Integrating Applications
into SCO" Open Desktop”
Release 3.0

© 1993 The Santa Cruz Operation, Inc.
All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means, elec-
tronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior
written permission of the copyright owner, The Santa Cruz Operation, Inc., 400 Encinal,
Santa Cruz, California, 95060, U.S.A. Copyright infringement is a serious matter under the
United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User only
for use in strict accordance with the End User License Agreement, which should be read
carefully before commencing use of the software. Information in this document is subject
to change without notice and does not represent a commitment on the part of The Santa
Cruz Operation, Inc.

SCO OPEN DESKTOP Software is commercial computer software and, together with any
related documentation, is subject to the restrictions on U.S. Government use as set forth
below.

If this procurement is for a DOD agency, the following DFAR Restricted Rights Legend
applies:

RESTRICTED RIGHTS LEGEND:

USE, DUPLICATION OR DISCLOSURE BY THE GOVERNMENT IS SUBJECT TO
RESTRICTIONS AS SET FORTH IN SUBPARAGRAPH (c)(1)(ii)) OF RIGHTS IN
TECHNICAL DATA AND COMPUTER SOFTWARE CLAUSE AT DFARS
252.227-7013. CONTRACTOR/MANUFACTURER IS THE SANTA CRUZ
OPERATION, INC.,, 400 ENCINAL STREET, SANTA CRUZ, CA 95060.

If this procurement is for a civilian government agency, the following FAR Restricted
Rights Legend applies:

RESTRICTED RIGHTS LEGEND:

THIS COMPUTER SOFTWARE IS SUBMITTED WITH RESTRICTED RIGHTS
UNDER GOVERNMENT CONTRACT NO. (AND SUBCONTRACT
NO. IF APPROPRIATE). IT MAY NOT BE USED, REPRODUCED, OR
DISCLOSED BY THE GOVERNMENT EXCEPT AS PROVIDED IN PARAGRAPH
(g)(3)(i) OF FAR CLAUSE 52.227-14 OR AS OTHERWISE EXPRESSLY STATED IN
THE CONTRACT. CONTRACTOR/MANUFACTURER IS THE SANTA CRUZ
OPERATION, INC,, 400 ENCINAL STREET, SANTA CRUZ, CA 95060.

SCO, Open Desktop, The Santa Cruz Operation, the Open Desktop logo, and the SCO logo

are registered trademarks of The Santa Cruz Operation, Inc. in the USA and other coun-
tries.

All other brand and product names are or may be trademarks of, and are used to identify
products or services of, their respective owners.

Date: 6 January 1993
Document version: 3.0.0A

APIs, standards, libraries, compatibility 1
What you should KNOW ...ttt ssssessesnsssnes 2
Graphical interface standards and libraries 3
Backward compatibility 4
Notational conventions 5

Putting your icon on the Desktop 7
1. Create an icon pixmap 8
2. Define icon triggers ... 1

Starting your application with the s1 trigger 13

Starting your application with the d1 trigger . 14

Popping up a menu with the h3 trigger 14

3. Install icon files 16
Removing pixmaps, object files, and application rules 17

Making applications user-installable 18

Animating icons 18
Localizing icon labels 21
Creating icons for user datafiles ... 22
Adapting to display resolution at run time 25
Supporting the Desktop color selector 29
Defining display-dependent colors 32
Communicating with the session manager 35
Index 39
Table of contents v

APIs, standards, libraries, compatibility

This paper explains how to use the icon, display resolution, color, and session
manager APIs (application programming interfaces) provided with SCO®
Open Desktop®, Release 3.0.

These APIs help you integrate your application into the Open Desktop Graph-
ical Environment. With them, you can ensure the best look for your applica-
tion by defining different graphical resources for different display types. Using
the Open Desktop APIs will also help make your application’s appearance and
behavior consistent with that of other software running on Open Desktop.
Users expect and depend on such consistency, because it enables them to
learn and use new applications more easily.

You may use any, all, or none of the four APIs described in this paper. We
recommend you use all four, because:

¢ If you use the icon object API to put your icon on the Desktop, users can
start (launch) your application by double-clicking on your icon. If you do
not, users must start your application from the command line (or by
finding your executable in its directory window and double-clicking on
that file’s icon).

¢ If you use the display resources API to adapt to display resolution at run
time, Open Desktop will load those resources that give your application
the best appearance on the current display. If you do not, your application
may look better on some displays than on others.

APls, standards, libraries, compatibility

If you use the color API to support the Desktop color selector, users can
customize your application’s color scheme with the Open Desktop graphi-
cal Color control. If you do not, your application’s colors will not change
when users globally modify those of the Desktop, Desktop clients, and
other applications.

If you use the session manager API to communicate with the session man-
ager, users can terminate an Open Desktop session while your application
is running, then resume the session later with your application restored to
the same state it was in at shutdown. If you do not, your application will
still be restarted when the session is resumed, but its state at shutdown will
not be restored and unsaved data may be lost.

NOTE Of the four listed above, only the icon object API is applicable to
character-based applications.

What you should know

This paper assumes you are familiar with:

Open Desktop Release 3.0

X Window System Toolkit, Version 11, Release 5

OSF/Motif® Toolkit, Version 1.2

OSF/Motif Style Guide, Release 1.1

ICCCM, Version 1.0 (X interclient communications protocols)

C programming language (ANSI standard)

For more information about these systems and technologies, see the Open
Desktop Development System documentation, the Open Desktop User’s Guide
and online Desktop Help, and the Open Desktop Graphical Environment
Administrator’s Guide. The latter also contains detailed information about
Open Desktop rule and icon object script syntax.

NOTE The SCO Open Desktop Development System Release 3.0 includes X
Window System® Version 11, Release 5 and the OSF/Motif Toolkit, Version
1.2. Refer to the Release Notes for important information about the standards
and features in X11R5 and the new Motif Toolkit. Refer to the Intro(Xm)
manual page for a description of new functionality and enhancements that
affect the Motif Toolkit as a whole. See “Backward compatibility” (page 4)
for information out running Open Desktop Release 3.0 binaries on Open
Desktop Release 2.0.

Graphical interface standards and libraries

Graphical interface standards and libraries

If your UNIX® application has a graphical interface, it must be able to run in
an X Window System environment. The interface should be Motif-compliant,
as defined by the OSF/Motif Style Guide (Revision 1.1).

Open Desktop Development System Release 3.0 is built upon Version 1.2 of
the OSF/Motif Toolkit. It is possible to substantially reduce memory usage by
using the X shared libraries. To take advantage of these performance improve-
ments, link your application to the libraries listed in Table 1. Refer to the
Release Notes for further information about X11R5 and Motif 1.2 performance
improvements. Refer to the next section “Backward compatibility” (page 4)
for information about running Open Desktop 3.0 binaries on Open Desktop
2.0.

Table 1 Libraries to link with

Library Contains:

XtXm_s Xt intrinsics and Motif routines

X11_s X Window (Version 11) routines

Xmu X miscellaneous utilities

c_s shared version of a portion of libc

malloc faster version of memory allocation routines

PW Programmer’s Workbench library needed to resolve the alloca

symbol for the X libraries; this should be listed on the link line
after XtXm_s and X11_s

socket socket interface routines

Refer to the Development System Encyclopedia for more information about
standard COFF libraries, also known as archive libraries, and static COFF
shared libraries. For detailed information about shared libraries, see the Pro-
gramming Tools Guide. Refer to the Release Notes for specific information about
linking these libraries.

APIs, standards, libraries, compatibility

Backward compatibility

Applications that run on Open Desktop Release 2.0 will run on Open Desktop
Release 3.0; however, the reverse may not be true. If you are building applica-
tions on Open Desktop 3.0 to run on Open Desktop 2.0, note the following.

e Use non-shared libraries to ensure portability. Note, however, that if appli-
cations are built with non-shared libraries, they will have a large binary
size.

e Use shared libraries to ensure a smaller binary size. Note, however, that if
applications are built with the X Window shared libraries (libX11_s.a and
libXtXm_s.a), they must be run on X Window runtime shared libraries (spe-
cifically /shlib/libX11R5_s and /shlib/libXtXm1.2_s). X11R5 runtime shared
libraries are available from the SCO X11R5 Runtime System EFS.

Applications that run on Open Desktop Release 1.1 will run on Open Desktop
Release 2.0 and 3.0; however, the reverse may not be true because Release 2.0
and 3.0 add features and technology not available in Release 1.1. Specifically,
the APIs discussed in this paper are new, and so not supported in releases
prior to 2.0.

Release 1.1 defined icons through rules. These rules were located with other
rules in rule files. When an application was installed, rule files had to be
edited so the new rules could be added. The rule files had to be edited again
when an application was removed or updated.

Release 2.0 and 3.0 uses a more modular approach: discrete icon objects are
installed with a utility, eliminating the need to edit rule files. While icon
objects simplify installation of applications onto this and future Open Desk-
top releases, icons defined this way will not display on Release 1.1 Desktops.

For more about installing Release 1.1-compatible applications on a Release 2.0
or 3.0 Desktop, see the “Updating Open Desktop” chapter of the Open Desktop
Installation and Update Guide. The Open Desktop Graphical Environment
Administrator’s Guide provides administrators with instructions for transfer-
ring currently installed and configured applications from Release 1.1 to
Release 2.0 or 3.0 Desktops.

Refer to the Release Notes for information about Motif 1.2 and Motif 1.1 binary,
visual, and behavioral backward compatibility.

Notational conventions

Notational conventions

SCO documents use font changes and other typographic conventions to dis-
tinguish text elements. The following table shows these conventions:

Font conventions

Example

Entity

cc or cc(CP)

command. The “CP” indicates the manual page section
in which the command is documented.

passwd or passwd(F) filename. The “F” indicates the manual page section in
which the file is documented.

action placeholder; replace with an appropriate value

(Esc) keyname

$HOME environment or shell variable

SIGHUP named constant

“clobber” jargon

date user input

Thu Feb 13 1992

non-highlighted system output such as the output from
a command

uunet machine, network, or user name
employees database name
Name field name in database or named field in screen forms

Putting your icon on the Desktop

Open Desktop users expect to be able to start your application by double-
clicking on its icon. If your application works with text, graphic, or other data
files, users also assume that dropping a file icon on your icon will start your
application working on that file.

Open Desktop uses an object-oriented approach to defining application icons.
A Desktop icon is an object defined by one or more pixmap files (the icon pic-
ture), one or more object scripts (that specify what happens when users mani-
pulate the icon), and an object directory (to hold the pixmaps and object
scripts). The icon label is taken from the name of the object directory. At the
beginning of a session, Open Desktop looks in designated directories for icon
objects, then displays the corresponding icons.

To put your icon on the Desktop:

1. Define the icon graphic in a pixmap file.

2. Define the actions triggered by user manipulation of the icon in object
script files.

3. Install icon files with the deskconfobj installation tool.
Detailed instructions for each step follow.

NOTE This release provides a new client, Object Builder, that allows you
to graphically create objects. You can use Object Builder to perform step 2
interactively. Refer to the online Desktop Help and the objbld(X) manual
page for information on using this tool.

Putting your icon on the Desktop

You may also:

¢ Animate icons (page 18).

o Attach pop-up menus to icons (page 14).

e Provide translations of the icon label for different languages (page 21).

» Create special icons for files created by your application (page 22).

1. Create an icon pixmap

The easiest way to prepare an icon pixmap is to start with an existing icon:

1.

Select a Desktopicon to use as a base template.

Choose the Desktop accessory or control icon that most resembles your
icon design. Accessory icons are located in the Accessories window; con-
trol icons are in the Controls window.

Drop thaticon on the Paint icon.

This will open the Paint accessory with the icon you selected displayed, as
shown below. (If the message . . . does not seem to be a pixmap
file. Do you want to edit the icon picture? is displayed, click on
Yes.)

NOTE To edit color icons with the Paint accessory, you must work on a
color monitor with a server that supports up to 256 colors.

1. Create an icon pixmap

.' . o : a I l a I
L =L=.=.=.=.=.=.=.=.g=-
-:III-“I-IIII ll.l-m-l

= .=: [] a]
- .ﬁg::'-'-h'-!.'-'.'-h{' o
E.l.ll-mm--n“lr

e TR T e B

'll“l ﬂ SIEEIEEERANEPECEEREREERERERE

§:-:-:-:-:-:-.-.-:=-:§

Il-l..-I. Ill.l.I..h-

balalalalalalalabals®*®

Width - 64, Helght - 64

We recommend you use the Paint accessory (located in the Desktop
Accessories window) to create your icon. Although you may use any icon
editor or graphics program that can save to a file in XPM2 (Version 2.8) pix-
map format, only pixmaps created with the Paint accessory can use the
transparent “color” needed to create borderless icons. Instructions for
using the Paint accessory are available online through Help.

Putting your icon on the Desktop

10

3. Edit the image into the picture you want.

This technique ensures that your pixmap will be based on a 64-by-64-pixel
grid, and that it uses appropriate colors.

Open Desktop can be run on servers that support as few as 16 colors.
Colors are identified by their hexadecimal values at the beginning of a pix-
map file (and can be viewed with a text editor). To ensure that your icon
will look good even when displayed by 16-color servers, use the same
colors as other Desktop icons do:

R G B
iconcolor1: #FFFF F3F3 A6A6 (yellowish)
icon color 2: # FFFF 8A8A 8686 (reddish)
icon color 3: #1818 C7C7 E7E7 (blueish)
black
white
transparent

When you use one of the Desktop icons as a starting point, these colors are
already selected for you.

Blend additional colors by stippling these together in various combina-
tions. If you want to adapt an icon you have created elsewhere, use the
Paint accessory’s Grab Color feature to capture colors from a Desktop
icon and transfer them to your icon.

The transparent “color” lets the background color of the Desktop (or direc-
tory window) show through, so you can create borderless icons. Gen-
erally, an icon can be more readily picked out of a group of distinctly
shaped icons than it can from a group of icons with identical rectangular
borders.

Do not include the icon label in the pixmap. The label is defined by the
name of the icon object directory.

. Save the edited image.

Save the edited image in a pixmap file named picture.px.

Note that if you have an existing icon that you had previously created in
black-and-white bitmap format, you may use it, as long as you rename the
bitmap file picture.px.

2. Define icon triggers

5. Test youricon's appearance on various servers and displays.

Your icon will be seen on a variety of displays. View your icon on
different displays to verify that it is legible in various resolutions and on
grayscale displays. To get the best look on monochrome displays, use the
Paint accessory to explicitly map each color you use to black or white.
Refer to the scopaint(X) manual page for more information.

To check that your icon can be recognized when it is stippled, drag it onto
the Desktop from its directory window. A stippled copy of the icon will
remain behind:

2. Define icon triggers

Print.px

The action of pressing a mouse button while pointing to an icon is called an
icon trigger, because it triggers an action associated with the icon. Table 2
shows the default Open Desktop icon triggers.

Table 2 lcon triggers

User Mouse Trigger ~ Object script ~ Used for

action button type file name

double-click 1 static ~ sl.objscr start

double-click 2 static s2.objscr alternate start
double-click 3 static s3.objscr start with prompt
hold down 3 hold h3.objscr pop-up menu
draganddrop 1 drop d1.objscr start on file
draganddrop 2 drop d1.objscr start on file
draganddrop (Ctl)1 drop d2.objscr alternate start on file
drag and drop (Ctrl)2 drop d2.objscr alternate start on file
draganddrop 3 drop d3.objscr start on file with prompt

On a three-button mouse, the buttons are referred to as mouse buttons 1, 2
and 3. Mouse buttons 1 (the left button by default) and 3 (the right button by
default) can be swapped to accommodate left-handed users. On a two-button
mouse, users can simulate button 2 by pressing both buttons simultaneously.
For more about how a mouse is used, see the Open Desktop User’s Guide or

Desktop Help.

11

Putting your icon on the Desktop

12

To define an icon trigger:

1.

Write a Deskshell object script for each trigger you want to define.

You should only define actions for the triggers listed in Table 2. Other user
manipulations of your icon (single-clicking on it or dragging it to a new
location, for example) are handled automatically by Open Desktop. Sam-
ple object scripts for s1, d1, and h3 triggers are presented on the following
pages.

The s1 trigger must be used to start your application. By default, double-
clicking with mouse button 3 (the s3 trigger) brings up a a dialog box that
prompts the user for command line options to the startup command in
your s1 script. Similarly, a file icon dragged with mouse button 3 and
dropped on your icon (the d3 trigger) brings up a prompt for startup
options, then executes your script for the d1 trigger. The s3 and d3
triggers prompt for options to the s1 and d1 scripts by default; you do not
need to write scripts for these triggers unless you want to override their
default behavior.

Use the Deskshell command language to write object scripts. It provides
the same basic functions as the Bourne shell, along with additional com-
mands for defining special Desktop actions. Instructions for using Desk-
shell are in the chapter “Writing scripts in Deskshell” in the Open Desktop
Graphical Environment Administrator’s Guide.

Only write object scripts for those triggers that are relevant to your appli-
cation. For example, an application that simply displays a clock does not
need to define what happens when a text file is dropped on it. If a trigger
is not defined with an object script, a message will notify the user that the
action (double-click, hold, or drop) is not defined for that button.

Name each object script file as specified in Table 2.

Note that dragging and dropping with either mouse button 1 or 2 triggers
the d1 object script. To trigger the d2 script, users must hold down the
(Ctrl) key while dragging with mouse button 1 or 2.

When assigning functions to mouse buttons, follow the guidelines defined in
the OSF/Motif Style Guide regarding which button does what. Your application
will be easier to learn if it uses the mouse buttons in the same ways other
applications do.

2. Define icon triggers

Starting your application with the s1 trigger

Your s1 object script should start your application when a user double-clicks
on your icon with mouse button 1. This script must be named s1.objscr (“s”
for “static trigger,” “1” for “mouse button 1,” “objscr“ for “object script”).

Forexample, an s1.objscr script to start a graphical clock could be as simple as:
/usr/bin/X11/xclock §*

By default, double-clicking on your icon with mouse button 3 will display a
dialog box that prompts the user for command line options. Open Desktop
then executes the sl.objscr script with the options the user enters. These
options could be standard Xt intrinsics options or options specific to your
application. In the above example, $* includes any options entered in the dia-
log box.

Be careful about using relative pathnames in your object scripts. Your scripts
will be installed with the deskconfobj tool, and you cannot assume you know
in which directory they will be placed.

To start a character-based application with its icon, the s1 script must open a
DOS or UNIX (scoterm) window in which to run the application. The follow-
ing Deskshell object script starts a UNIX character-based program named
calendar in a scoterm window.

cd SHOME

shell -n ‘Calendar’ calendar $*

Because this application will be creating files, the first line changes the current
directory to the user's home directory. Otherwise, the user would be
unpleasantly surprised to find that the files were created in the calendar icon’s
object directory. shell is a Desktop resource that defines the terminal emula-
tion; it is set to scoterm by default. The -n option specifies a title for the
scoterm window.

For more about the UNIX terminal window, see the scoterm(X) manual page.
For more about the DOS window, see the “Administering DOS Services” sec-
tion of the Open Desktop Graphical Environment Administrator’s Guide.

13

Putting your icon on the Desktop

Starting your application with the d1 trigger

If your application uses text, graphic, or other data files, users expect that
dropping a file icon on your icon will start your application working on that
file. For example, droppinga text file on an editor’s icon should start the edi-
tor with the text file open and ready to edit.

The following one-line d1 object script starts a text editor and passes to the
editor the name of the file dropped on it. Open Desktop sets the variable
$dynamic_args to the filename(s) represented by the dropped icon(s). $*
includes any options entered in the dialog box displayed by the d3 trigger.
(For more about Desktop variables, see the Open Desktop Graphical Environ-
ment Administrator’s Guide.)

editor $* $dynamic_args

Users can drop a group of icons on your application’s icon. Consider how
your application will handle this. For example, should the text editor open an
editor window for each icon dropped? Or should it open one file and place
the others in a queue? If more than one approach could be useful, let users
choose the default behavior.

Popping up a menu with the h3 trigger

14

Only button 3 can be used as a hold trigger. If defined, the h3 trigger must
display a pop-up menu.

For example, this one-line h3.objscr script pops up the menu calendar_menu
(which is used to start calendar with different startup options):

calendar_menu

2. Defineicon triggers

The menu itself is defined by a rule, such as the following, which would be
included in your application rules file and installed with the deskconfobj tool
(page 16). For more about Desktop rules, see the Open Desktop Graphical
Environment Administrator’s Guide.

l menu: calendar_menu

2 |

3 menu_item: Dai ly

4 {

5 calendar -daily

6 }

7 menu_item: Monthly
8 {

9 calendar -monthly
10 i
11 menu_item
12 {
13 title=Master;
14 enable_if
15 {
16 [== SUSER root |
17 j
18 select_action
19 {
20 calendar -mastel
21 i
22 I
23 !

lines 3-10 Define the Daily and Monthly menu items. Each item causes the
calendar executable to be run with the appropriate option.

lines 11-23 Define the Master menu item. Because the master calendar is only
available to superusers, these lines test whether the user is logged in
as root. If not, the menu item is dimmed (stippled) to indicate it is
not available to the current user.

15

Putting your icon on the Desktop

3. Install icon files

16

The approach to icon definition depends on correct installation of your pix-
map, object scripts, and rule files. Use the deskconfobj object installation tool
in your installation script to ensure that your icon files are installed properly.
Your installation script tells deskconfobj what to install, and deskconfobj
determines where.

In this release, pixmaps and object scripts are copied into a directory named
label.obj, where label is the label that appears beneath your icon. This direc-
tory is created in the /usr/lib/X11/XDesktop3/applications directory. Application
rules are currently installed in the /usr/lib/X11/XDesktop3/C.xdt/apprules direc-
tory or in the /usr/lib/X11/XDesktop3/lang.xdt/apprules directory, depending on
whether you install localized versions of your rules. These directories may
change in future releases, but if you use deskconfobj to install your icon
object, your installation script will still work.

Because ordinary users usually do not have permission to copy files into the
required directories, deskconfobj can only be used if the installing adminis-
trator is logged in as root. If you want your application to be installable by
users in their directories, see “Making applications user-installable” (page 18).

NOTE If you will be installing your application with the SCO custom(ADM)
installation utility, put the following commands in your init scripts.

In your installation script:

1. Reset the file-creation mode mask with:
umask 002

2. Temporarily add /usr/lib/X11/XDesktop3 to the search path.
Alternatively, you can prepend this path to each deskconfobj command.

3. Install icons and object scripts with this syntax:
deskconfobj -aobj -name label -stc source_directory

Use the -aobj (add object) option to install a new object on the Desktop.
For label, substitute the text that will be displayed beneath your icon. You
may use the name of your application for the label, or any other string that
is allowed in a UNIX directory name. For source_directory, substitute the
path to the directory from which icon pixmaps and object scripts are to be
copied. All files in the source directory will be copied into the
Jusr/lib/X11/XDesktop3/applications/label.obj directory.

(If an error message indicating that deskconfobj cannot copy filesappears,
you may safely ignoreit. This is a known bug.)

3. Install icon files

4. Install application rules (if any) with this syntax:
deskconfobj -arule -name rule_name -src file [-lang language)

Use the -arule (add rule) option to add a rules file associated with your
object. For rule_name, substitute a name that is unlikely to be duplicated
by other programs (typically your application’s class name). For file, sub-
stitute the pathname of the file that contains the rules to be copied. Most
applications should put all of their application rules in a single source file
(or in a series of localized source files with the same name).

The environment variable SLANG can be set to indicate a user’s language
preference. To install localized application rules, use the -lang option. For
language, substitute the appropriate value of SLANG. Repeat the com-
mand for each language you will support.

Your rule file will be copied into the /usr/lib/X11/XDesktop3/C.xdt/apprules
directory if you do not specify a language, and into the
Jusr/lib/X11/XDesktop3/lang.xdt/apprules directory if you do. Even if you
only support an English version of your rules, you should also install it
with the -lang english option. Many systems are configured with English
as the default language. For more about $LANG and localization, see the
Open Desktop Development System documentation.

NOTE Newly installed rules will not be recognized until Open Desktop
is restarted.

5. Remove /usr/lib/X11/XDesktop3 from the search path.

Skip this step if you prepended this path to the commands instead of add-
ing it to the search path in step 1.

Removing pixmaps, object files, and application rules

You may also use deskconfobj in your “de-installation” script to cleanly
remove files it has installed and icon object directories it has created.

To remove an icon object, use this syntax:
deskconfobj -dobj -name label

This will remove the entire icon object, including the label.obj directory and
all the pixmaps and object scripts in it.

To remove an application rule file, use this syntax:
deskconfobj -drule -name rule_name | -lang language |

Use the -lang option to remove a localized application rule file.

17

Putting your icon on the Desktop

Making applications user-installable

The deskconfobj tool cannot be used to install an application into a user’s
directory. You can install an icon object in a user’s directory tree by creating
an label.obj directory and copying your pixmap(s) and object script(s) into it.
Your icon will appear in the label.obj directory’s parent directory’s window.

In Open Desktop, rules specific to a directory are installed in a directory rules
file named .xdtdirinfo. Merge your application rule file into the .xdtdirinfo file
in the parent directory of the label.obj directory. (Create the .xdtdirinfo file if it
does not already exist.) To avoid conflicts with rules already in the .xdtdirin fo
file, it is best to let the user to modify the file by hand. For more about .xdtdi-
rinfo files, see the Open Desktop Graphical Environment Administrator’s Guide.

Amnimating icons

18

You may animate your icon by presenting a series of icon pictures in
sequence. The Print icon on the Desktop is an animated icon; when a file icon
is dropped on it, paper slides out of the printer. The Print icon is animated by
stepping through this series of pictures:

Print.px Pr|t1 PX Prt2.px Print3.px

You can define an animated icon just like any other icon, except you must
supply more than one pixmap, along with directions for when to display each
pixmap.

Animating icons

To create an animated icon:

1. Create the pixmaps.
For more about creating icon pixmaps, see “Create a icon pixmap” (page
8).

The example used to illustrate these instructions defines an appointment
book icon that opens when a calendar program is started. This icon pic-
ture is made of four pixmaps: closed book (picture.px), book one-third
open (Calendar1.px), book two-thirds open (Calendar2.px), and open book
(Calendar3.px).

2. Write a rule that assigns each file to a variation class.

Variation classes identify alternate definitions of your icon object.

For example:
1 icon_rules
2 i
3 Calendar.obj /DRXD
4 {
5 picture=%P@/picture.px
6 1
7 Calendar.obj /DRX1
8 {
9 picture=z%P@/Calendarl.px
10 t
11 Calendar.obj /DRX2
12 {
13 pieture=tP@d/Calendarl. px
14 1
15 Calendar.obj /DRX3
16 {
17 picture=%P@/Calendarl.px
18 j
18 }

lines 3-6 Specify that for variation 1 of Calendar.obj, the picture (pixmap) is
Calendarl.px. IDRX specifies that the named Directory is Read-
able and eXecutable, and the number following it identifies the
variation class. %P@/ instructs Open Desktop to substitute the
absolute path of the icon object directory.

lines 7-17 Specify pixmaps for variation classes 2 and 3.

Put the rule in the same file with your other Desktop rules (if any). For
more about Desktop rules, see the Open Desktop Graphical Environment
Administrator’s Guide.

19

Putting your icon on the Desktop

20

3. Add variation class declarations to the s1.0bjscr script.

For example:
1 vclass | Sstatic_arg
2 check Sstatic_arg # dispiay Calendarl.px
3 vclass 2 Sstatic_arg
4 check $static_arg # display Calendarz.px
2 vclass 3 Sstatic_arg
G check Sstatic_arg # display Calendar3.px
7 /usr/bin/X11/calendar -monthly $*
8 vclass 0 Sstatic_darg
9 check Sstatic_arg

lines 1-6 Step through the variation classes, displaying the pixmap for
each in sequence. vclass sets the variation class of the
$static_arg (the icon object). check causes Open Desktop to
update the pixmap display. Because the variation class 0 pix-
map (by default, picture.px) is already displayed when this script
is triggered, the sequence begins with it.

line7 Starts the application. $* includes any options the user enters in
the dialog box displayed by the s3 trigger (page 12).

lines 8-9 Resets the variation class to 0 and redisplays the picture.px pix-
map.

For more about object scripts, see “Define icon triggers” (page 11).

Animation can also be used to convey information about the state of your
application. For example, an icon for a mail program could change its
appearance to indicate that new mail has arrived. If you want to indicate
the state change when an icon trigger is activated, test for the state and
declare the variation class in the appropriate object script. 1f you want to
indicate the state change without waiting for a trigger, your application
must test for the state change and send instructions directly to the Desk-
top (see the tellxdt3(X) manual page and the Open Desktop Graphical
Environment Administrator's Guide).

Install the pixmaps, rules, and object scripts with the deskconfobj tool.

The pixmaps and scripts will be installed in the icon object directory. By
default, your rule file will be copied into the
Jusr/lib/X11/XDesktop3/C.xdt/apprules directory. If you install localized ver-
sions of your rules, your rule files will be installed in the
Jusr/lib/X11/XDesktop3/lang.xdt/apprules directory. For more about the
deskconfobj tool, see “Install icon files” (page 16).

Localizing icon labels

Localizing icon labels

Your icon’s label is taken from the name of your icon’s object directory. If the
directory is named Calendar.obj, by default the icon will be labeled “Calendar”.
The following explains how to override the default label.

The environment variable $LANG can be set to indicate a user’s language
preference. You can localize your icon label by writing rules that define a
different label for each setting of SLANG. In the following example, the calen-
dar icon’s label reads “Calendario” when $LANG is set to spanish. For more
about $LANG and localization, see the Open Desktop Development System
documentation.

To localize your icon’s label:

1. Write a rule that defines the label for each language you support.

For example, this rule defines a Spanish label for the calendar icon:

1 icon_rules
2 {
3 Calendar.obj /DX
4 |
5 title=Calendario;
6 }
7 }
line 3 /DX specifies that the named Directory is eXecutable.
line 5 Explicitly defines the icon label. Without such a definition, the

label is taken from the name of the icon object directory. The
label can be any string that is allowed in a UNIX directory name.

For more about Desktop rules, see the Open Desktop Graphical Environment
Administrator’s Guide.

2. Use the deskconfobj tool’s -lang option to install your rule in a lan-
guage-specific directory.

For example, the following syntax will install the sample rule above in the
Jusr/lib/X11/XDesktop3/spanish.xdt/apprules directory:

deskconfobj -arule -name Calendar -sre ./CalRules -lang spanish

For more about using deskconfobj, see “Install icon files” (page 16).

21

Putting your icon on the Desktop

Creating icons for user data files

22

You can use application rules to define special icons for certain types of files,
and to start your application when a user double-click on one of those icons.
For example, specially formatted calendar files created and displayed by a
calendar program could be represented by a calendar file icons.

To define special icons for data files:

1. Create a pixmap for the file icon.

The name of the pixmap file must end in the .px extension. For more
about creating icon pixmaps, see “Create a icon pixmap” (page 8).

To help users identify it as a file icon, you should base the design of your
data file icon on the standard Open Desktop file icon. For example, a C
header file is represented by a file icon labeled with an “.h":

Jh
hfile.px

Creating icons for user data files

2. Write a rule that assigns the icon to a type of file.

For example, the following rule specifies that files with the .cal suffix will
be represented by the icon pixmap file Cal_file.px. The rule also specifies
that double-clicking on one of these file icons will have the same effect as
dropping the file icon on the application’s icon: it will start the calendar
program with the calendar file displayed. For more about Desktop rules,
see the Open Desktop Graphical Environment Administrator’s Guide.

1
2
3
4

5

17

icon_rules
{
*.cal /F
{

picture=Cal_file.px;

trigger_action: sl

{

filetype /usr/bin/calendar

if |
then

== S_typetl) F | && [== S_type(2) X |

/usr/bin/calendar §* Sstatic_arg

elge

fyi -t ’Calendar’ ‘Calendar is not installed on your system’

fi

}

line 1

lines 3-5

lines 6-15

lines 8-9

line 11

line 13

Identifies the start of the icon_rule section of your rule file.

Specify that files with names ending in .cal will display the
Cal_file.px pixmap. Open Desktop searches certain directories
below fusr/include/X11/bitmaps for the file.

Define what happens when the user double-clicks (the s1 or d1
trigger) on the file icon.

Check the file type of fusrfbin/calendar. If it is an executable, do
line 11. If not, do line 13.

Executes the calendar program. $* includes any arguments the
user enters in the d1l trigger dialog box. The filename(s)
represented by the dropped icon(s) are substituted for
$static_arg.

Prints an error message if fusr/bin/calendar is not executable.
The message assumes that not having execute permission for the
file is, for the Desktop user, functionally equivalent to its not
being installed.

23

Putting your icon on the Desktop

24

3. Use the deskconfobj tool to install your pixmap and rule.

Use the following syntax to install your pixmap:
deskconfobj -alrg -name pixmap_name -sic file

Use the -alrg (add large pixmap) option to add a pixmap. For
pixmap_name, substitute the name of the pixmap file (Cal_file.px for the
above example). For file, substitute the pathname of the pixmap file to be
copied.

Use the following syntax to install your rule:

deskconfobj -arule -name rule_name -sic file
For rule_name, substitute a name that is unlikely to be duplicated by other

programs (typically your application’s class name). For file, substitute the
pathname of the file that contains the rules to be copied.

NOTE Newly installed rules will not be recognized until Open Desktop
is restarted.

The data file’s name will be used as the icon label. For more about using
deskconfobj, see “Install icon files” (page 16).

Adapting to display resolution at run

time

Open Desktop is designed to run on a wide variety of hardware platforms,
with resolutions ranging from 640-by-480 pixels to beyond 1280-by-1024 pix-
els. Visual resources defined for a specific display resolution can produce
inappropriately sized, unpleasant, or even illegible results when your applica-
tion is displayed at a different resolution.

You may specify a different set of visual resources for each display resolution
or type with an Open Desktop ODR (Open Desktop display resources) file. In
an ODR file, standard #if, #elif, and #else preprocessor directives are used to
test the values of certain display attributes, such as WIDTH. For example, the
following tests the WIDTH of the display (in pixels) and specifies font sizes

accordingly.

#1f WIDTH - 800

TypicalApp*create_button.
TypicalApp*delete_button.

#elif WIDTH - 1024

TypicalApp*creare_button.
TypicalApp*delete_button.

#el if WIDTH -~ 1280

TypicalApp*create_button.
TypicalApp*delete_button.

telge

TypicalApp*create_button.
TypicalApp*delete_button.

#endif

FontlList
FontbList

Fontlist
FantlList

FontLisrt
FontList

Fonchist
FontList

-*-helvetica-bold-tr-*--10-*-p-*
-*-helvetica-bold-r-*--10-*-p-*

-*-helvetica-bold-v-*--12-*-p-+
-*-helvetica-bold-r-*--12-*-p-*

-*-helvetica-bold-r-*--14-*-p-+
—'-hplvetica-bnld-r-*--14_*-p-’

-*-helvetica-bold-r-*--18-#-p-*
-*-helvetica-bold-r-*--18-*-p-*

25

Adapting to display resolution at run time

26

See the Development System Encyclopedia for more information about prepro-
cessors.

At the beginning of an Open Desktop session, the session manager uses xrdb,
the X resource database utility, to check display attributes and resolve the
conditional statements in your ODR file. In this way, visual resources
appropriate to each display are loaded into the RESOURCE_MANAGER pro-
perty of the root window.

Although you may define resources for as many display resolutions as you
like, we recommend that you at least support the following four resolutions
(WIDTH x HEIGHT in pixels):

640 x 480 (VGA)

800 x 600 (SVGA)

1024 x 768 (SVGA)

1280 x 1024 (high-resolution)

Most applications will only need to specify resolution-dependent resources in
ODR files, but you can test for any display attribute recognized by the xrdb
utility (see Table 3). If your application does not use the Open Desktop color
APl (page 29), you may want to define color resources in your ODR file (page
32).

You do not need to define any of the default Open Desktop color or font
resources unless you want to override them. The default font and color
resources are defined in /fusr/lib/X11/sco/startup/Fonts and
Jusr/lib/X11/sco/startup/Colors.

For more about graphical resources, see the Graphical Environment
Administrator’s Guide. Remember that your resource definitions only affect the
content of the window in which your application is running. The window’s
frame and decorations are controlled by the window manager’s resources.

To specify resolution-dependent resources:

1. Separate resolution-dependent resources from other visual resources.

Because the ODR files for all installed applications are loaded at the begin-
ning of a session, only define display-dependent resources in ODR files.
Define other resources in an app-defaults file, as usual (for more about app-
defaults files, see the Open Desktop Graphical Environment Administrator’s
Guide).

2. Define resolution-dependent resources in an ODR file.

Define all of your display-dependent resources in a single ODR file.
Choose a name for your ODR file that is unlikely to be duplicated by other
programs (typically your application’s class name). Within this file,

Creating icons for user data files

organize resources according to the type of display with which they are to
be used. Use standard #if, #elif, and #else preprocessor directives and
xrdb display attribute symbols to conditionally specify resources. We use
the WIDTH (screen width in pixels) symbol to define resolution-dependent
resources.

Table 3 Display attribute symbols

Symbol Definition
WIDTH screen width in pixels
HEIGHT screen height in pixels

X_RESOLUTION
Y_RESOLUTION

CLASS

COLOR

PLANES

BITS_PER_PLANE

horizontal screen resolution in pixels/meter

vertical screen resolution in pixels/meter

GrayScale, PseudoColor, TrueColor, DirectColor, Sta-
ticColor, or StaticGray

defined only if CLASS = PseudoColor, TrueColor,
DirectColor, or StaticColor

display depth in bit planes; this value defines the
number of available colors

number of significant bits in an RGB color
specification; usually unrelated to PLANES

For more about display attributes symbols, see the xrdb(X) manual page.

To avoid conflicts with other applications’ ODR resources loaded at the
same time, begin the name of each resource in your ODR file with your
application’s class. For example, an application that displays a calendar
might include the following in its ODR file:

1 #if WIDTH - 80C

Z Calendar.main.width: 300
3 Calendar.main.height: 200
4 #elif WIDTH - 1024

5 Calendar.main.width: 400
6 Calendar.main.height: 300
7 #elif WIDTH - 1280

8 Calendar.main.width: 500
9 Calendar.main.height: 400
10 telse

11 Calendar.main.width: 700
12 Calendar.main.height: 500
13 #endif

27

Adapting to display resolution at run time

28

3. Install your ODR file in the /usr/lib/X11/sco/startup directory.

Do this in your installation script.

At the start of an Open Desktop session, the session manager will use the
xrdb utility to process your ODR file and load the appropriate resources.

. Define default display resources in your app-defaults file.

To ensure that your application will always display, even if it is run
without the session manager (and, therefore, without your ODR file
loaded), define default resources in your app-defaults file. Include resource
definitions for a 1024-by-768-pixel display (the resolution most widely
used with Open Desktop) from your ODR file. Also include the default
font resource definitions from /usr/lib/X11/sco/startup/Fonts and the default
color resource definitions from /usr/lib/X11/sco/startup/Colors. Place these
default definitions before any overriding definitions of your own. Name
your app-defaults file with your application’s class name, and install it in
the /usr/lib/X11/app-defaults directory.

When they are loaded, your ODR file resource definitions take precedence
over the defaults defined in your app-defaults file.

Supporting the Desktop color selector

Open Desktop users can use the Desktop Color control utility to simultane-
ously modify the coloring of all Desktop utilities, window frames, menus, and
backgrounds. If you specify your color resources through the Open Desktop
color API, users will be able to personalize your application’s colors along
with those of the rest of the Desktop.

=] Color (=]

@ Select a palette: Current colars
-] -] .
Winter Blue A @ Background

Tundra

Ocean Fog l:l Foreground

Rose Garden

Northucods Top shadow

Desert N

Moonscape - Active window

Coral Reef .

Farest @ Active foreground

Chocolate .

Active top shadow

S eascape @ P

Tropics [Atemate background

[Add patette ...| |Detete palette| [:I Highlight

=

29

Supporting the Desktop color selector

The color APl is based on palettes. A palette is a coordinated set of eight
colors, defined by the current values of the eight Open Desktop color name
variables. Each variable defines the color for several graphical objects.

Table 4 Color name variables

Variable Typically used for

scoBackground window frames, window backgrounds, scrollbar
troughs

scoAltBackground Desktop background, second background color

scoForeground text

scoTopShadow top shadows of frames, buttons and other objects

scoActiveBackground frame of active window
scoActiveForeground text in frame of active window
scoActiveTopShadow top shadows in active window

scoHighlight text or objects that need special emphasis, pressed
buttons ’
Top shadow Foreground

] Administration Color Mouse Preferences Session

~~ Background

¥ Right Handed
& Left Handed

Slow Active foreground

! 3
5 [e | 1

H Acceleration Active background

H T]
| Distance moved before mouse accelerates

Active top shadow

- Altemative background
(Desktop)

Highlight

Creating icons for user data files

The active window is the window with the input focus. The variables scoAc-
tiveBackground, scoActiveForeground, scoActiveTopShadow are used to dis-
tinguish the active window from other windows. In the supplied palettes,
scoTopShadow is lighter than scoBackground, and scoBackground contrasts
with scoForeground. Bottom shadows are always black. When using the color
name variables for interface elements other than those listed, consider the
relationships of the colors and how that might affect contrast or legibility.

Color palettes are automatically mapped to grayscale displays. Because this
might not always yield optimal results, several grayscale palettes are pro-
vided. A default monochrome palette mapping is used on monochrome dis-

plays.
For more information about the Open Desktop Color control, see the
scocolor(X) manual page and the online Desktop Help. For more about Open

Desktop color resources, see the Open Desktop Graphical Environment
Administrator’s Guide.

To support the Desktop color selector:

1. Use Open Desktop color name variables to define color resources.

In your app-defaults file, define color resources with the color name vari-
ables listed in Table 4. Open Desktop will set the variables to the corre-
sponding color definitions from the currently selected palette.

For example, an application that displays a calendar might include the fol-
lowing resource definitions in its app-defaults file:

*datebox.back.background: scoAltBackground
*current.week.background: scoAct iveForeground
*meet ing.alarm.background: scolighlight

Name your app-defaults file with your application’s class name, and install
it in the /usr/lib/X11/app-defaults directory. For more about app-defaults
files, see the Open Desktop Graphical Environment Administrator’s Guide.

2. Link your application with Release 3.0 of the Open Desktop Develop-
ment System.

Color name variables used by applications that have not been linked with
Release 3.0 will be mapped to the default palette, Winter Blue. When a
user changes Desktop colors by selecting a new palette with the Color
control, your application’s colors will continue to be defined by the Winter
Blue palette. For more about linking, refer to the Development System
Encyclopedia.

31

Supporting the Desktop color selector

3. Include the default color resources in your app-defaults file.

To ensure that your application will always display, even if it is run
without the session manager, copy into your app-defaults file the default
color resource definitions from /usr/lib/X11/sco/startup/Colors (listed below).
Place these definitions before any overriding definitions of your own.

*Background:
*Foreground:
*topShadowColor :

scoBackground
scoForeground
scaTopShadow

*hottomShadowCoion :
*activeBackground:
*activeForeground:

Black
scoAct iveBackground
scoAct iveForeground

*act iveTopShadowColor : scoActiveTopShadow
*act iveBottomShadowColaor: Black
*troughColor: scoBackground
*armColor: scoHighlight
*highlightColor: scoForeground
gelectColor: scoForegtround
*borderColor: Black

Defining display-dependent colors

32

If your application makes extensive or special use of color, you may want to
define your color resources directly rather than through the color API’s color
name variables.

NOTE The following applies only to those color resources that are not
defined with the Open Desktop color API color name variables (page 29).

When defining color resources directly, consider the wide variety of displays
on which Open Desktop is viewed. Resources defined for a color display may
not work for a monochrome or grayscale display, and some servers support
more colors or shades of gray than do others.

If your colors work well on all supported displays (color, monochrome, grays-
cale) and servers (16-color and above), define your color resources in your
app-defaults file. If you want to use different colors for different displays or
servers, conditionally define your color resources in your ODR file. For more
about preparing an ODR file, see “Adapting to display resolution at run time”
(page 25).

Define color resources in your ODR file only if your application makes special
use of color that cannot be achieved with the color name variables. You may
explicitly define colors for certain objects and use the color API for the rest.

Defining display-dependent colors

This approach is useful when you want to prevent users from changing the
color of an object (the red, green, and blue slider bars of an RGB color mixer,
for example).

Define display-dependent resources as you would resolution-dependent ones:
use standard #if, #elif, and #else preprocessor directives and xrdb display
attribute symbols (page 27) to conditionally specify resources.

Use the xrdb COLOR symbol to differentiate color and monochrome displays.
#if COLOR
id;finitinns for enlor displays|
felse
idéfinitiuns for monochrome displays)

#endif

For most applications, defining separate resources for color and monochrome
displays should be adequate. Check how your color resources look on a
grayscale display. If the result is unacceptable, use the CLASS symbol to define
grayscale resources separately.

#if CLASS = GrayScale

id;finitions for grayscale displays]
gelif COLUé .

id;finitiuns for color displays]
felse

id;tinitiuns for monochrome displays!
#endif

NOTE Open Desktop may be running on a server that only supports 16
colors (or shades of gray). On 16-color servers, only three color cells are
available for definition by applications. The rest are taken by the palette
manager (eight color cells), the server (two color cells, for black and white),
and the Desktop icons (three color cells). You may use all 16 colors, but you
may only define up to three. If you need to define more colors, you must
install your own colormap using the facilities provided by the XIib library.

33

Supporting the Desktop color selector

Use the PLANES symbol to specify
servers.

#it CLAGS = GrayScaie

#if PLANEZ - 2

ide! fuir jons

resources for 16-color (or grayscale)

Vi-grayacaile dizplavad

6 Lar moret-grdayscaie displays)

i6-coior disptaysi

- 256 (or more) -color displays)

#else
fgel it ions £
#endit
#elif COLOR
#if PLANES - 8
|definitions for
teloe
[definitions for
#endif
falge
[definitions tor monochrome displays]
#endif

In your app-defaults file, define default values for resources defined in your

ODR file. These default definitions

will ensure that your application will

always display, even if it is run without the session manager (and, therefore,

without your ODR file loaded).

Communicating with the session
manager

Open Desktop users expect to be able to end a session without first terminat-
ing applications. When the session is resumed, users expect to see applica-
tions exactly where they were at shutdown. The Open Desktop session man-
ager is responsible for gracefully shutting down all applications at the end of
an Open Desktop session, then restarting them when a new session begins.
Your application should supply the session manager with the information
needed to restart it in the state it was in when the user logged out.

Restart information is conveyed to the session manager through the
WM_COMMAND property placed on an application’s top-level window.
Before ending a session, the session manager will send a
WM_SAVE_YOURSELF message to applications. When your application
receives this message, it must immediately prepare itself for shutdown by
placing itself in an appropriate state, then setting the WM_COMMAND pro-
perty to a command that will restart the application and restore it to as similar
a state as possible. No interaction with the user is permitted during this pro-
cess. When the next session begins, the session manager will restart your
application with the specified command. It will also restore the application’s
geometry and window state (iconified or maximized) if the application does
not.

For example, after receiving a WM_SAVE_YOURSELF message, a text editor
might save edits made to the file letter since the last user-initiated save in a
temporary file named letter.tmp. It could then use XSetCommand(X) to set
WM_COMMAND to something like editor -rt letter.tmp. When the session is
resumed, the session manager will restart the editor with this command. The
editor has defined the -rt option to read in the indicated temporary file, and
perhaps display a message that there are unsaved edits left over from the

35

Communicating with the session manager

previous session. Note that the editor could not ask the user whether it
should save the unsaved edits, because no interaction with the user is permit-
ted between receiving the WM_SAVE_YOURSELF message and shutdown.

If your application does not communicate with the session manager, the ses-
sion manager will simply disconnect your application from the server at shut-
down. Unsaved data may be lost. When the session is resumed, your appli-
cation will be restarted with the command with which it was last started, and
with the geometry and window state (iconized or maximized) it had at shut-
down. Its state at shutdown will not be restored.

The session manager will restore a DOS or UNIX terminal window with the
command that opened it. If a character-based application was started inside
one of these windows after the window was opened, the application will not
be restored. If the application was started as an argument to the scoterm
command, it will be restarted with that same argument. The application’s
state at shutdown will not be restored.

Defining display-dependent colors

To communicate with the session manager:

1.

Use standard Xt intrinsics calls to start your application.

When you use standard Xt intrinsics calls to start your application, the
properties WM_COMMAND and WM_CLIENT_MACHINE are placed on
your top-level window, WM_COMMAND is set to your startup command,
and WM_CLIENT_MACHINE is set to the name of the machine on which
your application is running.

Place the atom WM_SAVE_YOURSELF in the WM_PROTOCOLS property
on your application’s top-level window.

To do this, include the following in your application’s code.

1 #include <X1l/Intrinsic.h.

2 #include <X11/Protocols.h-

3 #include -X11/AtomMgr.h-

4 #include -X11/Xatom.h-

5 void

6 SetupSMProtocols{toplevel)

7 Widget toplevel;

8 i

9 extern vaoid saveYourselfCB();
10 Atom protocals(1];
11 Atom Xa_WM_GAVE_YOURGELF;
12 Xa_WM_SAVE_YOURSELF = XmInternAtom(XtDisplay(toplevel),
13 “WM_GAVE_YOURSELF®, FALSE);
14 protocnls(0] = xa_WM_SAVE_YOURSELF;
1H XmAddWMProtoncolsitoplevel, protocols, 1);
16 XmAddWMProtocolCallback (toplevel, xa_WM_SAVE_YOURSELF,
17 SaveYourse] fCB, NULL);

i8 1

lines 12-15 Include the WM_SAVE_YOURSELF atom in the WM_PROTOCOLS
property on your application’s top level window.

lines 16-17 Set up the callback to respond to the session manager’s shut-
down notification.

Communicating with the session manager

3. Prepare for shutdown when notified.

The SetupSMProtocols(toplevel) routine defined in the previous listing
sets up the callback with which your application responds to
WM_SAVE_YOURSELF. Include the following in your application’s code
to define the callback routine.

1 Vnid

2 BaveYourselfCB(toplevel, client_data, call_data)
3 Widget tuplevel;

4 XtPointer client_data;

o XtPointer call_data;

(.

7 char *emd_argv(ll;

8 cmd_argv|0) = GetBinaryFullPathName({);

9 XSetCommand (XtDisplay (topleveli, XtWindow(toplevel), cmd_avgv, 1i;
10 1}

lines 2-5 toplevel is your application’s top level widget. client data is
callback client data. call_data is callback data. The latter two are
not used in this example.

line 8 You should substitute the full pathname of your binary for Get-
BinaryFullPathName(). Include any command line options or
special geometry information needed for the restart command.

line 9 Sets the WM_COMMAND property.

Because the session manager will be waiting for a PropertyNotify from
the property WM_COMMAND as a confirmation that your application has
saved its state, it is important that WM_COMMAND is updated even if its
contents are correct. After updating WM_COMMAND, your application
must wait to be shut down by the session manager. If your application
receives a mouse or keyboard event after responding to
WM_SAVE_YOURSELF, the shutdown has been canceled and your applica-
tion may resume operation.

Index

Special characters
$*,13-14

A

Accessory, Paint, 8
Active window, 30
Animating icons, 18
API

color, 1,29

defined, 1

display resources, 1, 25

icon object, 1,7

session manager, 1, 35
app-defaults, 26, 28, 31-32, 34
Application

character-based, 2, 13, 36

icon,7

rules. See Rules

starting, 13, 22

user-installable, 18
Application programming interface. See APl
apprules, 16

B

Binary, compatibility, 3
Bitmap icon, 10
Black-and-white bitmap, 10

C

callback routine, 38
Character-based applications, 2, 13, 36
CLASS, 27,33
Color
APL, 1,29
cells, 33
control, 29, 31
default, 26, 32
defining, 30-33
display-dependent, 32

Color (continued)
for icons, 8, 10
limitations, 33
name variable, 30
resources, 31-32
selector. See Color control
transparent, 8
COLOR, 27,33
Command options, 12-13
Compatibility, backward, 4
Control, Color, 29
custom(ADM), 16

D

d1,d2,d3. See Trigger
deskconfobj tool, 16-17, 24
Deskshell, 12
Desktop
Color control, 29
command language, 12
icons. See Icon
Paint accessory, 8
rules, 15
Directory
icon object, 16
object, 7
rules, 16
Display
attribute symbols, 27
color capability, 32
grayscale, 31, 33
monochrome, 31, 33
resolution, 25-27
resources. See Resources
resources AP, 25
Display resources, API, 1
DOS window, 13
Drop trigger. See Trigger
$dynamic_args, 14

Editor

E

Editor, icon, 8

F

File
data, 14
icon, 14, 22
installing, 16
Font, default resources, 26

G

Geometry, restoring, 35
Grayscale display, 31, 33

H

h3. See Trigger
HEIGHT, 27
Hold trigger. See Trigger

I

Icon
animated, 18
AP, 1,7
application, 7
bitmap, 10
border, 8, 10
colors, 8,10
data file, 22
directory, 16
editor, 8
existing, 8
file, 14
installing, 16, 24
label, 8, 10, 16, 21, 24
localized, 21
menu, 14
monochrome, 10-11
object, 7, 16
picture, 8
pixmap, 8
removing, 17
rules, 4, 18-19, 21-22
scripts, 11, 13-15

40

Icon (continued)
size, 8, 10
stippled, 11
template, 8
trigger, 11

init scripts, 16

Installation
by user, 18
interactive, 7
of icons, 16, 24
of object scripts, 16
of pixmaps, 16
of rules, 16
script, 16, 28
tool, 16

L

Label. See Icon label
<label>.obj, 16
$LANG, 17, 21
Libraries
compatibility, 4
shared, 3
static, 3
Linking
to libraries, 3
with Open Desktop Development System,
31
Localization, 17
Localized icon labels, 21
Localized rule file, 17

M

Memory allocation, 3
Menu
icon pop-up, 14
stippled item, 15
Monitor. See Display
Monochrome display, 31, 33
Motif
compliance, 3,12
libraries, 3
toolkit, 2-3
Mouse button
See also Trigger
names, 11

N

Notational conventions, 5

(0]

Object

directory, 7,16

icon, 7

scripts, 11, 13-15
Object Builder tool, 7
ODR file, 25-26, 28, 32, 34
Open Desktop

Release 1.1, 4

Release 2.0, 4
Options, command, 12-13, 15
OSF/Motif. See Motif

P

Paint accessory, 8

Palettes, 29

Performance, 3

Picture, icon, 8

picture.px, 10

Pixmap, icon, 8

PLANES, 27,34
Preprocessor directives, 25

R

Removing
icons, 17
rules, 17
Resolution, display, 25-26
Resources
API, 25
color defaults, 26, 32
color-dependent, 32
database utility, 26
default, 26, 28, 32, 34
font defaults, 26
resolution-dependent, 25
Rules
data file example, 22
Desktop, 15
directory, 16
installing, 16-17
label example, 21

Trigger

Rules (continued)
localized, 17
menu example, 15
removing, 17

S

s1,s2,s3. See Trigger
SaveYourselfCB, 37-38
scoActiveBackground, 30
scoActiveForeground, 30
scoActiveTopShadow, 30
scoAltBackground, 30
scoBackground, 30
scoForeground, 30
scoHighlight, 30
scoterm, 13, 36
scolopShadow, 30
Screen. See Display
Script

init, 16

installation, 16

object, 11, 13-15
Server, color support, 33
Session manager, 1, 35, 37
Shutdown, 35, 38
startup, 37
Static trigger. See Trigger
Stippled

icon, 11

menu item, 15

T

tellxdt3(X), 20
Toolkit

Motif, 2-3

X Window System, 2-3
Transparent color, 8
Trigger

d1, 12,14

dz2, 12

d3, 12,14

defining, 12

drop, 11, 14

h3, 14

hold, 11, 14

s1, 12-13

s3,12-13

41

Typographical

Trigger (continued)
static, 11, 13
Typographical conventions, 5

u

UNIX window, 13
Utilities. See Accessory, Control

|4

Variation class, 19
vclass, 19

w

WIDTH, 25, 27

Window, active, 30
WM_CLIENT_MACHINE, 37
WM_COMMAND, 35, 38
WM_PROTOCOLS, 37
WM_SAVE_YOURSELF, 35, 37-38

X

X Window System
required, 3
toolkit, 2
utilities, 3
xdudirinfo, 18
xrdb, 26
XSetCommand(X), 35
Xt intrinsics, 3, 37

42

!
]

SCO==

OPEN SYSTEMS SOFTWARE

Please help us to write computer manuals that meetyourneeds by completing this
form. Please postthe completed form to the Publications Manager nearest you: The
Santa Cruz Operation, Ltd., Croxley Centre, Hatters Lane, Watford WD1 8YN,
United Kingdom; The Santa Cruz Operation, Inc., 400 Encinal Street, P.O. Box 1900,
Santa Cruz, California 95061, USA or SCO Canada, Inc., 130 Bloor Street West, 10th
Floor, Toronto, Ontario, Canada M5S 1N5.

Volume title:
(Copy this from the title pageofthe manual)

Product:
(for example, SCO UNIX System V Release 3.2 Operating System Version 4.0)

How long have you used this product?
J Less than onemonth ~ Less than six months 2 Less than one year

J 1to 2 years U More than 2 years

How much have you read of this manual?

< Entire manual < Specific chapters 1 Used only for reference
Agree Drisagree

The software was fully and accurately described J 2 1 a4 2

The manual was well organized S [R o .

The writing was at an appropriate technical level

(neither too complicated nor too simple) O N e B |

It was easy to find the information I was looking for 4 3 a2 2 Q4

Examples were clear and easy to follow 2 1 41 2 2

Illustrations added to my understanding of the software B R N B

I'liked the page design of the manual J1 3 2 3 2

If you have specific comments or if you have found specific inaccuracies,
please report these on the back of this form or on a separate sheet of paper.
In the case of inaccuracies, please list the relevant page number.

May we contact you further about how to improve SCO documentation?
If so, please supply the following details:

Name Position

Company
Address
City & Post/Zip Code -

Country —_—

Telephone Facsimile

IAARARER AR
AT10412P@@e

67725

