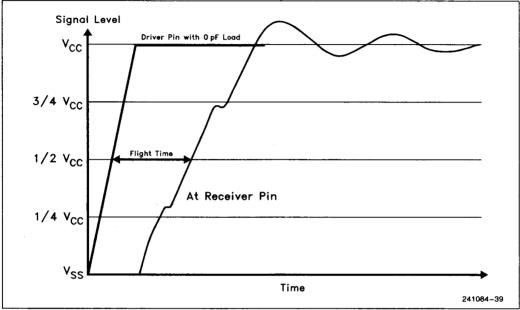


Figure 4.11. Determination of Flight time based on the 1/2 V_{CC} level measurement of a 0 pF load output with reference to the $\frac{1}{2}$ V_{CC} level of at the receiver pin. The $\frac{1}{2}$ V_{CC} to $\frac{3}{4}$ V_{CC} rise time is faster than 1V/ns in this example.

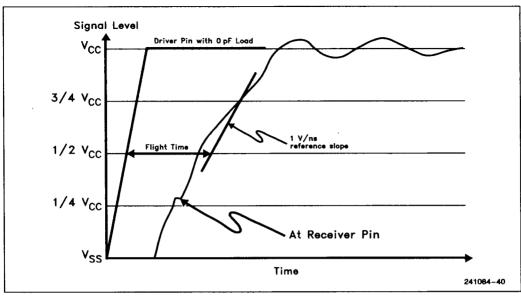


Figure 4.12. Derating the Flight Time Based on the Reference 1V/ns Slope

Figure 4.13 shows the method for measuring flight time in a system environment where the output signal is loaded. The Intel486 DX CPU-Cache Chip Set Hardware Reference Manual explains these definitions of flight time in more detail.

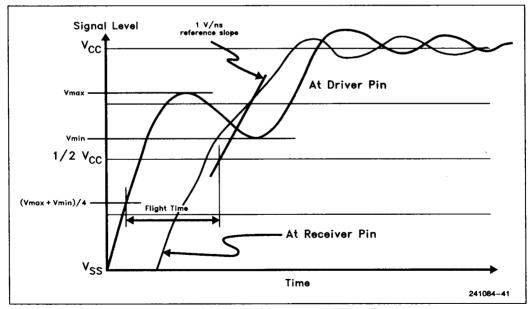


Figure 4.13. in-System Measurement of Flight Time

Table 4.9 describes the maximum flight time specification. Tables 4.10 to 4.11 list the flight time and maximum clock skew specifications for each driver-

receiver network in the optimized interface. For each net, the driver first order output buffer model type and receiver input buffer model type are also listed.

Table 4.9. A Description of Maximum Flight Time

Parameter	Description
Maximum Flight Time	Maximum time a signal may take travelling from the driver to the input pin of the receiving component. It includes the time to traverse the PC board trace and any added output delay on the output buffer due to the trace and receiving component loading and is dependent on rise time at the receiving component.

Table 4.10. Signal Group: CPU to Cache RAM (CPU-CRAM) (256 Kbyte Version)

Driver	Receiver	Max CLK Skew (ns)	Max Flight Time (ns)	Driver Buffer Type	Receiver Buffer Type
i486 D0-D31	82490 CDATA0-3	1.0		ZD1	ZR7
i486 DP0-3	82490 CDATA0-3	1.0		ZD1	ZR7
82490 CDATA0-3	i486 D0-D31	1.0	· · · · · · · · · · · · · · · · · · ·	ZD5	ZR2
82490 CDATA0-3	i486 DP0-D31	1.0		ZD5	ZR2

Table 4.11 Signal Group: CPU to Cache (CPU-Cache) (256 Kbyte Version)

Driver	Receiver	Max CLK Skew (ns)	Max Flight Time (ns)	Driver Buffer Type	Receiver Buffer Type
i486 A2-A3	82495 CFA0~1	0.5		ZD2	ZR5
i486 A4-A5	82495 CFA5-6	0.5	112	ZD2	ZR5
i486 A6-A16	82495 SET0-10	0.5		ZD2	ZR5
i486 A2-A16	82490 A1-A15	1.0		ZD2	ZR6
82495 CFA5-6	i486 A4-A5	0.5		ZD3	ZR3
82495 SET0-10	i486 A6-A16	0.5		ZD3	ZR3
82495 CFA0-1	82490 A1-A2	1.0		ZD3	ZR6
82495 CFA5-6	82490 A3-4	1.0		ZD3	ZR6
82495 SET0-10	82490 A5-A15	1.0		ZD3	ZR6
i486 W/R#	82495 W/R#	0.5		ZD2	ZR4
i486 W/R#	82490 W/R#	1.0		ZD2	ZR6
i486 ADS#	82490 ADS#	1.0		ZD2	ZR6
i486 ADS#	82495 ADS#	0.5		ZD2	ZR4
i486 BE0-4#	82490 BE#	1.0		ZD1	ZR6
i486 BE0-4#	82490 CDATA4-7	1.0		ZD1	ZR7

Table 4.12 Signal Group: CPU to Cache Controller (CPU-CCTL) (256 Kbyte Version)

Driver	Receiver	Max CLK Skew (ns)	Max Flight Time (ns)	Driver Buffer Type	Receiver Buffer Type
i486 A17-A20	82495 TAG0-3	0.5		ZD2	ZR5
i486 A21 – A28	82495 TAG4-11	0.5		ZD1	ZR5
i486 A29-A31	82495 CFA2-4	0.5		ZD1	ZR5
82495 TAG0-3	i486 A17-A20	0.5		ZD3	ZR3
82495 TAG4-11	i486 A21-A28	0.5		ZD3	ZR2
82495 CFA2-4	i486 A29-A31	0.5		ZD3	ZR2
i486 PWT	82495 PWT	0.5		ZD1	ZR4
i486 PCD	82495 PCD	0.5		ZD1	ZR4
i486 M/IO#	82495 M/IO#	0.5		ZD1	ZR4
i486 D/C#	82495 D/C#	0.5		ZD1	ZR4
i486 LOCK#	82495 LOCK#	0.5		ZD1	ZR4
i486 LEN	82495 LEN	0.5		ZD1	ZR5
82495 AHOLD	i486 AHOLD	0.5		ZD3	ZR1
82495 EADS#	i486 EADS#	0.5		ZD3	ZR1
82495 KEN#	i486 KEN#	0.5		ZD3	ZR1
82495 BRDYC1#	i486 BRDYC#	0.5		ZD3	ZR1

Table 4.13 Signal Group: Cache Controller to Cache RAM (CCTL-CRAM) (256 Kbyte Version)

Driver	Receiver	Max CLK Skew (ns)	Max Flight Time (ns)	Driver Buffer Type	Receiver Buffer Type
82495 BLAST#	82490 BLAST#	1.0		ZD4	ZR6
82495 WRARR#	82490 WRARR#	1.0		ZD4	ZR6
82495 WAY	82490 WAY	1.0		ZD4	ZR6
82495 MCYC#	82490 MCYC#	1.0		ZD4	ZR6
82495 MAWEA#	82490 MAWEA#	1.0		ZD4	ZR6
82495 BUS#	82490 BUS#	1.0		ZD4	ZR6
82495 WBA	82490 WBA	1.0		ZD4	ZR6
82495 WBWE#	82490 WBWE#	1.0		ZD4	ZR6
82495 WBTYP	82490 WBTYP	1.0		ZD4	ZR6
82495 BRDYC2#	82490 BRDYC#	1.0		ZD4	ZR6
82495 BLE#	F377 Latch	1.0		ZD3	(Note 1)

NOTE

^{1.} Consult manufacturer of the F377 latch for receiver input loads.

SIGNAL QUALITY

Acceptable signal quality must be maintained over all operating conditions. Figure 4.14 illustrates the parameters used to verify acceptable signal quality. Table 4.14 describes each of these parameters.

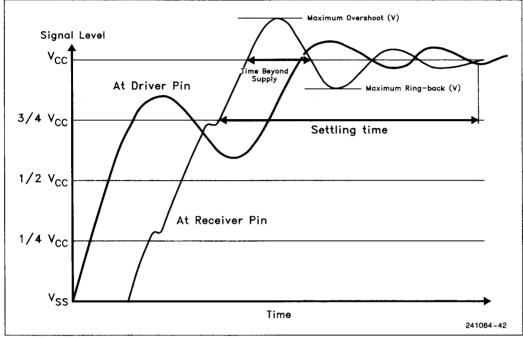


Figure 4.14. Driver and Receiver Signal Waveforms Showing Signal Quality Parameters

Beyond the absolute maximum vaules shown in Figure 4.14, each of the four signal groups defined by Tables 4.10 to 4.13 in the Intel486 DX CPU-Cache Chip Set optimized interface must meet a maximum group average for Overshoot (Undershoot) and Time Beyond the Supply. Maximum group average overshoot (undershoot) is the numeric average of the maximum signal overshoot (undershoot) for each signal within the signal group. Maximum group average Time Beyond the Supply is the numeric average

of the Maximum Time Beyond the Supply for each signal within the signal group.

Since the maximum value for signal overshoot and undershoot will be limited by the component's ESD diodes, both the absolute and group average specifications for overshoot and undershoot must be met under the simulation conditions described by Tables 4.10, 4.11, 4.12 and 4.13.

Table 4.14. The Specifications for Signal Quality

Parameter	Desciption	Group	Specification
Absolute Maximum Signal Overshoot (Undershoot)	Absolute value of the maximum voltage at the receiving pin above V _{CC} (or below V _{SS}) relative to V _{CC} (or V _{SS}) level.	NA	
Absolute Maximum Time beyond the Supply	Maximum time a signal may exceed V_{CC} (or V_{SS}).	NA	
Maximum Supply Ring-Back	Absolute value of the maximum voltage at the receiving pin below V_{CC} (or above V_{SS}) relative to V_{CC} (or V_{SS}) level after the signal has reached its maximum voltage level.	NA	
Maximum Settling Time	Total time required for a signal to settle within 90%. (10%) of its final value with reference to the signal's initial crossing of the 0.75 V _{CC} (0.25 V _{CC}) level.	NA	
Maximum Group	The maximum numeric average of the	CPU-CRAM	
Average Overshoot	signal overshoot (undershoot) for all signals within a signal group.	CPU-Cache	
(Undershoot)	Signal Willing a signal gloup.	CPU-CCTL	
		CCTL-CRAM	
Maximum Group	The maximum numeric average of the	CPU-CRAM	
Average Time	time a signal may exceed V _{CC} (or V _{SS}) for all signals within a signal group.	CPU-Cache	
beyond Supply	an organis within a organis group.	CPU-CCTL	
		CCTL-CRAM	

EXTERNAL INTERFACE

The external interface is the interface between the chip set components and the memory bus controller, memory address bus, and memory data bus. Intel supplies buffer models for this interface to aid system designers simulation of this section of their design. Unlike the optimized interface, Intel supplies the AC Specifications of output valid delay and input setup and hold times.

Each valid delay is specified for a 0 pF load. The system designer should use I/O buffer modeling or lumped capacitance derating curves to account for signal flight time delays. I/O buffer modeling is recommended since it is a more exact method of determining flight times.

Table 4.15 lists the buffer type to be used for each signal in the external interface.

Table 4.15. External Interface Signal Buffer Assignment

Component	Signals	Driver Buffer Type	Receiver Buffer Type
Intel486™ DX	A20M#, BRDY#, FLUSH#, HOLD, IGGNE#, INTR, NMI, RESET (BOFF#, BS8#, BS16#, RDY# See Note 1)	NA	ER1
	HLDA, FERR# (BLAST#, BREQ#, See Note 1)	ED1	NA
82495DX	BGT#, BRDY#, CNA#, CPLOCK#, CRDY#, CWAY#, DRCTM#, FLUSH#, KWEND#, MALE, MAOE#, MBALE, MBAOE#, MKEN#, MRO#, MWB/WT#, RESET, SNPCLK, SNPINV, SNPNCA, SNPSTB#, SWEND#, SYNC#, WRMRST	NA	ER2
	MSET10-0, MTAG11-0, MCFA6-0 for MALDRV = 1 for MALDRV = 0	ER3 ER3	ED2 ED3
	CADS#, CAHOLD, CD/C#, CFG3, CLEN0-1, CM/IO#, CW/R#, FSIOUT#, KLOCK#, MCACHE#, PALLC#, RDYSRC, SNPADS#, SNPCYC#	NA	ED2
	CDTS#, MHITM#, MTHIT#, NENE#, SMLN#, SNPBSY#	NA	ED3
82490DX	BRDY#, CRDY#, MBRDY# (MISTB), MDOE#, MEOC#, MFRZ#, MOCLK (MOSTB), MSEL#, MZBT#, RESET	ER4	NA
	MDATA7-0 for MDLDRV = 1 for MDLDRV = 0	ER5 ER5	ED4 ED5

NOTE:

I/O BUFFER MODELS

The first order I/O buffer model is a simplified representation of the complex input and output buffers used in the Intel486 DX CPU, 82485DX, and 82490DX. Figure 4.15 shows the structure of the input buffer model and Figure 4.16 shows the output buffer model. Tables 4.16 and 4.17 shows the parameters used to specify these models.

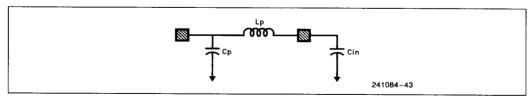


Figure 4.15. First Order Input Buffer

2-519

^{1.} The Intel486 DX CPU-Cache Chip Set does not use these signals.

Table 4.16 The Parameters Used in the Specification of the First Order Input Buffer Model

Parameter	Description
C _{IN}	Minimum and Maximum value of the capacitance of the input buffer model.
Lp	Minimum and Maximum value of the package inductance.
C _P	Minimum and Maximum value of the package capacitance.

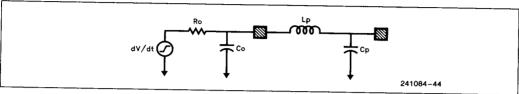


Figure 4.16. First Order Output Buffer

Table 4.17 The Parameters Used in the Specification of the First Order Output Buffer Model

Parameter	Description
dV/dt	Minimum and maximum value of the rate of change of the open circuit voltage source used in the output buffer model. A value for both the low-to-high and high-to-low transition is specified.
R _O	Minimum and maximum value of the output impedance of the output buffer model. A value for both the low-to-high and high-to-low transition is specified.
Co	Minimum and Maximum value of the capacitance of the output buffer model.
Lp	Minimum and Maximum value of the package inductance.
C _P	Minimum and Maximum value of the package capacitance.

The Tables 4.18 and 4.20 lists the minimum and maximum parameters for each buffer type of the optimized and external interfaces. These parameters supply the information to use in the circuits shown in Figures 4.15 and 4.16 to model the chip sets behavior in a given environment.

Optimized Interface Buffers

Table 4.18 Specification of Input and Output Optimized Interface Buffer Model Parameters

		Input E	Buffer Mo	dels				
Buffer Type	Component	Pin			L _P (nH)		C _{IN} (pF)	
		Туре	Min	Max	Min	Max	Min	Max
ZR1	Intel486 DX	Input						····
ZR2	Intel486 DX	I/O - ZD1 Driver			 		 	 -
ZR3	Intel486 DX	I/O - ZD2 Driver			ļ			<u> </u>
ZR4	82495DX	Input					 	<u> </u>
ZR5	82495DX	1/0						 -
ZR6	82490DX	Input			<u> </u>		ļ — — —	
ZR7	82490DX	1/0	T					
		Output	Buffer Mo	odels	L	i		L.,
Buffer	Component	Pin	C _P (pF)		L _P (nH)		C _{IN} (pF)	
Туре	Component	Туре	Min	Max	Min	Max	Min	Max
ZD1	Intel486 DX	Impedance A						
ZD2	Intel486 DX	Impedance B						
ZD3	82495DX	Impedance A						
ZD4	82495DX	Impedance C						
ZD5	82490DX	Impedance A						

When simulating the optimized interface for either Flight Time or Signal Quality, it is critical to use the appropriate buffer model specification. Table 4.19 shows the correct specifications to use in the Flight Time or Signal Quality simulations.

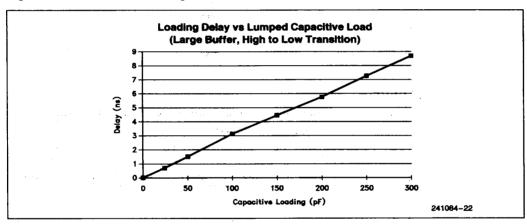
Table 4.19. Specifications to be Used for Simulation of Flight Time or Signal Quality

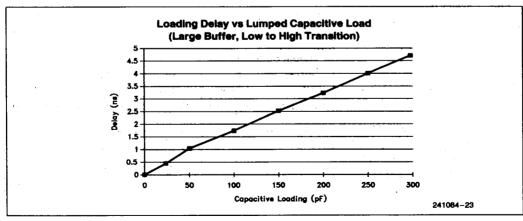
		Flight Time	Signal Quality
Driver:	dV/dt	min	max
	Co	max	min
	Ro	max	min
	R _O C _P	max	min
	Lp	max	min
Receiver:	C _{IN}	max	min
	CP	max	min ·
	Lp	max	min
Other:	Temp.	max	min
	V _{CC}	min	max
	Board Z _O	min	max
	t _{PD}	max	min
	Via Capacitance	max	min

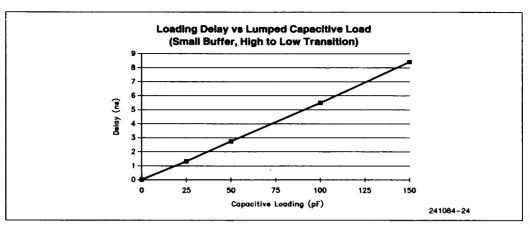
External Interface Buffers

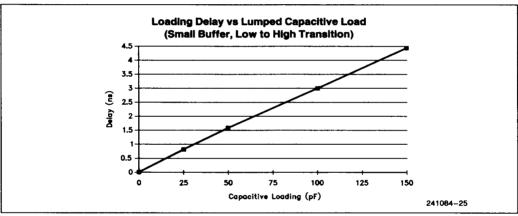
Table 4.20 Specification of Input and Output External Interface Buffer Model Parameters

		,,,,,	Inj	out Buf	fer Mo	dels						
Buffer	Component	Pin		C _P (pF)				-Р Н)				
Туре	-	Туре	Mil	n	Max	ı	Min	Ma	x	Min	Max	
ER1	Intel486 DX	Input										
ER2	82495DX	Input										
ER3	82495DX	1/0										
ER4	82490DX	Input										
ER5	82490DX	1/0								·		
	-		Out	tput Bu	ffer M	odels						
Buffer	Component	Driver		//dt nsec)		lo ms)	1	o F)		L _P nH)	I	C _P oF)
Туре			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
ED1	Intel486 DX	Impedance A										
ED2	82495DX	Impedance A										
ED3	82495DX	Impedance B										
ED4	82490DX	Impedance A										
ED5	82490DX	Impedance B										


4.6 Capacitive Derating


The Intel486TM DX CPU-Cache chip set AC Timing Specifications are all given at a 0 pF capacitive load. For this reason, each output must be derated according to the load being driven. Capacitive derating is not a precise method of determining a signal's delay, and must only be applied to signals that interface to the Memory Bus (t32 to t330). A more accurate determination of delay and signal quality may be made by modeling the buffer using the technique described in the Intel486 DX CPU-Cache Chip Set Hardware Reference Manual.


The following graphs represent the lumped-load capacitive derating curves for the 82495DX and 82490DX buffers used to drive the memory bus. The large buffers are used for the signals CDTS#,


NENE#, SMLN#, MTHIT#, MHITM#, and SNPBSY#, and when MALDRV and MDLDRV are configured low for the signals MCFA, MSET, MTAG and MDATA. The small (normal) buffers are used with all other buffers and with MCFA, MSET, MTAG, and MDATA when MALDRV and MDLDRV are configured high. Note that for both buffers, the capacitive derating for a low-to-high transition is different from a high-to-low transition.

Small buffers provide the best signal quality for capacitive loads of about 50 pF or less. Large buffers provide the best quality for loads between 100 pF and 150 pF. The Intel486 DX CPU/82495DX/82490DX chip set component buffer model provides detailed information about buffer performance in specific environments.

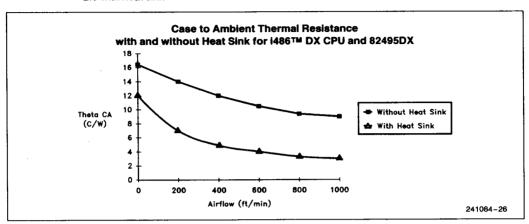
5.0 THERMAL DATA

The 82495DX and 82490DX are specified for operation when T_C (case temperature) are within the range of 0°C-85°C. T_C may be measured in any environment to determine whether the components are within the specified operating range. The case temperature should be measured at the center of the top surface, opposite the pins.

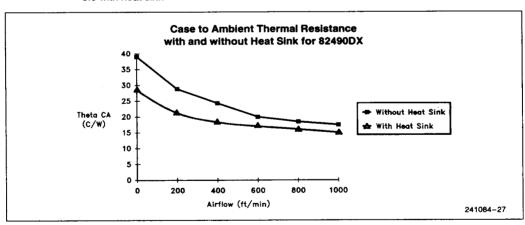
The ambient temperature (T_A) is guaranteed as long as T_C is not violated. The ambient temperature can be calculated from θ_{JC} and θ_{JA} using the following equations:

$$T_J = T_C + P \cdot \theta_{JC}$$

$$T_{A} = T_{J} + P \bullet \theta_{JA}$$
$$T_{C} = T_{A} + P \bullet (\theta_{JC} - \theta_{JC})$$


This is true where T_J, T_A and T_C = junction, ambient and case temperature, respectively, and where θ_{JC} and θ_{JA} = junction-to-case and junction-to-ambient thermal resistance, respectively. P = maximum power consumption.

The Intel486 DX CPU and 82495DX have similar package characteristics and thus similar thermal characteristics. The heat sink referenced for all parts is a unidirectional heat sink, 0.350" high, 40 MIL fin width, and 155 MIL center-to-center fin spacing.

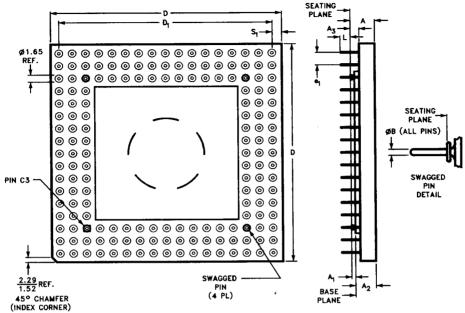

1486™ DX CPU and 82495DX

 θ_{JC} (C/W) = 1.5 without heat sink 2.0 with heat sink

82490DX

 θ _{IC} (C/W) = 7.5 without heat sink 8.0 with heat sink

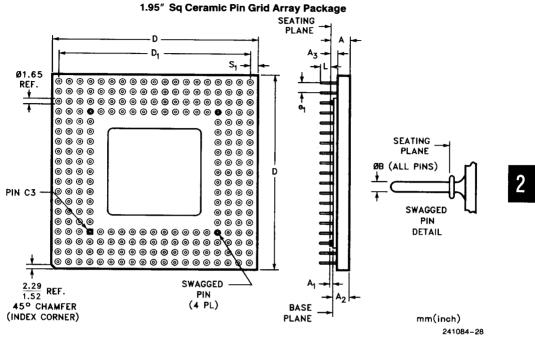
6.0 MECHANICAL DATA


Letter or Symbol	Description of Dimensions					
Α	Distance from seating plane to highest point of body					
A ₁	Distance between seating plane and base plane (lid)					
A ₂	Distance from base plane to highest point of body					
A ₃	Distance from seating plane to bottom of body					
В	Diameter of terminal lead pin					
D	Largest overall package dimension of length					
D ₁	A body length dimension, outer lead center to outer lead center					
θ1	Linear spacing between true lead position centerlines					
L	Distance from seating plane to end of lead					
S ₁	Other body dimension, outer lead center to edge of body					

NOTES:

- Controlling dimension: millimeter.
 Dimension "e₁" ("e") is non-cumulative.
- Seating plane (standoff) is defined by P.C. board hole size: 0.0415 inch-0.0430 inch
 Dimensions "B", "B₁" and "C" are nominal.
 Details of Pin 1 identifier are optional.

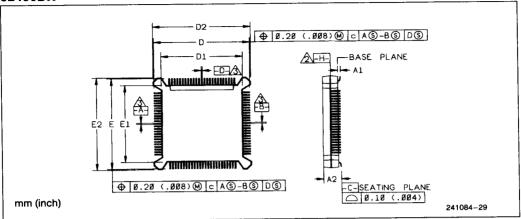
Intel486TM DX Microprocessor



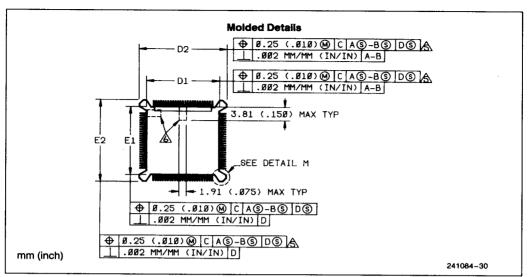
241084-38

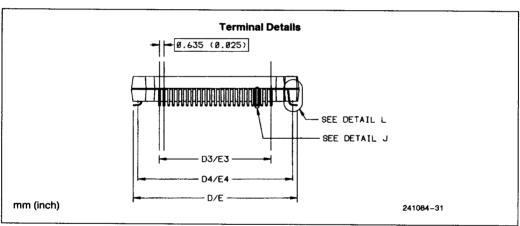
Family: Ceramic Pin Grid Array Package							
O		Millimeters		Inches			
Symbol	Min	Max	Notes	Min	Max	Notes	
Α	3.56	4.57		0.140	0.180		
A ₁	0.64	1.14	Solid Lid	0.025	0.045	Solid Lid	
A ₂	2.8	3.5	Solid Lid	0.110	0.140	Solid Lid	
A ₃	1.14	1.40		0.045	0.055		
В	0.43	0.51		0.017	0.020		
D	44.07	44.83		1.735	1.765		
D ₁	40.51	40.77		1.595	1.605		
θ1	2.29	2.79		0.090	0.110		
L	2.54	3.30		0.100	0.130		
N	1	68		10	68		
S ₁	1.52	2.54		0.060	0.100		
ISSUE	IWS Re	v X 7/15/88					

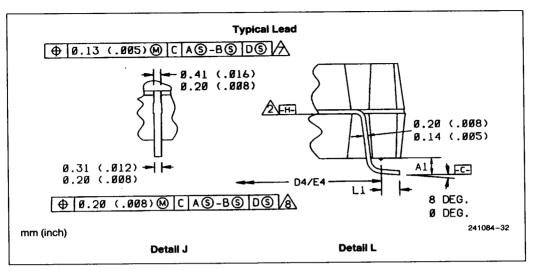
Figure 6-1. Intel486™ DX CPU Mechanical Specifications


82495DX

Family: Ceramic Pin Grid Array Package							
Symbol		Millimeters	<u> </u>	Inches			
Symbol	Min	Max	Notes	Min	Max	Notes	
Α	3.56	4.57		0.140	0.180		
A ₁	0.64	1.14	Solid Lid	0.025	0.045	Solid Lid	
A ₂	0.23	0.30	Solid Lid	0.110	0.140	Solid Lid	
A ₃	1.14	1.40		0.045	0.055		
В	0.43	0.51		0.017	0.020		
D	49.53	50.17		1.950	1.975		
D ₁	45.59	45.85		1.795	1.805		
. e ₁	2.29	2.79		0.090	0.110		
L	2.54	3.30		0.100	0.130		
N	240	280		240	280		
S ₁	1.52	2.54		0.060	0.100		
ISSUE	IWS 9/9	0					


Figure 6-2. 82495DX Mechanical Specifications


82490DX



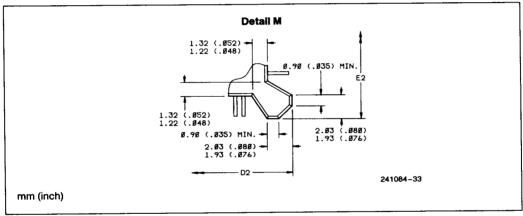

Symbol	Description	Min (mm)	Max (mm)	Min (in.)	Max (in.)
N	Leadcount	84		84	
Α	Package Height	4.06	4.57	0.160	0.180
A1	Standoff	0.51	1.02	0.020	0.040
D, E	Terminal Dimension	19.56	20.07	0.770	0.790
D1, E1	Package Body	16.43	16.59	0.647	0.653
D2, E2	Bumper Distance	20.24	20.39	0.797	0.803
D3, E3	Lead Dimension	12.70 REF		0.500 REF	
D4, E4	Foot Radius Location	18.36	18.71	0.723	0.737
L1	Foot Length	0.51	0.76	0.020	0.030

Figure 6-3. 82490DX Mechanical Specifications

