TS DS |

X Window System”

Programmer’s Reference
Version 11 Release 5

© 1983-1993 The Santa Cruz Operation, Inc.
All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means, elec-
tronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior
written permission of the copyright owner, The Santa Cruz Operation, Inc., 400 Encinal,
Santa Cruz, California, 95060, U.S.A. Copyright infringement is a serious matter under the
United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User only
for use in strict accordance with the End User License Agreement, which should be read
carefully before commencing use of the software. Information in this document is subject
to change without notice and does not represent a commitment on the part of The Santa
Cruz Operation, Inc.

SCO OPEN DESKTOP Software is commercial computer software and, together with any
related documentation, is subject to the restrictions on U.S. Government use as set forth
below.

If this procurement is for a DOD agency, the following DFAR Restricted Rights Legend
applies:

RESTRICTED RIGHTS LEGEND:

USE, DUPLICATION OR DISCLOSURE BY THE GOVERNMENT IS SUBJECT TO
RESTRICTIONS AS SET FORTH IN SUBPARAGRAPH (c)(1)(ii) OF RIGHTS IN
TECHNICAL DATA AND COMPUTER SOFTWARE CLAUSE AT DFARS
252.227-7013. CONTRACTOR/MANUFACTURER IS THE SANTA CRUZ
OPERATION, INC., 400 ENCINAL STREET, SANTA CRUZ, CA 95060.

If this procurement is for a civilian government agency, the following FAR Restricted
Rights Legend applies:

RESTRICTED RIGHTS LEGEND:

THIS COMPUTER SOFTWARE IS SUBMITTED WITH RESTRICTED RIGHTS
UNDER GOVERNMENT CONTRACT NO. (AND SUBCONTRACT
NO. IF APPROPRIATE). IT MAY NOT BE USED, REPRODUCED, OR
DISCLOSED BY THE GOVERNMENT EXCEPT AS PROVIDED IN PARAGRAPH
(g)(3)(i) OF FAR CLAUSE 52.227-14 OR AS OTHERWISE EXPRESSLY STATED IN
THE CONTRACT. CONTRACTOR/MANUFACTURER IS THE SANTA CRUZ
OPERATION, INC., 400 ENCINAL STREET, SANTA CRUZ, CA 95060.

SCO, Open Desktop, The Santa Cruz Operation, the Open Desktop logo, and the SCO logo
are registered trademarks of The Santa Cruz Operation, Inc. in the USA and other coun-
tries.

SCO NFS was developed by Lachman Technology, Inc. based on LACHMAN SYSTEM V
NFS.5. LACHMAN is a trademark of Lachman Technology, Inc. NFS is a registered trade-
mark of Sun Microsystems, Inc.

SCO TCP/IP was developed by Lachman Technology, Inc. SCO TCP/IP is derived from
LACHMAN SYSTEM V STREAMS TCP, a joint development of Lachman Technology, Inc.
and Convergent Technologies. LACHMAN is a trademark of Lachman Technology, Inc.

All other brand and product names are or may be trademarks of, and are used to identify
products or services of, their respective owners.

Date: 6 January 1993
Document version: 3.0.0A

Preface 1
Documentation conventions 2
Development System documentation set 3
Reference manual sections 9
Alphabetized list 11

X1ib - C Language X Interface (XS) 23
Intro(XS) 25
AllPlanes(XS) 39
BlackPixelOfScreen(XS) 42
DisplayOfCCC(XS) 45
ImageByteOrder(XS) 46
imake(XS) 48
IsCursorKey(XS) 51
Indir(XS) 52
makedepend(XS) 53
mkdirhier(XS) 56
XAddHost(XS) 57
XAllocClassHint(XS) 60
XAllocColor(XS) 62
XAllocIconSize(XS) 66
XAllocSizeHints(XS) 68
XAllocStandardColormap(XS) 73
XAllocWMHints(XS) 77
XAllowEvents(XS) 80
XAnyEvent(XS) 81
XButtonEvent(XS) &4
XChangeKeyboardControl(XS) 87
XChangeKeyboardMapping(XS) 91
XChangePointerControl (XS) 96
XChangeSaveSet(XS) 98
XChangeWindowAttributes(XS) 1060
XCirculateEvent(XS) 104
XCirculateRequestEvent(XS) 105
XClearArea(XS) 106
XClientMessageEvent(XS) 108
XcmsAllocColor(XS) 110
XcmsCCCOfColormap(XS) 112

Table of contents

vi

XcmsCIELabQueryMaxC(XS)
XcmsCIELuvQueryMaxC(XS)
XcmsColor(XS)

XcmsConvertColors(XS)

XcmsCreateCCC(XS)

XcmsDefaultCCC(XS)

XcmsQueryBlack(XS)
XcmsQueryColor(XS)

XcmsSetWhitePoint(XS)

XcmsStoreColor(XS)
XcmsTekHVCQueryMaxC(XS)
XColormapEvent(XS)

XConfigureEvent(XS)

XConfigureRequestEvent(XS)

XConfigureWindow(XS)
XCopyArea(XS)

XCreateColormap(XS)

XCreateFontCursor(XS)
XCreateFontSet(XS)

XCreateGC(XS)

XCreateIC(XS)

XCreateImage(XS)

XCreatePixmap(XS)
XCreateRegion(XS)

XCreateWindowEvent(XS)

XCreateWindow(XS)
XCrossingEvent(XS)

XDefineCursor(XS)

XDestroyWindowEvent(XS)

XDestroyWindow(XS)

XDrawArc(XS)

XDrawImageString(XS)

XDrawLine(XS) .

XDrawPoint(XS)
XDrawRectangle(XS)

XDrawString(XS)

XDrawText(XS)

XEmptyRegion(XS)

XErrorEvent(XS)

XExposeEvent(XS)

XExtentsOfFontSet(XS)

113
115
117
119
121
123
124
126
129
130
133
136
138
140
142
146
149
152
156
160
170
172
175
177
178
180
185
187
189
190
192
195
197
200
202
204
206
209
211
212
214

XFillRectangle(XS) 215

XFilterEvent(XS) 219
XFlush(XS) 220
XFocusChangeEvent(XS) 222
XFontSetExtents(XS) 224
XFontsOfFontSet(XS) 225
XFree(XS) 227
XGetVisualIlnfo(XS) 228
XGetWindowAttributes(XS) 230
XGetWindowProperty(XS) 234
XGrabButton(XS) 239
XGrabKeyboard(XS) 242
XGrabKey(XS) 245
XGrabPointer(XS) 248
XGrabServer(XS) 252
XGraphicsExposeEvent(XS) 253
XGravityEvent(XS) 255
XIconifyWindow(XS) 256
XIfEvent(XS) 258
XInstallColormap(XS) 260
XInternAtom(XS) 262
XIntersectRegion(XS) 264
XKeymapEvent(XS) 266
XListFonts(XS) 267
XLoadFont(XS) 269
XLookupKeysym(XS) 274
XMapEvent(XS) 276
XMapRequestEvent(XS) 278
XMapWindow(XS) 279
XmbDrawlImageString(XS) 281
XmbDrawString(XS) 283
XmbDrawText(XS) 285
XmbLookupString(XS) 287
XmbResetIC(XS) 290
XmbTextEscapement(XS) 291
XmbTextExtents(XS) 292
XmbTextListToTextProperty(XS) 294
XmbTextPerCharExtents(XS) 298
xmkmf(XS) 300
XNextEvent(XS) 301
XNoOp(XS) 304

Table of contents vii

viii

XOpenDisplay(XS)
XOpenIM(XS)

XParseGeometry(XS)

XPolygonRegion(XS)
XPropertyEvent(XS)

XPutBackEvent(XS)

XPutlmage(XS)
XQueryBestSize(XS)

XQueryColor(XS)

XQueryPointer(XS)
XQueryTree(XS)

XRaiseWindow(XS) ...

XReadBitmapFile(XS)

XRecolorCursor(XS)

XReparentEvent(XS)
XReparentWindow(XS)

XResizeRequestEvent(XS)

XResourceManagerString(XS)
XrmEnumerateDatabase(XS)

XrmGetFileDatabase(XS)

XrmGetResource(XS)

XrmlInitialize(XS)

XrmMergeDatabases(XS)

XrmPutResource(XS)

XrmUniqueQuark(XS)

XSaveContext(XS)

XSelectInput(XS)
XSelectionClearEvent(XS)

XSelectionEvent(XS)

XSelectionRequestEvent(XS)
XSendEvent(XS)

XSetArcMode(XS)

XSetClipOrigin(XS)
XSetCloseDownMode(XS)

XSetCommand(XS)

XSetErrorHandler(XS)

XSetFillStyle(XS)

XSetFontPath(XS)

XSetFont(XS)

XSetICFocus(XS)

XSetICValues(XS)

305
307
310
313
314
316
317
321
323
327
329
330
333
336
338
340
342
343
344
346
349
353
356
358
360
363
365
367
368
370
372
375
377
380
382
384
387
389
391
392
393

XSetInputFocus(XS) . 395

XSetLineAttributes(XS) 397
XSetPointerMapping(XS)cocvvureerverreereersnsenseeesessenssennes 400
XSetScreenSaver(XS) 402
XSetSelecionOwner(XS) 405
XSetState(XS)cccvvnininininnnssssssasssssssssassossases 407
XSetTextProperty(XS) 409
XSetTile(XS) 411
XSetTransientForHint(XS) . 413
XSetWMClientMachine(XS) 415
XSetWMColormapWindows(XS) 417
XSetWMICONNAME(XS) ..ccvevererrererrerrerenaerensrsensessesserasssssessessassssesssssssssessssasassssssserasssses 419
XSetWMName(XS) 421
XSetWMProperties(XS) 423
XSetWMProtocols(XS) .. 427
XStoreBytes(XS) 429
XStoreColors(XS) 432
XStringListToTextProperty(XS) 435
XStringToKeysym(XS) 437
XSupportsLocale(XS) 439
XSynchronize(XS) 141
XTextExtents(XS) 442
XTextWidth(XS) 445
XTranslateCoordinates(XS) .. 446
XUnmapEvent(XS) 448
XUnmapWindow(XS) 449
XVaCreateNestedList(XS) 451
XVisibilityNotifyEvent(XS) 452
XWarpPointer(XS) 454
X Toolkit (Xt) 457
Intro(Xt) 459
XtTranslateCoords(Xt) 463
XtAddCallback(Xt) 464
XtAddEventHandler(Xt) 466
XtAddExposureToRegion(Xt) 468
XtAddGrab(Xt) 469
XtAllocateGC(Xt) 471
XtAppAddActions(Xt) 473

Table of contents ix

XtAppAddConverter(Xt)

XtAppAddInput(Xt)
XtAppAddTimeOut(Xt)

XtAppAddWorkProc(Xt)

XtAppCreateShell(Xt)
XtAppError(Xt)

XtAppErrorMsg(Xt)

XtAppGetErrorDatabase(Xt)
XtAppGetSelectionTimeout(Xt)
XtApplnitialize(Xt)

XtAppNextEvent(Xt)
XtAppSetFallbackResources(Xt)
XtBuildEventMask(Xt)

XtCallAcceptFocus(Xt)
XtCallCallbacks(Xt)

XtClass(Xt)

XtConfigureWidget(Xt)
XtConvert(Xt)

XtCreateApplicationContext(Xt)

XtCreatePopupShell(Xt)
XtCreateWidget(Xt)

XtCreateWindow(Xt)

XtDisplay(Xt)
XtDisplayInitialize(Xt)

XtGetActionList(Xt)

XtGetGC(Xt)
XtGetResourceList(Xt)

XtGetSelectionValue(Xt)

XtGetSubresources(Xt)
XtLanguageProc(Xt)

XtMakeGeometryRequest(Xt)

XtMalloc(Xt)
XtManageChildren(Xt)

XtMapWidget(Xt)

XtMenuPopdown(Xt)
XtMenuPopup(Xt)

XtNameToWidget(Xt)

XtOffset(Xt)
XtOwnSelection(Xt)

XtParseAcceleratorTable(Xt)

XtParseTranslationTable(Xt)

474
475
477
478
479
481
483
485
487
488
490
493
495
496
497
498
500
502
504
505
506
509
510
511
514
515
516
517
519
521
523
525
527
529
530
532
535
537
538
540
542

XtQueryGeometry(Xt) 544

XtRealizeWidget(Xt) 545
XtScreenDatabase(Xt) 547
XtSetArg(Xt) 548
XtSetKeyTranslator(Xt) 550
XtSetKeyboardFocus(Xt) 552
XtSetSensitive(Xt) 554
XtSetValues(Xt) 555
XtStringConversionWarning(Xt) 558
X Miscellaneous Utilities (Xmu) 559
Intro(Xmu) 561
XctData(Xmu) 564
XmuAddCloseDisplayHook(Xmu) 568
XmuAddInitializer(Xmu) 569
XmuAllStandardColormaps(Xmu) 570
XmuAtom(Xmu) 572
XmuCompareISOLatin1(Xmu) 574
XmuConvertStandardSelection(Xmu) 575
XmuCopyISOLatinlLowered(Xmu) 576
XmuCreateColormap(Xmu) 577
XmuCreatePixmapFromBitmap(Xmu) 579
XmuCreateStippledPixmap(Xmu) 580
XmuCursorNameToIndex(Xmu) 581
XmuCvtFunctionToCallback(Xmu) 582
XmuCvtStringToBackingStore(Xmu) 583
XmuCvtStringToBitmap(Xmu) 584
XmuCvtStringToColorCursor(Xmu) 585
XmuCvtStringToCursor(Xmu) 587
XmuCvtStringToGravity(Xmu) 589
XmuCvtStringToJustify(Xmu) 591
XmuCvtStringToLong(Xmu) 592
XmuCvtStringToOrientation(Xmu) 593
XmuCvtStringToShapeStyle(Xmu) 594
XmuCvtStringToWidget(Xmu) 595
XmuDeleteStandardColormap(Xmu) 596
XmuDisplayQueue(Xmu) 597
XmuDrawLogo(Xmu) 600
XmuDrawRoundedRectangle(Xmu) 601

Table of contents xi

XmuGetColormapAllocation(Xmu) 603
XmuGetHostname(Xmu) 604
XmuLocateBitmapFile(Xmu) 605
XmuLookupLatin1(Xmu) 607
XmuLookupStandardColormap(Xmu) 610
XmuN ewCvtStringToWidget(Xmu) 612
XmuPrintDefaultErrorMessage(Xmu) 614
XmuReadBitmapData(Xmu) 615
XmuRemoveCloseDisplayHook(Xmu) 617
XmuReshapeWidget(Xmu) 618
XmuScreenOfWindow(Xmu) 619
XmuStandardColormap(Xmu) 621
XmuVisualStandardColormaps(Xmu) 623
XmuWnCountOwnedResources(Xmu) 625
XmuWnFetchResources(Xmu) 626
XmuWnlInitializeNodes(Xmu) 627
XmuWnNameToNode(Xmu) 628
X Extensions (Xext) 629
Intro(Xext) 631
XShape(Xext) 633
XShm(Xext) 636
Xmbuf(Xext) 640

xii

Preface

The X Window System Programmer’s Reference contains reference manual pages
for X Window System™ programming commands and functions. It includes
manual pages for sections (XS), (Xt), (Xmu), and (Xext).

The manual pages for section (XS) document the X library, a collection of rou-
tines that implement the X Protocol.

The manual pages for section (Xt) document the X Toolkit Intrinsics library
package, which provides mechanisms (functions and structures) for extend-
ing the basic programming abstractions provided by the X Window System.

The manual pages for section (Xmu) document the Xmu library, a collection
of miscellaneous utility functions and macros for building applications and
widgets.

The manual pages for section (Xext) document the X Extensions library,
which provides mechanisms that are not defined in the core protocol in Xlib.

All of these manual pages are accessible online through the man command.

Preface

Documentation conventions

SCO documents use font changes and other typographic conventions to dis-
tinguish text elements. The following table shows these conventions:

Font conventions

Example Entity

cc or cc(CP) command. The “CP” indicates the manual page section in
which the command is documented.

libc.a filename

action placeholder

{Esc) keyname

open or open(S)

buf
b.errno
$HOME
SIGHUP
login
“clobber”
“adm3a”
date

system calls, library routines, kernel functions, C keywords.
The “S” indicates the manual page section in which the
command is documented.

structure

structure member

environment or shell variable

named constant

output

jargon

data value

user input

X Window System Programmer’s Reference

Development System documentation set

Development System documentation set

T
—-
]
ey
jord
G
i3

The contents of the SCO® Open Desktop® Development System documenta-
tion set are illustrated here. In addition to these books, a copy of Release and
Installation Notes is provided with the Development System.

Reference Guide
UNIX® || o Encyclopediat ¢ Developer’s Overviewt
Development }i e Programmer’s Reference Manual ¢ Developer’s Topicst
System (2 Volumes)t ¢ Programming Tools Guidet
¢ Permuted Indext ¢ Debugging Tools Guidet
o User Interfaces Guidet

Packaging || e Software Mastering Toolkit Guide

Networking || e Network Programmer’s Guide and Reference

Graphical || ¢ X Window System ¢ Integrating Applications into
Environment Programmer’s Reference Open Desktop
* OSF/Motif Programmer’s Reference

Optional || ¢ Macro Assembler Writer’s Guide
¢ Device Driver Writer’s Guide

t These manuals are distributed with both the UNIX Development System software and the
Open Desktop Development System software.

The books included with the Development System are described here.

Developer’s Overview
introduces the Development System facilities and gives general in-
formation about developing software to run on SCO UNIX systems
and the supported cross-development environments.

Developer’s Topics
a collection of technical papers about topics of interest to users of
the Development System. Many of these papers include examples
illustrating features that are extensions provided by SCO.

Encyclopedia
contains articles that give background information about system
internals, descriptions of facilities, and other general issues. Arti-
cles are arranged alphabetically.

Programmer’s Reference Manual
a two-volume set that includes manual pages for the entire UNIX
Development System, including sections (CP), (DOS), (FP), (S),
and (XNX). See the “Manual pages” article in the Encyclopedia for a
description of these manual page sections.

Preface

Permuted Index
a permuted index of all manual pages that make up the Open
Desktop Development System.

Programming Tools Guide
provides generally useful information about programming tools
and their use in developing software. It also provides
implementation-specific details about the ANSI-conforming C
compiler provided with the Development System.

Debugging Tools Guide
provides generally useful information about the debugging tools,
and their use in tracking down and eliminating problems in C and
assembly languagemPrograms. In addition, it includes information
on using dbXtra™ to debug C and C++ programs in an
OSF/Motif™-based windowing environment.

User Interfaces Guide
introduces the facilities available for developing user interfaces,
and gives detailed instructions for using curses(S) and the
Extended Terminal Interface (ETI), and for writing user interfaces
that can be run on ASCII terminals. This book includes numerous
examples of curses programs.

Software Mastering Toolkit Guide
provides information and examples for using the Software Master-
ing Toolkit® to develop a custom-installable product. Also
included are the (SMT) manual pages.

Network Programmer’s Guide and Reference
provides procedures and reference information for developing
applications that use the SCO networking services: TCP/IP,
NFS™, IPX/SPX, TLI/XTI, int5c, and the PC-Interface™ extended
library. As well, the (SLIB), (SSC), (NC), (NS), and (PCI) man
pages are provided in this volume.

X Window System Programmer’s Reference
provides X Window System™ programming commands and func-
tions: X Library (XS), X Toolkit (Xt), X Miscellaneous Utilities
(Xmu), and X Extensions (Xext) reference manual pages for pro-
grammers.

OSF/Motif Programmer’s Reference
consists of the OSF/Motif toolkit, window manager, and user
interface language commands and functions: (Xm) reference man-
ual pages.

Integrating Applications into Open Desktop
provides information about application programming interfaces
that help in integrating applications into the Open Desktop

X Window System Programmer’s Reference

Development System documentation set

graphical environment: putting an icon on the desktop, adapting
to display resolution at runtime, supporting the desktop color
selector, and communicating with the session manager.

In addition, the following books are available on request:

Macro Assembler Writer's Guide
provides information on the assembly language for the Intel® 286,
386, and 486 processors. Developers who are writing device
drivers or applications having tight performance requirements
may want to write portions in assembly language. This book is
sold separately.

Device Driver Writer's Guide
provides guide and reference information about writing device
drivers for SCO UNIX systems. This book is sold separately.

Commercial books and articles

A number of fine books and articles are published commercially that discuss
how to develop software on the UNIX Operating System. We have not
attempted to replicate guide information on all of these topics; manual pages
are provided, and many articles in the Encyclopedia list additional sources of
information on their subject matters. In addition, the Encyclopedia includes a
large “Bibliography” that will interest users of the Development System.

In particular, we recommend that all developers have the followmg standard
textbooks on their shelves:
Brian Kernighan and Dennis Ritchie, The C Programming Language, 2nd
Edition.
One of the following general books about programming on UNIX operat-
ing systems:
Donald Lewine, POSIX Programmer’s Guide.
Marc Rochkind, Advanced UNIX Programming.

W. Richard Stevens, Advanced Programming in the UNIX Environ-
ment.

W. Richard Stevens, UNIX Network Programming. Useful for programmers
who are writing distributed applications.

Maurice Bach, Design of the UNIX Operating System. Useful for program-
mers who want to thoroughly understand UNIX system internals.

See the “Bibliography” in the Encyclopedia for full citations if you are not fami-
liar with the books listed above.

Preface

The following reference literature may prove useful to programmers learning
about the X Window System.

Asente, Paul, “Simplicity and Productivity,” UNIX Review, vol. 6, no. 9, pp.
57-63. Discusses the classing mechanism in the X Toolkit.

Burnet, James, “New Challenge to Character Terminals,” UNIX World, pp.
79-83, May, 1989. An introduction to X terminals.

Cashin, Jerry, “Many Struggle to Set Laws of Windows Game,” Software
Magazine, vol. 9, no. 2, pp. 74-79, February, 1989. Discusses window
system standards.

Farrow, Rik, “Before Their Time?,” UNIX World, pp. 75-81, July, 1989.
Describes X terminals in general and compares two models.

Gancarz, M., “UWM: A User Interface for X Windows,” in Proceedings of
the Summer, 1986, USENIX Conference, pp. 429-440. Describes the
UWM window manager for X.

Gettys, Jim, “Flexibility is Key to Meet Requirements for X Window Sys-
tem Design,” Computer Technology Review, pp. 87-89, Summer, 1988. A
high-level description of the X Window System.

Johnson, Eric and Kevin Reichard, X Window Applications Programming,
MIS: Press. A tutorial on Xlib programming.

Jones, Oliver, Introduction to the X Window System, Prentice-Hall, 1988. An
introduction to programming with Xlib.

Lemke, David and David S. H. Rosenthal, “Visualizing X1l Clients,” in
Proceedings of the Winter, 1989, USENIX Conference, pp. 125-138. A
detailed look at visuals, the X object that abstracts the properties of
popular display hardware.

McCormack, Joel and Paul Asente, “Using the X Toolkit or How to Write a
Widget,” in Proceedings of the Summer, 1988, USENIX Conference,
pp- 1-13. A tutorial on writing basic X Toolkit widgets.

McCormack, Joel and Paul Asente, “An Overview of the X Toolkit,” in
Proceedings of the ASM SIGGRAPH Symposium on User Interface
Software, pp. 46-55, October, 1988. An architectural overview of X
Toolkit goals.

Morris, Robert R. and William E. Brooks, “UNIX Versus OS/2: A Graphi-
cal Comparison,” PC Tech Journal, vol. 7, no. 2, February, 1989. A com-
parison of X and Presentation Manager.

Myers, Brad A., “Window Interfaces: A Taxonomy of Window Manager
User Interfaces,” IEEE Computer Graphics & Applications, vol. 8, no. 5,
pp- 65-84, September, 1988. A taxonomy of current window system
user interfaces, including the X UWM window manager. Discusses
and compares the features of each user interface.

6 X Window System Programmer’s Reference

Development System documentation set

Nadeau, David R. “High-Performance 3-D Graphics an a Window
Environment,” Computer Technology Review, pp.89-93, Fall, 1988. A
discussion on integrating Megatek’s high-performance 3D graphics
hardware/software with X.

Nye, Adrian, The X Window System Series, 3 volumes, O’Reilly and Associ-
ates, 1988. Volumes I and II discuss Xlib and Volume III discusses
some of the popular X clients, such as window managers and termi-
nal emulators.

O'Reilly, Tim, Valerie Quercia, and Linda Lamb, The X Window System
User’s Guide, Volume III (for Version 11), O'Reilly and Associates,
October 1988.

Rost, Randi, Jeffrey Friedberg, and Peter Nishimoto, “PEX: A Network-
Transparent 3D Graphics System,” IEEE Computer Graphics & Applica-
tions, pp. 14-26, July, 1989. An overview of PEX, the PHIGS extension
of X.

Rost, Randi]., “Adding a Dimension to X,” UNIX Review, vol. 6, no. 10, pp.
511-59. A description of the PEX 3D extension to X.

Seither, Mike, “Terminal Vendors Stake Out X Window Display Terri-
tories,” Mini-Micro Systems, pp. 24-29, February, 1989. An introduc-
tion to the rapidly growing X terminal industry.

Thomas, Spencer W. and Martin Friedmann, “PEX - A 3-D Extension to X
Windows,” in Proceedings of the Winter, 1989, USENIX Conference,
pp- 139-149. Describes the demonstration implementation of PEX, the
PHIGS/PHIGS+ 3D extension to X. Source code for this demonstra-
tion is included with X11R3.

Young, Doug, X Window System Programming and Applications with Xt,
OSF/Motif Edition, Prentice-Hall. A tutorial on programming with the
Xt intrinsics and OSF/Motif widget set.

Preface

Resources for X Development

The following organizations can be contacted as resources for X Window Sys-
tem development:

Robert W. Scheifler, Director

MIT X Consortium

Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

(617) 253-0628

Internet: rws@zermatt.lcs.mit.edu

“The X Consortium is a collection of industrial and academic organi-
zations, administered within the MIT Laboratory for Computer Sci-
ence, dedicated to providing continued technical leadership for X,
evolving the system to incorporate a wider range of graphics capabili-
ties, integrating support into more programming languages, and de-
veloping better user interface technologies. The X Consortium is
open to any organization.”

To order a public domain copy of the X Window System software dis-
tribution, contact the X Consortium.

The X User’s Group (XUG)

163 Harvard Street

Cambridge, MA 02139

(617) 547-0510

Internet: xug@expo.lcs.mit.edu

MIT Software Center

77 Massachusetts Avenue
Room #32-300
Cambridge, MA 02139
(617) 253-6966

Telex: 921473 MITCAM

8 X Window System Programmer’s Reference

Reference manual sections

Reference manual sections

Reference material is distributed as individual reference sections in the vari-
ous volumes of the Operating and Development Systems. The following table
lists the section name, description, and location of each reference section.

Section

Description

Volume

ADM

C
Cp

DOS

F
FP

HW
K

M
NC

NS
PCI

SLIB
SMT

S§SC

X
XNX

XS
Xext
Xm

Xmu
Xt

administrative commands

commands
programming commands

DOS and 05/2% library
routines

file formats
programming file formats

hardware devices

kernel functions used in
device drivers

miscellaneous
RPC protocol compiler

network system calls
PC-Interface extended library

system calls and library
routines

socket library functions
Software Mastering Toolkit
utilities

socket system calls

X clients
XENIX® cross development

X library routines
X Extensions library

OSF/Motif commands and
functions

Xmu library
X Toolkit Intrinsics library

System Administrator’s Reference

User’s Reference
Programmer’s Reference Manual

Programmer’s Reference Manual

System Administrator’s Reference
Programmer’s Reference Manual

System Administrator’s Reference

Device Driver Writer's Guide

User's Reference
Network Programmer’s Guide and Reference

Network Programmer’s Guide and Reference
Network Programmer’s Guide and Reference

Programmer’s Reference Manual

Network Programmer’s Guide and Reference
Software Mastering Toolkit Guide

Network Programmer’s Guide and Reference

online only
Programmer’s Reference Manual

X Window System Programmer’s Reference
X Window System Programmer’s Reference
OSF/Motif Programmer's Reference

X Window System Programmier’s Reference
X Window System Programmier’s Reference

The alphabetized list that follows is a complete listing of X Window System
programming commands and functions: (XS), (Xext), (Xmuy), (Xt).

Alphabetized list

Commands, system calls, library routines, and file formats

AllPlanes AllPlanes (XS)
BitmapBitOrder ImageByteOrder (XS)
BitmapPad ImageByteOrder(XS)
BitmapUnit ImageByteOrder(XS)
BlackPixel AllPlanes (XS)
BlackPixelOfScreen

.............. BlackPixelOfScreen (XS)
ButtonPress XButtonEvent (XS)
ButtonRelease XButtonEvent (XS)
CellsOfScreen BlackPixelOfScreen (XS)
ClientWhitePointOf CCC

.................. DisplayOfCCC (XS)
ConnectionNumber AllPlanes (XS)
DefaultColormap AllPlanes (XS)
DefaultColormapOfScreen

.............. BlackPixelOfScreen (XS)
DefaultDepth AllPlanes (XS)
DefaultDepthOfScreen

.............. BlackPixelOfScreen (XS)
DefaultGC AllPlanes (XS)
DefaultGCOfScreen

.............. BlackPixelOfScreen (XS)
DefaultRootWindow AllPlanes (XS)
DefaultScreen AllPlanes (XS)
DefaultScreenOfDisplay AllPlanes (XS)
DefaultVisual AllPlanes (XS)

DefaultVisualOfScreen
.............. BlackPixelOfScreen (XS)

DisplayCells AllPlanes (XS)
DisplayHeight ImageByteOrder (XS)
DisplayHeightMM ImageByteOrder(XS)
DisplayOfCCC DisplayOfCCC (Xs)
DisplayOfScreen. . . . BlackPixelOfScreen (XS)
DisplayPlanes AllPlanes (XS)
DisplayString AllPlanes (XS)
DisplayWidth ImageByteOrder (XS)

DisplayWidthMM ImageByteOrder (XS)
DoesBackingStore .. BlackPixelOfScreen (XS)
DoesSaveUnders BlackPixelOfScreen (XS)
EventMaskOfScreen

.............. BlackPixelOfScreen (XS)
HeightMMOfScreen

.............. BlackPixelOfScreen (XS)
HeightOfScreen BlackPixelOfScreen (XS)
ImageByteOrder....... ImageByteOrder (XS)

imake ool imake (XS)
Intro ..., Intro (Xext)
Intro ...l Intro (Xmu)
Intro.............. R Intro (XS)
Intro.............ooiii, Intro (Xt)
IsCursorKey IsCursorKey (XS)
IsFunctionKey IsCursorKey (XS)
IsKeypadKey IsCursorKey (XS)
IsMiscFunctionKey........ IsCursorKey (XS)
IsModiferKey............. IsCursorKey (XS)
IsPFKey IsCursorKey (XS)
KeyPress................ XButtonEvent (XS)
KeyRelease XButtonEvent(XS)
LastKnownRequestProcessed

....................... AllPlanes (XS)
Indir................. ... oLl Indir (XS)
makedepend makedepend (XS)
MaxCmapsOfScreen

.............. BlackPixelOfScreen (XS)
MinCmapsOfScreen

.............. BlackPixelOfScreen (XS)
mkdirhier mkdirhier (XS)
MotionNotify XButtonEvent(XS)
NextRequest AllPlanes (XS)
PlanesOfScreen BlackPixelOfScreen (XS)
ProtocolRevision AllPlanes (XS)
ProtocolVersion.............. AllPlanes (XS)
Qlength AllPlanes (XS)
RootWindow AllPlanes (XS)
RootWindowOfScreen

.............. BlackPixelOfScreen (XS)
scoinstl scoinst (XS)
ScreenCount AllPlanes (XS)
ScreenNumberOfCCC . . . DisplayOfCCC(XS)
ScreenOfDisplay AllPlanes (XS)
ScreenWhitePointOf CCC

.................. DisplayOfCCC (XS)
ServerVendor................ AllPlanes (XS)
VendorRelease AllPlanes (XS)
VisualOfCCC DisplayOfCCC (Xs)
WhitePixel AllPlanes(XS)
WhitePixelOfScreen

.............. BlackPixelOfScreen (XS)

11

WidthMMOfScreen

.............. BlackPixelOfScreen (XS)
WidthOfScreen BlackPixelOfScreen (XS)
XA_ATOM_PAIR XmuAtom (Xmu)
XA_CHARACTER_POSITION

.................... XmuAtom (Xmu)
XA_CLASS XmuAtom (Xmu)
XA_CLIENT_WINDOW ... XmuAtom (Xmu)
XA_CLIPBOARD XmuAtom (Xmu)

XA_COMPOUND_TEXT. .. XmuAtom (Xmu)
XActivateScreenSaver

................. XSetScreenSaver (XS)
XAddHost XAddHost (XS)
XAddHosts XAddHost (XS)
XAddPixel XCreatelmage(XS)
XAddToSaveSet XChangeSaveSet (XS)
XA_DECNET_ADDRESS

.................... XmuAtom (Xmu)
XA_DELETE.............. XmuAtom (Xmu)
XA_FILENAME XmuAtom (Xmu)
XA_HOSTNAME XmuAtom (Xmu)
XA_IP_ADDRESS......... XmuAtom (Xmu)
XA_LENGTH XmuAtom (Xmu)
XA_LIST_LENGTH XmuAtom (Xmu)
XAllocClassHint XAllocClassHint (XS)
XAllocColor XAllocColor (XS)
XAllocColorCells............. XAllocColor (XS)
XAllocColorPlanes XAllocColor (XS)
XAllocIconSize XAlloclconSize (XS)
XAllocNamedColor. XAllocColor (XS)
XAllocSizeHints. XAllocSizeHints (XS)

XAllocStandardColormap
......... XAllocStandardColormap (XS)

XAllocWMHints XAllocWMHints (XS)
XAllowEvents XAllowEvents (XS)
XA_NAME XmuAtom (Xmu)
XA_NET_ADDRESS XmuAtom (Xmu)
XANULL................ XmuAtom (Xmu)
XAnyEvent XAnyEvent (XS)
XA_OWNEROS.......... XmuAtom (Xmu)
XArc.......oooiiiiiiiiin, XDraw Arc (XS)
XASPAN XmuAtom (Xmu)
XA_TARGETS XmuAtom (Xmu)
XA_TEXTc.vn. XmuAtom (Xmu)
XA_TIMESTAMP XmuAtom (Xmu)
XA_USER XmuAtom (Xmu)
XAutoRepeatOff

........ XChangeKeyboardControl (XS)
XAutoRepeatOn

........ XChangeKeyboardControl (XS)

12

XBaseFontNameListOfFontSet
................ XFontsOfFontSet (XS)
XBell XChangeKeyboardControl (XS)
XButtonEvent XButtonEvent (XS)
XChangeActivePointerGrab
................... XGrabPointer (XS)
XChangeGC XCreateGC (XS)
XChangeKeyboardControl
........ XChangeKeyboardControl (XS)
XChangeKeyboardMapping
....... XChangeKeyboardMapping (XS)
XChangePointerControl
.......... XChangePointerControl (XS)
XChangeProperty
............ XGetWindow Property (XS)
XChangeSaveSet XChangeSaveSet (XS)
XChangeWindow Attributes
....... XChangeWindow Attributes (XS)

XChar2b................... XLoadFont (XS)
XCharStruct. XLoadFont (XS)
XCheckIfEvent XIfEvent (XS)
XCheckMaskEvent XNextEvent (XS)
XCheckTypedEvent. XNextEvent (XS)
XCheckTypedWindowEvent
..................... XNextEvent(XS)
XCheckWindowEvent. XNextEvent (XS)
XCirculateEvent XCirculateEvent (XS)

XCirculateRequestEvent
.......... XCirculateRequestEvent (XS)
XCirculateSubwindows

.................. XRaiseWindow (XS)
XCirculateSubwindowsDown

.................. XRaiseWindow (XS)
XCirculateSubwindowsUp

.................. XRaiseWindow (XS)
XClassHint XAllocClassHint (XS)
XClearArea................ XClearArea (XS)
XClearWindow XClearArea(XS)
XClientMessageEvent

............ XClientMessageEvent (XS)
XClipBox XPolygonRegion (XS)
XCloseDisplay XOpenDisplay (XS)
XCloseIM................... XOpenIM(Xs)
XcmsAllocColor XcmsAllocColor (XS)
XcmsAllocNamedColor

................. XcmsAllocColor (XS)
XcmsCCCOfColormap

........... XcmsCCCOfColormap (XS)
XemsCIELab XcmsColor(XS)

X Window System Programmer’s Reference

XcmsCIELabQueryMaxC

......... XcmsCIELabQueryMaxC (XS)
XcmsCIELabQueryMaxL

......... XcmsCIELabQueryMaxC (XS)
XcmsCIELabQueryMaxLC

......... XcmsCIELabQueryMaxC(XS)
XcmsCIELabQueryMinL

......... XcmsCIELabQueryMaxC (XS)
XemsCIELuv XcmsColor (XS)
XcmsCIELuvQueryMaxC

......... XcemsCIELuvQueryMaxC (XS)
XcmsCIELuvQueryMaxL

......... XcmsCIELuvQueryMaxC (XS)
XcmsCIELuvQueryMaxLC

......... XcmsCIELuvQueryMaxC (XS)
XcmsCIELuvQueryMinL

......... XcmsCIELuvQueryMaxC (XS)
XemsCIEuvY XcmsColor (XS)
XemsCIExyY XcmsColor (XS)
XemsCIEXYZ. XcmsColor (XS)
XemsColor................. XcmsColor (XS)
XcmsConvertColors

.............. XcmsConvertColors(XS)
XcmsCreateCCC.... ... XcmsCreateCCC(XS)
XcmsDefaultCCC. XcmsDefaultCCC (XS)
XcmsFreeCCC......... XcmsCreateCCC (XS)
XcmsLookupColor XcmsQueryColor(XS)
XemsPad................... XcmsColor (XS)
XcmsQueryBlack. XcmsQueryBlack (XS)
XcmsQueryBlue. XcmsQueryBlack (XS)
XcmsQueryColor. XcmsQueryColor (XS)
XcmsQueryColors. XcmsQueryColor (XS)
XcmsQueryGreen XcmsQueryBlack (XS)
XcmsQueryRed XcmsQueryBlack (XS)
XcmsQueryWhite XcmsQueryBlack (XS)
XemsRGB XcmsColor (XS)
XemsRGBi XcmsColor(XS)
XcmsSetCCCOfColormap

........... XcmsCCCOfColormap (XS)
XcmsSetWhiteAdjustProc

.............. XcmsSetWhitePoint (XS)
XcmsSetWhitePoint

.............. XcmsSetWhitePoint (XS)
XcmsStoreColor. XcmsStoreColor (XS)
XcmsStoreColors. XcmsStoreColor (XS)
XemsTekHVC XcmsColor (XS)
XcmsTekHVCQueryMaxC

........ XcmsTekHVCQueryMaxC (XS)
XemsTekHVCQueryMaxV

........ XcmsTekHVCQueryMaxC (XS)

XcmsTekHVCQueryMaxVC
........ XcmsTekHVCQueryMaxC (XS)
XemsTekHVCQueryMaxVSamples
........ XcmsTekHVCQueryMaxC (XS)
XcmsTekHVCQueryMinV
........ XcmsTekHVCQueryMaxC (XS)
XColor XCreateColormap (XS)
XColormapEvent. XColormapEvent (XS)
XConfigureEvent. XConfigureEvent (XS)
XConfigureRequestEvent
......... XConfigureRequestEvent (XS)
XConfigureWindow
.............. XConfigureWindow (XS)
XContextDependentDrawing
................ XFontsOfFontSet (XS)
XConvertSelection
............. XSetSelectionOwner (XS)
XCopyArea................ XCopyArea (XS)
XCopyColormapAndFree
................ XCreateColormap (XS)
XCopyGC XCreateGC (XS)
XCopyPlane XCopyArea (XS)
XCreateBitmapFromData
................ XReadBitmapFile (XS)
XCreateColormap XCreateColormap (XS)
XCreateFontCursor

.............. XCreateFontCursor(XS)
XCreateFontSet. XCreateFontSet (XS)
XCreateGC XCreateGC (XS)
XCreateGlyphCursor

.............. XCreateFontCursor(XS)
XCreateIC XCreatelC (XS)
XCreateImage XCreatelmage(XS)
XCreatePixmap. XCreatePixmap (XS)
XCreatePixmapCursor

.............. XCreateFontCursor(XS)
XCreatePixmapFromBitmapData

................ XReadBitmapFile (XS)
XCreateRegion. XCreateRegion (XS)
XCreateSimpleWindow

................. XCreateWindow (XS)
XCreateWindow XCreateWindow (XS)
XCreateWindowEvent

............ XCreateWindowEvent(XS)
XCrossingEvent. XCrossingEvent(XS)
XctCreate XctData (Xmu)
XctData XctData (Xmu)
XctFreecovvvunnn XctData (Xmu)
XctNextltem XctData (Xmu)
XctReset XctData (Xmu)

13

XDefaultString

....... XmbTextListToTextProperty (XS)
XDefineCursor. XDefineCursor (XS)
XDeleteContext XSaveContext (XS)
XDeleteModifiermapEntry

....... XChangeKeyboardMapping (XS)
XDeleteProperty

............ XGetWindowProperty (XS)
XDestroyIC................. XCreatelC (XS)
XDestroyImage XCreatelmage (XS)
XDestroyRegion XCreateRegion (XS)
XDestroySubwindows

................ XDestroyWindow (XS)
XDestroyWindow XDestroyWindow (XS)
XDestroyWindowEvent

.......... XDestroyWindow Event (XS)

XDisableAccessControl XAddHost (XS)
XDisplayKeycodes

....... XChangeKeyboardMapping (XS)
XDisplayMotionBufferSize

..................... XSendEvent (XS)
XDisplayName.. XSetErrorHandler (XS)
XDisplayOfIM XOpenIM(Xs)
XDrawArc XDraw Arc (XS)
XDrawArces...........oovnen XDraw Arc (XS)
XDrawImageString

.............. XDrawImageString (XS)
XDrawImageString16

.............. XDrawImageString (XS)
XDrawLine XDrawLine (XS)
XDrawLines XDrawLine (XS)
XDrawPoint XDrawPoint (XS)
XDrawPoints XDrawPoint (XS)
XDrawRectangle XDrawRectangle (XS)
XDrawRectangles XDrawRectangle(XS)
XDrawSegments XDrawLine (XS)
XDraw$String XDrawString (XS)
XDrawString16 XDrawString (XS)
XDrawText................. XDrawText(XS)
XDrawText16............... XDrawText(XS)
XEmptyRegion XEmptyRegion (XS)
XEnableAccessControl XAddHost (Xs)
XEqualRegion XEmptyRegion (XS)
XErrorEvent XErrorEvent (XS)
XEvent.................... XAnyEvent (XS)
XEventsQueued XFlush (XS)
XExposeEvent. XExposeEvent (XS)
XExtentsOfFontSet .. XExtentsOfFontSet (XS)
XFetchBuffer XStoreBytes (XS)
XFetchBytes............... XStoreBytes (XS)
XFetchName............ XSetWMName (XS)
14

XFillAre XFillRectangle (XS)
XFillAres XFillRectangle (XS)
XFillPolygon............ XFillRectangle (XS)
XFillRectangle XFillRectangle (XS)
XFillRectangles XFillRectangle (XS)
XFilterEvent XFilterEvent (XS)
XFindContext XSaveContext (XS)
XFlush...................... e XFlush (XS)
XFocusChangeEvent

............. XFocusChangeEvent (XS)
XFontProp XLoadFont (XS)
XFontSetExtents XFontSetExtents (XS)
XFontsOfFontSet XFontsOfFontSet (XS)
XFontStruct XLoadFont (XS)
XForceScreenSaver. XSetScreenSaver (XS)
XFreeccovvniivviineinnnn, XFree (XS)
XFreeColormap XCreateColormap (XS)
XFreeColors XAllocColor (XS)
XFreeCursor XRecolorCursor (XS)
XFreeFont XLoadFont (XS)
XFreeFontInfo XListFonts (XS)
XFreeFontNames. XListFonts (XS)
XFreeFontPath XSetFontPath (XS)
XFreeFontSet. XCreateFontSet (XS)
XFreeGC XCreateGC (XS)
XFreeModifiermap

....... XChangeKeyboardMapping (XS)
XFreePixmap........... XCreatePixmap (XS)
XFreeStringList

........ XStringListToTextProperty (XS)
XGContextFromGC......... XCreateGC (XS)
XGCValues................ XCreateGC (XS)
XGetAtomName. XIntemAtom (XS)
XGetClassHint XAllocClassHint (XS)
XGetCommand XSetCommand (XS)
XGetErrorDatabaseText

................ XSetErrorHandler (XS)
XGetErrorText. XSetErrorHandler (XS)
XGetFontPath. XSetFontPath (XS)
XGetFontProperty XLoadFont (XS)
XGetGCValues............. XCreateGC (XS)
XGetGeometry

.......... XGetWindow Attributes (XS)
XGetlconName XSetWMIconName (XS)
XGetIconSizes.......... XAlloclconSize (XS)
XGetICValues. XSetICValues (XS)
XGetlmage XPutlmage (XS)
XGetIMValues XOpenIM(XS)

XGetInputFocus. XSetInputFocus (XS)

X Window System Programmer’s Reference

XGetKeyboardControl
........ XChangeKeyboardControl (XS)
XGetKeyboardMapping
....... XChangeKeyboardMapping (XS)
XGetModifierMapping
....... XChangeKeyboardMapping (XS)
XGetMotionEvents XSendEvent (XS)
XGetPixel XCreatelmage (XS)
XGetPointerControl
.......... XChangePointerControl (XS)
XGetPointerMapping
............. XSetPointerMapping (XS)
XGetRGBColormaps
......... XAllocStandardColormap (XS)
XGetScreenSaver XSetScreenSaver (XS)
XGetSelectionOwner
............. XSetSelectionOwner (XS)
XGetSubImage XPutImage (XS)
XGetTextProperty XSetTextProperty (XS)
XGetTransientForHint
............ XSetTransientForHint (XS)
XGetVisuallnfo XGetVisuallnfo (XS)
XGetWindowA ttributes
.......... XGetWindowAttributes (XS)
XGetWindowProperty
............ XGetWindowProperty (XS)
XGetWMClientMachine
........... XSetWMClientMachine (XS)
XGetWMColormapWindows
...... XSetWMColormapWindows (XS)
XGetWMHints XAllocWMHints (XS)
XGetWMIconName
.............. XSetWMIconName(XS)
XGetWMName XSetWMName (XS)
XGetWMNormalHints
................. XAllocSizeHints (XS)
XGetWMProtocols ... XSetWMProtocols (XS)
XGetWMSizeHints XAllocSizeHints (XS)

XGrabButton............... XGrabButton (XS)
XGrabKey.................. XGrabKey (XS)
XGrabKeyboard XGrabKeyboard (XS)
XGrabPointer............ XGrabPointer (XS)
XGrabServer XGrabServer (XS)

XGraphicsExposeEvent
........... XGraphicsExposeEvent(XS)

XGravityEvent XGravityEvent (XS)
XHostAddress XAddHost (XS)
XIconifyWindow. XlconifyWindow (XS)
XIconSize XAlloclconSize (XS)
XIfEvent..................... XIfEvent (XS)
XIMOfIC................... XCreatelC (XS)

XInsertModifiermapEntry
....... XChangeKeyboardMapping (XS)
XInstallColormap. XInstallColormap (XS)

XIntemAtom XIntermAtom (XS)
XIntersectRegion. XlIntersectRegion (XS)
XKeyboardControl

........ XChangeKeyboardControl (XS)
XKeycodeToKeysym

................ XStringToKeysym (XS)
XKeyEvent.............. XButtonEvent (XS)
XKeymapEvent XKeymapEvent (XS)
XKeysymToKeycode

................ XStringToKeysym (XS)
XKeysymToString XStringToKeysym (XS)
XKillClient XSetCloseDownMode(XS)
XListDepths................. AllPlanes (XS)
XListFonts XListFonts (XS)
XListFontsWithInfo XListFonts (XS)
XListHosts XAddHost (XS)
XListInstalledColormaps

................ XlnstallColormap (XS)

XListPixmapFormats . . . ImageByteOrder(XS)
XListProperties. . . XGetWindow Property (XS)

XLoadFont................. XLoadFont (XS)
XLoadQueryFont XLoadFont (XS)
XLocaleOfFontSet XFontsOfFontSet (XS)
XLocaleOfIM XOpenIM (Xs)
XLookupColor XQueryColor(Xs)
XLookupKeysym XLookupKeysym (XS)
XLookupString XLookupKeysym (XS)
XLowerWindow XRaiseWindow (XS)
XMapEvent XMapEvent(Xs)
XMappingEvent XMapEvent(Xs)
XMapRaised XMapWindow (XS)
XMapRequestEvent

.............. XMapRequestEvent (XS)
XMapSubwindows XMapWindow (XS)
XMapWindow XMapWindow (XS)
XMaskEvent XNextEvent (XS)
XMatchVisuallnfo XGetVisuallnfo (XS)
XMaxRequestSize AllPlanes (XS)
XmbDrawImageString

............ XmbDrawImageString (XS)
XmbDrawString XmbDrawString (XS)
XmbDrawText XmbDrawText(XS)
XmbLookupString . . . XmbLookupString (XS)
XmbResetIC XmbResetIC (XS)
XmbSetWMProperties

............... XSetWMProperties (XS)

15

XmbTextEscapement

............. XmbTextEscapement (XS)
XmbTextExtents XmbTextExtents (XS)
XmbTextListToTextProperty

....... XmbTextListToTextProperty (XS)
XmbTextPerCharExtents

.......... XmbTextPerCharExtents (XS)
XmbTextPropertyToTextList

....... XmbTextListToTextProperty (XS)
Xmbuf....................L Xmbuf(Xext)
XmbufChangeBufferAttributes

........................ Xmbuf (Xext)
XmbufChangeWindow Attributes

........................ Xmbuf (Xext)
XmbufCreateBuffers........... Xmbuf (Xext)
XmbufCreateStereoWindow ... Xmbuf (Xext)
XmbufDestroyBuffers Xmbuf (Xext)
XmbufDisplayBuffers Xmbuf(Xext)
XmbufGetBufferAttributes. Xmbuf (Xext)
XmbufGetScreenlnfo.......... Xmbuf (Xext)
XmbufGetVersion Xmbuf (Xext)
XmbufGetWindow Attributes .. Xmbuf (Xext)
XmbufQueryExtension Xmbuf (Xext)
xmkmf........................ xmkmf(XS)
XModifierKeymap

....... XChangeKeyboardMapping (XS)
XMotionEvent........... XButtonEvent (XS)
XMoveResizeWindow

.............. XConfigureWindow (XS)
XMoveWindow XConfigureWindow (XS)

XmuAddCloseDisplayHook
..... XmuAddCloseDisplayHook (Xmu)
XmuAddInitializer
............. XmuAddInitializer (Xmu)
XmuAllStandardColormaps
..... XmuAllStandardColormaps (Xmu)
XmuAtom XmuAtom (Xmu)
XmuCalllnitializers
............. XmuAddInitializer (Xmu)
XmuClientWindow
.......... XmuScreenOf Window (Xmu)
XmuCompareISOLatin1
........ XmuComparelSOLatin1 (Xmu)
XmuConvertStandardSelection
.. XmuConvertStandardSelection (Xmu)
XmuCopyISOLatin1Lowered
.... XmuCopyISOLatinlLowered (Xmu)
XmuCopyISOLatin1Uppered
.... XmuCopyISOLatin1Lowered (Xmu)

16

XmuCreateColormap
........... XmuCreateColormap (Xmu)
XmuCreatePixmapFromBitmap
.. XmuCreatePixmapFromBitmap (Xmu)
XmuCreateStippledPixmap
...... XmuCreateStippledPixmap (Xmu)
XmuCursorNameToIndex
....... XmuCursorNameTolndex (Xmu)
XmuCvtFunctionToCallback
..... XmuCvtFunctionToCallback (Xmu)
XmuCvtStringToBackingStore
... XmuCvtStringToBackingStore (Xmu)
XmuCvtStringToBitmap
........ XmuCvtStringToBitmap (Xmu)
XmuCvtStringToColorCursor
... . XmuCvtStringToColorCursor (Xmu)
XmuCvtStringToCursor
......... XmuCvtStringToCursor (Xmu)
XmuCvtStringToGravity
........ XmuCvtStringToGravity (Xmu)
XmuCvtStringToJustify
......... XmuCvtStringTo]ustif y (Xmu)
XmuCwvtStringToLong
.......... XmuCvtStringToLong (Xmu)
XmuCvtStringToOrientation
..... XmuCvtStringToOrientation (Xmu)
XmuCvtStringToShapeStyle
..... XmuCvtStringToShapeStyle (Xmu)
XmuCvtStringToWidget
........ XmuCvtStringToWidget (Xmu)
XmuDeleteStandardColormap
... XmuDeleteStandardColormap (Xmu)
XmuDisplayQueue
............. XmuDisplayQueue (Xmu)
XmuDisplayQueueEntry
............. XmuDisplayQueue (Xmu)
XmuDQAddDisplay
............. XmuDisplayQueue (Xmu)
XmuDQCreate XmuDisplayQueue(Xmu)
XmuDQDestroy ... XmuDisplayQueue(Xmu)
XmuDQLookupDisplay
............. XmuDisplayQueue (Xmu)
XmuDQRemoveDisplay
............. XmuDisplayQueue (Xmu)
XmuDrawLogo XmuDraw Logo (Xmu)
XmuDrawRoundedRectangle
. ... XmuDrawRoundedRectangle (Xmu)
XmuFillRoundedRectangle
. ... XmuDraw RoundedRectangle (Xmu)
XmuGetAtomName XmuAtom (Xmu)

X Window System Programmer’s Reference

XmuGetColormapAllocation
. ... XmuGetColormapAllocation (Xmu)

XmuGetHostname

............. XmuGetHostname (Xmu)
XmulnternAtom. XmuAtom (Xmu)
XmulntemnStrings XmuAtom (Xmu)
XmuLocateBitinapFile

.......... XmuLocateBitmapFile (Xmu)
XmuLookupAPL. .. XmuLookupLatinl (Xmu)
XmuLookupArabic

............. XmuLookupLatin] (Xmu)
XmuLookupCloseDisplayHook

.. XmuRemoveCloseDisplayHook (Xmu)
XmuLookupCiyrillic

............. XmuLookupLatinl (Xmu)
XmuLookupGreek

............. XmuLookupLatinl (Xmu)
XmuLookupHebrew

............. XmuLookupLatinl (Xmu)
XmuLookupJISX0201

............. XmuLookupLatinl (Xmu)

............. XmuLookupLatin1 (Xmu)
XmuLookupLatinl

............. XmuLookupLatinl (Xmu)
XmuLookupLatin2

............. XmuLookupLatin1 (Xmu)
XmuLookupLatin3

............. XmuLookupLatin1 (Xmu)
XmuLookupLatind

............. XmuLookupLatinl (Xmu)
XmuLookupStandardColormap

.. XmuLookupStandardColormap (Xmu)
XmuMakeAtom XmuAtom (Xmu)
XmuNameOfAtom XmuAtom (Xmu)
XmuNewCvtStringToWidget

... . XmuNewCvtStringToWidget (Xmu)
XmuPrintDefaultErrorMessage

... XmuPrintDefaultErrorMessage (Xmu)
XmuReadBitinapData

.......... XmuReadBitmapData (Xmu)
XmuReadBitmapDataFromFile
.......... XmuReadBitmapData (Xmu)

XmuReleaseStippledPixmap

...... XmuCreateStippledPixmap (Xmu)
XmuRemoveCloseDisplayHook

. . XmuRemoveCloseDisplayHook (Xmu)
XmuReshapeWidget

............ XmuReshapeWidget (Xmu)

XmuScreenOf Window

.......... XmuScreenOfWindow (Xmu)
XmuSimpleErrorHandler

... XmuPrintDefaultErrorMessage (Xmu)
XmuStandardColormap

......... XmuStandardColormap (Xmu)
XmuUpdateMapHints

.......... XmuScreenOf Window (Xmu)
XmuVisualStandardColormaps

. . XmuVisualStandardColormaps (Xmu)
XmuWnCountOwnedResources

. . XmuWnCountOwnedResources (Xmu)

XmuWnFetchResources

......... XmuWnFetchResources (Xmu)
XmuWnlnitializeNodes

......... XmuWnlnitializeNodes (Xmu)
XmuWnNameToNode

.......... XmuWnNameToNode (Xmu)
XNewModifiermap

....... XChangeKeyboardMapping (XS)
XNextEvent............... XNextEvent (XS)
XNoExposeEvent

........... XGraphicsExposeEvent (XS)
XNoOp.......oovvviininnnn, XNoOp (XS)
XOffsetRegion XlIntersectRegion (XS)
XOpenDisplay XOpenDisplay (XS)
XOpenIM................... XOpenIM (XS)
XParseColor XQueryColor (XS)
XParseGeometry. XParseGeometry (XS)
XPeekEvent............... XNextEvent (XS)
XPeekIfEvent XIfEvent (XS)
XPending XFlush (XS)
XPixmapFormatValues

................. ImageByteOrder (XS)
XPoint XDrawPoint (XS)
XPointInRegion XEmptyRegion (XS)
XPolygonRegion XPolygonRegion (XS)
XPropertyEvent XPropertyEvent (XS)
XPutBackEvent......... XPutBackEvent(XS)
XPutlmage................. XPutImage (XS)
XPutPixel XCreatelmage (XS)
XQueryBestCursor XRecolorCursor(XS)
XQueryBestSize XQueryBestSize (XS)
XQueryBestStipple. XQueryBestSize (XS)
XQueryBestTile. XQueryBestSize (XS)
XQueryColor. XQueryColor (XS)
XQueryColors............ XQueryColor (XS)
XQueryFont................ XLoadFont (XS)
XQueryKeymap

........ XChangeKeyboardControl(XS)
XQueryPointer. XQueryPointer (XS)

17

XQueryTextExtents XTextExtents (XS)

XQueryTextExtents16 XTextExtents (XS)
XQueryTree XQueryTree (XS)
XRaiseWindow......... XRaiseWindow (XS)
XReadBitmapFile XReadBitmapFile (XS)
XRebindKeySym XLookupKeysym (XS)
XRecolorCursor XRecolorCursor (XS)
XReconfigureWMWindow

................ XIconifyWindow (XS)
XRectangle XDrawRectangle (XS)
XRectInRegion XEmptyRegion (XS)
XRefreshKeyboardMapping

................ XLookupKeysym (XS)
XRemoveFromSaveSet

................. XChangeSaveSet (XS)
XRemoveHost XAddHost (XS)
XRemoveHosts XAddHost (XS)
XReparentEvent XReparentEvent (XS)
XReparentWindow

.............. XReparentWindow (XS)
XResetScreenSaver XSetScreenSaver (XS)
XResizeRequestEvent

............ XResizeRequestEvent (XS)
XResizeWindow ... XConfigureWindow (XS)
XResourceManagerString

......... XResourceManagerString (XS)
XRestackWindows. XRaiseWindow (XS)
XrmCombineDatabase

............. XrmMergeDatabases (XS)
XnnCombineFileDatabase

............. XrmMergeDatabases(XS)
XnnDestroyDatabase

............. XrmGetFileDatabase (XS)
XnnEnumerateDatabase

.......... XrmEnumerateDatabase (XS)
XrmGetDatabase. . . XrmGetFileDatabase (XS)
XnnGetFileDatabase

............. XrmGetFileDatabase (XS)

XnnGetResource XrmGetResource (XS)
XmmGetStringDatabase

............. XrmGetFileDatabase (XS)
Xrmlnitialize............. Xrmlnitialize (XS)
XnnLocaleOfDatabase

............. XrmGetFileDatabase (XS)
XrmmMergeDatabases

............. XrmMergeDatabases (XS)
XmOptionDescRec Xrmlnitialize (XS)
XrmOptionKind Xrmlnitialize (XS)
XrmParseCommand Xrmlnitialize (XS)
18

XrmPermStringToQuark
................ XrmUniqueQuark (XS)
XrmPutFileDatabase
............. XrmGetFileDatabase (XS)
XrmPutLineResource . . XrmPutResource (XS)

XrmPutResource. XrmPutResource (XS)
XrmPutStringResource

................. XrmPutResource (XS)
XmQGetResource XrmGetResource (XS)

XrmmQGetSearchList . . . XrmGetResource (XS)
XmQGetSearchResource

................. XrmGetResource (XS)
XrmQPutResource.. XrmPutResource (XS)
XrmQPutStringResource

................. XrmPutResource(XS)

XrmQuarkToString . . . XrmUniqueQuark(XS)
XrmSetDatabase . . . XrmGetFileDatabase (XS)
XmStringToBindingQuarkList

................ XrmUniqueQuark (XS)
XmmStringToQuark . . . XrmUniqueQuark (XS)
XmmStringToQuarkList

................ XrmUniqueQuark (XS)
XmmUniqueQuark XrmUniqueQuark (XS)
XmmValue Xrmlnitialize (XS)
XRotateBuffers XStoreBytes (XS)

XRotateWindowProperties
............ XGetWindowProperty (XS)

XSaveContext XSaveContext (XS)
XScreenNumberOfScreen

.............. BlackPixelOfScreen (XS)
XScreenResourceString

......... XResourceManagerString (XS)
XSegment XDrawLine (XS)
XSelectInput XSelectInput (XS)
XSelectionClearEvent

............ XSelectionClearEvent (XS)
XSelectionEvent XSelectionEvent (XS)
XSelectionRequestEvent

.......... XSelectionRequestEvent (XS)

XSendEvent XSendEvent (XS)
XSetAccessControl. XAddHost (XS)
XSetAfterFunction XSynchronize (XS)
XSetArcMode............ XSetArcMode (XS)
XSetBackground XSetState (XS)
XSetClassHint XAllocClassHint (XS)
XSetClipMask XSetClipOrigin (XS)
XSetClipOrigin......... XSetClipOrigin (XS)

XSetClipRectangles XSetClipOrigin (XS)
XSetCloseDownMode

............ XSetCloseDownMode (XS)
XSetCommand XSetCommand (XS)

X Window System Programmer’s Reference

XSetDashes XSetLineAttributes (XS)
XSetErrorHandler XSetErrorHandler (XS)
XSetFillRule. XSetFillStyle (XS)
XSetFillStyle XSetFillStyle (XS)
XSetFont XSetFont (XS)
XSetFontPath XSetFontPath (XS)
XSetForeground XSetState (XS)
XSetFunction................ XSetState (XS)
XSetGraphicsExposure ... XSetArcMode (XS)
XSetICFocus XSetICFocus (XS)
XSetIlconName XSetWMIconName (XS)
XSetIconSizes XAlloclconSize (XS)
XSetICValues XSetICValues (XS)
XSetInputFocus XSetInputFocus (XS)
XSetIOErrorHandler
................ XSetErrorHandler (XS)
XSetLineAttributes
............... XSetLineAttributes (XS)
XSetLocaleModifiers .. XSupportsLocale (XS)
XSetModifierMapping
....... XChangeKeyboardMapping (XS)
XSetPlanemask XSetState (XS)
XSetPointerMapping
............. XSetPointerMapping (XS)
XSetRegion XCreateRegion (XS)
XSetRGBColormaps
......... XAllocStandardColormap (XS)
XSetScreenSaver. XSetScreenSaver (XS)
XSetSelectionOwner
............. XSetSelectionOwner (XS)
XSetState XSetState (XS)
XSetStipple XSetTile (Xs)
XSetSubwindowMode ... XSetArcMode (XS)
. XSetTextProperty XSetTextProperty (XS)
XSetTile XSetTile (XS)
XSetTransientForHint
............ XSetTransientForHint (XS)
XSetTSOrigin XSetTile (XS)
XSetWindow Attributes
................. XCreateWindow (XS)

XSetWindowBackground

....... XChangeWindow Attributes (XS)
XSetWindowBackgroundPixmap

....... XChangeWindow A ttributes (XS)
XSetWindowBorder

....... XChangeWindow Attributes (XS)
XSetWindowBorderPixmap

....... XChangeWindowAttributes (XS)
XSetWindowBorderWidth

.............. XConfigureWindow (XS)

XSetWindowColormap
....... XChangeWindow Attributes (XS)
XSetWMClientMachine
........... XSetWMClientMachine(XS)
XSetWMColormapWindows
...... XSetWMColormapWindows (XS)

XSetWMHints XAllocWMHints (XS)
XSetWMIconName
.............. XSetWMIconName (XS)
XSetWMName.......... XSetWMName (XS)
XSetWMNormalHints
................. XAllocSizeHints (XS)

XSetWMProperties .. XSetWMProperties (XS)
XSetWMProtocols XSetWMProtocols (XS)
XSetWMSizeHints XAllocSizeHints (XS)

XShape XShape (Xext)
XShapeCombineMask XShape (Xext)
XShapeCombineRectangles ... XShape (Xext)
XShapeCombineRegion. XShape (Xext)
XShapeCombineShape XShape (Xext)
XShapeGetRectangles XShape (Xext)
XShapelnputSelected XShape (Xext)
XShapeOffsetShape XShape (Xext)
XShapeQueryExtension. XShape (Xext)
XShapeQueryExtents XShape (Xext)
XShapeQueryVersion........... XShape (Xext)
XShapeSelectlnput XShape (Xext)
XShmoooll XShm (Xext)
XShmAttach XShm (Xext)
XShmCreatelmage XShm (Xext)
XShmCreatePixmap XShm (Xext)
XShmDetach XShm (Xext)
XShmGetEventBase. XShm (Xext)
XShmGetlmage XShm (Xext)
XShmPixmapFormat XShm (Xext)
XShmPutlmage................ XShm (Xext)
XShmQueryExtension. XShm (Xext)
XShmQueryVersion............ XShm (Xext)
XShrinkRegion XIntersectRegion (XS)
XSizeHints............ XAllocSizeHints (XS)
XStandardColormap

......... XAllocStandardColormap (XS)
XStoreBuffer XStoreBytes (XS)
XStoreBytes XStoreBytes (XS)
XStoreColor.............. XStoreColors (XS)
XStoreColors XStoreColors (XS)
XStoreName XSetWMName (XS)
XStoreNamedColor XStoreColors (XS)

XStringListToTextProperty
........ XStringListToTextProperty (XS)
XStringToKeysym XStringToKeysym (XS)

19

XSubImage XCreatelmage (XS)

XSubtractRegion XIntersectRegion (XS)
XSupportsLocale XSupportsLocale (XS)
XSync........ooiiiiiiiiin XFlush (XS)
XSynchronize............ XSynchronize (XS)
XtAddCallback XtAddCallback (Xt)
XtAddCallbacks XtAddCallback (Xt)
XtAddEventHandler

............. XtAddEventHandler (Xt)
XtAddExposureToRegion
......... XtAddExposureToRegion (Xt)

XtAddGrab XtAddGrab (Xt)
XtAddRawEventHandler

............. XtAddEventHandler (Xt)
XtAllocateGC XtAllocateGC (Xt)
XtAppAddActions ... XtAppAddActions (Xt)
XtAppAddConverter

............. XtAppAddConverter (Xt)
XtAppAddInput XtAppAddInput (Xt)
XtAppAddTimeOut

.............. XtAppAddTimeOut (Xt)
XtAppAddWorkProc

............. XtAppAddWorkProc (Xt)
XtAppCreateShell XtAppCreateShell (Xt)
XtAppError XtAppError (Xt)
XtAppErrortMsg XtAppErrorMsg (Xt)
XtAppGetErrorDatabase

.......... XtAppGetErrorDatabase (Xt)
XtAppGetErrorDatabaseText

.......... XtAppGetErrorDatabase (Xt)
XtAppGetSelectionTimeout

....... XtAppGetSelectionTimeout (Xt)

XtApplnitialize......... XtApplnitialize (Xt)
XtAppMainLoop XtAppNextEvent (Xt)
XtAppNextEvent. XtAppNextEvent (Xt)
XtAppPeekEvent...... XtAppNextEvent (Xt)
XtAppPending........ XtAppNextEvent (Xt)
XtAppProcessEvent. . . . XtAppNextEvent (Xt)
XtAppSetErrorHandler XtAppError (Xt)
XtAppSetErrorMsgHandler
.................. XtAppErrorMsg (Xt)

XtAppSetFallbackResources

....... XtAppSetFallbackResources (Xt)
XtAppSetSelectionTimeout

....... XtAppGetSelectionTimeout (Xt)
XtAppSetWarningHandler

..................... XtAppError(Xt)
XtAppSetWarningMsgHandler

.................. XtAppErrorMsg (Xt)

XtAppWaming............. XtAppError (Xt)

XtAppWamingMsg XtAppErrorMsg (Xt)

20

XtAugmentTranslations

........... XtParseTranslationTable (Xt)
XtBuildEventMask . . . XtBuildEventMask (Xt)
XtCallAcceptFocus . . . XtCallAcceptFocus (Xt)

XtCallbackExclusive XtMenuPopup (Xt)
XtCallbackNone. XtMenuPopup (Xt)
XtCallbackNonexclusive
................... XtMenuPopup (Xt)
XtCallbackPopdown .. XtMenuPopdown (Xt)
XtCallCallbacks XtCallCallbacks (Xt)
XtCalloconnnn XtMalloc (Xt)
XtCheckSubclass XtClass (Xt)
XtClasscovvunnn. XtClass (Xt)
XtCloseDisplay XtDisplayInitialize (Xt)
XtConfigureWidget
.............. XtConfigureWidget (Xt)
XtConvert XtConvert (Xt)
XtConvertCase XtSetKeyTranslator (Xt)

XtCreateApplicationContext
....... XtCreateApplicationContext (Xt)
XtCreateManagedWidget

.................. XtCreateWidget (Xt)
XtCreatePopupShell

.............. XtCreatePopupShell (Xt)
XtCreateWidget XtCreateWidget (Xt)
XtCreateWindow XtCreateWindow (Xt)
XtDatabase.......... XtDisplayInitialize (Xt)

XtDestroyApplicationContext
....... XtCreateApplicationContext (Xt)

XtDestroyWidget XtCreateWidget (Xt)
XtDirectConvert............. XtConvert (Xt)
XtDisownSelection. XtOwnSelection (Xt)
XtDispatchEvent XtAppNextEvent (Xt)
XtDisplay XtDisplay (Xt)
XtDisplaylnitialize . . . XtDisplayInitialize (Xt)
XTextExtents XTextExtents (XS)
XTextExtents16 XTextExtents (XS)
XTextItem XDrawText(XS)
XTextltem16 XDrawText(XS)
XTextProperty

........ XStringListToTextProperty (XS)
XTextPropertyToStringList
........ XStringListToTextProperty (XS)

XTextWidth............... XTextWidth (XS)
XTextWidth16............. XTextWidth (XS)
XtFree XtMalloc (Xt)
XtGetActionList XtGetActionList (Xt)
XtGetApplicationResources

............... XtGetSubresources (Xt)
XtGetGCc.vven XtGetGC (Xt)

XtGetResourceList . .. XtGetResourceList (Xt)

X Window System Programmer’s Reference

XtGetSelectionValue

.............. XtGetSelectionValue (Xt)
XtGetSelectionValues

.............. XtGetSelectionValue (Xt)
XtGetSubresources. . . XtGetSubresources (Xt)

XtGetSubvalues XtSetValues (Xt)
XtGetValues............... XtSetValues (Xt)
XtHasCallbacks XtCallCallbacks (Xt)
XTimeCoord XSendEvent (XS)
XtInstallAccelerators

.......... XtParseAcceleratorTable (Xt)
XtInstallAllAccelerators
.......... XtParseAcceleratorTable (Xt)

XtlsComposite XtClass (Xt)
XtlIsManaged XtClass (Xt)
XtIsRealized XtRealizeWidget (Xt)
XtIsSensitive XtSetSensitive (Xt)
XtlsSubclass XtClass (Xt)
XtLanguageProc XtLanguageProc (Xt)
XtMakeGeometryRequest

......... XtMakeGeometryRequest (Xt)
XtMakeResizeRequest

......... XtMakeGeometryRequest (Xt)
XtMalloc XtMalloc (Xt)
XtManageChild XtManageChildren (Xt)
XtManageChildren. . . XtManageChildren (Xt)
XtMapWidget XtMapWidget (Xt)
XtMenuPopdown XtMenuPopdown (Xt)
XtMenuPopup XtMenuPopup (Xt)
XtMergeArgLists XtSetArg (Xt)
XtMoveWidget. XtConfigureWidget (Xt)
XtNameToWidget. XtNameToWidget (Xt)
XtNewccovvviviinnn XtMalloc (Xt)
XtNewString XtMalloc (Xt)
XtNumber XtOffset (Xt)
XtOffset XtOffset (Xt)
XtOpenDisplay XtDisplayInitialize (Xt)
XtOverrideTranslations

........... XtParseTranslationTable (Xt)
XtOwnSelection XtOwnSelection (Xt)
XtParent XtDisplay (Xt)
XtParseAcceleratorTable

.......... XtParseAcceleratorTable (Xt)

XtParseTranslationTable
........... XtParseTranslationTable (Xt)
XtPopdown XtMenuPopdown (Xt)
XtPopup XtMenuPopup (Xt)
XtQueryGeometry XtQueryGeometry (Xt)
XTranslateCoordinates
..... XTranslateCoordinates (XS)
XtRealizeWidget. XtRealizeWidget (Xt)

XtRealloc XtMalloc (Xt)
XtRegisterCaseConverter
............... XtSetKeyTranslator (Xt)

XtReleaseGC................. XtGetGC (Xt)
XtRemoveAllCallbacks

.................. XtAddCallback (Xt)
XtRemoveCallback. XtAddCallback (Xt)
XtRemoveCallbacks XtAddCallback (Xt)

XtRemoveEventHandler

............. XtAddEventHandler (Xt)
XtRemoveGrab............. XtAddGrab (Xt)
XtRemovelnput. XtAppAddInput (Xt)
XtRemoveRawEventHandler

............. XtAddEventHandler (Xt)

XtRemoveTimeOut

.............. XtAppAddTimeOut (Xt)
XtRemoveWorkProc

............. XtAppAddWorkProc (Xt)
XtResizeWidget XtConfigureWidget (Xt)
XtScreen XtDisplay (Xt)
XtScreenDatabase XtScreenDatabase (Xt)
XtSetArg..................... XtSetArg (Xt)
XtSetKeyboardFocus

............. XtSetKeyboardFocus (Xt)
XtSetKeyTranslator .. XtSetKeyTranslator (Xt)

XtSetMappedWhenManaged
................... XtMapWidget (Xt)
XtSetSensitive XtSetSensitive (Xt)
XtSetSubvalues XtSetValues (Xt)
XtSetValues XtSetValues (Xt)

XtStringConversionWaming

....... XtStringConversionWaming (Xt)
XtSuperClass XtClass (Xt)
XtToolkitInitialize

....... XtCreateApplicationContext (Xt)
XtToolkitInitialize . .. XtDisplaylInitialize (Xt)
XtTranslateCoords. . . . XtTranslateCoords (Xt)
XtTranslateKeycode

............... XtSetKeyTranslator(Xt)
XtUninstallTranslations

........... XtParseTranslationTable (Xt)
XtUnmanageChild . . . XtManageChildren (Xt)
XtUnmanageChildren

............... XtManageChildren (Xt)
XtUnmapWidget XtMapWidget (Xt)
XtUnrealizeWidget. XtRealizeWidget (Xt)
XtWidgetToApplicationContext

....... XtCreateApplicationContext (Xt)
XtWidgetToWindow

................ XtNameToWidget (Xt)
XtWindow XtDisplay (Xt)

21

XUndefineCursor. XDefineCursor (XS)

XUngrabButton XGrabButton (XS)
XUngrabKey................ XGrabKey(Xs)
XUngrabKeyboard XGrabKeyboard (XS)
XUngrabPointer. XGrabPointer (XS)
XUngrabServer XGrabServer(XS)
XUninstallColormap

................ XlInstallColormap (XS)
XUnionRectWithRegion

................ XlIntersectRegion (XS)

XUnionRegion XIntersectRegion (XS)
XUniqueContext......... XSaveContext (XS)
XUnloadFont............... XLoadFont (XS)
XUnmapEvent XUnmapEvent(XS)
XUnmapSubwindows

................ XUnmapWindow (XS)
XUnmapWindow XUnmapWindow (XS)
XUnsetICFocus XSetICFocus (XS)
XVaCreateNestedList

............. XVaCreateNestedList (XS)
XVisibilityEvent
........... XVisibilityNotif yEvent(XS)
XVisibilityNotify Event
........... XVisibilityNotifyEvent (XS)
XVisuallDFromVisual . . . XGetVisuallnfo (XS)

XVisuallnfo............ XGetVisuallnfo (XS)
XWarpPointer XWarpPointer (XS)
XwcDrawImageString

............ XmbDrawImageString (XS)
XwcDrawString XmbDrawString (XS)
XwcDrawText XmbDrawText(XS)
XwcFreeStringList

....... XmbTextListToTextProperty (XS)
XwcLookupString ... XmbLookupString (XS)

XwcResetIC XmbResetIC (XS)
XwcTextEscapement

............. XmbTextEscapement (XS)
XwcTextExtents. XmbTextExtents (XS)

XwcTextListToTextProperty

....... XmbTextListToTextProperty (XS)
XwcTextPerCharExtents

.......... XmbTextPerCharExtents (XS)
XwcTextPropertyToTextList

....... XmbTextListToTextProperty (XS)

XWindow Attributes
.......... XGetWindow Attributes (XS)

XWindowChanges

.............. XConfigureWindow (XS)
XWindowEvent XNextEvent (XS)
XWithdrawWindow . .. XIconifyWindow (XS)
XWMGeometry XParseGeometry (XS)
22

XWMHints XAllocWMHints (XS)
XWriteBitmapFile. XReadBitmapFile (XS)
XXorRegion XIntersectRegion (XS)

X Window System Programmer’s Reference

Xlib - C Language X Interface (XS)

XHb - C Language X Interface
MIT X Consortium Standard
X Version 11, Release 5

First Revision - August, 1991

James Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology

with contributions from:

Chuck Adams, Tektronix, Inc.

Vania Joloboff, Open Software Foundation

Bill McMahon, Hewlett-Packard Company

Ron Newman, Massachusetts Institute of Technology
Al Tabayoyon, Tektronix, Inc.

Glenn Widener, Tektronix, Inc.

23

Xlib - C Language X Interface (XS)

24

The X Window System is a trademark of MIT.
TekHVC is a trademark of Tektronix, Inc.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts, and Digital Equipment Cor-
poration, Maynard, Massachusetts.

Portions Copyright © 1990, 1991 by Tektronix, Inc.

Permission to use, copy, modify and distribute this documentation for any
purpose and without fee is hereby granted, provided that the above copyright
notice appears in all copies and that both that copyright notice and this per-
mission notice appear in all copies, and that the names of MIT, Digital, and
Tektronix not be used in in advertising or publicity pertaining to this docu-
mentation without specific, written prior permission. MIT, Digital, and Tek-
tronix makes no representations about the suitability of this documentation
for any purpose. It is provided “as is” without express or implied warranty.

Xlib - C Language X Interface

Intro

Intro(XS)

introduction to X Lib library functions and routines

Description

The X Lib library is a collection of routines that implement the X Protocol.

The following table lists each of the functions, routines and macros and the
manual page on which it is discussed. Functions preceded by an asterisk (*)

are new to X11 Release 5.

Function Manual Page

AllPlanes AllPlanes(XS)
BitmapBitOrder ImageByteOrder(XS)
BitmapPad ImageByteOrder(XS)
BitmapUnit ImageByteOrder(XS)
BlackPixel AllPlanes(XS)
BlackPixelOfScreen BlackPixelOfScreen(XS)
ButtonPress XButtonEvent(XS)
ButtonRelease XButtonEvent(XS)
CellsOfScreen BlackPixelOfScreen(XS)

* ClientWhitePointOf CCC DisplayOfCCC(XS)
ConnectionNumber AllPlanes(XS)
DefaultColormap AllPlanes(XS)
DefaultColormapOfScreen BlackPixelOfScreen(XS)
DefaultDepth AllPlanes(XS)
DefaultDepthOfScreen BlackPixelOfScreen(XS)
DefaultGC AlIPlanes(XS)
DefaultGCOfScreen BlackPixelOfScreen(XS)
DefaultRootWindow AlIPlanes(XS)
DefaultScreen AllPlanes(XS)
DefaultScreenOfDisplay AllPlanes(XS)
DefaultVisual AllPlanes(XS)
DefaultVisualOfScreen BlackPixelOfScreen(XS)
DisplayCells AllPlanes(XS)
DisplayHeight ImageByteOrder(XS)
DisplayHeightMM ImageByteOrder(XS)

* DisplayOfCCC DisplayOfCCC(XS)
DisplayOfScreen BlackPixelOfScreen(XS)
DisplayPlanes AllPlanes(XS)
DisplayString AllPlanes(XS)
DisplayWidth ImageByteOrder(XS)
DisplayWidthMM ImageByteOrder(XS)
DoesBackingStore BlackPixelOfScreen(XS)

(Continued on next page)

X Version 11 (Release 5) 6 January 1993

25

Intro(XS)

(Continued)
Function Manual Page
DoesSaveUnders BlackPixelOfScreen(XS)
EventMaskOfScreen BlackPixelOfScreen(XS)
HeightMMOfScreen BlackPixelOfScreen(XS)
HeightOfScreen BlackPixelOfScreen(XS)
ImageByteOrder ImageByteOrder(XS)
IsCursorKey IsCursorKey(XS)
IsFunctionKey IsCursorKey(XS)
IsKeypadKey IsCursorKey(XS)
IsMiscFunctionKey IsCursorKey(XS)
IsModiferKey IsCursorKey(XS)
IsPFKey IsCursorKey(XS)
KeyPress XButtonEvent(XS) -
KeyRelease XButtonEvent(XS)
LastKnownRequestProcessed AllPlanes(XS)

* Indir Indir(XS)

*

MaxCmapsOfScreen
MinCmapsOfScreen
mkdirhier
MotionNotify
NextRequest
PlanesOfScreen
ProtocolRevision
ProtocolVersion
QLength
RootWindow
RootWindowOfScreen
ScreenCount
ScreenNumberOfCCC
ScreenOfDisplay
ScreenWhitePointOfCCC
ServerVendor
VendorRelease
VisualOfCCC
WhitePixel
WhitePixelOfScreen
WidthMMOfScreen
WidthOfScreen
XActivateScreenSaver
XAddHost
XAddHosts
XAddPixel
XAddToSaveSet
XAllocClassHint
XAllocColor

(Continued on next page)

26

BlackPixelOfScreen(XS)
BlackPixelOfScreen(XS)
mkdirhier(XS)
XButtonEvent(XS)
AllPlanes(XS)
BlackPixelOfScreen(XS)
AllPlanes(XS)
AllPlanes(XS)
AllPlanes(XS)
AllPlanes(XS)
BlackPixelOfScreen(XS)
AllPlanes(XS)
DisplayOfCCC(XS)
AllPlanes(XS)
DisplayOfCCC(XS)
AllPlanes(XS)
AllPlanes(XS)
DisplayOfCCC(XS)
AllPlanes(XS)
BlackPixelOfScreen(XS)
BlackPixelOfScreen(XS)
BlackPixelOfScreen(XS)
XSetScreenSaver(XS)
XAddHost(XS)
XAddHost(XS)
XCreatelmage(XS)
XChangeSaveSet(XS)
XAllocClassHint(XS)
XAllocColor(XS)

X Version 11 (Release 5) 6 January 1993

Intro(XS)

(Continued)
Function Manual Page
XAllocColorCells XAllocColor(XS)
XAllocColorPlanes XAllocColor(XS)
XAlloclconSize XAlloclconSize(XS)
XAllocNamedColor XAllocColor(XS)
XAllocSizeHints XAllocSizeHints(XS)
XAllocStandardColormap XAllocStandardColormap(XS)
XAllocWMHints XAllocWMHints(XS)
XAllowEvents XAllowEvents(XS)
XAnyEvent XAnyEvent(XS)
XArc XDrawArc(XS)
XAutoRepeatOff XChangeKeyboardControl(XS)
XAutoRepeatOn XChangeKeyboardControl(XS)
* XBaseFontNameListOfFontSet XFontsOfFontSet(XS)
XBell XChangeKeyboardControl(XS)
XButtonEvent XButtonEvent(XS)
XChangeActivePointerGrab XGrabPointer(XS)
XChangeGC XCreateGC(XS)

XChangeKeyboardControl
XChangeKeyboardMapping
XChangePointerControl
XChangeProperty
XChangeSaveSet
XChangeWindowAttributes
XChar2b
XCharStruct
XCheckIfEvent
XCheckMaskEvent
XCheckTypedEvent
XCheckTypedWindowEvent
XCheckWindowEvent
XCirculateEvent
XCirculateRequestEvent
XCirculateSubwindows
XCirculateSubwindowsDown
XCirculateSubwindowsUp
XClassHint
XClearArea
XClearWindow
XClientMessageEvent
XClipBox
XCloseDisplay

* XCloseIM

* XcmsAllocColor

* XcmsAllocNamedColor

(Continued on next page)

X Version 11 (Release 5) 6 January 1993

XChangeKeyboardControl(XS)
XChangeKeyboardMapping(XS)
XChangePointerControl(XS)
XGetWindowProperty(XS)
XChangeSaveSet(XS)
XChangeWindowAttributes(XS)
XLoadFont(XS)
XLoadFont(XS)

XIfEvent(XS)

XNextEvent(XS)
XNextEvent(XS)
XNextEvent(XS)
XNextEvent(XS)
XCirculateEvent(XS)
XCirculateRequestEvent(XS)
XRaiseWindow(XS)
XRaiseWindow(XS)
XRaiseWindow/(XS)
XAllocClassHint(XS)
XClearArea(XS)
XClearArea(XS)
XClientMessageEvent(XS)
XPolygonRegion(XS)
XOpenDisplay(XS)
XOpenIM(XS)
XcmsAllocColor(XS)
XcmsAllocColor(XS)

27

Intro(XS)

28

(Continued)
Function Manual Page

* XemsCCCOfColormap XemsCCCOfColormap(XS)

* XcemsCIELab XcmsColor(XS)

* XcemsCIELabQueryMaxC XcmsCIELabQueryMaxC(XS)

* XemsCIELabQueryMaxL XcmsCIELabQueryMaxC(XS)

* XemsCIELabQueryMaxLC XcmsCIELabQueryMaxC(XS)

* XcmsCIELabQueryMinL XcmsCIELabQueryMaxC(XS)

* XcmsCIELuv XcmsColor(XS)

* XemsCIELuvQueryMaxC XcmsCIELuvQueryMaxC(XS)

* XemsCIELuvQueryMaxL XcemsCIELuvQueryMaxC(XS)

* XemsCIELuvQueryMaxLC XcmsCIELuvQueryMaxC(XS)

* XemsCIELuvQueryMinL XcmsCIELuvQueryMaxC(XS)

* XemsCIEuvY XcmsColor(XS)

* XemsCIExyY XcmsColor(XS)

* XemsCIEXYZ XcmsColor(XS)

* XcmsColor XcmsColor(XS)

* XcmsConvertColors XcmsConvertColors(XS)

* XcmsCreateCCC XcmsCreateCCC(XS)

* XcmsDefaultCCC XcmsDefaultCCC(XS)

* XcmsFreeCCC XcmsCreateCCC(XS)

* XcmsLookupColor XcmsQueryColor(XS)

* XcmsPad XcmsColor(XS)

* XcemsQueryBlack XcmsQueryBlack(XS)

* XcmsQueryBlue XcmsQueryBlack(XS)

* XemsQueryColor XcmsQueryColor(XS)

* XcmsQueryColors XcmsQueryColor(XS)

* XemsQueryGreen XcmsQueryBlack(XS)

* XcmsQueryRed XcmsQueryBlack(XS)

* XemsQueryWhite XcmsQueryBlack(XS)

* XcmsRGB XcmsColor(XS)

* XcmsRGBi XcmsColor(XS)

* XcemsSetCCCOfColormap XcmsCCCOfColormap(XS)

* XcmsSetWhiteAdjustProc XcmsSetWhitePoint(XS)

* XcmsSetWhitePoint XcmsSetWhitePoint(XS)

* XcmsStoreColor XcmsStoreColor(XS)

* XcmsStoreColors XcmsStoreColor(XS)

* XemsTekHVC XcmsColor(XS)

* XemsTekHVCQueryMaxC XcmsTekHVCQueryMaxC(XS)

* XemsTekHVCQueryMaxV XcmsTekHVCQueryMaxC(XS)

* XemsTekHVCQueryMaxVC XcmsTekHVCQueryMaxC(XS)

* XcmsTekHVCQueryMaxVSamples XemsTekHVCQueryMaxC(XS)

* XemsTekHVCQueryMinV XcmsTekHVCQueryMaxC(XS)
XColor XCreateColormap(XS)
XColormapEvent XColormapEvent(XS)
XConfigureEvent XConfigureEvent(XS)

(Continued on next page)

X Version 11 (Release 5) 6 January 1993

Intro(XS)

(Continued)

Function Manual Page
XConfigureRequestEvent XConfigureRequestEvent(XS)
XConfigureWindow XConfigureWindow(XS)

* XContextDependentDrawing XFontsOfFontSet(XS)
XConvertSelection XSetSelectionOwner(XS)
XCopyArea XCopyArea(XS)
XCopyColormapAndFree XCreateColormap(XS)
XCopyGC XCreateGC(XS)
XCopyPlane XCopyArea(XS)
XCreateBitmapFromData XReadBitmapFile(XS)
XCreateColormap XCreateColormap(XS)
XCreateFontCursor XCreateFontCursor(XS)

* XCreateFontSet XCreateFontSet(XS)
XCreateGC XCreateGC(XS)
XCreateGlyphCursor XCreateFontCursor(XS)

* XCreatelC XCreatelC(XS)
XCreateImage XCreatelmage(XS)
XCreatePixmap XCreatePixmap(XS)
XCreatePixmapCursor XCreateFontCursor(XS)
XCreatePixmapFromBitmapData XReadBitmapFile(XS)
XCreateRegion XCreateRegion(XS)
XCreateSimpleWindow XCreateWindow(XS)
XCreateWindow XCreateWindow(XS)
XCreateWindowEvent XCreateWindowEvent(XS)
XCrossingEvent XCrossingEvent(XS)

* XDefaultString XmbTextListToTextProperty(XS)
XDefineCursor XDefineCursor(XS)
XDeleteContext XSaveContext(XS)
XDeleteModifiermapEntry XChangeKeyboardMapping(XS)
XDeleteProperty XGetWindowProperty(XS)

* XDestroyIC XCreateIC(XS)
XDestroylmage XCreateImage(XS)
XDestroyRegion XCreateRegion(XS)
XDestroySubwindows XDestroyWindow(XS)
XDestroyWindow XDestroyWindow(XS)
XDestroyWindowEvent XDestroyWindowEvent(XS)
XDisableAccessControl XAddHost(XS)
XDisplayKeycodes XChangeKeyboardMapping(XS)
XDisplayMotionBufferSize XSendEvent(XS)
XDisplayName XSetErrorHandler(XS)

* XDisplayOfIM XOpenIM(XS)

XDrawArc XDrawArc(XS)
XDrawArcs XDrawArc(XS)
XDrawlmageString XDrawImageString(XS)
XDrawImageString16 XDrawImageString(XS)

(Continued on next page)

X Version 11 (Release 5) 6 January 1993

29

Intro(XS)

30

(Continued on next page)

(Continued)
Function Manual Page
XDrawLine XDrawLine(XS)
XDrawLines XDrawLine(XS)
XDrawPoint XDrawPoint(XS)
XDrawPoints XDrawPoint(XS)
XDrawRectangle XDrawRectangle(XS)
XDrawRectangles XDrawRectangle(XS)
XDrawSegments XDrawLine(XS)
XDrawString XDrawString(XS)
XDrawString16 XDrawString(XS)
XDrawText XDrawText(XS)
XDrawText16 XDrawText(XS)
XEmptyRegion XEmptyRegion(XS)
XEnableAccessControl XAddHost(XS)
XEqualRegion XEmptyRegion(XS)
XErrorEvent XErrorEvent(XS)
XEvent XAnyEvent(XS)
XEventsQueued XFlush(XS)
XExposeEvent XExposeEvent(XS)
XExtentsOfFontSet XExtentsOfFontSet(XS)
XFetchBuffer XStoreBytes(XS)
XFetchBytes XStoreBytes(XS)
XFetchName XSetWMName(XS)
XFillArc XFillRectangle(XS)
XFillArcs XFillRectangle(XS)
XFillPolygon XFillRectangle(XS)
XFillRectangle XFillRectangle(XS)
XFillRectangles XFillRectangle(XS)
XFilterEvent XFilterEvent(XS)
XFindContext XSaveContext(XS)
XFlush XFlush(XS)
XFocusChangeEvent XFocusChangeEvent(XS)
XFontProp XLoadFont(XS)

* XFontSetExtents XFontSetExtents(XS)

* XFontsOfFontSet XFontsOfFontSet(XS)
XFontStruct XLoadFont(XS)
XForceScreenSaver XSetScreenSaver(XS)
XFree XFree(XS)
XFreeColormap XCreateColormap(XS)
XFreeColors XAllocColor(XS)
XFreeCursor XRecolorCursor(XS)
XFreeFont XLoadFont(XS)
XFreeFontInfo XListFonts(XS)
XFreeFontNames XListFonts(XS)
XFreeFontPath XSetFontPath(XS)

X Version 11 (Release 5) 6 January 1993

Intro(XS)

(Continued)

Function Manual Page

* XFreeFontSet XCreateFontSet(XS)
XFreeGC XCreateGC(XS)
XFreeModifierMap XChangeKeyboardMapping(XS)
XFreePixmap XCreatePixmap(XS)
XFreeStringList XStringListToTextProperty(XS)
XGContextFromGC XCreateGC(XS)
XGCValues XCreateGC(XS)
XGetAtomName XInternAtom(XS)
XGetClassHint XAllocClassHint(XS)
XGetCommand XSetCommand(XS)
XGetErrorDatabaseText XSetErrorHandler(XS)
XGetErrorText XSetErrorHandler(XS)
XGetFontPath XSetFontPath(XS)
XGetFontProperty XLoadFont(XS)
XGetGCValues XCreateGC(XS)
XGetGeometry XGetWindow Attributes(XS)
XGetlconName XSetWMIconName(XS)
XGetlconSizes XAlloclconSize(XS)

* XGetICValues XSetICValues(XS)
XGetImage XPutImage(XS)

* XGetIMValues XOpenIM(XS)
XGetInputFocus XSetInputFocus(XS)
XGetKeyboardControl XChangeKeyboardControl(XS)
XGetKeyboardMapping XChangeKeyboardMapping(XS)
XGetModifierMapping XChangeKeyboardMapping(XS)
XGetMotionEvents XSendEvent(XS)

XGetPixel XCreatelmage(XS)
XGetPointerControl XChangePointerControl(XS)
XGetPointerMapping XSetPointerMapping(XS)
XGetRGBColormaps XAllocStandardColormap(XS)
XGetScreenSaver XSetScreenSaver(XS)
XGetSelectionOwner XSetSelectionOwner(XS)
XGetSublmage XPutImage(XS)
XGetTextProperty XSetTextProperty(XS)
XGetTransientForHint XSetTransientForHint(XS)
XGetVisuallnfo XGetVisualInfo(XS)
XGetWindow Attributes XGetWindowAttributes(XS)
XGetWindowProperty XGetWindowProperty(XS)
XGetWMClientMachine XSetWMClientMachine(XS)
XGetWMColormapWindows XSetWMColormapWindows(XS)
XGetWMHints XAllocWMHints(XS)
XGetWMIconName XSetWMIconName(XS)
XGetWMName XSetWMName(XS)
XGetWMNormalHints XAllocSizeHints(XS)

(Continued on next page)

X Version 11 (Release 5) 6 January 1993 31

(Continued)

(Continued on next page)

Function Manual Page
XGetWMProtocols XSetWMProtocols(XS)
XGetWMSizeHints XAllocSizeHints(XS)
XGrabButton XGrabButton(XS)
XGrabKey XGrabKey(XS)
XGrabKeyboard XGrabKeyboard(XS)
XGrabPointer XGrabPointer(XS)
XGrabServer XGrabServer(XS)
XGraphicsExposeEvent XGraphicsExposeEvent(XS)
XGravityEvent XGravityEvent(XS)
XHostAddress XAddHost(XS)
XlconifyWindow XlconifyWindow(XS)
XlIconSize XAlloclconSize(XS)
XIfEvent XIfEvent(XS)

XIMOSIC XCreatelC(XS)
XInsertModifiermapEntry XChangeKeyboardMapping(XS)
XInstallColormap XInstallColormap(XS)
XInternAtom XIntemAtom(XS)
XIntersectRegion XIntersectRegion(XS)
XKeyboardControl XChangeKeyboardControl(XS)
XKeycodeToKeysym XStringToKeysym(XS)
XKeyEvent XButtonEvent(XS)
XKeymapEvent XKeymapEvent(XS)
XKeysymToKeycode XStringToKeysym(XS)
XKeysymTIoString XStringToKeysym(XS)
XKillClient XSetCloseDownMode(XS)
XListDepths AllPlanes(XS)

XListFonts XListFonts(XS)
XListFontsWithInfo XListFonts(XS)

XListHosts XAddHost(XS)
XListInstalledColormaps XInstallColormap(XS)
XListPixmapFormats ImageByteOrder(XS)
XListProperties XGetWindowProperty(XS)
XLoadFont XLoadFont(XS)
XLoadQueryFont XLoadFont(XS)

* XLocaleOfFontSet XFontsOfFontSet(XS)

* XLocaleOfIM XOpenIM(XS)
XLookupColor XQueryColor(XS)
XLookupKeysym XLookupKeysym(XS)
XLookupString XLookupKeysym(XS)
XLowerWindow XRaiseWindow(XS)
XMapEvent XMapEvent(XS)
XMappingEvent XMapEvent(XS)
XMapRaised XMapWindow(XS)
XMapRequestEvent XMapRequestEvent(XS)

X Version 11 (Release 5) 6 January 1993

Intro(XS)

(Continued)
Function Manual Page
XMapSubwindows XMapWindow(XS)
XMapWindow XMapWindow(XS)
XMaskEvent XNextEvent(XS)
XMatchVisuallnfo XGetVisualInfo(XS)

* XMaxRequestSize AllPlanes(XS)

* XmbDrawlmageString XmbDrawImageString(XS)

* XmbDrawString XmbDrawString(XS)

* XmbDrawText XmbDrawText(XS)

* XmbLookupString XmbLookupString(XS)

* XmbResetIC XmbResetIC(XS)

* XmbSetWMProperties XSetWMProperties(XS)

* XmbTextEscapement XmbTextEscapement(XS)

* XmbTextExtents XmbTextExtents(XS)

*

XmbTextListToTextProperty
XmbTextPerCharExtents
XmbTextPropertyToTextList
xrmkanf

XModifierKeymap
XMotionEvent
XMoveResizeWindow
XMoveWindow
XNewModifiermap
XNextEvent
XNoExposeEvent
XNoOp
XOffsetRegion
XOpenDisplay
XOpenIM
XParseColor
XParseGeometry
XPeekEvent
XPeekIfEvent
XPending
XPixmapFormatValues
XPoint
XPointInRegion
XPolygonRegion
XPropertyEvent
XPutBackEvent
XPutlmage
XPutPixel
XQueryBestCursor
XQueryBestSize
XQueryBestStipple

(Continued on next page)

X Version 11 (Release 5) 6 January 1993

XmbTextListToTextProperty(XS)

XmbTextPerCharExtents(XS)

XmbTextListToTextProperty(XS)

xmkmf(XS)

XChangeKeyboardMapping(XS)

XButtonEvent(XS)
XConfigureWindow(XS)
XConfigureWindow(XS)

XChangeKeyboardMapping(XS)

XNextEvent(XS)
XGraphicsExposeEvent(XS)
XNoOp(XS)
XIntersectRegion(XS)
XOpenDisplay(XS)
XOpenIM(XS)
XQueryColor(XS)
XParseGeometry(XS)
XNextEvent(XS)
XIfEvent(XS)
XFlush(XS)
ImageByteOrder(XS)
XDrawPoint(XS)
XEmptyRegion(XS)
XPolygonRegion(XS)
XPropertyEvent(XS)
XPutBackEvent(XS)
XPutImage(XS)
XCreateImage(XS)
XRecolorCursor(XS)
XQueryBestSize(XS)
XQueryBestSize(XS)

33

Intro(XS)

34

(Continued)

Function Manual Page
XQueryBestTile XQueryBestSize(XS)
XQueryColor XQueryColor(XS)
XQueryColors XQueryColor(XS)
XQueryFont XLoadFont(XS)
XQueryKeymap XChangeKeyboardControl(XS)
XQueryPointer XQueryPointer(XS)
XQueryTextExtents XTextExtents(XS)
XQueryTextExtents16 XTextExtents(XS)
XQueryTree XQueryTree(XS)
XRaiseWindow XRaiseWindow(XS)
XReadBitmapFile XReadBitmapFile(XS)
XRebindKeySym XLookupKeysym(XS)
XRecolorCursor XRecolorCursor(XS)
XReconfigureWMWindow XlconifyWindow(XS)
XRectangle XDrawRectangle(XS)
XRectInRegion XEmptyRegion(XS)
XRefreshKeyboardMapping XLookupKeysym(XS)
XRemoveFromSaveSet XChangeSaveSet(XS)
XRemoveHost XAddHost(XS)
XRemoveHosts XAddHost(XS)
XReparentEvent XReparentEvent(XS)
XReparentWindow XReparentWindow(XS)
XResetScreenSaver XSetScreenSaver(XS)
XResizeRequestEvent XResizeRequestEvent(XS)
XResizeWindow XConfigureWindow(XS)
XResourceManagerString XResourceManagerString(XS)
XRestackWindows XRaiseWindow(XS)

* XrmCombineDatabase XrmMergeDatabases(XS)

* XrmCombineFileDatabase XrmMergeDatabases(XS)
XrmDestroyDatabase XrmGetFileDatabase(XS)

* XrmEnumerateDatabase XrmEnumerateDatabase(XS)

* XrmGetDatabase XrmGetFileDatabase(XS)
XrmGetFileDatabase XrmGetFileDatabase(XS)
XrmGetResource XrmGetResource(XS)
XrmGetStringDatabase XrmGetFileDatabase(XS)
XrmiInitialize XrmlInitialize(XS)

* XrmLocaleOfDatabase XrmGetFileDatabase(XS)
XrmMergeDatabases XrmMergeDatabases(XS)
XrmOptionDescRec XrmInitialize(XS)
XrmOptionKind Xrminitialize(XS)
XrmParseCommand Xrmlnitialize(XS)

* XrmPermStringToQuark XrmUniqueQuark(XS)
XrmPutFileDatabase XrmGetFileDatabase(XS)
XrmPutLineResource XrmPutResource(XS)

(Continued on next page)

X Version 11 (Release 5) 6 January 1993

Intro(XS)

(Continued)

Function Manual Page
XrmPutResource XrmPutResource(XS)
XrmPutStringResource XrmPutResource(XS)
XrmQGetResource XrmGetResource(XS)
XrmQGetSearchList XrmGetResource(XS)
XrmQGetSearchResource XrmGetResource(XS)
XrmQPutResource XrmPutResource(XS)
XrmQPutStringResource XrmPutResource(XS)
XrmQuarkToString XrmUniqueQuark(XS)

* XrmSetDatabase XrmGetFileDatabase(XS)
XrmStringToBindingQuarkList XrmUniqueQuark(XS)
XrmStringToQuark XrmUniqueQuark(XS)
XrmStringToQuarkList XrmUniqueQuark(XS)
XrmUniqueQuark XrmUniqueQuark(XS)
XrmValue Xrmlnitialize(XS)
XRotateBuffers XStoreBytes(XS)
XRotateWindowProperties XGetWindowProperty(XS)
XSaveContext XSaveContext(XS)
XScreenNumberOfScreen BlackPixelOfScreen(XS)
XScreenResourceString XResourceManagerString(XS)
XSegment XDrawLine(XS)
XSelectInput XSelectInput(XS)
XSelectionClearEvent XSelectionClearEvent(XS)
XSelectionEvent XSelectionEvent(XS)
XSelectionRequestEvent XSelectionRequestEvent(XS)
XSendEvent XSendEvent(XS)
XSetAccessControl XAddHost(XS)
XSetAfterFunction XSynchronize(XS)
XSetArcMode XSetArcMode(XS)
XSetBackground XSetState(XS)
XSetClassHint XAllocClassHint(XS)
XSetClipMask XSetClipOrigin(XS)
XSetClipOrigin XSetClipOrigin(XS)
XSetClipRectangles XSetClipOrigin(XS)
XSetCloseDownMode XSetCloseDownMode(XS)
XSetCommand XSetCommand(XS)
XSetDashes XSetLineAttributes(XS)
XSetErrorHandler XSetErrorHandler(XS)
XSetFillRule XSetFillStyle(XS)
XSetFillStyle XSetFillStyle(XS)
XSetFont XSetFont(XS)
XSetFontPath XSetFontPath(XS)
XSetForeground XSetState(XS)
XSetFunction XSetState(XS)
XSetGraphicsExposure XSetArcMode(XS)

(Continued on next page)

X Version 11 (Release 5) 6 January 1993 35

Intro(XS)

36

XSetWindowBorderPixmap
XSetWindowBorderWidth
XSetWindowColormap
XSetWindowColormap
XSetWMClientMachine
XSetWMColormapWindows
XSetWMHints
XSetWMIconName
XSetWMName
XSetWMNormalHints
XSetWMProperties
XSetWMProtocols
XSetWMSizeHints
XShrinkRegion

XSizeHints
XStandardColormap
XStoreBuffer

XStoreBytes

(Continued on next page)

(Continued)

Function Manual Page

* XSetICFocus XSetICFocus(XS)
XSetlconName XSetWMIconName(XS)
XSetIconSizes XAlloclconSize(XS)

* XSetICValues XSetICValues(XS)
XSetInputFocus XSetInputFocus(XS)
XSetlOErrorHandler XSetErrorHandler(XS)
XSetLineAttributes XSetLineAttributes(XS)

* XSetLocaleModifiers XSupportsLocale(XS)
XSetModifierMapping XChangeKeyboardMapping(XS)
XSetPlanemask XSetState(XS)
XSetPointerMapping XSetPointerMapping(XS)
XSetRegion XCreateRegion(XS)
XSetRGBColormaps XAllocStandardColormap(XS)
XSetScreenSaver XSetScreenSaver(XS)
XSetSelectionOwner XSetSelectionOwner(XS)
XSetState XSetState(XS)

XSetStipple XSetTile(XS)
XSetSubwindowMode XSetArcMode(XS)
XSetTextProperty XSetTextProperty(XS)

XSetTile XSetTile(XS)
XSetTransientForHint XSetTransientForHint(XS)
XSetTSOrigin XSetTile(XS)
XSetWindowAttributes XCreateWindow(XS)
XSetWindowBackground XChangeWindowAttributes(XS)
XSetWindowBackgroundPixmap XChangeWindow Attributes(XS)
XSetWindowBorder XChangeWindowAttributes(XS)

XChangeWindow Attributes(XS)
XConfigureWindow(XS)
XChangeWindowAttributes(XS)
XCreateColormap(XS)
XSetWMClientMachine(XS)
XSetWMColormapWindows(XS)
XAllocWMHints(XS)
XSetWMIconName(XS)
XSetWMName(XS)
XAllocSizeHints(XS)
XSetWMProperties(XS)
XSetWMProtocols(XS)
XAllocSizeHints(XS)
XIntersectRegion(XS)
XAllocSizeHints(XS)
XAllocStandardColormap(XS)
XStoreBytes(XS)
XStoreBytes(XS)

X Version 11 (Release 5) 6 January 1993

(Continued)

Intro(XS)

Function Manual Page

* XStoreColor XStoreColors(XS)
XStoreColors XStoreColors(XS)
XStoreName XSetWMName(XS)
XStoreNamedColor XStoreColors(XS)
XStringListToTextProperty XStringListToTextProperty(XS)
XStringToKeysym XStringToKeysym(XS)
XSubImage XCreatelmage(XS)
XSubtractRegion XIntersectRegion(XS)

* XSupportsLocale XSupportsLocale(XS)
XSync XFlush(XS)
XSynchronize XSynchronize(XS)
XTextExtents XTextExtents(XS)
XTextExtents16 XTextExtents(XS)
XTextItem XDrawText(XS)
XTextItem16 XDrawText(XS)
XTextProperty XStringListToTextProperty(XS)

*
*

»

XTextPropertyToStringList
XTextWidth
XTextWidth16
XTimeCoord
XTranslateCoordinates
XUndefineCursor
XUngrabButton
XUngrabKey
XUngrabKeyboard
XUngrabPointer
XUngrabServer
XUninstallColormap
XUnionRectWithRegion
XUnionRegion
XUniqueContext
XUnloadFont
XUnmapEvent
XUnmapSubwindows
XUnmapWindow
XUnsetICFocus
XVaCreateNestedList
XVisibilityNotifyEvent
XVisuallDFromVisual
XVisuallnfo
XWarpPointer
XwcDrawlmageString

* XwcDrawString

*

XwcDrawText

(Continued on next page)

X Version 11 (Release 5) 6 January 1993

XStringListToTextProperty(XS)

XTextWidth(XS)
XTextWidth(XS)
XSendEvent(XS)
XTranslateCoordinates(XS)
XDefineCursor(XS)
XGrabButton(XS)
XGrabKey(XS)
XGrabKeyboard(XS)
XGrabPointer(XS)
XGrabServer(XS)
XInstallColormap(XS)
XIntersectRegion(XS)
XIntersectRegion(XS)
XSaveContext(XS)
XLoadFont(XS)
XUnmapEvent(XS)
XUnmapWindow(XS)
XUnmapWindow(XS)
XSetICFocus(XS)
XVaCreateNestedList(XS)
XVisibilityNotifyEvent(XS)
XGetVisuallnfo(XS)
XGetVisualInfo(XS)
XWarpPointer(XS)
XmbDrawImageString(XS)
XmbDrawString(XS)
XmbDrawText(XS)

37

Intro(XS)

(Continued)
Function Manual Page
* XwcFreeStringList XmbTextListToTextProperty(XS)
* XwcLookupString XmbLookupString(XS)
* XwcResetIC XmbResetIC(XS)
* XwcTextEscapement XmbTextEscapement(XS)
* XwcTextExtents XmbTextExtents(XS)
* XwcTextListToTextProperty XmbTextListToTextProperty(XS)
* XwcTextPerCharExtents XmbTextPerCharExtents(XS)
* XwcTextPropertyToTextList XmbTextListToTextProperty(XS)
XWindow Attributes XGetWindow Attributes(XS)
XWindowChanges XConfigureWindow(XS)
XWindowEvent XNextEvent(XS)
XWithdrawWindow XlconifyWindow(XS)
XWMGeometry XParseGeometry(XS)
XWMHints XAllocWMHints(XS)
XWriteBitmapFile XReadBitmapFile(XS)
XXorRegion XIntersectRegion(XS)
X Locale - C Language Interface
For additional details refer to the following documents:
X/Open Portability Guide, Volume 3, XSI Internationalization.
Compound Text Encoding, Version 1.1, X11R5
ISO DIS 10646(UCS), 4 November 1990
ISO 639 & ISO 3166
See also
Xlib - C Language X Interface
38 X Version 11 (Release 5) 6 January 1993

AllPlanes(XS)

AllPlanes

display utility

Syhtax

AllPlanes

BlackPixel (display, screen_number)
WhitePixel (display, screen_number)
Connect ionNumber (display)
DefaultColormap (display, screen_number)
DefaultDepth(display, screen_number)

int *XListDepths(display, screen_number, count_return)
Display *display;
int screen_number;
int *count_return;

DefaultGC(display, screen_number)
DefaultRootWindow(display)
DefaultScreenOfDisplay(display)
DefaultScreen(display)
DefaultVisual(display, screen_number)
DisplayCells(display, screen_number)
DisplayPlanes(display, screen_number)
DisplayString(display)

long XMaxRequestSize(display)
Display *display;

LastKnownRequestProcessed(display)
NextRequest (display)
ProtocolVersion(display)
ProtocolRevision(display)
QLength(display)

RootWindow(display, screen_number)
ScreenCount (display)
ScreenOfDisplay(display, screen_number)
ServerVendor(display)

VendorRelease(display)

X Version 11 (Release 5) 6 January 1993 39

AllPlanes(XS)

Arguments

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

count_return Returns the number of depths.

Description

40

The AllPlanes macro returns a value with all bits set to 1 suitable for use in a
plane argument to a procedure.

The BlackPixel macro returns the black pixel value for the specified screen.
The WhitePixel macro returns the white pixel value for the specified screen.

The ConnectionNumber macro returns a connection number for the specified
display.

The DefaultColormap macro returns the default colormap ID for allocation
on the specified screen.

The DefaultDepth macro returns the depth (number of planes) of the default
root window for the specified screen.

The XListDepths function returns the array of depths that are available on the
specified screen. If the specified screen_number is valid and sufficient mem-
ory for the array can be allocated, XListDepths sets count_return to the num-
ber of available depths. Otherwise, it does not set count_return and returns
NULL. To release the memory allocated for the array of depths, use XFree.

The DefaultGC macro returns the default GC for the root window of the
specified screen.

The DefaultRootWindow macro returns the root window for the default
screen.

The DefaultScreenOfDisplay macro returns the default screen of the speci-
fied display.

The DefaultScreen macro returns the default screen number referenced in the
XOpenDisplay routine.

The DefaultVisual macro returns the default visual type for the specified
screen.

The DisplayCells macro returns the maximum number of entries in the
default colormap.

X Version 11 (Release 5) 6 January 1993

See also

AllPlanes(XS)

The DisplayPlanes macro returns the depth of the root window of the speci-
fied screen.

The DisplayString macro returns the string that was passed to XOpenDis-
play when the current display was opened.

XMaxRequestSize returns the maximum request size (in 4-byte units) sup-
ported by the server. Single protocol requests to the server can be no longer
than this size. The protocol guarantees the size to be no smaller than 4096
units (16384 bytes). Xlib automatically breaks data up into multiple protocol
requests as necessary for the following functions: XDrawPoints, XDrawRec-
tangles, XDrawSegments, XFillArcs, XFillRectangles, and XPutImage.

The LastKnownRequestProcessed macro extracts the full serial number of
the last request known by Xlib to have been processed by the X server.

The NextRequest macro extracts the full serial number that is to be used for
the next request.

The Protocol Version macro returns the major version number (11) of the X
protocol associated with the connected display.

The ProtocolRevision macro returns the minor protocol revision number of
the X server.

The QLength macro returns the length of the event queue for the connected
display.

The RootWindow macro returns the root window.
The ScreenCount macro returns the number of available screens.

The ScreenOfDisplay macro returns a pointer to the screen of the specified
display.

The ServerVendor macro returns a pointer to a null-terminated string that
provides some identification of the owner of the X server implementation.

The VendorRelease macro returns a number related to a vendor’s release of
the X server.

BlackPixelOfScreen(XS), ImageByteOrder(XS), IsCursorKey(XS), XOpenDis-

play(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 41

BlackPixelOfScreen(XS)

BlackPixelOfScreen

screen information functions and macros

Syntax

BlackPixelOfScreen(screen)
WhitePixelOfScreen(screen)
CellsOfScreen (screen)
DefaultColormapOfScreen(screen)
DefaultDepthOfScreen(screen)
DefaultGCOfScreen(screen)
DefaultVisualOfScreen(screen)
DoesBackingStore(screen)
DoesSaveUnders(screen)
DisplayOfScreen(screen)

int XScreenNumberOfScreen(screen)
Screen *screen;

EventMaskOfScreen(screen)
HeightOfScreen(screen)
HeightMMOfScreen (screen)
MaxCmapsOfScreen (screen)
MinCmapsOfScreen(screen)
PlanesOfScreen (screen)
RootWindowOfScreen({screen)
WidthOfScreen(screen)

WidthMMOfScreen (screen)

Arguments

screen Specifies the appropriate Screen structure.

42

X Version 11 (Release 5) 6 January 1993

BlackPixelOfScreen(XS)

Description

The BlackPixelOfScreen macro returns the black pixel value of the specified
screen.

The WhitePixelOfScreen macro returns the white pixel value of the specified
screen.

The CellsOfScreen macro returns the number of colormap cells in the default
colormap of the specified screen.

The DefaultColormapOfScreen macro returns the default colormap of the
specified screen.

The DefaultDepthOfScreen macro returns the default depth of the root win-
dow of the specified screen.

The DefaultGCOfScreen macro returns the default GC of the specified screen,
which has the same depth as the root window of the screen.

The DefaultVisualOfScreen macro returns the default visual of the specified
screen.

The DoesBackingStore macro returns WhenMapped, NotUseful, or Always,
which indicate whether the screen supports backing stores.

The DoesSaveUnders macro returns a Boolean value indicating whether the
screen supports save unders.

The DisplayOfScreen macro returns the display of the specified screen.

The XScreenNumberOfScreen function returns the screen index number of
the specified screen.

The EventMaskOfScreen macro returns the root event mask of the root win-
dow for the specified screen at connection setup.

The HeightOfScreen macro returns the height of the specified screen.

The HeightMMOfScreen macro returns the height of the specified screen in
millimeters.

The MaxCmapsOfScreen macro returns the maximum number of installed
colormaps supported by the specified screen.

The MinCmapsOfScreen macro returns the minimum number of installed
colormaps supported by the specified screen.

The PlanesOfScreen macro returns the number of planes in the root window
of the specified screen.

X Version 11 (Release 5) 6 January 1993 43

BlackPixelOfScreen(XS)

The RootWindowOfScreen macro returns the root window of the specified
screen.

The WidthOfScreen macro returns the width of the specified screen.

The WidthMMOfScreen macro returns the width of the specified screen in
millimeters.

See also

AllPlanes(XS), ImageByteOrder(XS), IsCursorKey(XS)
Xlib - C Language X Interface

44 X Version 11 (Release 5) 6 January 1993

DisplayOfCCC(XS)

DisplayOfCCC

Color Conversion Context macros

Syntax

DisplayOfCCC(ccc)
XcmsCCC ccc;

VisualOfCCC(ccc)
XcmsCCC cec;

ScreenNumberOf CCC (ccc)
XcmsCCC ccc;

ScreenWhitePointOfCCC(ccc)
XemsCCC cec;

ClientWhitePointOfCCC(ccc)
XemsCCC ccc;

Arguments

ccc Specifies the Color Conversion Context (CCC).

Description

The DisplayOfCCC macro returns the display associated with the specified
CCC.

The VisualOfCCC macro returns the visual associated with the specified
CCC.

The ScreenNumberOfCCC macro returns the number of the screen associ-
ated with the specified CCC.

The ScreenWhitePointOfCCC macro returns the screen white point of the
screen associated with the specified CCC.

The ClientWhitePointOf CC macro returns the client white point of the screen
associated with the specified CCC.

See also

XcmsCCCOfColormap(XS), XcmsConvertColors(XS), XemsCreateCCC(XS),
XcmsDefaultCCC(XS), XcmsSetWhitePoint(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 45

ImageByteOrder(XS)

ImageByteOrder

image format functions and macros

Syntax
XPixmapFormatValues *XListPixmapFormats(display, count_return)
Display *display;
int *count_return;
ImageByteOrder (display)
BitmapBitOrder(display)
BitmapPad(display)
BitmapUnit (display)
DisplayHeight (display, screen_number)
DisplayHeightMM(display, screen_number)
DisplayWidth(display, screen_number)
DisplayWidthMM(display, screen_number)
Arguments

display Specifies the connection to the X server.

count_return Returns the number of pixmap formats that are supported
by the display.

screen_number Specifies the appropriate screen number on the host server.
Description

The XListPixmapFormats function returns an array of XPixmapFormatValues
structures that describe the types of Z format images supported by the speci-
fied display. If insufficient memory is available, XListPixmapFormats returns
NULL. To free the allocated storage for the XPixmapFormatValues structures,
use XFree.

The ImageByteOrder macrq specifies the required byte order for images for
each scanline unit in XY format (bitmap) or for each pixel value in Z format.

The BitmapBitOrder macro returns “LSBFirst” or “MSBFirst” to indicate

whether the leftmost bit in the bitmap as displayed on the screen is the least
or most significant bit in the unit.

46 X Version 11 (Release 5) 6 January 1993

ImageByteOrder(XS)

The BitmapPad macro returns the number of bits that each scanline must be
padded.

The BitmapUnit macro returns the size of a bitmap’s scanline unit in bits.
The DisplayHeight macro returns the height of the specified screen in pixels.

The DisplayHeightMM macro returns the height of the specified screen in
millimeters.

The DisplayWidth macro returns the width of the screen in pixels.

The Display WidthMM macro returns the width of the specified screen in mil-
limeters.

Structures

The XPixmapFormatValues structure provides an interface to the pixmap for-
mat information that is returned at the time of a connection setup. It contains:

typedef struct |{
int depth;
int bits_per_pixel;
int scanline_pad;

) XPixmapFormatValues;

See also

AllPlanes(XS), BlackPixelOfScreen(XS), IsCursorKey(XS), XFree(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 47

imake(XS)

imake
C preprocessor interface to the make utility
Syntax
imake (-Ddefine) (-Idir] [-Ttemplate) (-f filename] [-s filename] [-e] [-v]
Description

Options

imake is used to generate makefiles from a template, a set of cpp macro func-
tions, and a per-directory input file called an Imakefile. This allows machine
dependencies (such has compiler options, alternate command names, and
special make rules) to be kept separate from the descriptions of the various
items to be built.

48

The following command line options may be passed to imake:

-Ddefine This option is passed directly to cpp. It is typically used to
set directory-specific variables. For example, the X Window
System uses this flag to set TOPDIR to the name of the direc-
tory containing the top of the core distribution and CURDIR
to the name of the current directory, relative to the top.

-Idirectory This option is passed directly to cpp. It is typically used to
indicate the directory in which the imake template and confi-
gurtion files may be found.

-Ttemplate This option specifies the name of the master template file
(which is usually located in the directory specified with -I)
used by cpp. The default is Imake.tmpl.

-ffilename This option specifies the name of the per-directory input file.
The default is Imakefile.
-sfilename This option specifies the name of the make description file to

be generated but make should not be invoked. If the filename
is a dash (=), the output is written to stdout. The default is to
generate, but not execute, a Makefile.

-e This option indicates that imake should execute the gen-
erated Makefile. The default is to leave this to the user.

-V This option indicates that imake should print the cpp com-
mand line that it is using to generate the Makefile.

X Version 11 (Release 5) 6 January 1993

imake(XS)

How it works

imake invokes cpp with any -I or -D flags passed on the command line and
passes it the following 3 lines:
#define IMAKE_TEMPLATE "Imake.tmpl®

#define INCLUDE_IMAKEFILE "Imakefile®
#include IMAKE_TEMPLATE

where Imake.tmpl and Imakefile may be overridden by the -T and -f com-
mand options, respectively. If the Imakefile contains any lines beginning with
a '# character that is not followed by a cpp directive (#include, #define,
#undef, #ifdef, #else, #endif, or #if), imake will produce a temporary
makefile in which the ‘# lines are prepended with the string “/**/” (so that
cpp will copy the line into the Makefile as a comment).

The Imakefile reads in a file containing machine-dependent parameters
(specified as cpp symbols), a site-specific parameters file, a file containing cpp
macro functions for generating make rules, and finally the Imakefile (speci-
fied by INCLUDE_IMAKEFILE) in the current directory. The Imakefile uses
the macro functions to indicate what targets should be built; imake takes care
of generating the appropriate rules.

The rules file (usually named Imake.rules in the configuration directory) con-
tains a variety of cpp macro functions that are configured according to the
current platform. imake replaces any occurrences of the string “@@” with a
newline to allow macros that generate more than one line of make rules. For
example, the macro

#define program_target (program, objlist) ae\

program: objlist ee\
$(CC) -o $@ objlist §(LDFLAGS)

when called with program_target(foo, fool.o f002.0) will expand to

foo: fool.o foo2.0
$(CC) -0 $@ fool.o foo2.0 $(LDFLAGS)

On systems whose cpp reduces multiple tabs and spaces to a single space,
imake attempts to put back any necessary tabs (make is very picky about the
difference between tabs and spaces). For this reason, colons (:) in command
lines must be preceded by a backslash (\).

X Version 11 (Release 5) 6 January 1993 49

imake(XS)

Use with the X Window system

Files

The X Window System uses imake extensively, for both full builds within the
source tree and external software. As mentioned above, two special variables,
TOPDIR and CURDIR set to make referencing files using relative path names
easier. For example, the following command is generated automatically to
build the Makefile in the directory ./lib/X (relative to the top of the sources):
% ../.././config/imake -I../.././config \
-DTOPDIR=../../. -DCURDIR=./1ib/X

When building X programs outside the source tree, a special symbol Useln-
stalled is defined and TOPDIR and CURDIR are omitted.

The command make Makefiles can then be used to generate Makefiles in any
subdirectories.

See also

/usr/tmp /tmp-imake.nnnnnn - temporary input file for cpp
/usr/tmp/ tmfp-make.nm\r\nn - temporary input file for make
/lib /cpp - default C preprocessor

make(CP)

S.1. Feldman, "Make - A Program for Maintaining Computer Programs”

Environment variables

Bugs

The following environment variables may be set, however their use is not
recommended as they introduce dependencies that are not readily apparent
when imake is run:

IMAKEINCLUDE
If defined, this should be a valid include argument for the C
preprocessor. For example, -I/usrfinclude/local. Actually,
any valid cpp argument will work here.

IMAKECPP If defined, this should be a valid path to a preprocessor pro-
am. For example, /usr/local/cpp. By default, imake will use

ib/epp.
IMAKEMAKE If defined, this should be a valid path to a make program. For

example, /usr/localfmake. By default, imake will use whatever
make program is found using execvp(S).

50

Comments should be preceded by “/**/#” to protect them from cpp.

X Version 11 (Release 5) 6 January 1993

IsCursorKey(XS)

IsCursorKey

keysym classification macros

Syntax

IsCursorKey (keysym)
IsFunctionKey (keysym)
IskeypadKey (keysym)
IsMiscFunctionKey (keysym)
IsModifierKey (keysym)

IsPFKey (keysym)

Arguments

keysym Specifies the KeySym that is to be tested.

Description

See also

The IsCursorKey macro returns True if the specified KeySymis a cursor key.
The IsFunctionKey macro returns True if the KeySym s a function key.

The IsKeypadKey macro returns True if the specified KeySym is a keypad
key.

The IsMiscFunctionKey macro returns True if the specified KeySym is a mis-
cellaneous function key.

The IsModiferKey macro returns True if the specified KeySym is a modifier
key.

The IsPFKey macro returns True if the specified KeySym is a PF key.

AllPlanes(XS), BlackPixelOfScreen(XS), ImageByteOrder(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 51

Indir(XS)

Indir

create a shadow directory of symbolic links to another directory tree

Syntax

Indir fromdir [todir]

Description

Indir makes a shadow copy todir of a directory tree fromdir, except that the
shadow is not populated with real files but instead with symbolic links point-
ing at the real files in the fromdir directory tree. This is usually useful for
maintaining source code for different machine architectures. You create a sha-
dow directory containing links to the real source which you will have usually
NFS mounted from a machine of a different architecture, and then recompile
it. The object files will be in the shadow directory, while the source files in the
shadow directory are just symlinks to the real files.

This has the advantage that if you update the source you need not propagate
the change to the other architectures by hand, since all source in shadow
directories are symlinks to the real thing: just cd to the shadow directory and
recompile away.

The todir argument is optional and defaults to the current directory. The

fromdir argument may be relative (for example, ../src) and is relative to todir
(not the current directory).

I NOTE RCS and SCCS directories are not shadowed.

Note that if you add files, you must run Indir again. Deleting files is a more
painful problem; the symlinks will just point into never never land.

Known limitations

52

ratch gets upset if it cannot change the files. You should never run patch
rom a shadow directory anyway.

You need to use something like
find todir -type 1 -print | xargs rm

to clear out all files before you can relink (if fromdir moved, for instance).
Something like

find . \! -type d -print
will find all files that are not directories.

X Version 11 (Release 5) 6 January 1993

makedepend(XS)

makedepend

create dependencies in makefiles

Syntax

makedepend [-Dname=def]) [-Dname] [-lincludedir]
[-fmakefile] [-oobjsuffix] [-sstring]
[-wwidth] [-- otheroptions -] sourcefile ...

Description

makedepend reads each sourcefile in sequence and parses it like a C-prepro-
cessor, processing all #include, #define, #undef, #ifdef, #ifndef, #endif, #if
and #else directives so that it can correctly tell which #include, directives
would be used in a compilation. Any #include, directives can reference files
having other #include directives, and parsing will occur in these files as well.

Every file that a sourcefile includes, directly or indirectly, is what mak-
edepend calls a "dependency”. These dependencies are then written to a
makefile in such a way that make(CP) will know which object files must be
recompiled when a dependency has changed.

By default, makedepend places its output in the file named makefile if it exists,
otherwise Makefile. An alternate makefile may be specified with the -f option.
It first searches the makefile for the line

DO NOT DELETE THIS LINE -- make depend depends on it.

or one provided with the -s option, as a delimiter for the dependency output.
If it finds it, it will delete everything following this to the end of the makefile
and put the output after this line. If it doesn’t find it, the program will append
the string to the end of the makefile and place the output following that. For
each sourcefile appearing on the command line, makedepend puts lines in the
makefile of the form

sourcefile.o: dfile ...

Where sourcefile.o is the name from the command line with its suffix replaced
with "0", and "dfile" is a dependency discovered in a #include directive while
parsing sourcefile or one of the files it included.

X Version 11 (Release 5) 6 January 1993 53

makedepend(XS)

Example

Options

Normally, makedepend will be used in a makefile target so that typing make
depend will bring the dependencies up to date for the makefile. For example,

SRCS = filel.c file2.c ...
CFLAGS = -O -DHACK -1../foobar -xyz

depend:

makedepend -- $(CFLAGS) -- $(SRCS)

makedepend will ignore any option that it does not understand so that you
may use the same arguments that you would for cc(CP).

-Dname=def
-Dname

lincludedir

-fmakefile

-oobjsuffix

-sstring

-wwidth

-- options --

Define. This places a definition for name in makedepend’s
symbol table.

Define. This places a definition for name in makedepend’s
symbol table. The symbol becomes defined as "1".

Include directory. This option tells makedepend to prepend
includedir to its list of directories to search when it
encounters a #include directive. By default, makedepend
only searches /usr/include.

Filename. This allows you to specify an alternate makefile in
which makedepend can place its output.

Object file suffix. Some systems may have object files whose
suffix is something other than ".0". This option allows you to
specify another suffix, such as ".b" by using -o.b or ":.0bj" by

using -o:0bj and so forth.

Starting string delimiter. This option permits you to specify a
different string for makedepend to look for in the makefile.

Line width. Normally, makedepend will ensure that every
output line that it writes will be no wider than 78 characters
for the sake of readability. This option enables you to specify
this width.

If makedepend encounters a double hyphen (--) in the argu-
ment list, then any unrecognized argument following it will
be silently ignored; a second double hyphen terminates this
special treatment. In this way, makedepend can be made to
safely ignore esoteric compiler arguments that might nor-
mally be found in a CFLAGS make macro (see the “Example”
section above). All options that makedepend recognizes and
appear between the pair of double hyphens are processed
normally.

X Version 11 (Release 5) 6 January 1993

makedepend(XS)

Algorithm

See also

The approach used in this program enables it to run an order of magnitude
faster than other "dependency generators." Central to this performance are
two assumptions: that all files compiled by a single makefile will be compiled
with roughly the same -I and -D options; and that most files in a single direc-
tory will include largely the same files.

Given these assumptions, makedepend expects to be called once for each
makefile, with all source files that are maintained by the makefile appearing
on the command line. It parses each source and include file exactly once,
maintaining an internal symbol table for each. Thus, the first file on the com-
mand line will take an amount of time proportional to the amount of time that
a normal C preprocessor takes. But on subsequent files, if it encounter’s an
include file that it has already parsed, it does not parse it again.

For example, imagine you are compiling two files, filel.c and file2.c, they each
include the header file header.h, and the file header.h in turn includes the files
defl.h and def2.h. When you run the command

makedepend filel.c file2.c
makedepend will parse filel.c and consequently, header.h and then defl.h
and def2.h. It then decides that the dependencies for this file are

filel.o: header.h defl.h def2.h
But when the program parses file2.c and discovers that it, too, includes

header.h, it does not parse the file, but simply adds header.h, defl.h and
def2.h to the list of dependencies for file2.o0.

Bugs

cc(CP), make(CP)

If you do not have the source for cpp, the Berkeley C preprocessor, then mak-
edepend will be compiled in such a way that all #if directives will evaluate to
"true” regardless of their actual value. This may cause the wrong #include
directives to be evaluated. makedepend should simply have its own parser
written for #if expressions.

Imaﬁine you are })arsing two files, say filel.c and file2.c, each includes the file
def.h. The list of files that def.h includes might truly be different when def.h is
included by filel.c than when it is included by file2.c. But once makedepend
arrives at a list of dependencies for a file, it is cast in concrete.

X Version 11 (Release 5) 6 January 1993 55

mkdirhier(XS)

mkdirhier

makes a directory hierarchy

Syntax

mkdirhier directory ...
Description

The mkdirhier command creates the specified directories. Unlike mkdir if
any of the parent directories of the specified directory do not exist, it creates
them as well.

See also

mkdir(C)

56 X Version 11 (Release 5) 6 January 1993

XAddHost(XS)

XAddHost

control host access and host control structure

Syntax
XAddHost (display, host)
Display *display;
XHostAddress *host;
XAddHosts(display, hosts, num_hosts)
Display *display;
XHostAddress *hosts;
int num_hosts;
XHostAddress *XListHosts(display, nhosts_return, state_return)
Display *display;
int *nhosts_return;
Bool *state_return;
XRemoveHost (display, host)
Display *display;
XHostAddress *host;
XRemoveHosts (display, hosts, num_hosts)
Display *display;
XHostAddress *hosts;
int num_hosts;
XSetAccessControl (display, mode)
Display *display;
int mode;
XEnableAccessControl (display)
Display *display;
XDisableAccessControl (display)
Display *display;
Arguments
display Specifies the connection to the X server.
host Specifies the host that is to be added or removed.
hosts Specifies each host that is to be added or removed.
mode Specifies the mode. You can pass EnableAccess or Disa-
bleAccess.

X Version 11 (Release 5) 6 January 1993

57

XAddHost(XS)

nhosts_return Returns the number of hosts currently in the access control
list.

num_hosts Specifies the number of hosts.

state_return Returns the state of the access control.

Description

58

The XAddHost function adds the specified host to the access control list for
that display. The server must be on the same host as the client issuing the
command, or a “BadAccess” error results.

XAddHost can generate “BadAccess” and “BadValue” errors.

The XAddHosts function adds each specified host to the access control list for
that display. The server must be on the same host as the client issuing the
command, or a “BadAccess” error results.

XAddHosts can generate “BadAccess” and “BadValue” errors.

The XListHosts function returns the current access control list as well as
whether the use of the list at connection setup was enabled or disabled.
XListHosts allows a program to find out what machines can make connec-
tions. It also returns a pointer to a list of host structures that were allocated
by the function. When no longer needed, this memory should be freed by cal-
ling XFree.

The XRemoveHost function removes the specified host from the access con-
trol list for that display. The server must be on the same host as the client pro-
cess, or a “BadAccess” error results. If you remove your machine from the
access list, you can no longer connect to that server, and this operation cannot
be reversed unless you reset the server.

XRemoveHost can generate “BadAccess” and “BadValue” errors.

The XRemoveHosts function removes each specified host from the access
control list for that display. The X server must be on the same host as the
client process, or a “BadAccess” error results. If you remove your machine
from the access list, you can no longer connect to that server, and this opera-
tion cannot be reversed unless you reset the server.

XRemoveHosts can generate “BadAccess” and “BadValue” errors.

The XSetAccessControl function either enables or disables the use of the
access control list at each connection setup.

XSetAccessControl can generate “BadAccess” and “BadValue” errors.

The XEnableAccessControl function enables the use of the access control list
at each connection setup.

X Version 11 (Release 5) 6 January 1993

XAddHost(XS)

XEnableAccessControl can generatea “Bad Access” error.

The XDisableAccessControl function disables the use of the access control
list at each connection setup.

XDisableAccessControl can generate a “BadAccess” error.

Structures

The XHostAddress structure contains:
typedef struct (

int family; /* for example FamilylInternet */

int length; /* length of address, in bytes */

char *address; /* pointer to where to find the address */
} XHostAddress;

The family member specifies which protocol address family to use (for exam-
ple, TCP/IP or DECnet) and can be FamilyInternet, FamilyDECnet, or Fami-
lyChaos. The length member specifies the length of the address in bytes. The
address member specifies a pointer to the address.

Diagnostics

“BadAccess” A client attempted to modify the access control list from
other than the local (or otherwise authorized) host.

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

See also

XFree(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 59

XAllocClassHint(XS)

XAllocClassHint

allocate class hints structure and set or read a window's WM_CLASS property

Syntax
XClassHint *XAllocClassHint()
XSetClassHint (display, w, class_hints)
Display *display;
Window w;
XClassHint *class_hints;
Status XGetClassHint (display, w, class_hints_return)
Display *display;
Window w;
XClassHint *class_hints_return;
Arguments
display Specifies the connection to the X server.
class_hints Specifies the XClassHint structure that is to be used.
class_hints_return Returns the XClassHint structure.
w Specifies the window.
Description
The XAllocClassHint function allocates and returns a pointer to a
XClassHint structure. Note that the pointer fields in the XClassHint struc-
ture are initially set to NULL. If insufficient memory is available, XAlloc-
ClassHint returns NULL. To free the memory allocated to this structure, use
XFree.
The XSetClassHint function sets the class hint for the specified window. If
the strings are not in the Host Portable Character Encoding the result is imple-
mentation dependent.
XSetClassHint can generate “BadAlloc” and “BadWindow” errors.
The XGetClassHint function returns the class hint of the specified window to
the members of the supplied structure. If the data returned by the server is in
the Latin Portable Character Encoding, then the returned strings are in the
Host Portable Character Encoding. Otherwise, the result is implementation
60 X Version 11 (Release 5) 6 January 1993

XAllocClassHint(XS)

dependent. It returns nonzero status on success; otherwise it returns a zero
status. To free res_name and res_class when finished with the strings, use
XFree on each individually.

XGetClassHint can generate a “BadWindow” error.

Properties
WM_CLASS Set by application programs to allow window and session
managers to obtain the application’s resources from the
resource database.
Structures

The XClassHint structure contains:

typedef struct (
char *res_name;
char *res_class;
) XClassHint;

The res_name member contains the application name, and the res_class
member contains the application class. Note that the name set in this pro-
perty may differ from the name set as WM_NAME. That is, WM_NAME speci-
fies what should be displayed in the title bar and, therefore, can contain tem-
Eoral information (for example, the name of a file currently in an editor’s

uffer). On the other hand, the name specified as part of WM_CLASS is the
formal name of the application that should be used when retrieving the
application’s resources from the resource database.

Diagnostics

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XAllocIconSize(XS), XAllocSizeHints(XS), XAllocWMHints(XS), XFree(XS),
XSetCommand(XS), XSetTransientForHint(XS), XSetTextProperty(XS),
XSetWMClientMachine(XS), XSetWMColormapWindows(XS),
XSetWMIconName(XS), XSetWMName(XS), XSetWMProperties(XS),
XSetWMProtocols(XS), XStringListToTextProperty(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 61

XAllocColor(XS)

XAllocColor

allocate and free colors

Syntax

Status XAllocColor(display, colormap, screen_in_out)
Display *display;
Colormap colormap;
XColor *screen_in_out;

Status XAllocNamedColor(display, colormap, color_name, screen_def_return,
exact_def_return)
Display *display;
Colormap colormap;
char *color_name;
XColor *screen_def_return, *exact_def_return;

Status XAllocColorCells(display, colormap, contig, plane_masks_return,
nplanes, pixels_return, npixels)
Display *display;
Colormap colormap;
Bool contig;
unsigned long plane_masks_return();
unsigned int nplanes;
unsigned long pixels_return(];
unsigned int npixels;

Status XAllocColorPlanes(display, colormap, contig, pixels_return, ncolors,
nreds, ngreens, nblues, rmask_return, gmask_return,
bmask_return)

Display *display;

Colormap colormap;

Bool contig;

unsigned long pixels_return(];

int ncolors;

int nreds, ngreens, nblues;

unsigned long *rmask_return, *gmask_return, *bmask_return;

XFreeColors(display, colormap, pixels, npixels, planes)
Display *display;
Colormap colormap;
unsigned long pixels[];
int npixels;
unsigned long planes;

62 X Version 11 (Release 5) 6 January 1993

XAllocColor(XS)

Arguments
color_name Specifies the color name string (for example, red) whose
color definition structure you want returned.
colormap Specifies the colormap.
contig Specifies a Boolean value that indicates whether the
planes must be contiguous.
display Specifies the connection to the X server.

exact_def return

ncolors

npixels
nplanes
nreds
ngreens
nblues
pixels

pixels_return

plane_mask_return

planes

rmask_return
gmask_return
bmask_return

screen_def _return

screen_in_out

Description

Returns the exact RGB values.

Specifies the number of pixel values that are to be
returned in the pixels_return array.

Specifies the number of pixels.

Specifies the number of plane masks that are to be
returned in the plane masks array.

Specify the number of red, green, and blue planes. The
value you pass must be nonnegative.

Specifies an array of pixel values.
Returns an array of pixel values.
Returns an array of plane masks.

Specifies the planes you want to free.

Return bit masks for the red, green, and blue planes.

Returns the closest RGB values provided by the hard-
ware.

Specifies and returns the values actually used in the
colormap.

The XAllocColor function allocates a read-only colormap entry corre-
sponding to the closest RGB value supported by the hardware. XAllocColor
returns the pixel value of the color closest to the specified RGB elements

X Version 11 (Release 5) 6 January 1993 63

XAllocColor(XS)

64

supported by the hardware and returns the RGB value actually used. The cor-
responding colormap cell is read-only. In addition, XAllocColor returns
nonzero if it succeeded or zero if it failed. Multiple clients that request the
same effective RGB value can be assigned the same read-only entry, thus
allowing entries to be shared. When the last client deallocates a shared cell, it
is deallocated. XAllocColor does not use or affect the flags in the XColor
structure.

XAllocColor can generate a “BadColor” error.

The XAllocNamedColor function looks up the named color with respect to
the screen that is associated with the specified colormap. It returns both the
exact database definition and the closest color supported by the screen. The
allocated color cell is read-only. The pixel value is returned in
screen_def _return. If the color name is not in the Host Portable Character
Encoding the result is implementation dependent. Use of uppercase or lower-
case does not matter. XLookupColor returns nonzero if a cell is allocated,
otherwise it returns zero.

XAllocNamedColor can generate a “BadColor” error.

The XAllocColorCells function allocates read/write color cells. The number
of colors must be positive and the number of planes nonnegative, or a “Bad-
Value” error results. If ncolors and nplanes are requested, then ncolors pixels
and nplane plane masks are returned. No mask will have any bits set to 1 in
common with any other mask or with any of the pixels. By OR’ing together
each pixel with zero or more masks, ncolors * 2" distinct pixels can be
produced. All of these are allocated writable by therequest. For GrayScale or
PseudoColor, each mask has exactly one bit set to 1. For DirectColor, each
has exactly three bits set to 1. If contig is True and if all masks are ORed
together, a single contiguous set of bits set to 1 will be formed for GrayScale
or PseudoColor and three contiguous sets of bits set to 1 (one within each
pixel subfield) for DirectColor. The RGB values of the allocated entries are
undefined. XAllocColorCells returns nonzero if it succeeded or zero if it
failed.

XAllocColorCells can generate “BadColor” and “BadValue” errors.

The specified ncolors must be positive; and nreds, ngreens, and nblues must
be nonnegative, or a “BadValue” error results. If ncolors colors, nreds reds,
ngreens greens, and nblues blues are requested, ncolors pixels are returned;
and the masks have nreds, ngreens, and nblues bits set to 1, respectively. If
contig is True, each mask will have a contiguous set of bits set to 1. No mask
will have any bits set to 1 in common with any other mask or with any of the
pixels. For DirectColor, each mask will lie within the corresponding pixel
subfield. By OR’ing together subsets of masks with each pixel value, ncolors *
2(nreds +ngreenssublues) dfistinct pixel values can be produced. All of these are allo-
cated by the request. However, in the colormap, there are only ncolors * Qnreds
independent red entries, ncolors * 2"6™" independent green entries, and
ncolors * 2" independent blue entries. This is true even for PseudoColor.
When the colormap entry of a pixel value is changed (using XStoreColors,

X Version 11 (Release 5) 6 January 1993

XAllocColor(XS)

XStoreColor, or XStoreNamedColor), the pixel is decomposed according to
the masks, and the corresponding independent entries are updated. XAlloc-
ColorPlanes returns nonzero if it succeeded or zero if it failed.

XAllocColorPlanes can generate “BadColor” and “BadValue” errors.

The XFreeColors function frees the cells represented by pixels whose values
are in the pixels array. The planes argument should not have any bits set to 1
in common with any of the pixels. The set of all pixels is produced by OR’ing
together subsets of the planes argument with the pixels. The request frees all
of these pixels that were allocated by the client (using XAllocColor, XAlloc-
NamedColor, XAllocColorCells, and XAllocColorPlanes). Note that freeing
an individual pixel obtained from XAllocColorPlanes may not actually allow
it to be reused until all of its related pixels are also freed. Similarly, a read-
only entry is not actually freed until it has been freed by all clients, and if a
client allocates the same read-only entry multiple times, it must free the entry
that many times before the entry is actually freed.

All specified pixels that are allocated by the client in the colormap are freed,
even if one or more pixels produce an error. If a specified pixel is not a valid
index into the colormap, a “BadValue” error results. If a specified pixel is not
allocated by the client (that is, is unallocated or is only allocated by another
client), or if the colormap was created with all entries writable (by passing
AllocAll to XCreateColormap), a “BadAccess” error results. If more than one
pixel is in error, the one that gets reported is arbitrary.

XFreeColors can generate “BadAccess”, “BadColor”, and “BadValue” errors.

Diagnostics

See also

“BadAccess” A client attempted to free a color map entry that it did not
already allocate.

“BadAccess” A client attempted to store into a read-only color map entry.

“BadColor” A value for a Colormap argument does not name a defined
Colormap.
“BadValue” Some numeric value falls outside the range of values

accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

XCreateColormap(XS), XQueryColor(XS), XStoreColors(XS)
X1ib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 65

XAllocIconSize(XS)

XAlloclconSize

allocate icon size structure and set or read a window's WM_ICON_SIZES property

Syntax

XIconSize *XAlloclconSize()

XSetIconSizes(display, w, size_list, count)
Display *display;
Window w;
XIconSize *size_list;
int count;

Status XGetlIconSizes(display, w, size_list_return, count_return)
Display *display;
Window w;
XIconSize **size_list_return;
int *count_return;

Arguments
display Specifies the connection to the X server.
count Specifies the number of items in the size list.

count_return Returns the number of items in the size list.
size_list Specifies the size list.
size_list_return Returns the size list.

w Specifies the window.

Description

66

The XAllocIconSize function allocates and returns a pointer to a XIconSize
structure. Note that all fields in the XIconSize structure are initially set to
zero. If insufficient memory is available, XAllocIconSize returns NULL. To
free the memory allocated to this structure, use XFree.

The XSetIconSizes function is used only by window managers to set the sup-
ported icon sizes.

XSetlconSizes can generate “BadAlloc” and “BadWindow” errors.
The XGetlconSizes function returns zero if a window manager has not set

icon sizes; otherwise, it return nonzero. XGetIconSizes should be called by
an application that wants to find out what icon sizes would be most

X Version 11 (Release 5) 6 January 1993

XAllocIconSize(XS)

appreciated by the window manager under which the application is running.
The application should then use XSetWMHints to supply the window man-
ager with an icon pixmap or window in one of the supported sizes. To free
the data allocated in size_list_return, use XFree.

XGetIconSizes can generate a “BadWindow” error.

Properties

WM_ICON_SIZES
The window manager may set this property on the root win-
dow to specify the icon sizes it supports. The C type of this
property is XIconSize.

Structures

The XIconSize structure contains:

typedef struct (
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
} XIconSize;

The width_inc and height_inc members define an arithmetic progression of
sizes (minimum to maximum) that represent the supported icon sizes.

Diagnostics

See also

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadWindow” A value for a Window argument does not name a defined
Window.

XAllocClassHint(XS), XAllocSizeHints(XS), XAllocWMHints(XS), XFree(XS),
XSetCommand(XS), XSetTransientForHint(XS), XSetTextProperty(XS),
XSetWMClientMachine(XS), XSetWMColormapWindows(XS),
XSetWMIconName(XS), XSetWMName(XS), XSetWMProperties(XS),
XSetWMProtocols(XS), XStringListToTextProperty(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 67

XAllocSizeHints(XS)

XAllocSizeHints

allocate size hints structure and set or read a window's WM_NORMAL_HINTS property

Syntax
XSizeHints *XAllocSizeHints()
void XSetWMNormalHints(display, w, hints)
Display *display;
Window w;
XSizeHints *hints;
Status XGetWMNormalHints(display, w, hints_return, supplied_return)
Display *display;
Window w;
XSizeHints *hints_return;
long *supplied_return;
void XSetWMSizeHints(display, w, hints, property)
Display *display;
Window w;
XSizeHints *hints;
Atom property;
Status XGetWMSizeHints(display, w, hints_return, supplied_return, property)
Display *display;
Window w; .
XSizeHints *hints_return;
long *supplied_return;
Atom property;
Arguments
display Specifies the connection to the X server.
hints Specifies the size hints for the window in its normal state.
hints Specifies the XSizeHints structure to be used.
hints_return Returns the size hints for the window in its normal state.
property Specifies the property name.
supplied_return Returns the hints that were supplied by the user.
w Specifies the window.
68 X Version 11 (Release 5) 6 January 1993

XAllocSizeHints(XS)

Description

The XAllocSizeHints function allocates and returns a pointer to a XSizeHints
structure. Note that all fields in the XSizeHints structure are initially set to
zero. If insufficient memory is available, XAllocSizeHints returns NULL. To
free the memory allocated to this structure, use XFree.

The XSetWMNormalHints function replaces the size hints for the
WM_NORMAL_HINTS property on the specified window. If the property
does not already exist, XSetWMNormalHints sets the size hints for the
WM_NORMAL_HINTS property on the specified window. The property is
stored with a type of WM_SIZE_HINTS and a format of 32.

XSetWMNormalHints can generate “BadAlloc” and “BadWindow” errors.

The XGetWMNormalHints function returns the size hints stored in the
WM_NORMAL_HINTS property on the specified window. If the property is
of type WM_SIZE_HINTS, is of format 32, and is long enough to contain either
an old (pre-ICCCM) or new size hints structure, XGetWMNormalHints sets
the various fields of the XSizeHints structure, sets the supplied_return argu-
ment to the list of fields that were supplied by the user (whether or not they
contained defined values), and returns a nonzero status. Otherwise, it returns
a zero status.

If XGetWMNormalHints returns successfully and a pre-ICCCM size hints
property is read, the supplied_return argument will contain the following bits:

(USPosition|USSize|PPosition|PSizelPMinSizel
PMaxSizel|PResizelnc|PAspect)

If the property is large enough to contain the base size and window gravity
fields as well, the supplied_return argument will also contain the following
bits:

PBaseSize|PWinGravity
XGetWMNormalHints can generate a “BadWindow” error.

The XSetWMSizeHints function replaces the size hints for the specified pro-
perty on the named window. If the specified property does not already exist,
XSetWMSizeHints sets the size hints for the specified property on the named
window. The property is stored with a type of WM_SIZE_HINTS and a format
of 32. To set a window’s normal size hints, you can use the XSetWMNor-
malHints function.

XSetWMSizeHints can generate “BadAlloc”, “BadAtom”, and “BadWindow”
errors.

The XGetWMSizeHints function returns the size hints stored in the specified
property on the named window. If the property is of type WM_SIZE_HINTS,
is of format 32, and is long enough to contain either an old (pre-ICCCM) or
new size hints structure, XGetWMSizeHints sets the various fields of the
XSizeHints structure, sets the supplied_return argument to the list of fields
that were supplied by the user (whether or not they contained defined

X Version 11 (Release 5) 6 January 1993 69

XAllocSizeHints(XS)

values), and returns a nonzero status. Otherwise, it returns a zero status. To
get a window’s normal size hints, you can use the XGetWMNormalHints
function.

If XGetWMSizeHints returns successfully and a pre-ICCCM size hints pro-
perty is read, the supplied_return argument will contain the following bits:

(USPosition|USSizelPPosition|PSizelPMinSizel
PMaxSize|PResizelnc|PAspect)

If the property is large enough to contain the base size and window gravity
fields as well, the supplied_return argument will also contain the following
bits:

PBaseSize|PWinGravity
XGetWMSizeHints can generate “BadAtom” and “BadWindow” errors.

Properties

WM_NORMAL_HINTS Size hints for a window in its normal state. The C
type of this property is XSizeHints.

Structures
The XSizeHints structure contains:
/* Size hints mask bits */
#define USPosition (1L <<0) /* user specified x,y */
#define USSize (IL<<1) /* user specified width, height*/
#define PPosition (IL<<2) /*program specified position */
#define PSize (IL << 3) /*programspecified size*/
#define PMinSize (1L << 4) /*program specified minimum size */
#define PMaxSize (1L <<5) /* program specified maximum size */
#define PResizeInc (1L <<6) /* program specified resize increments */
#define PAspect (IL<<7) /* program specified min and max aspect
ratios */

#define PBaseSize (1L << 8)

#define PWinGravity (1L <<9)

#define PAIllHints (PPosition | PSize | PMinSize |
PMaxSize | PResizelnc | PAspect)

70 X Version 11 (Release 5) 6 January 1993

XAllocSizeHints(XS)

/* Values */

typedef struct {(

long flags; /* marks which fields in this structure are
defined */

int x, y; /* Obsolete */

int width, height; /* Obsolete */

int min_width, min_height;

int max_width, max_height;

int width_inc, height_inc;

struct (
int x; /* numerator */
int y; /* denominator */

) min_aspect, max_aspect;

int base_width, base_height;

int win_gravity;

] XSizeHints;

The x, y, width, and height members are now obsolete and are left solely for
compatibility reasons. The min_width and min_height members specify the
minimum window size that still allows the application to be useful. The
max_width and max_height members specify the maximum window size. The
width_inc and height_inc members define an arithmetic progression of sizes
(minimum to maximum) into which the window prefers to be resized. The
min_aspect and max_aspect members are expressed as ratios of x and y, and
they allow an application to specify the range of aspect ratios it prefers. The
base_width and base_height members define the desired size of the window.
The window manager will interpret the position of the window and its border
width to position the point of the outer rectangle of the overall window speci-
fied by the win_gravity member. The outer rectangle of the window includes
any borders or decorations supplied by the window manager. In other words,
if the window manager decides to place the window where the client asked,
the position on the parent window’s border named by the win_gravity will be
placed where the client window would have been placed in the absence of a
window manager.

Note that use of the PAllHints macro is highly discouraged.

Diagnostics
“BadAlloc” The server failed to allocate the requested resource or server
memory.
“BadAtom” A value for an Atom argument does not name a defined
Atom.

“BadWindow” A value for a Window argument does not name a defined
Window.

X Version 11 (Release 5) 6 January 1993 71

XAllocSizeHints(XS)

See also

XAllocClassHint(XS), XAllocIconSize(XS), XAllocWMHints(XS), XFree(XS),
XSetCommand(XS), XSetTextProperty(XS), XSetTransientForHint(XS),
XSetWMClientMachine(XS), XSetWMColormapWindows(XS),
XSetWMIconName(XS), XSetWMName(XS), XSetWMProperties(XS),
XSetWMProtocols(XS), XStringListToTextProperty(XS)

Xlib - C Language X Interface

72 X Version 11 (Release 5) 6 January 1993

XAllocStandardColormap(XS)

XAllocStandardColormap

allocate, set, or read a standard colormap structure

Syntax

XStandardColormap *XAllocStandardColormap ()

void XSetRGBColormaps(display, w, std_colormap, count, property)
Display *display;
Window w;
XStandardColormap *std_colormap;
int count;
Atom property;

Status XGetRGBColormaps(display, w, std_colormap_return, count_return,
property)
Display *display;
Window w;
XStandardColormap **std_colormap_return;
int *count_return;
Atom property;

Arguments

display Specifies the connection to the X server.

count Specifies the number of colormaps.

count_return Returns the number of colormaps.

property Specifies the property name.

std_colormap Specifies the XStandardColormap structure to be used.

std_colormap_return
Returns the XStandardColormap structure.

Description

The XAllocStandardColormap function allocates and returns a pointer to a
XStandardColormap structure. Note that all fields in the XStandardColor-
map structure are initially set to zero. If insufficient memory is available,
XAllocStandardColormap returns NULL. To free the memory allocated to
this structure, use XFree.

The XSetRGBColormaps function replaces the RGB colormap definition in the

specified property on the named window. If the property does not already
exist, XSetRGBColormaps sets the RGB colormap definition in the specified

X Version 11 (Release 5) 6 January 1993 73

XAllocStandardColormap(XS)

74

property on the named window. The property is stored with a type of
RGB_COLOR_MAP and a format of 32. Note that it is the caller’s responsibil-
ity to honor the ICCCM restriction that only RGB_DEFAULT_MAP contain
more than one definition.

The XSetRGBColormaps function usually is only used by window or session
managers. To create a standard colormap, follow this procedure:
1. Open a new connection to the same server.
2. Grab theserver.
3. Seeif the property is on the property list of the root window for the screen.
4. If the desired property is not present:

e Create a colormap (unless using the default colormap of the screen).

¢ Determine the color characteristics of the visual.

e Call XAllocColorPlanes or XAllocColorCells to allocate cells in the
colormap.

¢ Call XStoreColors to store appropriate color values in the colormap.
e Fill in the descriptive members in the XStandardColormap structure.
o Attach the property to the root window.
e Use XSetCloseDownMode to make the resource permanent.

5. Ungrab the server.

XSetRGBColormaps can generate “BadAlloc”, “BadAtom”, and “BadWindow”
errors.

The XGetRGBColormaps function returns the RGB colormap definitions
stored in the specified property on the named window. If the property exists,
is of type RGB_COLOR_MAP, is of format 32, and is long enough to contain a
colormap definition, XGetRGBColormaps allocates and fills in space for the
returned colormaps and returns a nonzero status. If the visualid is not
present, XGetRGBColormaps assumes the default visual for the screen on
which the window is located; if the killid is not present, None is assumed,
which indicates that the resources cannot be released. Otherwise, none of the
fields are set, and XGetRGBColormaps returns a zero status. Note that it is
the caller’s responsibility to honor the ICCCM restriction that only
RGB_DEFAULT_MAP contain more than one definition.

XGetRGBColormaps can generate “BadAtom” and “BadWindow” errors.

X Version 11 (Release 5) 6 January 1993

XAllocStandardColormap(XS5)

Structures
The XStandardColormap structure contains:
/* Hints */
#define ReleaseByFreeingColormap ((XID) 1L)

/* Values */

typedef struct {
Colormap colormap;
unsigned long red_max;
unsigned long red_mult;
unsigned long green_max;
unsigned long green_mult;
unsigned long blue_max;
unsigned long blue_mult;
unsigned long base_pixel;
VisualID visualid;
XID killid;

) XStandardColormap;

The colormap member is the colormap created by the XCreateColormap func-
tion. The red_max, green_max, and blue_max members give the maximum red,
green, and blue values, respectively. Each color coefficient ranges from zero
to its max, inclusive. For example, a common colormap allocation is 3/3/2 (3
planes for red, 3 planes for green, and 2 planes for blue). This colormap
would have red_max = 7, green_max = 7, and blue_max = 3. An alternate allo-
cation that uses only 216 colors is red_max = 5, green_max = 5,and blue_max =
5.

Thered_mult, green_mult, and blue_mult members give the scale factors used
to compose a full pixel value. (See the discussion of the base_pixel members
for further information.) For a 3/3/2 allocation, red_mult might be 32,
green_mult might be 4, and blue_mult might be 1. For a 6-colors-each alloca-
tion, red_mult might be 36, green_mult mightbe 6,and blue_mult might be 1.

The base_pixel member gives the base pixel value used to compose a full
pixel value. Usually, the base_pixel is obtained from a call to the XAlloc-
ColorPlanes function. Given integer red, green, and blue coefficients in their
appropriate ranges, one then can compute a corresponding pixel value by
using the following expression:

(r * red_mult + g * green_mult + b * blue_mult + base_pixel) & OXFFFFFFFF

For GrayScale colormaps, only the colormap, red max, red_mult, and
base_pixel members are defined. The other members are ignored. To com-
pute a GrayScale pixel value, use the following expression:

(gray * red_mult + base_pixel) & OXFFFFFFFF

X Version 11 (Release 5) 6 January 1993 75

XAllocStandardColormap(XS)

Negative multipliers can be represented by converting the 2’s complement
representation of the multiplier into an unsigned long and storing the result in
the appropriate _mult field. The step of masking by OxFFFFFFFF effectively
converts the resulting positive multiplier into a negative one. The masking
step will take place automatically on many machine architectures, depending
on the size of the integer type used to do the computation.

The visualid member gives the ID number of the visual from which the color-
map was created. The killid member gives a resource ID that indicates
whether the cells held by this standard colormap are to be released by freein
the colormap ID or by calling the XKillClient function on the indicate
resource. (Note that this method is necessary for allocating out of an existing
colormap.)

The properties containing the XStandardColormap information have the type
RGB_COLOR_MAP.

Diagnostics
“BadAlloc” The server failed to allocate the requested resource or server
memory.
“BadAtom” A value for an Atom argument does not name a defined
Atom.
“BadWindow” A value for a Window argument does not name a defined
Window.
See also
XAllocColor(XS), XCreateColormap(XS), XFree(XS),
XSetCloseDownMode(XS)
Xlib - C Language X Interface
76 X Version 11 (Release 5) 6 January 1993

XAllocWMHints(XS)

XAllocWMHints

allocate window manager hints structure and set or read a window's WM_HINTS property

Syntax
XWMHints *XAllocWMHints()
XSetWMHints(display, w, wmhints)
Display *display;
Window w;
XWMHints *wmhints;
XWMHints *XGetWMHints(display, w)
Display *display;
Window w;
Arguments

display Specifies the connection to the X server.
w Specifies the window.
wmhints Specifies the XWMHints structure to be used.
Description
The XAllocWMHints function allocates and returns a pointer to a XWMHints
structure. Note that all fields in the XWMHints structure are initially set to

zero. If insufficient memory is available, XAllocWMHints returns NULL. To
free the memory allocated to this structure, use XFree.

The XSetWMHints function sets the window manager hints that include icon
information and location, the initial state of the window, and whether the
application relies on the window manager to get keyboard input.

XSetWMHints can generate “BadAlloc” and “BadWindow” errors.

The XGetWMHints function reads the window manager hints and returns
NULL if no WM_HINTS property was set on the window or returns a pointer
to a XWMHints structure if it succeeds. When finished with the data, free the
space used for it by calling XFree.

XGetWMHints can generate a “BadWindow” error.

X Version 11 (Release 5) 6 January 1993 77

XAllocWMHints(XS)

Properties

WM_HINTS Additional hints set by the client for use by the window
manager. The C type of this property is XWMHints.

Structures

78

The XWMHints structure contains:

/* Window manager hints mask bits */

#define InputHint (IL<<0)
#define StateHint (IL<<1)
#define IconPixmapHint (1L<<2)
#define IconWindowHint (IL << 3)
#define IconPositionHint (1L << 4)
#define IconMaskHint (1L << 5)
#define WindowGroupHint (1L << 6)
#define AllHints (InputHint | StateHint | IconPixmapHint |

IconWindowHint | IconPositionHint |
IconMaskHint | WindowGroupHint)

/* Values */

typedef struct {

long flags; /* marks which fields in this structure are
defined */

Bool input; /* does this application rely on the window manager
to get keyboard input? */

int initial_state; /* see below */

Pixmap icon_pixmap; /* pixmap to be used as icon */
Window icon_window; /* window to be used as icon */
int icon_x, icon_y; /* initial position of icon */
Pixmap icon_mask; /* pixmap to be used as mask for icon_pixmap */
XID window_group; /* id of related window group */
/* this structure may be extended in the future */
} XWMHints;

The input member is used to communicate to the window manager the input
focus model used by the application. Applications that expect input but
never explicitly set focus to any of their subwindows (that is, use the push
model of focus management), such as X Version 10 style applications that use
real-estate driven focus, should set this member to True. Similarly, applica-
tions that set input focus to their subwindows only when it is given to their
top-level window by a window manager should also set this member to True.
Applications that manage their own input focus by explicitly setting focus to
one of their subwindows whenever they want keyboard input (that is, use the
pull model of focus management) should set this member to False. Applica-
tions that never expect any keyboard input also should set this member to
False.

X Version 11 (Release 5) 6 January 1993

XAllocWMHints(XS)

Pull model window managers should make it possible for push model appli-
cations to get input by setting input focus to the top-level windows of appli-
cations whose input member is True. Push model window managers should
make sure that pull model applications do not break them by resetting input
focus to PointerRoot when it is appropriate (for example, whenever an appli-
cation whose input member is False sets input focus to one of its subwin-
dows).

The definitions for the initial_state flagare:

#define =~ WithdrawnState 0
#define NormalState 1 /* most applications start this way */
#define IconicState 3 /*application wants to start asanicon */

The icon_mask specifies which pixels of the icon_pixmap should be used as
the icon. This allows for nonrectangular icons. Both icon_pixmap and
icon_mask must be bitmaps. The icon_window lets an application provide a
window for use as an icon for window managers that support such use. The
window_group lets you specify that this window belongs to a group of other
windows. For example, if a single application manipulates multiple top-level
windows, this allows you to provide enough information that a window man-
ager can iconify all of the windows rather than just the one window.

Diagnostics

See also

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadWindow” A value for a Window argument does not name a defined
Window.

XAllocClassHint(XS), XAllocIconSize(XS), XAllocSizeHints(XS), XFree(XS),
XSetCommand(XS), XSetTextProperty(XS), XSetTransientForHint(XS),
XSetWMClientMachine(XS), XSetWMColormapWindows(XS),
XSetWMIconName(XS), XSetWMName(XS), XSetWMProperties(XS),
XSetWMProtocols(XS), XStringListToTextProperty(XS)

X1ib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 79

XAllowEvents(XS)

XAllowEvents

release queued events

Syntax

XAllowEvents(display, event_mode, time)
Display *display;
int event_mode;
Time time;

Arguments

display Specifies the connection to the X server.

event_mode Specifies the event mode. You can pass AsyncPointer, Sync-
Pointer, AsyncKeyboard, SyncKeyboard, ReplayPointer,
ReplayKeyboard, AsyncBoth, or SyncBoth.

time Specifies the time. You can pass either a timestamp or Current-
Time.

Description

The XAllowEvents function releases some queued events if the client has
caused a device to freeze. It has no effect if the specified time is earlier than
the last-grab time of the most recent active grab for the client or if the speci-
fied time is later than the current X server time.

XAllowEvents can generate a “BadValue” error.

Diagnostics

“BadValue” Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu-
ment, the full range defined by the argument’s type is accepted.
Any argument defined as a set of alternatives can generate this
error.

See also

Xlib - C Language X Interface

80 X Version 11 (Release 5) 6 January 1993

XAnyEvent(XS)

XAnyEvent

generic X event structures

Structures

All the event structures declared in <X11/Xlib.k> have the following common
members:

typedef struct (
int type;
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
} XAnyEvent;

‘The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

X Version 11 (Release 5) 6 January 1993 81

XAnyEvent(XS)

82

The XEvent structure is a union of the individual structures declared for each
event type:

typedef union _XEvent {
int type; /* must not be changed */
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelect ionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;
long padl24);

| XEvent;

An XEvent structure’s first entry always is the type member, which is set to
the event type. The second member always is the serial number of the proto-
col request that generated the event. The third member always is send_event,
which is a Bool that indicates if the event was sent by a different client. The
fourth member always is a display, which is the display that the event was
read from. Except for keymap events, the fifth member always is a window,
which has been carefully selected to be useful to toolkit dispatchers. To avoid
breaking toolkits, the order of these first five entries is not to change. Most
events also contain a time member, which is the time at which an event
occurred. In addition, a pointer to the generic event must be cast before it is
used to access any other information in the structure.

X Version 11 (Release 5) 6 January 1993

XAnyEvent(XS)

See also

XButtonEvent(XS), XCreateWindowEvent(XS), XCirculateEvent(XS),
XCirculateRequestEvent(XS), XColormapEvent(XS), XConfigureEvent(XS),
XConfigureRequestEvent(XS), XDestroy WindowEvent(XS),
XCrossingEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),
XSelectionClearEvent(XS), XSelectionEvent(XS),
XSelectionRequestEvent(XS), XUnmapEvent(XS), XVisibilityEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 83

XButtonEvent(XS)

XButtonEvent

KeyPress, KeyRelease, ButtonPress, ButtonRelease, and MotionNotify event structures

Structures

The structures for KeyPress,

MotionNotify events contain:

typedef struct {

int type; /*
unsigned long serial; /*
Bool send_event; /*
Display *display; /*
Window window; /*
Window root; /*
Window subwindow; /*
Time time; /*
int x, y; /*

int x_root, y_root; /*
unsigned int state; /*
unsigned int button; /*
Bool same_screen; /*

)} XButtonEvent;

KeyRelease, ButtonPress, ButtonRelease, and

ButtonPress or ButtonRelease */

of last request processed by server */

true if this came from a SendEvent request */
Display the event was read from */

‘'event’’ window it is reported relative to */
root window that the event occurred on */
child window */

milliseconds */

pointer x, y coordinates in event window */
coordinates relative to root */

key or button mask */

detail */

same screen flag */

typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

typedef struct {

int type; /*
unsigned long serial; /*
Bool send_event; /*
Display *display; /*
Window window; /*
Window root; /*
Window subwindow; /*
Time time; /*

int x, y; /*
int x_root, y_root; /*
unsigned int state; /*

unsigned int keycode; /*
Bool same_screen; /*
)} XKeyEvent;

KeyPress or KeyRelease */

of last request processed by server */

true if this came from a SendEvent request */
Display the event was read from */

‘'event’’ window it is reported relative to */
root window that the event occurred on */
child window */

milliseconds */

pointer x, y coordinates in event window */
coordinates relative to root */

key or button mask */

detail */

same screen flag */

typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

84

X Version 11 (Release 5) 6 January 1993

XButtonEvent(XS)

typedef struct {

int type; /* MotionNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* "'event’’' window reported relative to */
Window root; /* root window that the event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event window */
int x_root, y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
char is_hint; /* detail */
Bool same_screen; /* same screen flag */

) XMotionEvent;

typedef XMotionEvent XPointerMovedEvent;

When you receive these events, their structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-

fies it. For example, when the X server reports a GraphicsExpose event to a

client application, it sends an XGraphicsExposeEvent structure with the type

member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set.
from the serial number reported in thealprotocol but expanded from the 16-bit

least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers. .

These structures have the following common members: window, root, subwin-
dow, time, %, y, x_root, y_root, state, and same_screen. The window member is
set to the window on which the event was generated and is referred to as the
event window. As long as the conditions previously discussed are met, this is
the window used by the X server to report the event. The root member is set
to the source window’s root window. The x_root and y_root members are set
to the pointer’s coordinates relative to the root window’s origin at the time of
the event.

The same_screen member is set to indicate whether the event window is on
the same screen as the root window and can be either True or False. If True,
the event and root windows are on the same screen. If False, the event and
root windows are not on the same screen.

If the source window is an inferior of the event window, the subwindow
member of the structure is set to the child of the event window that is the
source window or the child of the event window that is an ancestor of the
source window. Otherwise, the X server sets the subwindow member to None.
The time member is set to the time when the event was generated and is
expressed in milliseconds.

X Version 11 (Release 5) 6 January 1993 85

XButtonEvent(XS)

See also

If the event window is on the same screen as the root window, the x and y
members are set to the coordinates relative to the event window’s origin. Oth-
erwise, these members are set to zero.

The state member is set to indicate the logical state of the pointer buttons
and modifier keys just prior to the event, which is the bitwise inclusive OR of
one or more of the button or modifier key masks: Button1lMask,
Button2Mask, Button3Mask, Button4Mask, Button5Mask, ShiftMask, Lock-
Mask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and
Mod5Mask.

Each of these structures also has a member that indicates the detail. For the
XKeyPressedEvent and XKeyReleasedEvent structures, this member is called
keycode. Itis set to a number that represents a physical key on the keyboard.
The keycode is an arbitrary representation for any key on the keyboard (see
sections 12.7 and 16.1 in Xlib - C Language X Interface).

For the XButtonPressedEvent and XButtonReleasedEvent structures, this
member is called button. It represents the pointer button that changed state
and can be the Button1, Button2, Button3, Button4, or Button5 value. For the
XPointerMovedEvent structure, this member is called is_hint. It can be set
to NotifyNormal or NotifyHint.

86

XAnyEvent(XS), XCreateWindowEvent(XS), XCirculateEvent(XS),
XCirculateRequestEvent(XS), XColormapEvent(XS), XConfigureEvent(XS),
XConfigureRequestEvent(XS), XCrossingEvent(XS), XDe-
stroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),
XSelectionClearEvent(XS), XSelectionEvent(XS),
XSelectionRequestEvent(XS), XUnmapEvent(XS), XVisibilityEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XChangeKeyboardControl(XS)

XChangeKeyboardControl

manipulate keyboard settings and keyboard control structure

Syntax

XChangeKeyboardControl (display, value_mask, values)
Display *display;
unsigned long value_mask;
XKeyboardControl *values;

XGetKeyboardControl (display, values_return)
Display *display;
XKeyboardState *values_return;

XAutoRepeatOn (display)
Display *display;

XAutoRepeatOff (display)
Display *display;

XBell (display, percent)
Display *display;
int percent;

XQueryKeymap(display, keys_return)

Display *display;
char keys_return(32);

Arguments

display Specifies the connection to the X server.

keys_return Returns an array of bytes that identifies which keys are
pressed down. Each bit represents one key of the keyboard.

percent Specifies the volume for the bell, which can range from -100
to 100 inclusive.

value_mask Specifies which controls to change. This mask is the bitwise
inclusive OR of the valid control mask bits.

values Specifies one value for each bit set to 1 in the mask.

values_return Returns the current keyboard controls in the specified XKey-
boardState structure.

X Version 11 (Release 5) 6 January 1993 87

XChangeKeyboardControl(XS)

Description

88

The XChangeKeyboardControl function controls the keyboard characteristics
defined by the XKeyboardControl structure. The value_mask argument
specifies which values are to be changed.

XChangeKeyboardControl can generate “BadMatch” and “BadValue” errors.

The XGetKeyboardControl function returns the current control values for the
keyboard to the XKeyboardState structure.

The XAutoRepeatOn function turns on auto-repeat for the keyboard on the
specified display.

The XAutoRepeatOff function turns off auto-repeat for the keyboard on the
specified display.

The XBell function rings the bell on the keyboard on the specified display, if
possible. The specified volume is relative to the base volume for the key-
board. If the value for the percent argument is not in the range -100 to 100
inclusive, a “BadValue” error results. The volume at which the bell rings
when the percent argument is nonnegative is:

base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:
base + [(base * percent) / 100]

To change the base volume of the bell, use XChangeKeyboardControl.

XBell can generate a “BadValue” error.

The XQueryKeymap function returns a bit vector for the logical state of the
keyboard, where each bit set to 1 indicates that the corresponding key is
currently pressed down. The vector is represented as 32 bytes. Byte N (from
0) contains the bits for keys 8N to 8N + 7 with the least-significant bit in the
byte representing key 8N.

Note that the logical state of a device (as seen by client applications) may lag
the physical state if device event processing is frozen.

X Version 11 (Release 5) 6 January 1993

XChangeKeyboardControl(XS)

Structures

The XKeyboardControl structure contains:

/* Mask bits for ChangeKeyboardControl */
#define KBKeyClickPercent (1L<<0)

#define KBBellPercent (1L<<1)
#define KBBellPitch (1L<<2)
#define KBBellDuration (1L<<3)
#define KBLed (1L<<4)
#define KBLedMode (1L<<5)
#define KBKey (1L<<6)

#define KBAutoRepeatMode (1g<<7)

/* Values */

typedef struct (

int key_click_percent;

int bell_percent;

int bell_pitch;

int bell_duration;

int led;

int led_mode; /* LedModeOn, LedModeOff */

int key;

int auto_repeat_mode; /* AutoRepeatModeOff, AutoRepeatModeOn,

AutoRepeatModeDefault */

) XKeyboardControl;

The key_click_percent member sets the volume for key clicks between 0 (off)
and 100 (loud) inclusive, if possible. A setting of -1 restores the default. Other
negative values generate a “BadValue” error.

The bell_percent sets the base volume for the bell between 0 (off) and 100
(loud) inclusive, if possible. A setting of -1 restores the default. Other nega-
tive values generate a “BadValue” error. The bell_pitch member sets the
pitch (specified in Hz) of the bell, if possible. A setting of -1 restores the
default. Other negative values generate a “BadValue” error. The
bell_duration member sets the duration of the bell specified in milliseconds,
if possible. A setting of -1 restores the default. Other negative values gen-
erate a “BadValue” error.

If both the led_mode and led members are specified, the state of that LED is
changed, if possible. The 1ed_mode member can be set to LedModeOn or Led-
ModeOff. If only led_mode is specified, the state of all LEDs are changed, if
possible. At most 32 LEDs numbered from one are supported. No standard
interpretation of LEDs is defined. If led is specified without led_mode, a “Bad-
Mat:ﬂ” error results.

X Version 11 (Release 5) 6 January 1993 89

XChangeKeyboardCon rol(XS)

If both the auto_repeat_mode and key members are specified, the
auto_repeat_mode of that key is changed (according to AutoRepeatModeOn,
AutoRepeatModeOff, or AutoRepeatModeDefault), if possible. If only
auto_repeat_mode is specified, the global auto_repeat_mode for the entire key-
board is changed, if possible, and does not affect the per key settings. If a key
is specified without an auto_repeat_mode, a “BadMatch” error results. Each
key has an individual mode of whether or not it should auto-repeat and a
default setting for the mode. In addition, there is a global mode of whether
auto-repeat should be enabled or not and a default setting for that mode.
When global mode is AutoRepeatModeOn, keys should obey their individual
auto-repeat modes. When global mode is AutoRepeatModeOff, no keys
should auto-repeat. An auto-repeating key generates alternating KeyPress
and KeyRelease events. When a key is used as a modifier, it is desirable for
the key not to auto-repeat, regardless of its auto-repeat setting.

The XKeyboardState structure contains:

typedef struct (
int key_click_percent;
int bell_percent;
unsigned int bell_pitch, bell_duration;
unsigned long led_mask;
int global_auto_repeat;
char auto_repeats[32);
} XKeyboardState;

For the LEDs, the least-significant bit of 1ed_mask corresponds to LED one, and
each bit set to 1 in led mask indicates an LED that is lit. The
global_auto_repeat member can be set to AutoRepeatModeOn or
AutoRepeatModeOff. The auto_repeats member is a bit vector. Each bit set
to 1 indicates that auto-repeat is enabled for the corresponding key. The vec-
tor is represented as 32 bytes. Byte N (from 0) contains thebits for keys 8N to
8N + 7 with the least-significant bit in the byte representing key 8N.

Diagnostics

See also

“BadMatch” Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

90

XChangeKeyboardMapping(XS), XSetPointerMapping(XS)
Xlib - C Language X Intetface

X Version 11 (Release 5) 6 January 1993

XChangeKeyboardMapping(XS5)

XChangeKeyboardMapping

manipulate keyboard encoding and keyboard encoding structure

Syntax

XChangeKeyboardMapping(display, first_keycode, keysyms_per_keycode, keysyms,
num_codes)
Display *display;
int first_keycode;
int keysyms_per_keycode;
KeySym *keysyms;
int num_codes;

KeySym *XGetKeyboardMapping(display, first_keycode, keycode_count,
keysyms_per_keycode_return)

Display *display;

KeyCode first_keycode;

int keycode_count;

int *keysyms_per_keycode_return;

XDisplayKeycodes(display, min_keycodes_return, max_keycodes_return)
Display *display;
int *min_keycodes_return, *max_keycodes_return;

int XSetModifierMapping(display, modmap)
Display *display;
XModifierKeymap *modmap;

XModifierKeymap *XGetModifierMapping(display)
Display *display;

XModifierKeymap *XNewModifiermap(max_keys_per_mod)
int max_keys_per_mod;

XModifierKeymap *XInsertModifiermapEntry(modmap, keycode_entry, modifier)
XModifierKeymap *modmap;
KeyCode keycode_entry;
int modifier;

XModifierKeymap *XDeleteModifiermapEntry(modmap, keycode_entry, modifier)
XModifierKeymap *modmap;
KeyCode keycode_entry;
int modifier;

XFreeModi f iermap (modmap)
XModifierKeymap *modmap;

X Version 11 (Release 5) 6 January 1993 91

XChangeKeyboardMapping(XS)

Arguments

display Specifies the connection to the X server.

first_keycode Specifies the first KeyCode that is to be changed or returned.
keycode_count Specifies the number of KeyCodes that are to be returned.
keycode_entry Specifies the KeyCode.

keysyms Specifies an array of KeySyms.

keysyms_per_keycode
Specifies the number of KeySyms per KeyCode.

keysyms_per_keycode_return
Returns the number of KeySyms per KeyCode.

max_keys_per_mod
Specifies the number of KeyCode entries preallocated to the
modifiers in the map. '

max_keycodes_return
Returns the maximum number of KeyCodes.

min_keycodes_return
Returns the minimum number of KeyCodes.

modifier Specifies the modifier.

modmap Specifies the XModifierKeymap structure.

num_codes Specifies the number of KeyCodes that are to be changed.
Description

92

The XChangeKeyboardMapping function defines the symbols for the speci-
fied number of KeyCodes starting with first_keycode. The symbols for Key-
Codes outside this range remain unchanged. The number of elements in
keysyms must be:

num_codes * keysyms_per_keycode

The specified first_keycode must be greater than or equal to min_keycode
returned by XDisplayKeycodes, or a “BadValue” error results. In addition,
the following expression must be less than or equal to max_keycode as
returned by XDisplayKeycodes, or a “BadValue” error results:

first_keycode + num_codes - 1

X Version 11 (Release 5) 6 January 1993

XChangeKeyboardMapping(XS)

KeySym number N, counting from zero, for KeyCode K has the following
index in keysyms, counting from zero:

(K - first_keycode) * keysyms_per_keycode + N

The specified keysyms_per_keycode can be chosen arbitrarily by the client to
be large enough to hold all desired symbols. A special KeySym value of
NoSymbol should be used to fill in unused elements for individual Key-
Codes. It is legal for NoSymbol to appear in nontrailing positions of the
effective list for a KeyCode. XChangeKeyboardMapping generates a Map-
pingNotify event.

There is no requirement that the X server interpret this mapping. It is merely
stored for reading and writing by clients.

XChangeKeyboardMapping can generate “BadAlloc” and “BadValue” errors.

The XGetKeyboardMapping function returns the symbols for the specified
number of KeyCodes starting with first_keycode. The value specified in
first_keycode must be greater than or equal to min_keycode as returned by
XDisplayKeycodes, or a “BadValue” error results. In addition, the following
expression must be less than or equal to max_keycode as returned by XDis-
playKeycodes:

first_keycode + keycode_count - 1

If this is not the case, a “BadValue” error results. The number of elements in
the KeySyms list is:

keycode_count * keysyms_per_keycode_return
KeySym number N, counting from zero, for KeyCode K has the following
index in the list, counting from zero:

(K - first_code) * keysyms_per_code_return + N
The X server arbitrarily chooses the keysyms_per_keycode_return value to be
large enough to report all requested symbols. A special KeySym value of
NoSymbol is used to fill in unused elements for individual KeyCodes. To free
the storage returned by XGetKeyboardMapping, use XFree.

XGetKeyboardMapping can generate a “BadValue” error.

The XDisplayKeycodes function returns the min-keycodes and max-
keycodes supported by the specified display. The minimum number of Key-
Codes returned is never less than 8, and the maximum number of KeyCodes
returned is never greater than 255. Not all KeyCodes in this range are
required to have corresponding keys.

The XSetModifiertMapping function specifies the KeyCodes of the keys (if
any) that are to be used as modifiers. If it succeeds, the X server generates a
MappingNotify event, and XSetModifierMapping returns MappingSuccess.
X permits at most eight modifier keys. If more than eight are specified in the
XModifierKeymap structure, a “BadLength” error results.

X Version 11 (Release 5) 6 January 1993 93

XChangeKeyboardMapping(XS)

The modifiermap member of the XModifierKeymap structure contains eight
sets of max_keypermod KeyCodes, one for each modifier in the order Shift,
Lock, Control, Mod1, Mod2, Mod3, Mod4, and Mod5. Only nonzero Key-
Codes have meaning in each set, and zero KeyCodes are ignored. In addition,
all of the nonzero KeyCodes must be in the range specified by min_keycode
and max_keycode in the Display structure, or a “BadValue” error results.

An X server can impose restrictions on how modifiers can be changed, for
example, if certain keys do not generate up transitions in hardware, if auto-
repeat cannot be disabled on certain keys, or if multiple modifier keys are not
supported. If some such restriction is violated, the status reply is Mapping-
Failed, and none of the modifiers are changed. If the new KeyCodes specified
for a modifier differ from those currently defined and any (current or new)
keys for that modifier are in the logically down state, XSetModifierMapping
returns MappingBusy, and none of the modifiers is changed.

XSetModifierMapping can generate “BadAlloc” and “BadValue” errors.

The XGetModifierMapping function returns a pointer to a newly created
XModifierKeymap structure that contains the keys being used as modifiers.
The structure should be freed after use by calling XFreeModifiermap. If only
zero values appear in the set for any modifier, that modifier is disabled.

The XNewModifiermap function returns a pointer to XModifierKeymap
structure for later use.

The XInsertModifiermapEntry function adds the specified KeyCode to the
set that controls the specified modifier and returns the resulting XModifi-
erKeymap structure (expanded as needed).

The XDeleteModifiermapEntry function deletes the specified KeyCode from
the set that controls the specified modifier and returns a pointer to the result-
ing XModifierKeymap structure.

The XFreeModifiermap function frees the specified XModifierKeymap struc-
ture.

Structures

94

The XModifierKeymap structure contains:

typedef struct {
int max_keypermod; /* This server’s max number of keys per modifier */
KeyCode *modifiermap; /* An 8 by max_keypermod array of the modifiers */
) XModifierKeymap;

X Version 11 (Release 5) 6 January 1993

XChangeKeyboardMapping(XS)

Diagnostics

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

See also

XFree(XS), XSetPointerMapping(XS)
X1ib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 95

XChangePointerControl(XS)

XChangePointerControl

control pointer

Syntax

XChangePointerControl (display, do_accel, do_threshold, accel_numerator,
accel_denominator, threshold)
Display *display;
Bool do_accel, do_threshold;
int accel_numerator, accel_denominator;
int threshold;

XGetPointerControl (display, accel_numerator_return,
accel_denominator_return, threshold_return)
Display *display;
int *accel_numerator_return, *accel_denominator_return;
int *threshold_return;

Arguments

96

accel_denominator
Specifies the denominator for the acceleration multiplier.

accel_denominator_return
Returns the denominator for the acceleration multiplier.

accel_numerator
Specifies the numerator for the acceleration multiplier.

accel_numerator_return
Returns the numerator for the acceleration multiplier.

display Specifies the connection to the X server.

do_accel Specifies a Boolean value that controls whether the values
for the accel_numerator or accel_denominator are used.

do_threshold Specifies a Boolean value that controls whether the value for
the threshold is used.

threshold Specifies the acceleration threshold.

threshold_return
Returns the acceleration threshold.

X Version 11 (Release 5) 6 January 1993

XChangePointerControl(XS)

Description

The XChangePointerControl function defines how the pointing device
moves. The acceleration, expressed as a fraction, is a multiplier for move-
ment. For example, specifying 3/1 means the pointer moves three times as
fast as normal. The fraction may be rounded arbitrarily by the X server.
Acceleration only takes effect if the pointer moves more than threshold pixels
at once and only applies to the amount beyond the value in the threshold
argument. Setting a value to -1 restores the default. The values of the
do_accel and do_threshold arguments must be True for the pointer values to
be set, or the parameters are unchanged. Negative values (other than -1) gen-
erate a “BadValue” error, as does a zero value for the accel_denominator argu-
ment.

XChangePointerControl can generate a “BadValue” error.

The XGetPointerControl function returns the pointer’s current acceleration
multiplier and acceleration threshold.

Diagnostics
“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.
See also

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 97

XChangeSaveSet(XS)

XChangeSaveSet

change a client's save set

Syntax

XChangeSaveSet (display, w, change_mode)
Display *display;
Window w;
int change_mode;

XAddToSaveSet (display, w)
Display *display;
Window w;

XRemoveFromSaveSet (display, w)
Display *display;
Window w;

Arguments

change_mode Specifies the mode. You can pass SetModeInsert or SetMo-
deDelete.

display Specifies the connection to the X server.

w Specifies the window that you want to add or delete from the
client’s save-set.

Description

98

Depending on the specified mode, XChangeSaveSet either inserts or deletes
the specified window from the client’s save-set. The specified window must
have been created by some other client, or a “BadMatch” error results.

XChangeSaveSet can generate “BadMatch”, “BadValue”, and “BadWindow”
errors.

The XAddToSaveSet function adds the specified window to the client’s save-
set. The specified window must have been created by some other client, or a
“BadMatch” error results.

XAddToSaveSet can generate “BadMatch” and “BadWindow” errors.

The XRemoveFromSaveSet function removes the specified window from the
client’s save-set. The specified window must have been created by some
other client, or a “BadMatch” error results.

XRemoveFromSaveSet can generate “BadMatch” and “BadWindow” errors.

X Version 11 (Release 5) 6 January 1993

XChangeSaveSet(XS)

Diagnostics

“BadMatch” Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XReparentWindow(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 99

XChangeWindow Attributes(XS)

XChangeWindowAttributes

change window attributes

Syntax

XChangeWindowAttributes(display, w, valuemask, attributes)
Display *display;
Window w;
unsigned long valuemask;
XSetWindowAttributes *attributes;

XSetWindowBackground(display, w, background_pixel)
Display *display;
Window w;
unsigned long background_pixel;

XSetWindowBackgroundPixmap(display, w, background_pixmap)
Display *display;
Window w;
Pixmap background_pixmap;

XSetWindowBorder(display, w, border_pixel)
Display *display;
Window w;
unsigned long border_pixel;

XSetWindowBorderPixmap (display, w, border_pixmap)
Display *display;
Window w;
Pixmap border_pixmap;

XSetWindowColormap(display, w, colormap)
Display *display;
Window w;
Colormap colormap;

Arguments
attributes Specifies the structure from which the values (as specified by
the value mask) are to be taken. The value mask should
have the appropriate bits set to indicate which attributes
have been set in the structure.
background_pixel
Specifies the pixel that is to be used for the background.
background_pixmap
Specifies the background pixmap, ParentRelative, or None.
100 X Version 11 (Release 5) 6 January 1993

XChangeWindow Attributes(XS)

border_pixel Specifies the entry in the colormap.

border_pixmap Specifies the border pixmap or CopyFromParent.

display Specifies the connection to the X server.

valuemask Specifies which window attributes are defined in the
attributes argument. This mask is the bitwise inclusive OR

of the valid attribute mask bits. If valuemask is zero, the
attributes are ignored and are not referenced.

w Specifies the window.
colormap Specifies the colormap.
Description

Depending on the valuemask, the XChangeWindowAttributes function uses
the window attributes in the XSetWindowAttributes structure to change the
specified window attributes. Changing the background does not cause the
window contents to be changed. To repaint the window and its background,
use XClearWindow. Setting the border or changing the background such that
the border tile origin changes causes the border to be repainted. Changing the
background of a root window to None or ParentRelative restores the default
background pixmap. Changing the border of a root window to CopyFrom-
Parent restores the default border pixmap. Changing the win-gravity does
not affect the current position of the window. Changingl the backing-store of
an obscured window to WhenMapped or Always, or changing the backing-
planes, backing-pixel, or save-under of a mapped window may have no
immediate effect. Changing the colormap of a window (that is, defining a
new map, not changing the contents of the existing map) generates a Color-
mapNotify event. Changing the colormap of a visible window may have no
immediate effect on the screen because the map may not be installed (see
XInstallColormap(XS)). Changing the cursor of a root window to None
restores the default cursor. Whenever possible, you are encouraged to share
colormaps.

Multiple clients can select input on the same window. Their event masks are
maintained separately. When an event is generated, it is reported to all
interested clients. However, only one client at a time can select for Substruc-
tureRedirectMask, ResizeRedirectMask, and ButtonPressMask. If a client
attempts to select any of these event masks and some other client has already
selected one, a “BadAccess” error results. There is only one do-not-
propagate-mask for a window, not one per client.

XChangeWindowAttributes can generate “BadAccess”, “BadColor”, “BadCur-
sor”, “BadMatch”, “BadPixmap”, “BadValue”, and “BadWindow” errors.

X Version 11 (Release 5) 6 January 1993 101

XChangeWindowAttributes(XS)

The XSetWindowBackground function sets the background of the window to
the specified pixel value. Changing the background does not cause the win-
dow contents to be changed. XSetWindowBackground uses a pixmap of
undefined size filled with the pixel value you passed. If you try to change the
background of an InputOnly window, a “BadMatch” error results.

XSetWindowBackground can generate “BadMatch” and “BadWindow”
errors.

The XSetWindowBackgroundPixmap function sets the background pixmap
of the window to the specified pixmap. The background pixmap can immedi-
ately be freed if no further explicit references to it are to be made. If ParentRe-
lative is specified, the background pixmap of the window’s parent is used, or
on the root window, the default background is restored. If you try to change
the background of an InputOnly window, a “BadMatch” error results. If the
background is set to None, the window has no defined background.

XSetWindowBackgroundPixmap can generate “BadMatch”, “BadPixmap”,
and “BadWindow” errors.

The XSetWindowBorder function sets the border of the window to the pixel
value you specify. If you attempt to perform this on an InputOnly window, a
“BadMatch” error results.

XSetWindowBorder can generate “BadMatch” and “BadWindow” errors.

The XSetWindowBorderPixmap function sets the border pixmap of the win-
dow to the pixmap you specify. The border pixmap can be freed immediately
if no further explicit references to it are to be made. If you specify CopyFrom-
Parent, a copy of the parent window’s border pixmap is used. If you attempt
to perform this on an InputOnly window, a “BadMatch” error results.

XSetWindowBorderPixmap can generate “BadMatch”, “BadPixmap”, and
“BadWindow” errors.

The XSetWindowColormap function sets the specified colormap of the speci-
fied window. The colormap must have the same visual type as the window,
or a “BadMatch” error results.

XSetWindowColormap can generate “BadColor”, “BadMatch”, and “BadWin-
dow” errors.

Diagnostics

“BadAccess” A client attempted to free a color map entry that it did not
already allocate.

“BadAccess” A client attempted to store into a read-only color map entry.

102 X Version 11 (Release 5) 6 January 1993

“BadColor”
“BadCursor”

“BadMatch”

“BadMatch”
“BadPixmap”

“BadValue”

“BadWindow”

See also

XChangeWindowAttributes(XS)

A value for a Colormap argument does not name a defined
Colormap.

A value for a Cursor argument does not name a defined Cur-
sor.

Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

An InputOnly window locks this attribute.

A value for a Pixmap argument does not name a defined Pix-
map.

Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

A value for a Window argument does not name a defined
Window.

XConfigureWindow(XS), XCreateWindow(XS), XDestroyWindow(XS),
XInstallColormap(XS), XMapWindow(XS), XRaiseWindow(XS),
XUnmapWindow(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 103

XCirculateEvent(XS)

XCirculateEvent

CirculateNotify event structure

Structures

See also

The structure for CirculateNotify events contains:
typedef struct {

int type; /* CirculateNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

int place; /* PlaceOnTop, PlaceOnBottom */
} XCirculateEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The event member is set either to the restacked window or to its parent,
depending on whether StructureNotify or SubstructureNotify was selected.
The window member is set to the window that was restacked. The place
member is set to the window’s position after the restack occurs and is either
PlaceOnTop or PlaceOnBottom. If it is PlaceOnTop, the window is now on
top of all siblings. If it is PlaceOnBottom, the window is now below all
siblings.

104

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateRequestEvent(XS), XColormapEvent(XS), XConfigureEvent(XS),
XConfigureRequestEvent(XS), XCrossingEvent(XS), XDe-
stroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),
XSelectionClearEvent(XS), XSelectionEvent(XS),
XSelectionRequestEvent(XS), XUnmapEvent(XS), XVisibilityEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XCirculateRequestEvent(XS)

XCirculateRequestEvent

CirculateRequest event structure

Structures

See also

The structure for CirculateRequest events contains:
typedef struct (

int type; /* CirculateRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent;

Window window;

int place; /* PlaceOnTop, PlaceOnBottom */
} XCirculateRequestEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The parent member is set to the parent window. The window member is set to
the subwindow to be restacked. The place member is set to what the new
position in the stacking order should be and is either PlaceOnTop or PlaceOn-
Bottom. If it is PlaceOnTop, the subwindow should be on top of all siblings.
If it is PlaceOnBottom, the subwindow should be below all siblings.

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XColormapEvent(XS), XConfigureEvent(XS), XConfig-
ureRequestEvent(XS), XCrossingEvent(XS), XDestroyWindowEvent(XS),
XErrorEvent(XS), XExposeEvent(XS), XFocusChangeEvent(XS),
XGraphicsExposeEvent(XS), XGravityEvent(XS), XKeymapEvent(XS),
XMapEvent(XS), XMapRequestEvent(XS), XPropertyEvent(XS),
XReparentEvent(XS), XResizeRequestEvent(XS), XSelectionClearEvent(XS),
XSelectionEvent(XS), XSelectionRequestEvent(XS), XUnmapEvent(XS),
XVisibilityEvent(XS)

X1ib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 105

XClearArea(XS)

XClearArea

clear area or window

Syntax

XClearArea(display, w, x, y, width, height, exposures)
Display *display;
Window w;
int x, y;
unsigned int width, height;
Bool exposures;

XClearWindow(display, w)

Display *display;
Window w;

Arguments

display Specifies the connection to the X server.

exposures Specifies a Boolean value that indicates if Expose events are to be
generated.

w Specifies the window.

width
height Specify the width and height, which are the dimensions of the rec-
tangle. and specify the upper-left corner of the rectangle

X
y Specify the x and y coordinates, which are relative to the origin of
the window.
Description

The XClearArea function paints a rectangular area in the specified window
according to the specified dimensions with the window’s background pixel or
pixmap. The subwindow-mode effectively is ClipByChildren. If width is
zero, it is replaced with the current width of the window minus x. If height is
zero, it is replaced with the current height of the window minus y. If the win-
dow has a defined background tile, the rectangle clipped by any children is
filled with this tile. If the window has background None, the contents of the
window are not changed. In either case, if exposures is True, one or more
Expose events are generated for regions of the rectangle that are either visible
or are being retained in a backing store. If you specify a window whose class
is InputOnly, a “BadMatch” error results.

106 X Version 11 (Release 5) 6 January 1993

XClear Area(XS)

XClearArea can generate “BadMatch”, “BadValue”, and “BadWindow” errors.

The XClearWindow function clears the entire area in the specified window
and is equivalent to XClearArea (display, w, 0, 0, 0, 0, False). If the window
has a defined background tile, the rectangle is tiled with a plane-mask of all
ones and GXcopy function. If the window has background None, the con-
tents of the window are not changed. If you specify a window whose class is
InputOnly, a “BadMatch” error results.

XClearWindow can generate “BadMatch” and “BadWindow” errors.

Diagnostics

“BadMatch” An InputOnly window is used as a Drawable.

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XCopyArea(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 107

XClientMessageEvent(XS)

XClientMessageEvent

ColomapNotify event structure

Structures

See also

The structure for ClientMessage events contains:
typedef struct {

int type; /* ClientMessage */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
Atom message_type;

int format;

union (
char b(20);
short s(10];
long 1(5];
} data;

} XClientMessageEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The message_type member is set to an atom that indicates how the data
should be interpreted by the receiving client. The format member is set to 8,
16, or 32 and specifies whether the data should be viewed as a list of bytes,
shorts, or longs. The data member is a union that contains the members b, s,
and 1. The b, s, and 1 members represent data of 20 8-bit values, 10 16-bit
values, and 5 32-bit values. Particular message types might not make use of
all these values. The X server places no interpretation on the values in the
window, message_type, or data members.

108

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),

X Version 11 (Release 5) 6 January 1993

XClientMessageEvent(XS)

XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),
XSelectionClearEvent(XS), XSelectionEvent(XS),
XSelectionRequestEvent(XS), XUnmapEvent(XS), XVisibilityEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 109

XcmsAllocColor(XS)

XcmsAllocColor

allocate device-independent colors

Syntax

Status XcmsAllocColor(display, colormap, color_in_out, result_format)
Display *display;
Colormap colormap;
XcmsColor *color_in_out;
XcmsColorFormat result_format;

Status XcmsAllocNamedColor(display, colormap, color_string,
color_screen_return, color_exact_return,
result_format)

Display *display;

Colormap colormap;

char *color_string;

XcmsColor *color_screen_return;
XcmsColor *color_exact_return;
XcmsColorFormat result_format;

Arguments

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_exact_return
Returns the color specification parsed from the color string
or parsed from the corresponding string found in a color
name database.

color_in_out Specifies the color to allocate and returns the pixel and color
that is actually used in the colormap.

color_screen_return
Returns the pixel value of the color cell and color specifica-
tion that actually is stored for that cell.

color_string Specifies the color string whose color definition structure is
to be returned.

result_format Specifies the color format for the returned color specification.

110 X Version 11 (Release5) 6 January 1993

XcmsAllocColor(XS)

Description

The XcmsAllocColor function is similar to XAllocColor except the color can
be specified in any format. The XcmsAllocColor function ultimately calls
XAllocColor to allocate a read-only color cell (colormap entry) with the speci-
fied color. XcmsAllocColor first converts the color specified to an RGB value
and then passes this to XAllocColor. XcmsAllocColor returns the pixel value
of the color cell and the color specification actually allocated. This returned
color specification is the result of converting the RGB value returned by XAl-
locColor into the format specified with the result_format argument. If there
is no interest in a returned color specification, unnecessary computation can
be bypassed if result_format is set to XcmsRGBFormat. The corresponding
colormap cell is read-only. If this routine returns XcmsFailure, the
color_in_out color specification is left unchanged.

XcmsAllocColor can generate a “BadColor” errors.

The XcmsAllocNamedColor function is similar to XAllocNamedColor except
the color returned can be in any format specified. This function ultimately
calls XAllocColor to allocate a read-only color cell with the color specified by
a color string. The color string is parsed into an XcmsColor structure (see
XcmsLookupColor(XS)), converted to an RGB value, then finally passed to the
XAllocColor. If the color name is not in the Host Portable Character Encod-
ing the result is implementation dependent. Use of uppercase or lowercase
does not matter.

This function returns both the color specification as a result of parsing (exact
specification) and the actual color specification stored (screen specification).
This screen specification is the result of converting the RGB value returned by
XAllocColor into the format specified in result_format. If there is no interest
in a returned color specification, unnecessary computation can be bypassed if
result_format is set to XcnsRGBFormat.

XcmsAllocNamedColor can generate a “BadColor” errors.

Diagnostics

“BadColor” A value for a Colormap argument does not name a defined
Colormap.

See also

XcmsQueryColor(XS), XcmsStoreColor(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 111

XcmsCCCOfColormap(XS)

XcmsCCCOfColormap

query and modify CCC of a colomap

Syntax
XcmsCCC XcemsCCCOfColormap(display, colormap)
Display *display;
Colormap colormap;
XcmsCCC XcmsSetCCCOfColormap{display, colormap, ccc)
Display *display;
Colormap colormap;
XcmsCCC ccc;
Arguments
display Specifies the connection to the X server.
ccc Specifies the CCC.
colormap Specifies the colormap.
Description
The XecmsCCCOfColormap function returns the CCC associated with the
specified colormap. Once obtained, the CCC attributes can be queried or
modified. Unless the CCC associated with the specified colormap is changed
with XcmsSetCCCOfColormap, this CCC is used when the specified color-
map is used as an argument to color functions.
The XcmsSetCCCOfColormap function changes the CCC associated with the
specified colormap. It returns the CCC previously associated to the colormap.
If they are not used again in the application, CCCs should be freed by calling
XcmsFreeCCC.
See also

DisplayOfCCC(XS), XcmsConvertColors(XS), XcmsCreateCCC(XS),

XcmsDefaultCCC(XS), XcmsSetWhitePoint(XS)
Xlib - C Language X Interface

112 X Version 11 (Release 5) 6 January 1993

XcmsCIELabQueryMaxC(XS)

XcmsCIELabQueryMaxC

obtain the CIE L*a*b* coordinates

Syntax

Status XcmsCIELabQueryMaxC(ccc, hue_angle, L_star, color_return)
XemsCCC ccc;
XcmsFloat hue_angle;
XcmsFloat L_star;
XcmsColor *color_return;

Status XcmsCIELabQueryMaxL(ccc, hue_angle, chroma, color_return)
XemsCCC ccc;
XcmsFloat hue_angle;
XcmsFloat chroma;
XcmsColor *color_return;

Status XcmsCIELabQueryMaxLC(ccc, hue_angle, color_return)
XcmsCCC ccc;
XcmsFloat hue_angle;
XcmsColor *color_return;

Status XcmsCIELabQueryMinL(ccc, hue_angle, chroma, color_return)
XcmsCCC cec;
XcmsFloat hue_angle;
XcmsFloat chroma;
XcmsColor *color_return;

Arguments

ccc Specifies the CCC. Note that the CCC’s Client White Point and
White Point Adjustment procedures are ignored.

chroma Specifies the chroma at which to find maximum lightness
(MaxL) or minimum lightness (MinL).

color_return Returns the CIE L*a*b* coordinates of maximum chroma
(MaxC and MaxLC), maximum lightness (MaxL), or minimum
lightness (MinL). displayable by the screen for the given hue
angle and lightness (MaxC), hue angle and chroma (MaxL and
MinL), or hue angle (MaxLC). The white point associated with
the returned color specification is the Screen White Point. The
value returned in the pixel member is undefined.

X Version 11 (Release 5) 6 January 1993 113

XcmsCIELabQueryMaxC(XS)

hue_angle Specifies the hue angle in degrees at which to find maximum
chroma (MaxC and MaxLC), maximum lightness (MaxL), or
minimum lightness (MinL).

L_star Specifies the lightness (L*) at which to find maximum chroma
(MaxC).

Description

See also

The XemsCIELabQueryMaxC function, given a hue angle and lightness, finds
the point of maximum chroma displayable by the screen. It returns this point
in CIE L*a*b* coordinates.

The XcmsCIELabQueryMaxL function, given a hue angle and chroma, finds
the point in CIE L*a*b* color space of maximum lightness (L*) displayable by
the screen. It returns this point in CIE L*a*b* coordinates. An XcmsFailure
return value usually indicates that the given chroma is beyond maximum for
the given hue angle.

The XcmsCIELabQueryMaxLC function, given a hue angle, finds the point of
maximum chroma displayable by the screen. It returns this point in CIE
L*a*b* coordinates.

The XcmsCIELabQueryMinL function, given a hue angle and chroma, finds
the point of minimum lightness (L*) displayable by the screen. It returns this
point in CIE L*a*b* coordinates. An XcmsFailure return value usually indi-
cates that the given chroma is beyond maximum for the given hue angle.

114

XcmsCIELuvQueryMaxC(XS), XemsTekHVCQueryMaxC(XS),
XcmsQueryBlack(XS)
XIib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XcmsCIELuvQueryMaxC(XS)

XcmsCIELuvQueryMaxC

obtain the CIE L*u*v* coordinates

Syntax

Status XcmsCIELuvQueryMaxC(ccc, hue_angle, L_star, color_return)
XcmsCCC ccc;
XcmsFloat hue_angle;
XcmsFloat L_star;
XcmsColor *color_return;

Status XcmsCIELuvQueryMaxL(ccc, hue_angle, chroma, color_return)
XemsCCC ccec;
XcmsFloat hue_angle;
XcmsFloat chroma;
XcmsColor *color_return;

Status XcmsCIELuvQueryMaxLC(ccc, hue_angle, color_return)
XcmsCCC cec;
XcmsFloat hue_angle;
XcmsColor *color_return;

Status XcmsCIELuvQueryMinL(ccc, hue_angle, chroma, color_return)
XcmsCCC ccc;
XcmsFloat hue_angle;
XcmsFloat chroma;
XcmsColor *color_return;

Arguments

ccc

chroma

color_return

Specifies the CCC. Note that the CCC’s Client White Point and
White Point Adjustment procedures are ignored.

Specifies the chroma at which to find maximum lightness
(MaxL) or minimum lightness (MinL).

Returns the CIE L*u*v* coordinates of maximum chroma
(MaxC and MaxLC), maximum lightnes (MaxL), or minimum
lightness (MinL). displayable by the screen for the given hue
angle and lightness (MaxC), hue angle and chroma (MaxL and
MinL), or hue angle (MaxLC). The white point associated with
the returned color specification is the Screen White Point. The
value returned in the pixel member is undefined.

X Version 11 (Release 5) 6 January 1993 115

XcmsCIELuvQueryMaxC(XS)

hue_angle Specifies the hue angle in degrees at which to find maximum
chroma (MaxC and MaxLC), maximum lightness (MaxL), or
minimum lightness (MinL).

L_star Specifies the lightness (L*) at which to find maximum chroma
(MaxC) or maximum lightness (MaxL).

Description

See also

The XemsCIELuvQueryMaxC function, given a hue angle and lightness, finds
the point of maximum chroma displayable by the screen. Note that it returns
this point in CIE L*u*v* coordinates.

The XcmsCIELuvQueryMaxL function, given a hue angle and chroma, finds
the point in CIE L*u*v* color space of maximum lightness (L*) displayable by
the screen. Note that it returns this point in CIE L*u*v* coordinates. An
XcmsFailure return value usually indicates that the given chroma is beyond
maximum for the given hue angle.

The XcmsCIELuvQueryMaxLC function, given a hue angle, finds the point of
maximum chroma displayable by the screen. Note that it returns this point in
CIE L*u*v* coordinates.

The XcmsCIELuvQueryMinL function, given a hue angle and chroma, finds
the point of minimum lightness (L*) displayable by the screen. Note that it
returns this point in CIE L*u*v* coordinates. An XcmsFailure return value
usually indicates that the given chroma is beyond maximum for the given hue
angle.

116

XcmsCIELabQueryMaxC(XS), XemsTekHVCQueryMaxC(XS),
XcmsQueryBlack(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XcmsColor(XS)

XcmsColor

Xcms color structure

Structures

The structure for XemsColor contains:
typedef unsigned long XcmsColorFormat; /* Color Specification Format */

typedef struct |
union (
XcmsRGB RGB;
XcmsRGBi RGBi ;
XcmsCIEXYZ CIEXYZ;
XcmsCIEuvY CIEuvY;
XcmsCIExyY CIExyY;
XcmsCIELab CIELab;
XcmsCIELuv CIELuv;
XcmsTekHVC TekHVC;
XcmsPad Pad;
} spec;
XcmsColorFormat format;
unsigned long pixel;
} XcmsColor; /* Xcms Color Structure */

typedef double XcmsFloat;

typedef struct (
unsigned short red; /* 0x0000 to Oxffff */
unsigned short green; /* 0x0000 to Oxffff */
unsigned short blue; /* 0x0000 to Oxffff */

} XcmsRGB; /* RGB Device */
typedef struct {
XcmsFloat red; /* 0.0 to 1.0 */
XcmsFloat green; /* 0.0 to 1.0 */
XcmsFloat blue; /* 0.0 to 1.0 */
} XcmsRGBi; /* RGB Intensity */
typedef struct (
XcmsFloat X;
XcmsFloat Y; /* 0.0 to 1.0 */
XcmsFloat Z;
} XcmsCIEXYZ; /* CIE XYZ */
typedef struct (
XcmsFloat u_prime; /* 0.0 to ~0.6 */
XcmsFloat v_prime; /* 0.0 to "0.6 */
XcmsFloat Y; /* 0.0 to 1.0 */
} XcmsCIEuvY; /* CIE u’v'y */

X Version 11 (Release 5) 6 January 1993 117

XcmsColor(XS)

typedef struct {

XcmsFloat x; /* 0.0 to ~.75 */

XcmsFloat y; /* 0.0 to ~.85 */

XcmsFloat Y; /* 0.0 to 1.0 */
] XcmsCIExyY; /* CIE xyY */

typedef struct {
XcmsFloat L_star; /* 0.0 to 100.0 */
XcmsFloat a_star;
XcmsFloat b_star;

| XcmsCIELab; /* CIE L*a*b* */

typedef struct |
XcmsFloat L_star; /* 0.0 to 100.0 */
XcmsFloat u_star;
XcmsFloat v_star;

} XcmsCIELuv; /* CIE L*u*v* */
typedef struct (

XcmsFloat H; /* 0.0 to 360.0 */

XcmsFloat V; /* 0.0 to 100.0 */

XcmsFloat C; /* 0.0 to 100.0 */
} XcmsTekHVC; /* TekHVC */
typedef struct {

XcmsFloat pad0;

XcmsFloat padl;

XcmsFloat pad2;

XcmsFloat pad3;
} XcmsPad; /* four doubles */

Description

The XcmsColor structure contains a union of substructures, each supporting
color specification encoding for a particular color space.

See also

XcmsAllocColor(XS), XemsStoreColor(XS), XemsConvertColors(XS),
Xlib - C Language X Interface

118 X Version 11 (Release 5) 6 January 1993

XcmsConvertColors(XS)

XcmsConvertColors
convert CCC color specifications
Syntax
Status XcmsConvertColors(ccc, colors_in_out, ncolors, target_format,
compression_flags_return)
XcmsCCC ccc;
XcmsColor colors_in_out[];
unsigned int ncolors;
XcmsColorFormat target_format;
Bool compression_flags_return(];
Arguments
ccc Specifies the CCC. If Conversion is between device-
independent color spaces only (for example, TekHVC to
CIELuv), the CCC is necessary only to specify the Client
White Point.
colors_in_out Specifies an array of color specifications. Pixel members are
ignored and remain unchanged upon return.
compression_flags_return
Specifies an array of Boolean values for returning compres-
sion status. If a non-NULL pointer is supplied, each element
of the array is set to True if the corresponding color was
compressed, and False otherwise. Pass NULL if the compres-
sion status is not useful.
ncolors Specifies the number of XcmsColor structures in the color
specification array.
target_format Specifies the target color specification format.
Description

The XcmsConvertColors function converts the color specifications in the
specified array of XcmsColor structures from their current format to a single
target format, using the specified CCC. When the return value is XcmsFailure,
the contents of the color specification array are left unchanged.

The array may contain a mixture of color specification formats (for example, 3

CIE XYZ, 2 CIE Luv, ...). Note that when the array contains both device-
independent and device-dependent color specifications, and the

X Version 11 (Release 5) 6 January 1993 119

XcmsConvertColors(XS)

target_format argument specifies a device-dependent format (for example,
XcmsRGBiFormat, XcmsRGBFormat) all specifications are converted to CIE
XYZ format then to the target device-dependent format.

See also

DisplayOfCCC(XS), XemsCCCOfColormap(XS), XemsCreateCCC(XS),
XcmsDefaultCCC(XS), XcmsSetWhitePoint(XS)
Xlib - C Language X Interface

120 X Version 11 (Release 5) 6 January 1993

XcmsCreateCCC(XS)

XcmsCreateCCC

creating and destroying CCCs

Syntax
XcmsCCC XcmsCreateCCC(display, screen_number, visual, client_white_point,
compression_proc, compression_client_data,
white_adjust_proc, white_adjust_client_data)
Display *display;
int screen_number;
Visual *visual;
XcmsColor *client_white_point;
XcmsCompressionProc compression_proc;
XPointer compression_client_data;
XcmsWhiteAdjustProc white_adjust_proc;
XPointer white_adjust_client_data;
void XcmsFreeCCC(ccc)
XcmsCCC ccc;
Arguments
display Specifies the connection to the X server.
ccc Specifies the CCC.

client_white_point
Specifies the Client White Point. If NULL, the Client White
Point is to be assumed to be the same as the Screen White
Point. Note that the pixel member is ignored.

compression_client_data
Specifies client data for use by the gamut compression pro-
cedure or NULL.

compression_proc
Specifies the gamut compression procedure that is to be

applied when a color lies outside the screen’s color gamut. If
NULL and when functions using this CCC must convert a
color specification to a device-dependent format and
encounters a color that lies outside the screen’s color gamut,
that function will return XcmsFailure.

screen_number Specifies the appropriate screen number on the host server.

visual Specifies the visual type.

X Version 11 (Release 5) 6 January 1993 121

XcmsCreateCCC(XS)

white_adjust_client_data
Specifies client data for use with the white point adjustment
procedure or NULL.

white_adjust_proc
Specifies the white adjustment procedure that is to be
applied when the Client White Point differs from the Screen
White Point. NULL indicates that no white point adjustment

is desired.
Description
The XcmsCreateCCC function creates a CCC for the specified display, screen,
and visual.

The XcmsFreeCCC function frees the memory used for the specified CCC.
Note that default CCCs and those currently associated with colormaps are
ignored.

See also

DisplayOfCCC(XS), XemsCCCOfColormap(XS), XcmsConvertColors(XS),
XcmsDefaultCCC(XS), XcmsSetWhitePoint(XS)
Xlib - C Language X Interface

122 X Version 11 (Release 5) 6 January 1993

XcmsDefault CCC(XS)

XcmsDefaultCCC

obtain the default CCC for a screen

Syntax

XcmsCCC XcmsDefaultCCC(display, screen_number)
Display *display;
int screen_number;

Arguments

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Description

The XcmsDefaultCCC function returns the default CCC for the specified
screen. Its visual is the default visual of the screen. Its initial gamut compres-
sion and white point adjustment procedures as well as the associated client
data are implementation specific.

See also

DisplayOfCCC(XS), XemsCCCOfColormap(XS), XcmsConvertColors(XS),
XcmsCreateCCC(XS), XemsSetWhitePoint(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 123

XcmsQueryBlack(XS)

XcmsQueryBlack

obtain black, blue, green, red, and white CCC color specifications

Syntax
Status XcmsQueryBlack(ccc, target_format, color_return)
XemsCCC ccc;
XcmsColorFormat target_format;
XcmsColor *color_return;
Status XcmsQueryBlue(ccc, target_format, color_return)
XemsCCC ccc;
XcmsColorFormat target_format;
XcmsColor *color_return;
Status XcmsQueryGreen(ccc, target_format, color_return)
XemsCCC ccc;
XcmsColorFormat target_format;
XcmsColor *color_return;
Status XcmsQueryRed(ccc, target_format, color_return)
XemsCCC ccc;
XcmsColorFormat target_format;
XcmsColor *color_return;
Status XcmsQueryWhite(ccc, target_format, color_return)
XcmsCCC ccc;
XcmsColorFormat target_format;
XcmsColor *color_return;
Arguments
ccc Specifies the CCC. Note that the CCC’s Client White Point
and White Point Adjustment procedures are ignored.
color_return Returns the color specification in the specified target format
for the screen. The white point associated with the returned
color specification is the Screen White Point. The value
returned in the pixel member is undefined.
target_format Specifies the target color specification format.
124 X Version 11 (Release 5) 6 January 1993

XcmsQueryBlack(XS)

Description

The XcmsQueryBlack function returns the color specification in the specified
target format for zero intensity red, green, and blue.

The XecmsQueryBlue function returns the color specification in the specified
target format for full intensity blue while red and greenare zero.

The XcmsQueryGreen function returns the color specification in the specified
target format for full intensity green while red and blue are zero.

The XcmsQueryRed function returns the color specification in the specified
target format for full intensity red while green and blue are zero.

The XcmsQueryWhite function returns the color specification in the specified
target format for full intensity red, green, and blue.

See also

XcmsCIELabQueryMaxC(XS), XemsCIELuvQueryMaxC(XS),
XcmsTekHVCQueryMaxC(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 125

XcmsQueryColor(XS)

XcmsQueryColor

obtain color values

Syntax

Status XcmsQueryColor(display, colormap, color_in_out, result_format)
Display *display;
Colormap colormap;
XcmsColor *color_in_out;
XcmsColorFormat result_format;

Status XcmsQueryColors(display, colormap, colors_in_out, ncolors,
result_format) .
Display *display;
Colormap colormap;
XcmsColor colors_in_out(]);
unsigned int ncolors;
XcmsColorFormat result_format;

Status XcmsLookupColor(display, colormap, color_string, color_exact_return,
color_screen_return, result_format)
Display *display;
Colormap colormap;
char *color_string;
XcmsColor *color_exact_return, *color_screen_return;
XcmsColorFormat result_format;

Arguments

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_exact_return
Returns the color specification parsed from the color string
or parsed from the corresponding string found in a color
name database.

color_in_out Specifies the pixel member that indicates the color cell to
query, and the color specification stored for the color cell is
returned in this XcmsColor structure.

color_screen_return
Returns the color that can be reproduced on the Screen.

color_string Specifies the color string.

126 X Version 11 (Release 5) 6 January 1993

XcmsQueryColor(XS)

result_format Specifies the color format for the returned color specifica-
tions (color_screen_return and color_exact_return argu-
ments). If format is XemsUndefinedFormat and the color
string contains a numerical color specification, the specifica-
tion is returned in the format used in that numerical color
specification. If format is XcmsUndefinedFormat and the
color string contains a color name, the specification is
returned in the format used to store the color in the database.

ncolors Specifies the number of XemsColor structures in the color
specification array.

Description

The XcmsQueryColor function obtains the RGB value for the pixel value in
the pixel member of the specified XcmsColor structure, and then converts the
value to the target format as specified by the result_fornat argument. If the
pixel is not a valid index into the specified colormap, a “BadValue” error
results. The XcmsQueryColors function obtains the RGB values for pixel
values in the pixel members of XcmsColor structures, and then converts the
values to the target format as specified by the result_format argument. If a
pixel is not a valid index into the specified colormap, a “BadValue” error
results. If more than one pixel is in error, the one that gets reported is arbi-
trary.

XcmsQueryColor and XcmsQueryColors can generate “BadColor” and “Bad-
Value” errors.

The XcmsLookupColor function looks up the string name of a color with
respect to the screen associated with the specified colormap. It returns both
the exact color values and the closest values provided by the screen with
respect to the visual type of the specified colormap. The values are retumed
in the format specified by result_format. If the color name is not in the Host
Portable Character Encoding the result is implementation dependent. Use of
uppercase or lowercase does not matter. XcmsLookupColor returns
XcmsSuccess or XemsSuccessWithCompression if the name is resolved, oth-
erwise it returns XcmsFailure. If XemsSuccessWithCompression is returned,
then the color specification in color_screen_return is the result of gamut

compression.
Diagnostics
“BadColor” A value for a Colormap argument does not name a defined
Colormap.
“BadValue” Some numeric value falls outside the range of values

accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

X Version 11 (Release 5) 6 January 1993 127

XcmsQueryColor(XS)

See also

XcmsAllocColor(XS), XemsStoreColor(XS), XQueryColor(XS)
Xlib - C Language X Interface

128 X Version 11 (Release 5) 6 January 1993

XcmsSetWhitePoint(XS)

XcmsSetWhitePoint

modifying CCC attributes

Syntax

Status XcmsSetWhitePoint (ccc, color)
XemsCCC ccc;
XcmsColor *color;

XcmsWhiteAdjustProc XcmsSetWhiteAdjustProc(ccc, white_adjust_proc,
client_data)
XcmsCCC ccc;
XcmsWhiteAdjustProc white_adjust_proc;
XPointer client_data;

Arguments
ccc Specifies the CCC.
client_data Specifies client data for the white point adjustment pro-
cedure or NULL.
color Specifies the new Client White Point.

white_adjust_proc
Specifies the white point adjustment procedure.

Description

See also

The XcmsSetWhitePoint function changes the Client White Point in the speci-
fied CCC. Note that the pixel member is ignored and that the color specifica-
tion is left unchanged upon return. The format for the new white point must
be XcmsCIEXYZFormat, XcmsCIEuvYFormat, XcmsCIExyYFormat, or
XcmsUndefinedFormat. If color is NULL, this function sets the format com-
ponent of the Client White Point specification to XcmsUndefinedFormat,
indicating that the Client White Point is assumed to be the same as the Screen
White Point.

The XcmsSetWhiteAdjustProc function first sets the white point adjustment
procedure and client data in the specified CCC with the newly specified pro-
cedure and client data and then returns the old procedure.

DisplayOfCCC(XS), XemsCCCOfColormap(XS), XcmsConvertColors(XS),
XcmsCreateCCC(XS), XemsDefaultCCC(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 129

XcmsStoreColor(XS)

XcmsStoreColor

set colors

Syntax

Status XcmsStoreColor(display, colormap, color)
Display *display;
Colormap colormap;
XcmsColor *color;

Status XcmsStoreColors(display, colormap, colors, ncolors,

compression_flags_return)

Display *display;
Colormap colormap;
XcmsColor colors(];
int ncolors;
Bool compression_flags_return(];

Arguments

130

display

color

colors

colormap

Specifies the connection to the X server.

Specifies the color cell and the color to store. Values speci-
fied in this XcmsColor structure remain unchanged upon
return.

Specifies the color specification array of XcmsColor struc-
tures, each specifying a color cell and the color to store in
that cell. Values specified in the array remain unchanged
upon return.

Specifies the colormap.

compression_flags_return

ncolors

Specifies an array of Boolean values for returning compres-
sion status. If a non-NULL pointer is supplied, each element
of the array is set to True if the corresponding color was
compressed, and False otherwise. Pass NULL if the compres-
sion status is not useful.

Specifies the number of XcmsColor structures in the color
specification array.

X Version 11 (Release 5) 6 January 1993

XcmsStoreColor(XS)

Description

The XcmsStoreColor function converts the color specified in the XemsColor
structure into RGB values and then uses this RGB specification in an XColor
structure, whose three flags (DoRed, DoGreen, and DoBlue) are set, in a call
to XStoreColor to change the color cell specified by the pixel member of the
XcmsColor structure. This pixel value must be a valid index for the specified
colormap, and the color cell specified by the pixel value must be a read/write
cell. If the pixel value is not a valid index, a “BadValue” error results. If the
color cell is unallocated or is allocated read-only, a “BadAccess” error results.
If the colormap is an installed map for its screen, the changes are visible
immediately.

Note that XStoreColor has no return value; therefore, a XcmsSuccess return
value from this function indicates that the conversion to RGB succeeded and
the call to XStoreColor was made. To obtain the actual color stored, use
XcmsQueryColor. Due to the screen’s hardware limitations or gamut
compression, the color stored in the colormap may not be identical to the
color specified.

XcmsStoreColor can generate “BadAccess”, “BadColor”, and “BadValue”
errors.

The XcmsStoreColors function converts the colors specified in the array of
XcmsColor structures into RGB values and then uses these RGB specifications
in an XColor structures, whose three flags (DoRed, DoGreen, and DoBlue)
are set, in a call to XStoreColors to change the color cells specified by the
pixel member of the corresponding XcmsColor structure. Each pixel value
must be a valid index for the specified colormap, and the color cell specified
by each pixel value must be a read/write cell. If a pixel value is not a valid
index, a “BadValue” error results. If a color cell is unallocated or is allocated
read-only, a “BadAccess” error results. If more than one pixel is in error, the
one that gets reported is arbitrary. If the colormap is an installed map for its
screen, the changes are visible immediately.

Note that XStoreColors has no return value; therefore, a XcmsSuccess return
value from this function indicates that conversions to RGB succeeded and the
call to XStoreColors was made. To obtain the actual colors stored, use
.XcmsQueryColors. Due to the screen’s hardware limitations or gamut
compression, the colors stored in the colormap may not be identical to the
colors specified.

XcmsStoreColors can generate “BadAccess”, “BadColor”, and “BadValue”
errors.

X Version 11 (Release 5) 6 January 1993 131

XcmsStoreColor(XS)

Diagnostics

See also

“BadAccess”

“BadAccess”

“BadColor”

“BadValue”

A client attempted to free a color map entry that it did not
already allocate.

A client attempted to store into a read-only color map entry.

A value for a Colormap argument does not name a defined
Colormap.

Some numeric value falls outside the range of values
accepted by the request. Unless a sgﬁciﬁc range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

132

XcmsAllocColor(XS), XemsQueryColor(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XcmsTekHVCQueryMaxC(XS)

XcmsTekHVCQueryMaxC

obtain the TekHVC coordinates

Syntax

Status XcmsTekHVCQueryMaxC(ccc, hue, value, color_return)
XcmsCCC ccc;
XcmsFloat hue;
XcmsFloat value;
XcmsColor *color_return;

Status XcmsTekHVCQueryMaxV(ccc, hue, chroma, color_return)
XcmsCCC ccc;
XcmsFloat hue;
XcmsFloat chroma;
XcmsColor *color_return;

Status XcmsTekHVCQueryMaxVC(ccc, hue, color_return)
XcmsCCC ccc;
XcmsFloat hue;
XcmsColor *color_return;

Status XcmsTekHVCQueryMaxVSamples(ccc, hue, colors_return, nsamples)
XcmsCCC ccc;
XcmsFloat hue;
XcmsColor colors_return(];
unsigned int nsamples;

Status XcmsTekHVCQueryMinV(ccc, hue, chroma, color_return)
XcmsCCC ccc;
XcmsFloat hue;
XcmsFloat chroma;
XcmsColor *color_return;

Arguments
ccc Specifies the CCC. Note that the CCC’s Client White Point
and White Point Adjustment procedures are ignored.
chroma Specifies the chroma at which to find maximum Value

(MaxV).

colors_in_out Returns nsamples of color specifications in XemsTekHVC
such that the Chroma is the maximum attainable for the
Value and Hue. The white point associated with the
returned color specification is the Screen White Point. The
value returned in the pixel member is undefined.

X Version 11 (Release 5) 6 January 1993 133

XcmsTekHV CQueryMaxC(XS)

color_return Returns the maximum Chroma along with the actual Hue
and Value (MaxC), maximum Value along with the Hue and
Chroma (MaxV), color specification in XcmsTekHVC for the
maximum Chroma, the Value at which that maximum
Chroma is reached and actual Hue (MaxVC) or minimum
Value and the actual Hue and Chroma (MinL) at which the
maximum Chroma (MaxC and MaxVC), maximum Value
(MaxV), or minimum Value (MinL) was found. The white
point associated with the returned color specification is the
Screen White Point. The value returned in the pixel member
is undefined.

hue Specifies the Hue in which to find the maximum Chroma
(MaxC and MaxVC), maximum Value (MaxV), the maximum
Chroma/Value samples (MaxVSamples), or the minimum

Value (MinL).
nsamples Specifies the number of samples.
value Specifies the Value in which to find the maximum Chroma

(MaxC) or minimum Value (MinL).

Description

134

The XcmsTekHVCQueryMaxC function, given a Hue and Value, determines
the maximum Chroma in TekHVC color space displayable by the screen.
Note that it returns the maximum Chroma along with the actual Hue and
Value at which the maximum Chroma was found.

The XcmsTekHVCQueryMaxV function, given a Hue and Chroma, deter-
mines the maximum Value in TekHVC color space displayable by the screen.
Note that it returns the maximum Value and the actual Hue and Chroma at
which the maximum Value was found.

The XcmsTekHVCQueryMaxVC function, given a Hue, determines the max-
imum Chroma in TekHVC color space displayable by the screen and the
Value at which that maximum Chroma is reached. Note that it returns the
maximum Chroma, the Value at which that maximum Chroma is reached,
and the actual Hue for which the maximum Chroma was found.

The XcmsTekHVCQueryMaxVSamples returns mnsamples of maximum
Value, Chroma at which that maximum Value is reached, and the actual Hue
for which the maximum Chroma was found. These sample ﬂEOints may then
be used to plot the maximum Value/Chroma boundary of the screen’s color
gamut for the specified Hue in TekHVC color space.

The XcmsTekHVCQueryMinV function, given a Hue and Chroma, deter-
mines the minimum Value in TekHVC color space displayable by the screen.
Note that it returns the minimum Value and the actual Hue and Chroma at
which the minimum Value was found.

X Version 11 (Release 5) 6 January 1993

XcmsTekHV CQueryMaxC(XS)

See also

XcmsCIELabQueryMaxC(XS), XemsCIELuvQueryMaxC(XS),
XcmsQueryBlack(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 135

XColormapEvent(XS)

XColormapEvent

ColormapNotify event structure

Structures

See also

The structure for ColormapNotify events contains:
typedef struct {

int type; /* ColormapNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
Colormap colormap; /* colormap or None */
Bool new;
int state; /* ColormapInstalled, ColormapUninstalled */
} XColormapEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The window member is set to the window whose associated colormap is
changed, installed, or uninstalled. For a colormap that is changed, installed,
or uninstalled, the colormap member is set to the colormap associated with
the window. For a colormap that is changed by a call to XFreeColormap, the
colormap member is set to None. The new member is set to indicate whether
the colormap for the specified window was changed or installed or unin-
stalled and can be True or False. If it is True, the colormap was changed. If it
is False, the colormap was installed or uninstalled. The state member is
always set to indicate whether the colormap is installed or uninstalled and
can be ColormapInstalled or ColormapUninstalled.

136

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XConfigureEvent(XS),
XConfigureRequestEvent(XS), XCreateColormap(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravity Event(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),

X Version 11 (Release 5) 6 January 1993

XColormapEvent(XS)

XSelectionClearEvent(XS), XSelectionEvent(XS),
XSelectionRequestEvent(XS), XUnmapEvent(XS), XVisibilityEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 137

XConfigureEvent(XS)

XConfigureEvent

ConfigureNotify event structure

Structures

138

The structure for ConfigureNotify events contains:
typedef struct (

int type; /* ConfigureNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

int x, y;

int width, height;

int border_width;

Window above;

Bool override_redirect;
} XConfigureEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the Frotocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The event member is set either to the reconfigured window or to its parent,
depending on whether StructureNotify or SubstructureNotify was selected.
The window member is set to the window whose size, position, border, and/or
stacking order was changed.

The x and y members are set to the coordinates relative to the parent
window’s origin and indicate the position of the upper-left outside corner of
the window. The width and height members are set to the inside size of the
window, not including the border. The border_width member is set to the
width of the window’s border, in pixels.

The above member is set to the sibling window and is used for stacking opera-
tions. If the X server sets this member to None, the window whose state was
changed is on the bottom of the stack with respect to sibling windows. How-
ever, if this member is set to a sibling window, the window whose state was
changed is placed on top of this sibling window.

X Version 11 (Release 5) 6 January 1993

See also

XConfigureEvent(XS)

The override_redirect member is set to the override-redirect attribute of the
window. Window manager clients normally should ignore this window if the
override_redirect member is True.

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureRequestEvent(XS), XCrossingEvent(XS), XDe-
stroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravity Event(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),
XSelectionClearEvent(XS), XSelectionEvent(XS),
XSelectionRequestEvent(XS), XUnmapEvent(XS), XVisibility Event(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 139

XConfigureRequestEvent(XS)

XConfigureRequestEvent

ConfigureRequest event structure

Structures

See also

The structure for ConfigureRequest events contains:
typedef struct (

int type; /* ConfigureRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
int detail; " /* Above, Below, Toplf, BottomIf, Opposite */
unsigned long value_mask;
)} XConfigureRequestEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The parent member is set to the parent window. The window member is set to
the window whose size, position, border width, and/or stacking order is to be
reconfigured. The value_mask member indicates which components were
specified in the ConfigureWindow protocol request. The corresponding
values are reported as given in the request. The remaining values are filled in
from the current geometry of the window, except in the case of above (sibling)
and detail (stack-mode), which are reported as Above and None, respectively,
if they are not given in the request.

140

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XCrossingEvent(XS), XDestroyWindowEvent(XS),
XErrorEvent(XS), XExposeEvent(XS), XFocusChangeEvent(XS),
XGraphicsExposeEvent(XS), XGravityEvent(XS), XKeymapEvent(XS),
XMapEvent(XS), XMapRequestEvent(XS), XPropertyEvent(XS),

X Version 11 (Release 5) 6 January 1993

XConfigureRequestEvent(XS)

XReparentEvent(XS), XResizeRequestEvent(XS), XSelectionClearEvent(XS),
XSelectionEvent(XS), XSelectionRequestEvent(XS), XUnmapEvent(XS),
XVisibilityEvent(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 141

XConfigureWindow(XS)

XConfigureWindow

configure windows and window changes structure

Syntax

XConfigureWindow(display, w, value_mask, values)
Display *display;
Window w;
unsigned int value_mask;
XWindowChanges *values;

XMoveWindow (display, w, x, y)
Display *display;
Window w;
int x, y;

XResizeWindow(display, w, width, height)
Display *display;
Window w;
unsigned int width, height;

XMoveResizeWindow(display, w, x, y, width, height)
Display *display;
Window w;
int x, y;
unsigned int width, height;

XSetWindowBorderWidth(display, w, width) -
Display *display;
Window w;
unsigned int width;

Arguments

display Specifies the connection to the X server.

value_mask Specifies which values are to be set using information in the
values structure. This mask is the bitwise inclusive OR of the
valid configure window values bits.

values Specifies the XWindowChanges structure.
w Specifies the window to be reconfigured, moved, or resized.
width Specifies the width of the window border.

142 X Version 11 (Release 5) 6 January 1993

XConfigureWindow(XS)

width

height Specify the width and height, which are the interior dimensions
of the window.

X

y Specify the x and y coordinates, which define the new location
of the top-left pixel of the window’s border or the window itself
if it has no border or define the new position of the window
relative to its parent.

Description

The XConfigureWindow function uses the values specified in the XWin-
dowChanges structure to reconfigure a window’s size, position, border, and
stacking order. Values not specified are taken from the existing geometry of
the window.

If a sibling is specified without a stack_mode or if the window is not actually a
sibling, a “BadMatch” error results. Note that the computations for BottomlIf,
Toplf, and Opposite are performed with respect to the window’s final
geometry (as controlled by the other arguments passed to XConfig-
ureWindow), not its initial geometry. Any backing store contents of the win-
dow, its inferiors, and other newly visible windows are either discarded or
changed to reflect the current screen contents (depending on the implementa-
tion).

XConfigureWindow can generate “BadMatch”, “BadValue”, and “BadWin-
dow” errors.

The XMoveWindow function moves the specified window to the specified x
and y coordinates, but it does not change the window’s size, raise the win-
dow, or change the mapping state of the window. Moving a mapped window
may or may not lose the window’s contents depending on if the window is
obscured by nonchildren and if no backing store exists. If the contents of the
window are lost, the X server generates Expose events. Moving a mapped
window generates Expose events on any formerly obscured windows.

If the override-redirect flag of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. Otherwise,
the window is moved.

XMoveWindow can generate a “BadWindow” error.

The XResizeWindow function changes the inside dimensions of the specified
window, not including its borders. This function does not change the
window’s upper-left coordinate or the origin and does not restack the win-
dow. Changing the size of a mapped window may lose its contents and gen-
erate Expose events. If a mapped window is made smaller, changing its size
generates Expose events on windows that the mapped window formerly
obscured.

X Version 11 (Release 5) 6 January 1993 143

XConfigureWindow(XS)

If the override-redirect flag of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. If either
width or heightis zero, a “BadValue” error results.

XResizeWindow can generate “BadValue” and “BadWindow” errors.

The XMoveResizeWindow function changes the size and location of the
specified window without raising it. Moving and resizing a mapped window
may generate an Expose event on the window. Depending on the new size
and location parameters, moving and resizing a window may generate
Expose events on windows that the window formerly obscured.

If the override-redirect flag of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. Otherwise,
the window size and location are changed.

XMoveResizeWindow can generate “BadValue” and “BadWindow” errors.

The XSetWindowBorderWidth function sets the specified window’s border
width to the specified width.

XSetWindowBorderWidth can generate a “BadWindow” error.

Structures

144

The XWindowChanges structure contains:

/* Configure window value mask bits */

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)

#define CWStackMode (1<<6)

/* Values */

typedef struct {
int x, y;
int width, height;
int border_width;
Window sibling;
int stack_mode;

)} XWindowChanges;

X Version 11 (Release 5) 6 January 1993

XConfigureWindow(XS)

The x and y members are used to set the window’s x and y coordinates, which
are relative to the parent’s origin and indicate the position of the upper-left
outer corner of the window. The width and height members are used to set
the inside size of the window, not including the border, and must be nonzero,
or a “BadValue” error results. Attempts to configure a root window have no
effect.

The border_width member is used to set the width of the border in pixels.
Note that setting just the border width leaves the outer-left corner of the win-
dow in a fixed position but moves the absolute position of the window’s ori-
gin. If you attempt to set the border-width attribute of an InputOnly window
nonzero, a “BadMatch” error results.

The sibling member is used to set the sibling window for stacking opera-
tions. The stack_mode member is used to set how the window is to be res-
tacked and can be set to Above, Below, Toplf, BottomIf, or Opposite.

Diagnostics

See also

“BadMatch” An InputOnly window is used as a Drawable.

“BadMatch” Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined
Window.

XChangeWindowAttributes(XS), XCreateWindow(XS), XDe-
stroyWindow(XS), XMapWindow(XS), XRaiseWindow(XS),
XUnmapWindow(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 145

XCopyArea(XS)

XCopyArea

copy areas
Syntax
XCopyArea(display, src, dest, gc, src_x, src_y, width, height, dest_x,
dest_y)
Display *display;
Drawable src, dest;
GC gc;
int src_x, src_y;
unsigned int width, height;
int dest_x, dest_y;
XCopyPlane(display, src, dest, gc, src_x, src_y, width, height, dest_x,
dest_y, plane)
Display *display;
Drawable src, dest;
GC gc;
int src_x, src_y:
unsigned int width, height;
int dest_x, dest_y;
unsigned long plane;
Arguments
dest_x
dest_y Specify the x and y coordinates, which are relative to the origin of
the destination rectangleand specify its upper-left corner.
display Specifies the connection to the X server.
8¢ Specifies the GC.
plane Specifies the bit plane. You must setexactly one bit to 1.
src
dest Specify the source and destination rectangles to be combined.
src_x
src_y Specify the x and y coordinates, which are relative to the origin of
the source rectangle and specify its upper-left corner.
width
height Specify the width and height, which are the dimensions of both the
source and destination rectangles.
146 X Version 11 (Release 5) 6 January 1993

XCopyArea(XS)

Description

The XCopyArea function combines the specified rectangle of src with the
specified rectangle of dest. The drawables must have the same root and
depth, or a “BadMatch” error results.

If regions of the source rectangle are obscured and have not been retained in
backing store or if regions outside the boundaries of the source drawable are
specified, those regions are not copied. Instead, the following occurs on all
corresponding destination regions that are either visible or are retained in
backing store. If the destination is a window with a background other than
None, corresponding regions of the destination are tiled with that background
(with plane-mask of all ones and GXcopy function). Regardless of tiling or
whether the destination is a window or a pixmap, if graphics-exposures is
True, then GraphicsExpose events for all corresponding destination regions
are generated. If graphics-exposures is True but no GraphicsExpose events
are generated, a NoExpose event is generated. Note that by default graphics-
exposures is True innew GCs.

This function uses these GC components: function, plane-mask, subwindow-
mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyArea can generate “BadDrawable”, “BadGC”, and “BadMatch” errors.

The XCopyPlane function uses a single bit plane of the specified source rec-
tangle combined with the specified GC to modify the specified rectangle of
dest. The drawables must have the same root but need not have the same
depth. If the drawables do not have the same root, a “BadMatch” error
results. If plane does not have exactly one bit set to 1 and the values of planes
must be less than 2", where n is the depth of src, a “BadValue” error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of
dest and with a size specified by the source region. It uses the fore-
ground/background pixels in the GC (foreground everywhere the bit plane in
src contains a bit set to 1, background everywhere the bit plane in src contains
a bit set to 0) and the equivalent of a CopyArea protocol request is performed
with all the same exposure semantics. This can also be thought of as using the
specified region of the source bit plane as a stipple with a fill-style of FillOpa-
queStippled for filling a rectangular area of the destination.

This function uses these GC components: function, plane-mask, foreground,
background, subwindow-mode, graphics-exposures, clip-x-origin, clip-y-
origin, and clip-mask.

XCopyPlane can generate “BadDrawable”, “BadGC"”, “BadMatch”, and “Bad-
Value” errors.

X Version 11 (Release 5) 6 January 1993 147

XCopyArea(XS)

Diagnostics

See also

“BadDrawable”

“BadGC”

“BadMatch”

“BadMatch”

“BadValue”

A value for a Drawable argument does not name a defined
Window or Pixmap.

A value for a GContext argument does not name a defined
GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

148

XClearArea(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XCreateColormap(X5)

XCreateColormap
create, copy, or destroy colormaps and color structure
Syntax
Colormap XCreateColormap(display, w, visual, alloc)
Display *display;
Window w;
Visual *visual;
int alloc;
Colormap XCopyColormapAndFree(display, colormap)
Display *display;
Colormap colormap;
XFreeColormap (display, colormap)
Display *display;
Colormap colormap;
Arguments
alloc Specifies the colormap entries to be allocated. You can pass Alloc-
None or AllocAll.
colormap Specifies the colormap that you want to create, copy, set, or de-
stroy.
display Specifies the connection to the X server.
visual Specifies a visual type supported on the screen. If the visual type
is not one supported by the screen, a “BadMatch” error results.
w Specifies the window on whose screen you want to create a color-
map.
Description

The XCreateColormap function creates a colormap of the specified visual
type for the screen on which the specified window resides and returns the
colormap ID associated with it. Note that the specified window is only used
to determine the screen.

The initial values of the colormap entries are undefined for the visual classes
GrayScale, PseudoColor, and DirectColor. For StaticGray, StaticColor, and
TrueColor, the entries have defined values, but those values are specific to the
~visual and are not defined by X. For StaticGray, StaticColor, and TrueColor,
alloc must be AllocNone, or a “BadMatch” error results. For the other visual

X Version 11 (Release 5) 6 January 1993 149

XCreateColormap(XS)

150

classes, if alloc is AllocNone, the colormap initially has no allocated entries,
and clients can allocate them. For information about the visual types, see sec-
tion 3.1 of Xlib - C Language X Interface.

If alloc is AllocAll, the entire colormap is allocated writable. The initial
values of all allocated entries are undefined. For GrayScale and PseudoColor,
the effect is as if an XAllocColorCells call returned all pixel values from zero
to N - 1, where N is the colormap entries value in the specified visual. For
DirectColor, the effect is as if an XAllocColorPlanes call returned a pixel
value of zero and red_mask, green_mask, and blue_mask values containing
the same bits as the corresponding masks in the specified visual. However, in
all cases, none of these entries can be freed by using XFreeColors.

XCreateColormap can generate “BadAlloc”, “BadMatch”, “BadValue”, and
“BadWindow” errors.

The XC:)ipfyColormapAndFree function creates a colormap of the same visual
type and for the same screen as the specified colormap and returns the new
colormap ID. It also moves all of the client’s existing allocation from the
specified colormap to the new colormap with their color values intact and
their read-only or writable characteristics intact and frees those entries in the
specified colormap. Color values in other entries in the new colormap are
undefined. If the specified colormap was created by the client with alloc set
to AllocAll, the new colormap is also created with AllocAll, all color values
for all entries are copied from the specified colormap, and then all entries in
the specified colormap are freed. If the specified colormap was not created by
the client with AllocAll, the allocations to be moved are all those pixels and
planes that have been allocated by the client using XAllocColor, XAlloc-
NamedColor, XAllocColorCells, or XAllocColorPlanes and that have not
been freed since they were allocated.

XCopyColormapAndFree can generate “BadAlloc” and “BadColor” errors.

The XFreeColormap function deletes the association between the colormap
resource ID and the colormap and frees the colormap storage. However, this
function has no effect on the default colormap for a screen. If the specified
colormap is an installed map for a screen, it is uninstalled (see
XUninstallColormap(XS)). If the specified colormap is defined as the color-
map for a window (by XCreateWindow, XSetWindowColormap, or
XChangeWindowAttributes), XFreeColormap changes the colormap associ-
ated with the window to None and generates a ColormapNotify event. X
does not define the colors displayed for a window with a colormap of None.

XFreeColormap can generate a “BadColor” error.

X Version 11 (Release 5) 6 January 1993

XCreateColormap(XS)

Structures

The XColor structure contains:
typedef struct {

unsigned long pixel; /* pixel value */
unsigned short red, green, blue; /* rgb values */
char flags; /* DoRed, DoGreen, DoBlue */
char pad;
) XColor;

The red, green, and blue values are always in the range 0 to 65535 inclusive,
independent of the number of bits actually used in the display hardware. The
server scales these values down to the range used by the hardware. Black is
represented by (0,0,0), white is represented by (65535,65535,65535). In some
functions, the flags member controls which of the red, green, and blue
members is used and can be the inclusive OR of zero or more of DoRed,
DoGreen, and DoBlue.

Diagnostics
“BadAlloc” The server failed to allocate the requested resource or server
memory.
“BadColor” A value for a Colormap argument does not name a defined
Colormap.

See also

“BadMatch” An InputOnly window is used as a Drawable.

“BadMatch” Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

“BadValue” Some numeric value falls outside the range of values
accepted by the reg\uest. Unless a sgﬁcific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined
Window.

XAllocColor(XS), XChangeWindowAttributes(XS), XCreateWindow(XS),
XQueryColor(XS), XStoreColors(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 151

XCreateFontCursor(XS)

XCreateFontCursor

create cursors

Syntax

#include <X11/cursorfont.h>

Cursor XCreateFontCursor(display, shape)

Display *display;
unsigned int shape;

Cursor XCreatePixmapCursor(display, source, mask, foreground_color,

background_color, x, y)
Display *display;
Pixmap source;
Pixmap mask;
XColor *foreground_color;
XColor *background_color;
unsigned int x, y;

Cursor XCreateGlyphCursor(display, source_font, mask_font, source_char,

Arguments

mask_char, foreground_color, background_color)
Display *display;
Font source_font, mask_font;
unsigned int source_char, mask_char;
XColor *foreground_color;
XColor *background_color;

background_color Specifies the RGB values for the background of the source.

display Specifies the connection to the X server.

foreground_color Specifies the RGB values for the foreground of the source.

mask Specifies the cursor’s source bits to be displayed or None.
mask_char Specifies the glyph character for the mask.

mask_font Specifies the font for the mask glyph or None.

shape Specifies the shape of the cursor.

source Specifies the shape of the source cursor.

source_char Specifies the character glyph for the source.

152

X Version 11 (Release 5) 6 January 1993

XCreateFontCursor(XS)

source_font Specifies the font for the source glyph.
x
y Specify the x and y coordinates, which indicate the hotspot

relative to the source’s origin.

Description

X provides a set of standard cursor shapes in a special font named cursor.
Applications are encouraged to use this interface for their cursors because the
font can be customized for the individual display type. The shape argument
specifies which glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial
colors of a cursor are a black foreground and a white background (see
XRecolorCursor(XS)).

XCreateFontCursor can generate “BadAlloc” and “BadValue” errors.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID
associated with it. The foreground and background RGB values must be
specified using foreground_color and background_color, even if the X server
only has a StaticGray or GrayScale screen. The foreground color is used for
the pixels set to 1 in the source, and the background color is used for the pix-
els set to 0. Both source and mask, if specified, must have depth one (or a
“BadMatch” error results) but can have any root. The mask argument defines
the shape of the cursor. The pixels set to 1 in the mask define which source
pixels are displayed, and the pixels set to 0 define which pixels are ignored. If
no mask is given, all pixels of the source are displayed. The mask, if present,
must be the same size as the pixmap defined by the source argument, or a
“BadMatch” error results. The hotspot must be a point within the source, or a
“BadMatch” error results.

The components of the cursor can be transformed arbitrarily to meet display
limitations. The pixmaps can be freed immediately if no further explicit refer-
ences to them are to be made. Subsequent drawing in the source or mask pix-
map has an undefined effect on the cursor. The X server might or might not
make a copy of the pixmap.

XCreatePixmapCursor can generate “BadAlloc” and “BadPixmap” errors.

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except
that the source and mask bitmaps are obtained from the specified font glyphs.
The source_char must be a defined glyph in source_font, or a “BadValue” error
results. If mask_font is given, mask_char must be a defined glyph in
mask_font, or a “BadValue” error results. The mask_font and character are
optional. The origins of the source_char and mask_char (if defined) glyphs
are positioned coincidentally and define the hotspot. The source_char and
mask_char need not have the same bounding box metrics, and there is no re-
striction on the placement of the hotspot relative to the bounding boxes. If no

X Version 11 (Release 5) 6 January 1993 153

XCreateFontCursor(XS)

mask_char is given, all pixels of the source are gli_szglayed. You can free the
fonts immediately by calling XFreeFont if no further explicit references to
them are to be made.

For 2-byte matrix fonts, the 16-bit value should be formed with the bytel
member in the most-significant byte and the byte2 memberin the least-signif-
icant byte.

XCreateGlyphCursor can generate “BadAlloc”, “BadFont”, and “BadValue”
errors.

Diagnostics
“BadAlloc” The server failed to allocate the requested resource or server
memory.
“BadFont” A value for a Font or GContext argument does not name a
defined Font.

154

“BadMatch” Some argument or pair of argixments has the correct type
and range but fails to match in some other way required by

the request.

“BadPixmap” A value for a Pixmap argument does not name a defined Pix-
map.

“BadValue” Some numeric value falls outside the range of values

accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

X Version 11 (Release 5) 6 January 1993

X font cursors

XCreateFontCursor(XS)

See also

The following are the available cursors that can be used with XCre-

ateFontCursor.

#define XC_X_cursor 0
#define XC_arrow 2

#define XC_based_arrow_down 4
#define XC_based_arrow_up 6
#define XC_boat 8

#define XC_bogosity 10
#define XC_bottom_left_corner 12
#define XC_bottom_right_corner 14
#define XC_bottom_side 16
#define XC_bottom_tee 18
#define XC_box_spiral 20
#define XC_center_ptr 22
#define XC_circle 24

#define XC_clock 26

#define XC_coffee_mug 28
#define XC_cross 30

#define XC_cross_reverse 32
#define XC_crosshair 34
#define XC_diamond_cross 36
#define XC_dot 38

#define XC_dot_box_mask 40
#define XC_double_arrow 42
#define XC_draft_large 44
#define XC_draft_small 46
#define XC_draped_box 48
#define XC_exchange 50
#define XC_fleur 52

#define XC_gobbler 54
#define XC_gumby 56

#define XC_hand1 58

#define XC_hand2 60

#define XC_heart 62

#define XC_icon 64

#define XC_iron_cross 66
#define XC_left_ptr 68

#define XC_left_side 70
#define XC_left_tee 72

#define XC_leftbutton 74

#define XC_ll_angle 76

#define XC_Ir_angle 78

#define XC_man 80

#define XC_middlebutton 82
#define XC_mouse 84

#define XC_pencil 86

#define XC_pirate 88

#define XC_plus 90

#define XC_question_arrow 92
#define XC_right_ptr 94

#define XC_right_side 96
#define XC_right_tee 98

#define XC_rightbutton 100
#define XC_rtl_logo 102

#define XC_sailboat 104

#define XC_sb_down_arrow 106
#define XC_sb_h_double_arrow 108
#define XC_sb_left_arrow 110
#define XC_sb_right_arrow 112
#define XC_sb_up_arrow 114
#define XC_sb_v_double_arrow 116
#define XC_shuttle 118

#define XC_sizing 120

#define XC_spider 122

#define XC_spraycan 124
#define XC_star 126

#define XC_target 128

#define XC_tcross 130

#define XC_top_left_arrow 132
#define XC_top_left_corner 134
#define XC_top_right_corner 136
#define XC_top_side 138
#define XC_top_tee 140

#define XC_trek 142

#define XC_ul_angle 144
#define XC_umbrella 146
#define XC_ur_angle 148
#define XC_watch 150

#define XC_xterm 152

XDefineCursor(XS), XLoadFont(XS), XRecolorCursor(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

155

XCreateFontSet(XS)

XCreateFontSet

create and free an intemational text drawing font set

Syntax

XFontSet XCreateFontSet (display, base_font_name_list,
missing_charset_list_return,
missing_charset_count_return, def_string_return)

Display *display;

char *base_font_name_list;

char ***missing_charset_list_return;
int *missing_charset_count_return;
char **def_string_return;

void XFreeFontSet (display, font_set)

Display *display;
XFontSet font_set;

Arguments

display Specifies the connection to the X server.
base_font_name_list Specifies the base font names.
def_string_return Returns the string drawn for missing charsets.
font_set Specifies the font set.

missing_charset_count_return
: Returns the number of missing charsets.

missing_charset_list_return
Returns the missing charsets.

Description

The XCreateFontSet function creates a font set for the specified display. The
font set is bound to the current locale when XCreateFontSet is called. The
font_set may be used in subsequent calls to obtain font and character infor-
mation, and to image text in the locale of the font_set.

The base_font_name_list argument is a list of base font names which Xlib
uses to load the fonts needed for the locale. The base font names are a
comma-separated list. The string is null-terminated, and is assumed to be in
the Host Portable Character Encoding; otherwise, the result is implementation
dependent. Whitespace immediately on either side of a separating comma is
ignored.

156 X Version 11 (Release 5) 6 January 1993

XCreateFontSet(XS)

Use of XLFD font names permits Xlib to obtain the fonts needed for a variety
of locales from a single locale-independent base font name. The single base
font name should name a family of fonts whose members are encoded in the
various charsets needed by the locales of interest.

An XLFD base font name can explicitly name a charset needed for the locale.
This allows the user to specify an exact font for use with a charset required by
alocale, fully controlling the font selection.

If a base font name is not an XLFD name, Xlib will attempt to obtain an XLFD
name from the font properties for the font. If this action is successful in
obtaining an XLFD name, the XBaseFontNameListOfFontSet function will
return this XLFD name instead of the client-supplied name.

The followin%(algorithm is used to select the fonts that will be used to display
text with the XFontSet:

For each font charset required by the locale, the base font name list is searched
for the first one of the following cases that names a set of fonts that exist at the
server:

1. The first XLFD-conforming base font name that specifies the required char-
set or a superset of the required charset in its CharSetRegistry and Char-
SetEncoding fields. The implementation may use a base font name whose
specified charset is a superset of the required charset, for example, an
ISO8859-1 font for an ASCII charset.

2. The first set of one or more XLFD-conforming base font names that specify
one or more charsets that can be remapped to support the required char-
set. The Xlib implementation may recognize various mappings from a
required charset to one or more other charsets, and use the fonts for those
charsets. For example, JIS Roman is ASCII with tilde and backslash
replaced by yen and overbar; Xlib may load an ISO8859-1 font to support
this character set, if a JIS Roman font is not available.

3. The first XLFD-conforming font name, or the first non-XLFD font name for
which an XLFD font name can be obtained, combined with the required
charset (replacing the CharSetRegistry and CharSetEncoding fields in the
XLFD font name). As in case 1, the implementation may use a charset
which is a superset of the required charset.

4. The first font name that can be mapped in some implementation-
dependent manner to one or more fonts that support imaging text in the
charset.

For example, assume a locale required the charsets:

1508859-1

JI1SX0208.1983
JISX0201.1976
GB2312-1980.0

X Version 11 (Release 5) 6 January 1993 157

XCreateFontSet(XS)

158

The user could supply a base_font_name_list which explicitly specifies the
charsets, insuring that specific fonts get used if they exist:

*-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240-J15X0208.1983-0, \
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120-J15X0201.1976-0,\
-GB-Fixed-Medium-R-Normal--26-180-100-100-C-240-GB2312-1980.0,\
-Adobe-Courier-Bold-R-Normal--25-180-75-75-M-150-1508859-1"

Or the user could supply a base_font_name_list which omits the charsets, let-

ting Xlib select font charsets required for the locale:
*-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240,\
-J1S-Fixed-Medium-R-Normal--26-180-100-100-C-120, \
-GB-Fixed-Medium-R-Normal--26-180-100-100-C-240, \
-Adobe-Courier-Bold-R-Normal--25-180-100-100-M-150"*

Or the user could simply supply a single base font name which allows Xlib to
select from all available fonts which meet certain minimum XLFD property
requirements:

--*_+_R-Normal--*-180-100-100-*-*"

If XCreateFontSet is unable to create the font set, either because there is insuf-
ficient memory or because the current locale is not supported, XCre-
ateFontSet returns NULL, missing_charset_list_return is set to NULL, and
missing_charset_count_return is set to zero. If fonts exist for all of the char-
sets required by the current locale, XCreateFontSet returns a valid XFontSet,
missing_charset_list_return is set to NULL, and
missing_charset_count_return is set to zero.

If no font exists for one or more of the required charsets, XCreateFontSet sets
missing_charset_list_return to a list of one or more null-terminated charset
names for which no font exists, and sets missing_charset_count_return to the
number of missing fonts. The charsets are from the list of the required char-
sets for the encoding of the locale, and do not include any charsets to which
Xlib may be able to remap a required charset.

If no font exists for any of the required charsets, or if the locale definition in
Xlib requires that a font exist for a particular charset and a font is not found
for that charset, XCreateFontSet returns NULL. Otherwise, XCreateFontSet
returns a valid XFontSet to font_set.

When an Xmb/wc drawing or measuring function is called with an XFontSet
that has missing charsets, some characters in the locale will not be drawable.
If def string_return is non-NULL, XCreateFontSet returns a pointer to a string
which represents the glyph(s) which are drawn with this XFontSet when the
charsets of the available fonts do not include all font glyph(s) required to
draw a codepoint. The string does not necessarily consist of valid characters
in the current locale and is not necessarily drawn with the fonts loaded for the
font set, but the client can draw and measure the “default glyphs” by includ-
ing this string in a string being drawn or measured with the XFontSet.

X Version 11 (Release 5) 6 January 1993

See also

XCreateFontSet(XS)

If the string returned to def_string_return is the empty string ("), no glyphs
are drawn, and the escapement is zero. The returned string is null-
terminated. It is owned by Xlib and should not be modified or freed by the
client. It will be freed by a call to XFreeFontSet with the associated XFontSet.
Until freed, its contents will not be modified by Xlib.

The client is responsible for constructing an error message from the missing
charset and default string information, and may choose to continue operation
in the case that some fonts did not exist.

The returned XFontSet and missing charset list should be freed with
XFreeFontSet and XFreeStringList, respectively. The client-supplied
base_font_name_list may be freed by the client after calling XCreateFontSet.

The XFreeFontSet function frees the specified font set. The associated base
font name list, font name list, XFontStruct list, and XFontSetExtents, if any,
are freed.

XExtentsOfFontSet(XS), XFontsOfFontSet(XS), XFontSetExtents(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 159

XCreateGC(XS)

XCreateGC

create or free graphics contexts and graphics context structure

Syntax
GC XCreateGC(display, d, valuemask, values)
Display *display;
Drawable d;
unsigned long valuemask;
XGCValues *values;
XCopyGC (display, src, valuemask, dest)
Display *display;
GC src, dest;
unsigned long valuemask;
XChangeGC(display, gc, valuemask, values)
Display *display;
GC gc;
unsigned long valuemask;
XGCValues *values;
Status XGetGCValues(display, gc, valuemask, values_return)
Display *display;
GC gc;
unsigned long valuemask;
XGCValues *values_return;
XFreeGC(display, gc)
Display *display;
GC gc;
GContext XGContextFromGC(gc)
GC gc;
Arguments
d Specifies the drawable.
dest Specifies the destination GC.
display Specifies the connection to the X server.
gc Specifies the GC.
src Specifies the components of the source GC.

160 X Version 11 (Release 5) 6 January 1993

XCreateGC(XS)

valuemask Specifies which components in the GC are to be set, copied,
changed, or returned. This argument is the bitwise inclusive
OR of zero or more of the valid GC component mask bits.
values Specifies any values as specified by the valuemask.

values_return Returns the GC values in the specified XGCValues structure.

Description

The XCreateGC function creates a graphics context and returns a GC. The GC
can be used with any destination drawable having the same root and depth as
the specified drawable. Use with other drawables results in a “BadMatch”
error.

XCreateGC can generate “BadAlloc”, “BadDrawable”, “BadFont”, “BadMatch”,
“BadPixmap”, and “BadValue” errors.

The XCopyGC function copies the specified components from the source GC
to the destination GC. The source and destination GCs must have the same
root and depth, or a “BadMatch” error results. The valuemask specifies which
component to copy, as for XCreateGC.

XCopyGC can generate “BadAlloc”, “BadGC”, and “BadMatch” errors.

The XChangeGC function changes the components specified by valuemask
for the specified GC. The values argument contains the values to be set. The
values and restrictions are the same as for XCreateGC. Changing the clip-
mask overrides any previous XSetClipRectangles request on the context.
Changing the dash-offset or dash-list overrides any previous XSetDashes
request on the context. The order in which components are verified and
altered is server-dependent. If an error is generated, a subset of the com-
ponents may have been altered.

XChangeGC can generate “BadAlloc”, “BadFont”, “BadGC", “BadMatch”,
“BadPixmap”, and “BadValue” errors.

The XGetGCValues function returns the components specified by valuemask
for the specified GC. If the valuemask contains a valid set of GC mask bits
(GCFunction, GCPlaneMask, GCForeground, GCBackground,
GCLineWidth, GCLineStyle, GCCapStyle, GCJoinStyle, GCFillStyle,
GCFillRule, GCTile, GCStipple, GCTileStipXOrigin, GCTileStipYOrigin,
GCFont, GCSubwindowMode, GCGraphicsExposures, GCClipXOrigin,
GCCLipYOrigin, GCDashOffset, or GCArcMode) and no error occur,
XGetGCValues sets the requested components in values_return and returns a
nonzero status. Otherwise, it returns a zero status. Note that the clip-mask
and dash-list (represented by the GCClipMask and GCDashlList bits, respec-
tively, in the valuemask) cannot be requested. Also note that an invalid
resource ID (with one or more of the three most-significant bits set to one) will
be returned for GCFont, GCTile, and GCStipple if the component has never
been explicitly set by the client.

X Version 11 (Release 5) 6 January 1993 161

XCreateGC(XS)

The XFreeGC function destroys the specified GC as well as all the associated

storage.

XFreeGC can generate a “BadGC” error.

Structures

162

The XGCValues structure contains:

/* GC attribute value mask bits */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

GCFunction
GCPlaneMask
GCForeground
GCBackground
GCLineWidth
GClLineStyle
GCCapStyle
GCJoinStyle
GCEFillStyle
GCEFillRule

GCTile

GCstipple
GCTileStipXOrigin
GCTileStipYOrigin
GCFont
GCSubwindowMode
GCGraphicsExposures
GCClipXOrigin
GCClipYOrigin
GCClipMask
GCDashOffset
GCDashList
GCArcMode

(1L<<0)
(1L<<1)
(1L<<2)
(1L<<3)
(1L<<4)
(1L<<5)
(1L<<6)
(1L<<7)
(1L<<8)
(1L<<9)
(1L<<10)
(1L<<11)
(1L<<12)
(1L<<13)
(1L<<14)
(1L<<15)
(1L<<16)
(1L<<17)
(1L<<18)
(1L<<19)
(1L<<20)
(1L<<21)
(1L<<22)

X Version 11 (Release 5) 6 January 1993

/* Values */

typedef struct {

int function;

unsigned long plane_mask;
unsigned long foreground;
unsigned long background;
int line_width;

int line_style;

int cap_style;

int join_style;
int fill_style;

int fill_rule;
int arc_mode;
Pixmap tile;
Pixmap stipple;
int ts_x_origin;
int ts_y_origin;
Font font;
int subwindow_mode;
Bool graphics_exposures;
int clip_x_origin;
int clip_y_origin;
Pixmap clip_mask;
int dash_offset;
char dashes;

) XGCValues;

X Version 11 (Release 5) 6 January 1993

/*
/'l'
/*
/*
/*
/t
/*

/*
/*

/*
/i
/*
/*
/i

/*
/*
/*
/*

/*
/*

XCreateGC(XS)

logical operation */

plane mask */

foreground pixel */

background pixel */

line width (in pixels) */

LineSolid, LineoOnOffDash, LineDoubleDash */
CapNotLast, CapButt, CapRound,
CapProjecting */

JoinMiter, JoinRound, JoinBevel */
FillSolid, FillTiled, FillStippled,
FillOpaqueStippled*/

EvenOddRule, WindingRule */

ArcChord, ArcPieSlice */

tile pixmap for tiling operations */
stipple 1 plane pixmap for stippling */
offset for tile or stipple operations */

default text font for text operations */
ClipByChildren, Includelnferiors */
boolean, should exposures be generated */
origin for clipping */

bitmap clipping; other calls for rects */
patterned/dashed line information */

163

XCreateGC(XS)

164

The function attributes of a GC are used when you update a section of a draw-
able (the destination) with bits from somewhere else (the source). The func-
tion in a GC defines how the new destination bits are to be computed from the
source bits and the old destination bits. GXcopy is typically the most useful
because it will work on a color display, but special applications may use other
functions, particularly in concert with particular planes of a color display.
The 16 GC functions, defined in <X11/X.k>, are:

Function Name Value Operation

GXclear 0x0 0

GXand 0x1 src AND dst
GXandReverse 0x2 src AND NOT dst
GXcopy 0x3 src

GXandInverted 0x4 (NOT src) AND dst
GXnoop 0x5 dst

GXxor 0x6 src XOR dst

GXor 0x7 src OR dst

GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert Oxa NOT dst

GXorReverse Oxb src OR (NOT dst)
GXcopyInverted Oxc NOT src

GXorlInverted Oxd (NOT src) OR dst
GXnand Oxe (NOTsrc) OR(NOT dst)
GXset Oxf 1

Many graphics operations depend on either pixel values or planes in a GC.
The planes attribute is of type long, and it specifies which planes of the desti-
nation are to be modified, one bit per plane. A monochrome display has only
one plane and will be the least-significant bit of the word. As planes are
added to the display hardware, they will occupy more significant bits in the
plane mask.

In graphics operations, given a source and destination pixel, the result is com-
puted bitwise on corresponding bits of the pixels. That is, a Boolean opera-
tion is performed in each bit plane. The plane_mask restricts the operation to
a subset of planes. A macro constant AllPlanes can be used to refer to all
planes of the screen simultaneously. The result is computed by the following:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or
plane_mask. They are simply truncated to the appropriate number of bits.
The line-width is measured in pixels and either can be greater than or equal to
one (wide line) or can be the special value zero (thin line).

Wide lines are drawn centered on the path described by the graphics request.
Unless otherwise specified by the join-style or cap-style, the bounding box of
a wide line with endpoints [x1, y1], [x2, y2] and width w is a rectangle with
vertices at the following real coordinates:

[x1-(w*sn/2), yl+(w*cs/2)], [xl+(w*sn/2), yl-(w*cs/2)],

[x2-{(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]

X Version 11 (Release 5) 6 January 1993

XCreateGC(XS)

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of
the line. A pixel is part of the line and so is drawn if the center of the pixel is
fully inside the bounding box (which is viewed as having infinitely thin
edges). If the center of the pixel is exactly on the bounding box, it is part of
the line if and only if the interior is immediately to its right (x increasing direc-
tion). Pixels with centers on a horizontal edge are a special case and are part
of the line if and only if the interior or the boundary is immediately below (y
increasing direction) and the interior or the boundary is immediately to the
right (x increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspeci-
fied, device-dependent algorithm. There are only two constraints on this
algorithm.

1. If a line is drawn unclipped from [x1,y1] to [x2,y2] and if another line is
drawn unclipped from [x1+dx,yl+dy] to [x2+dx,y2+dy], a point [x,y] is
touched by drawing the first line if and only if the point [x+dx,y+dy] is
touched by drawing the second line.

2. The effective set of points comprising a line cannot be affected by clipping.
That is, a point is touched in a clipped line if and only if the point lies
inside the clipping region and the point would be touched by the line
when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a
wide line drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style.
It is recommended that this property be true for thin lines, but this is not
required. A line-width of zero may differ from a line-width of one in which
pixels are drawn. This permits the use of many manufacturers’ line drawing
hardware, which may run many times faster than the more precisely specified
wide lines.

In general, drawing a thin line will be faster than drawing a wide line of width
one. However, because of their different drawing algorithms, thin lines may
not mix well aesthetically with wide lines. If it is desirable to obtain precise
and uniform results across all displays, a client should always use a line-
width of one rather than a line-width of zero.

The line-style defines which sections of a line are drawn:

LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes are
filled differently than the odd dashes (see fill-style) with
CapButt style used where even and odd dashes meet.

LineOnOffDash Only the even dashes are drawn, and cap-style applies to

all internal ends of the individual dashes, except CapNot-
Last is treated as CapButt.

X Version 11 (Release 5) 6 January 1993 165

XCreateGC(XS)

166

The cap-style defines how the endpoints of a path are drawn:

CapNotLast This is equivalent to CapButt except that for a line-width
of zero the final endpoint is not drawn.

CapButt The line is square at the endpoint (perpendicular to the
slope of the line) with no projection beyond.

CapRound The line has a circular arc with the diameter equal to the
line-width, centered on the endpoint. (This is equivalent
to CapButt for line-width of zero).

CapProjecting The line is square at the end, but the path continues
beyond the endpoint for a distance equal to half the line-
width. (This is equivalent to CapButt for line-width of
Zero).

The join-style defines how corners are drawn for wide lines:
JoinMiter The outer edies of two lines extend to meet at an angle.

However, if the angle is less than 11 degrees, then a Join-
Bevel join-style is used instead.

JoinRound The corner is a circular arc with the diameter equal to the
line-width, centered on the joinpoint.

JoinBevel The corner has CapButt endpoint styles with the triangu-
lar notch filled.

For a line with coincident endpoints (x1=x2, yl=y2), when the cap-style is
applied to both endpoints, the semantics depends on the line-width and the
cap-style:

CapNotLast thin The results are device-dependent, but the desired
effect is that nothing is drawn.

CapButt thin The results are device-dependent, but the desired
effect is that a single pixel is drawn.

CapRound thin The results are the same as for CapButt/thin.

CapProjecting thin The results are the same as for CapButt/thin.

CapButt wide Nothing is drawn.

CapRound wide The closed path is a circle, centered at the end-
pqg\t;; and with the diameter equal to the line-
width.

CapProjecting wide The closed path is a square, aligned with the coor-
dinate axes, centered at the endpoint, and with
the sides equal to the line-width.

X Version 11 (Release 5) 6 January 1993

XCreateGC(XS)

For a line with coincident endpoints (x1=x2, yl=y2), when the join-style is
applied at one or both endpoints, the effect is as if the line was removed from
the overall path. However, if the total path consists of or is reduced to a sin-
gle point joined with itself, the effect is the same as when the cap-style is
applied at both endpoints.

The tile/stipple represents an infinite 2D plane, with the tile/stipple repli-
cated in all dimensions. When that plane is superimposed on the drawable
for use in a graphics operation, the upper left corner of some instance of the
tile/stipple is at the coordinates within the drawable specified by the
tile/stipple origin. The tile/stipple and clip origins are interpreted relative to
the origin of whatever destination drawable is specified in a graphics request.
The tile pixmap must have the same root and depth as the GC, or a “Bad-
Match” error results. The stipPle pixmap must have depth one and must have
the same root as the GC, or a “BadMatch” error results. For stipple operations
where the fill-style is FillStippled but not FillOpaqueStippled, the stipple
pattern is tiled in a single plane and acts as an additional clip mask to be
ANDed with the clip-mask. Although some sizes may be faster to use than
others, any size pixmap can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text, and fill requests.
For all text and fill requests (for example, XDrawText, XDrawText16,
XFillRectangle, XFillPolygon, and XFillArc); for line requests with line-style
LineSolid (for example, XDrawLine, XDrawSegments, XDrawRectangle,
XDrawArc); and for the even dashes for line requests with line-style
LineOnOffDash or LineDoubleDash, the following apply:

FillSolid Foreground
FillTiled Tile

FillOpaqueStippled A tile with the same width and height as stipple, but
with background everywhere stipple has a zero and
with foreground everywhere stipple has a one

FillStippled Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are con-
trolled by the fill-style in the following manner:

FillSolid Background

FillTiled Same as for even dashes
FillOpaqueStippled Same as for even dashes
FillStippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If
the pixmap is later used as the destination for a graphics request, the change
might or might not be reflected in the GC. If the pixmap is used simultane-
ously in a graphics request both as a destination and as a tile or stipple, the
results are undefined.

X Version 11 (Release 5) 6 January 1993 167

XCreateGC(XS)

168

For optimum performance, you should draw as much as possible with the
same GC (without changing its components). The costs of changing GC com-
ponents relative to using different GCs depend upon the display hardware
and the server implementation. It is quite likely that some amount of GC in-
formation will be cached in display hardware and that such hardware can
only cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns
that can be set with XSetDashes. Specifying a value of N is equivalent to
specifying the two-element list [N, N] in XSetDashes. The value must be
nonzero, or a “BadValue” error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is
set to a pixmap, it must have depth one and have the same root as the GC, or a
“BadMatch” error results. If clip-mask is set to None, the pixels are always
drawn regardless of the clip origin. The clip-mask also can be set by calling
the XSetClipRectangles or XSetRegion functions. Only pixels where the
clip-mask has a bit set to 1 are drawn. Pixels are not drawn outside the area
covered by the clip-mask or where the clip-mask has a bit set to 0. The clip-
mask affects all graphics requests. The clip-mask does not clip sources. The
clip-mask origin is interpreted relative to the origin of whatever destination
drawable is specified in a graphics request.

You can set the subwindow-mode to ClipByChildren or IncludeInferiors.
For ClipByChildren, both source and destination windows are additionally
clipped by all viewable InputOutput children. For IncludeInferiors, neither
source nor destination window is clipped by inferiors. This will result in
including subwindow contents in the source and drawing through subwin-
dow boundaries of the destination. The use of IncludeInferiors on a window
of one depth with mapped inferiors of differing depth is not illegal, but the
semantics are undefined by the core protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in XFillPo-
lygon requests and can be set to EvenOddRule or WindingRule. For
EvenOddRule, a point is inside if an infinite ray with the point as origin
crosses the path an odd number of times. For WindingRule, a point is inside
if an infinite ray with the point as origin crosses an unequal number of clock-
wise and counterclockwise directed path segments. A clockwise directed
path segment is one that crosses the ray from left to right as observed from
the point. A counterclockwise segment is one that crosses the ray from right
to left as observed from the point. The case where a directed line segment is
coincident with the ray is uninteresting because you can simply choose a dif-

ferent ray that is not coincident with a segment.

For both EvenOddRule and WindingRule, a point is infinitely small, and the
path is an infinitely thin line. A pixel is inside if the center point of the pixel is
inside and the center point is not on the boundary. If the center point is on the
boundary, the pixel is inside if and only if the polygon interior is immediately
to its right (x increasing direction). Pixels with centers on a horizontal edge
are a special case and are inside if and only if the polygon interior is immedi-
ately below (y increasing direction).

X Version 11 (Release 5) 6 January 1993

XCreateGC(XS)

The arc-mode controls filling in the XFillArcs function and can be set to
ArcPieSlice or ArcChord. For ArcPieSlice, the arcs are pie-slice filled. For
ArcChord, the arcs are chord filled.

The graphics-exposure flag controls GraphicsExpose event generation for

XCopyArea and XCopyPlane requests (and any similar requests defined by
extensions).

Diagnostics

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadDrawable” A value for a Drawable argument does not name a defined
Window or Pixmap.

“BadFont” A value for a Font or GContext argument does not name a
defined Font.

“BadGC” A value for a GContext argument does not name a defined
GContext.

“BadMatch” An InputOnly window is used as a Drawable.

“BadMatch” Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by

the request.

“BadPixmap” A value for a Pixmap argument does not name a defined Pix-
map.

“BadValue” Some numeric value falls outside the range of values

accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the ar§ument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

See also

AllPlanes(XS), XCopyArea(XS), XCreateRegion(XS), XDrawArc(XS),
XDrawLine(XS), XDrawRectangle(XS), XDrawText(XS), XFillRectangle(XS),
XQueryBestSize(XS), XSetArcMode(XS), XSetClipOrigin(XS),
XSetFillStyle(XS), XSetFont(XS), XSetLineAttributes(XS), XSetState(XS),
XSetTile(XS)

XIib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 169

XCreatelC(XS)

XCreatelC

create, destroy, and obtain the input method of an input context

Syntax

XIC XCreatelIC(im, ...)
XIM im;

void XDestroyIC(ic)
XIC ic;

XIM XIMOfIC(ic)
XIC ic;

Arguments

ic Specifies the input context.
im Specifies the input method.

Specifies the variable length argument list to set XIC values.

Description

170

The XCreateIC function creates a context within the specified input method.

Some of the arguments are mandatory at creation time, and the input context
will not be created if they are not provided. Those arguments are the input
style and the set of text callbacks (if the input style selected requires call-
backs). All other input context values can be set later.

XCreatelC returns a NULL value if no input context could be created. A NULL

value could be returned for any of the following reasons:

¢ A required argument was not set.

¢ A read-only argument was set (for example, XNFilterEvents).

¢ The argument name is not recognized.

¢ The input method encountered an input method implementation depen-
dent error.

The XCreateIC can generate “BadAtom”, “BadColor”, “BadPixmap”, and
“BadWindow” errors.

XDestroyIC destroys the specified input context.

The XIMOfIC function returns the input method associated with the speci-
fied input context.

X Version 11 (Release 5) 6 January 1993

XCreatelC(XS)

Diagnostics
“BadAtom” A value for an Atom argument does not name a defined
Atom.
“BadColor” A value for a Colormap argument does not name a defined
Colormap.

“BadPixmap” A value for a Pixmap argument does not name a defined Pix-
map.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XOpenIM(XS), XSetICFocus(XS), XSetICValues(XS), XmbResetIC(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 171

XCreatelmage(XS)

XCreatelmage

image utilities

Syntax

XImage *XCreatelmage(display, visual, depth, format, offset, data, width,
height, bitmap_pad, bytes_per_line)
Display *display;
Visual *visual;
unsigned int depth;
int format;
int offset;
char *data;
unsigned int width;
unsigned int height;
int bitmap_pad;
int bytes_per_line;

unsigned long XGetPixel(ximage, x, y)
XImage *ximage;
int x;
int y;

XPutPixel (ximage, x, y, pixel)
XImage *ximage;
int x;
int y;
unsigned long pixel;

XImage *XSublmage(ximage, X, y, subimage_width, subimage_height)
XImage *ximage;
int x;
int y;
unsigned int subimage_width;
unsigned int subimage_height;

XAddPixel (ximage, value)
XImage *ximage;
long value;

XDestroy Image (ximage)
XImage *ximage;

172 X Version 11 (Release 5) 6 January 1993

Arguments

XCreatelmage(XS)

bitmap_pad

bytes_per_line

data
depth
display

format

height
offset

pixel
subimage_height
subimage_width
value

visual

width

ximage

x
y

Description

Specifies the quantum of a scanline (8, 16, or 32). In other
words, the start of one scanline is separated in client mem-
ory from the start of the next scanline by an integer multi-
ple of this many bits.

Specifies the number of bytes in the client image between
the start of one scanline and the start of the next.

Specifies the image data.
Specifies the depth of the image.
Specifies the connection to the X server.

Specifies the format for the image. You can pass XYBit-
map, XYPixmap, or ZPixmap.

Specifies theheight of the image, in pixels.

Specifies the number of pixels to ignore at the beginning of
the scanline.

Specifies the new pixel value.

Specifies the height of the new subimage, in pixels.
Specifies the width of the new subimage, in pixels.
Specifies the constant value that is to be added.
Specifies the Visual structure.

Specifies the width of the image, in pixels.

Specifies the image.

Specify the x and y coordinates.

The XCreateImage function allocates the memory needed for an XImage
structure for the specified display but does not allocate space for the image
itself. Rather, it initializes the structure byte-order, bit-order, and bitmap-unit
values from the display and returns a pointer to the XImage structure. The
red, green,and blue mask values are defined for Z format images only and are
derived from the Visual structure passed in. Other values also are passed in.
The offset permits the rapid displaying of the image without requiring each

X Version 11 (Release 5) 6 January 1993 173

XCreatelmage(XS)

See also

scanline to be shifted into position. If you pass a zero value in bytes_per_line,
Xlib assumes that the scanlines are contiguous in memory and calculates the
value of bytes_per_line itself.

Note that when the image is created using XCreateImage, XGetImage, or
XSubImage, the destroy procedure that the XDestroyImage function calls
frees both the image structure and the data pointed to by the image structure.

The basic functions used to get a pixel, set a pixel, create a subimage, and add
a constant value to an image are defined in the image object. The functions in
this section are really macro invocations of the functions in the image object
and are defined in <X11/Xutil.h>.

The XGetPixel function returns the specified pixel from the named image.
The pixel value is returned in normalized format (that is, the least-significant
byte of the long is the least-significant byte of the pixel). The image must con-
tain the x and y coordinates.

The XPutPixel function overwrites the pixel in the named image with the
specified pixel value. The input pixel value must be in normalized format
(that is, the least-significant byte of the long is the least-significant byte of the
pixel). The image must contain the x and y coordinates.

The XSubImage function creates a new image that is a subsection of an exist-
ing one. It allocates the memory necessary for the new XImage structure and
returns a pointer to the new image. The data is copied from the source image,
and the image must contain the rectangle defined by x, y, subimage_width,
and subimage_height.

The XAddPixel function adds a constant value to every pixel in an image. It
is useful when you have a base pixel value from allocating color resources
and need to manipulate the image to that form.

The XDestroylmage function deallocates the memory associated with the
XImage structure.

174

XPutImage(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XCreatePixmap(XS5)

XCreatePixmap

create or destroy pixmaps

Syntax

Pixmap XCreatePixmap(display, d, width, height, depth)
Display *display;
Drawable d;
unsigned int width, height;
unsigned int depth;

XFreePixmap(display, pixmap)
Display *display;
Pixmap pixmap;

Arguments

d Specifies which screen the pixmap is created on.
depth Specifies the depth of the pixmap.
display Specifies the connection to the X server.

pixmap Specifies the pixmap.

width
height Specify the width and height, which define the dimensions of the
pixmap.
Description

The XCreatePixmap function creates a pixmap of the width, height, and depth
you specified and returns a pixmap ID that identifies it. It is valid to pass an
InputOnly window to the drawable argument. The width and height argu-
ments must be nonzero, or a “BadValue” error results. The depth argument
must be one of the depths supported by the screen of the specified drawable,
or a “BadValue” error results.

The server uses the specified drawable to determine on which screen to create
the pixmap. The pixmap can be used only on this screen and only with other
drawables of the same depth (see XCopyPlane(XS) for an exception to this
rule). The initial contents of the pixmap are undefined.

XCreatePixmap can generate “BadAlloc”, “BadDrawable”, and “BadValue”
errors.

X Version 11 (Release 5) 6 January 1993 175

XCreatePixmap(XS)

The XFreePixmap function first deletes the association between the pixmap ID
and the pixmap. Then, the X server frees the pixmap storage when there are
no references to it. The pixmap should never be referenced again.

XFreePixmap can generate a “BadPixmap” error.

Diagnostics

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadDrawable” A value for a Drawable argument does not name a defined
Window or Pixmap.

“BadPixmap” A value for a Pixmap argument does not name a defined Pix-
map.

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

See also

XCopyArea(XS)
Xlib - C Language X Interface

176 X Version 11 (Release 5) 6 January 1993

XCreateRegion(XS)

XCreateRegion

create or destroy regions

Syntax

Region XCreateRegion()

XSetRegion(display, gc, r)
Display *display;
GC gc;
Region r;

XDestroyRegion(r)
Region r;

Arguments

display Specifies the connection to the X server.

gc Specifies the GC.
r Specifies the region.
Description

The XCreateRegion function creates a new empty region.

The XSetRegion function sets the clip-mask in the GC to the specified region.
Once it is setin the GC, the region can be destroyed.

The XDestroyRegion function deallocates the storage associated with a speci-
fied region.

See also

XEmptyRegion(XS), XIntersectRegion(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 177

XCreateWindowEvent(XS)

XCreateWindowEvent

CreateNotify event structure

Structures

See also

The structure for CreateNotify events contains:
typedef struct {

int type; /* CreateNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent; /* parent of the window */

Window window; /* window id of window created */

int x, y;: /* window location */

int width, height; /* size of window */

int border_width; /* border width */

Bool override_redirect; /* creation should be overridden */
} XCreateWindowEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The parent member is set to the created window’s parent. The window
member specifies the created window. The x and y members are set to the
created window’s coordinates relative to the parent window’s origin and indi-
cate the position of the upper-left outside corner of the created window. The
width and height members are set to the inside size of the created window
(not including the border) and are always nonzero. The border_width
member is set to the width of the created window’s border, in pixels. The
override_redirect member is set to the override-redirect attribute of the win-
dow. Window manager clients normally should ignore this window if the
override_redirect member is True.

178

XAnyEvent(XS), XButtonEvent(XS), XCirculateEvent(XS),
XCirculateRequestEvent(XS), XColormapEvent(XS), XConfigureEvent(XS),
XConfigureRequestEvent(XS), XCrossingEvent(XS), XDe-
stroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),

X Version 11 (Release 5) 6 January 1993

XCreateWindowEvent(XS)

XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),
XSelectionClearEvent(XS), XSelectionEvent(XS),
XSelectionRequestEvent(XS), XUnmapEvent(XS), XVisibilityEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 179

XCreateWindow(XS)

XCreateWindow

create windows and window attributes structure

Syntax

Window XCreateWindow(display, parent, x, y, width, height, border_width,

depth, class, visual, valuemask, attributes)

Display *display;
Window parent;

int x, y;

unsigned int width, height;
unsigned int border_width;

int depth;

unsigned int class;

Visual *visual

unsigned long valuemask;
XSetWindowAttributes *attributes;

Window XCreateSimpleWindow(display, parent, x, y, width, height,

border_width, border, background)

Display *display;
Window parent;

int x, y;

unsigned int width, height;
unsigned int border_width;
unsigned long border;
unsigned long background;

Arguments

180

attributes

background
border
border_width

class

depth

Specifies the structure from which the values (as specified by
the value mask) are to be taken. The value mask should
have the appropriate bits set to indicate which attributes
have been set in the structure.

Specifies the background pixel value of the window.
Specifies the border pixel value of the window.

Specifies the width of the created window’s border in pixels.
Specifies the created window’s class. You can pass
InputOutput, InputOnly, or CopyFromParent. A class of
CopyFromParent means the class is taken from the parent.

Specifies the window’s depth. A depth of CopyFromParent
means the depth is taken from the parent.

X Version 11 (Release 5) 6 January 1993

XCreateWindow(XS)

display Specifies the connection to the X server.
parent Specifies the parent window.
valuemask Specifies which window attributes are defined in the

attributes argument. This mask is the bitwise inclusive OR
of the valid attribute mask bits. If valuemask is zero, the
attributes are ignored and are not referenced.

visual Specifies the visual type. A visual of CopyFromParent
means the visual type is taken from the parent.

width

height Specify the width and height, which are the created
window’s inside dimensions and do not include the created
window’s borders.

x

y Specify the x and y coordinates, which are the top-left out-
side corner of the window’s borders and are relative to the
inside of the parent window’s borders.

Description

The XCreateWindow function creates an unmapped subwindow for a speci-
fied parent window, returns the window ID of the created window, and
causes the X server to generate a CreateNotify event. The created window is
placed on top in the stacking order with respect to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical, with
the origin [0, 0] at the upper left. Coordinates are integral, in terms of pixels,
and coincide with pixel centers. Each window and pixmap has its own coor-
dinate system. For a window, the origin is inside the border at the inside
upper left.

The border_width for an InputOnly window must be zero, or a “BadMatch”
error results. For class InputOutput, the visual type and depth must be a
combination supported for the screen, or a “BadMatch” error results. The
depth need not be the same as the parent, but the parent must not be a win-
dow of class InputOnly, or a “BadMatch” error results. For an InputOnly
window, the depth must be zero, and the visual must be one supported by the
screen. If either condition is not met, a “BadMatch” error results. The parent
window, however, may have any depth and class. If you specify any invalid
window attribute for a window, a “BadMatch” error results.

The created window is not yet displayed (mapped) on the user’s display. To
display the window, call XMapWindow. The new window initially uses the
same cursor as its parent. A new cursor can be defined for the new window
by calling XDefineCursor. The window will not be visible on the screen
unless it and all of its ancestors are mapped and it is not obscured by any of
its ancestors.

X Version 11 (Release 5) 6 January 1993 181

XCreateWindow(XS)

XCreateWindow can generate “BadAlloc” “BadColor”, “BadCursor”, “Bad-
Match”, “BadPixmap”, “BadValue”, and “BadWindow” errors.

The XCreateSimpleWindow function creates an unmapped InputOutput
subwindow for a specified parent window, returns the window ID of the cre-
ated window, and causes the X server to generate a CreateNotify event. The
created window is placed on top in the stacking order with respect to siblings.
Any part of the window that extends outside its parent window is clipped.
The border_width for an InputOnly window must be zero, or a “BadMatch”
error results. XCreateSimpleWindow inherits its depth, class, and visual
from its parent. All other window attributes, except background and border,
have their default values.

XCreateSimpleWindow can generate “BadAlloc”, “BadMatch”, “BadValue”,
and “BadWindow” errors.

Structures

182

The XSetWindow Attributes structure contains:

/* Window attribute value mask bits */

#define =~ CWBackPixmap (1L<<0)
#define = CWBackPixel (1L<<1)
#define = CWBorderPixmap (1L<<2)
#define = CWBorderPixel (1L<<3)
#define = CWBItGravity (1L<<4)
#define = CWWinGravity (1L<<5)
#define = CWBackingStore (1L<<6)
#define CWBackingPlanes (1L<<7)
#define = CWBackingPixel (1L<<8)
#define CWOverrideRedirect (1L<<9)
#define = CWSaveUnder (1L<<10)
#define CWEventMask (1L<<11)
#define = CWDontPropagate (1L<<12)
#define = CWColormap (1L<<13)
#define = CWCursor (1L<<14)

X Version 11 (Release 5) 6 January 1993

/* Values */

typedef struct {
Pixmap background_pixmap;
unsigned long background_pixel;
Pixmap border_pixmap;

unsigned long border_pixel;
int bit_gravity;

int win_gravity;

int backing_store;

unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;

long event_mask;
long do_not_propagate_mask;

Bool override_redirect;
Colormap colormap;

Cursor cursor;
} XSetWindowAttributes;

XCreateWindow(XS)

background, None, or ParentRelative */
background pixel */

border of the window or

CopyFromParent */

border pixel value */

one of bit gravity values */

one of the window gravity values */
NotUseful, WhenMapped, Always */
planes to be preserved if possible */
value to use in restoring planes */
should bits under be saved?

(popups) */

set of events that should be saved */
set of events that should not
propagate */

boolean value for override_redirect */
color map to be associated with
window */

cursor to be displayed (or None) */

For a detailed explanation of the members of this structure, see XIib - C Lan-

guage X Interface.
Diagnostics

“BadAlloc”

The server failed to allocate the requested resource or server
memory.

A value for a Colormap argument does not name a defined
A value for a Cursor argument does not name a defined Cur-
The values do not exist for an InputOnly window.

Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by

“BadColor”

Colormap.
“BadCursor”

sor.
“BadMatch”
“BadMatch”

the request.
“BadPixmap”

X Version 11 (Release 5) 6 January 1993

A value for a Pixmap argument does not name a defined Pix-
map.

183

XCreateWindow(XS)

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a sgneciﬁc range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XChangeWindowAttributes(XS), XConfigureWindow(XS),
XDefineCursor(XS), XDestroyWindow(XS), XMapWindow(XS),
XRaiseWindow(XS), XUnmapWindow(XS)

Xlib - C Language X Interface

184 X Version 11 (Release 5) 6 January 1993

XCrossingEvent(XS)

XCrossingEvent

EnterNotify and LeaveNotify event structure

Structures

The structure for EnterNotify and LeaveN otify events contains:
typedef struct {

int type; /* EnterNotify or LeaveNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* ‘‘event’' window reported relative to */

Window root; /* root window that the event occurred on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* pointer x, y coordinates in event window */

int x_root, y_root; /* coordinates relative to root */

int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */

int detail; /* NotifyAncestor, NotifyVirtual, NotifylInferior,
. NotifyNonlinear, NotifyNonlinearVirtual */

Bool same_screen; /* same screen flag */

Bool focus; /* boolean focus */

unsigned int state; /* key or button mask */
) XCrossingEvent;
typedef XCrossingEvent XEnterWindowEvent;
typedef XCrossingEvent XLeaveWindowEvent;

When you receive these events, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The window member is set to the window on which the EnterNotify or
LeaveNotify event was generated and is referred to as the event window.
This is the window used by the X server to report the event, and is relative to
the root window on which the event occurred. The root member is set to the
root window of the screen on which the event occurred.

For a LeaveN otify event, if a child of the event window contains the initial
position of the pointer, the subwindow component is set to that child. Other-
wise, the X server sets the subwindow member to None. For an EnterNotify
event, if a child of the event window contains the final pointer position, the
subwindow component is set to that child or None.

X Version 11 (Release 5) 6 January 1993 185

XCrossingEvent(XS)

See also

The time member is set to the time when the event was generated and is
expressed in milliseconds. The x and y members are set to the coordinates of
the pointer position in the event window. This position is always the
pointer’s final position, not its initial position. If the event window is on the
same screen as the root window, x and y are the pointer coordinates relative
to the event window’s origin. Otherwise, x and y are set to zero. The x_root
and y_root members are set to the pointer’s coordinates relative to the root
window’s origin at the time of the event.

The same_screen member is set to indicate whether the event window is on
the same screen as the root window and can be either True or False. If True,
the event and root windows are on the same screen. If False, the event and
root windows are not on the same screen.

The focus member is set to indicate whether the event window is the focus
window or an inferior of the focus window. The X server can set this member
to either True or False. If True, the event window is the focus window or an
inferior of the focus window. If False, the event window is not the focus win-
dow or an inferior of the focus window.

The state member is set to indicate the state of the pointer buttons and
modifier keys just prior to the event. The X server can set this member to the
bitwise inclusive OR of one or more of the button or modifier key masks:
Button1lMask, Button2Mask, Button3Mask, ButtondMask, ButtonSMask,
ShiftMask, LockMask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask,
Mod4Mask, Mod5Mask.

The mode member is set to indicate whether the events are normal events,
pseudo-motion events when a grab activates, or pseudo-motion events when
a grab deactivates. The X server can set this member to NotifyNormal,
NotifyGrab, or NotifyUngrab.

The detail member is set to indicate the notify detail and can be
NotifyAncestor, NotifyVirtual, NotifyInferior, NotifyNonlinear, or
NotifyNonlinearVirtual.

186

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XDe-
stroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),
XSelectionClearEvent(XS), XSelectionEvent(XS),
XSelectionRequestEvent(XS), XUnmapEvent(XS), XVisibilityEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XDéefineCursor(XS)

XDefineCursor

define cursors

Syntax

XDefineCursor(display, w, cursor)
Display *display;
Window w;
Cursor cursor;

XUndefineCursor(display, w)
Display *display;

Window w;
Arguments
cursor Specifies the cursor that is to be displayed or None.
display Specifies the connection to the X server.
w Specifies the window.
Description

If a cursor is set, it will be used when the pointer is in the window. If the cur-
sor is None, it is equivalent to XUndefineCursor.

XDefineCursor can generate “BadCursor” and “BadWindow” errors.

The XUndefineCursor function undoes the effect of a previous XDefineCur-
sor for this window. When the pointer is in the window, the parent’s cursor
will now be used. On the root window, the default cursor is restored.

XUndefineCursor can generate a “BadWindow” error.

X Version 11 (Release 5) 6 January 1993 187

XDefineCursor(XS)

Diagnostics

“Bad Alloc” The server failed to allocate the requested resource or server
memory.

“BadCursor” A value for a Cursor argument does not name a defined Cur-
sor.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XCreateFontCursor(XS), XRecolorCursor(XS)
Xlib - C Language X Interface

188 X Version 11 (Release 5) 6 January 1993

XDestroyWindowEvent(XS)

XDestroyWindowEvent

DestroyNotify event structure

Structures

See also

The structure for DestroyNotify events contains:
typedef struct {

int type; /* DestroyNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;
Window window;
} XDestroyWindowEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The event member is set either to the destroyed window or to its parent,
depending on whether StructureNotify or SubstructureNotify was selected.
The window member is set to the window that is destroyed.

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XErrorEvent(XS), XExposeEvent(XS), XFocusChangeEvent(XS),
XGraphicsExposeEvent(XS), XGravityEvent(XS), XKeymapEvent(XS),
XMapEvent(XS), XMapRequestEvent(XS), XPropertyEvent(XS),
XReparentEvent(XS), XResizeRequestEvent(XS), XSelectionClearEvent(XS),
XSelectionEvent(XS), XSelectionRequestEvent(XS), XUnmapEvent(XS),
XVisibilityEvent(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 189

XDestroyWindow(XS)

XDestroyWindow

destroy windows

Syntax

XDestroyWindow(display, w)
Display *display;
Window w;

XDestroySubwindows (display, w)
Display *display;

Window w;
Arguments
display Specifies the connection to the X server.
w Specifies the window.
Description

190

The XDestroyWindow function destroys the specified window as well as all
of its subwindows and causes the X server to generate a DestroyNotify event
for each window. The window should never be referenced again. If the win-
dow specified by the w argument is mapped, it is unmapped automatically.
The ordering of the DestroyNotify events is such that for any given window
being destroyed, DestroyNotify is generated on any inferiors of the window
before being generated on the window itself. The ordering among siblings
and across subhierarchies is not otherwise constrained. If the window you
specified is a root window, no windows are destroyed. Destroying a mapped
window will generate Expose events on other windows that were obscured
by the window being destroyed.

XDestroyWindow can generate a “BadWindow” error.

The XDestroySubwindows function destroys all inferior windows of the
specified window, in bottom-to-top stacking order. It causes the X server to
generate a DestroyNotify event for each window. If any ma;ﬂped subwin-

ows were actually destroyed, XDestroySubwindows causes the X server to
generate Expose events on the specified window. This is much more efficient
than deleting many windows one at a time because much of the work need be
performed only once for all of the windows, rather than for each window.
The subwindows should never be referenced again.

XDestroySubwindows can generate a “BadWindow” error.

X Version 11 (Release 5) 6 January 1993

XDestroyWindow(XS)

Diagnostics

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XChangeWindowAttributes(XS), XConfigureWindow(XS), XCre-
ateWindow(XS), XMapWindow(XS), XRaiseWindow(XS),
XUnmapWindow(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 191

XDrawArc(XS)

XDrawArc

draw arcs and arc structure

Syntax

XDrawArc(display, d, gc, x, y, width, height, anglel, angle2)

Display *display;

Drawable d;

GC gc;

int x, y;

unsigned int width, height;
int anglel, angle2;

XDrawArcs(display, d, gc, arcs, narcs)

Arguments

Display *display;
Drawable d;

GC gc;

XArc *arcs;

int narcs;

anglel Specifies the start of the arc relative to the three-o'clock position

from the center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the

arcs

arc, in units of degrees * 64.
Specifies an array of arcs.

Specifies the drawable.

display Specifies the connection to the X server.

8c
narcs

width

Specifies the GC.

Specifies the number of arcs in the array.

height Specify the width and height, which are the major and minor axes

192

of the arc.

Specify the x and y coordinates, which are relative to the origin of
the drawable and specify the upper-left corner of the bounding
rectangle.

X Version 11 (Release 5) 6 January 1993

XDrawArc(XS)

Description

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws
multiple circular or elliptical arcs. Each arc is specified by a rectangle and two
angles. The center of the circle or ellipse is the center of the rectangle, and the
major and minor axes are specified by the width and height. Positive angles
indicate counterclockwise motion, and negative angles indicate clockwise
motion. If the magnitude of angle2 is greater than 360 degrees, XDrawArc or
XDrawArecs truncates it to 360 degrees.

For an arc specified as [x, y, wtdthh height anhgle 1, angle?], the origin of the

major and minor axes is at [x+ ECEEA A8 1 and the infinitely thin path
descrlbmg the entire circle or elh se mtersects the horizontal axis at
[x, ¥ —zg—] and [x+width, y+ _g_] and intersects the vertical axis at

2
(o 22y and v 2Ry g

These coordinates can be fractional and so are not truncated to discrete coor-
dinates. The path should be defined by the ideal mathematical path. For a
wide line with line-width lw, the bounding outlines for filling are given by the
two infinitely thin paths consisting of all points whose perpendicular distance
from the path of the circle/ellipse is equal to lw/2 (which may be a fractional
value). The cap-style and join-style are applied the same as for a line corre-
sponding to the tangent of the circle/ellipse at the endpoint.

For an arc specified as [x, y, width, height, angle1, angle 2], the angles must be
specified in the effectively skewed coordinate system of the ellipse (for a cir-
cle, the angles and coordinate systems are identical). The relationship
between these angles and angles expressed in the normal coordinate system
of the screen (as measured with a protractor) is as follows:

skewed-angle = atan [tan(normal angle)* +adjust

width
height
The skewed-angle and normal-angle are expressed in radians (rather than in
degrees scaled y 64) in the range [0, 2] and where atan returns a value in

the range =) Z1and adjust is:

0 for normal-angle in the range [0, %]
n for normal-angle in the range [%, %]

2n for normal-angle in the range [%, 2n)

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than
once. If two arcs join correctly and if the line-width is greater than zero and
the arcs intersect, XDrawArc and XDrawArcs do not draw a pixel more than
once. Otherwise, the intersecting pixels of intersecting arcs are drawn

X Version 11 (Release 5) 6 January 1993 193

XDrawArc(XS)

multiple times. Specifying an arc with one endpoint and a clockwise extent
draws the same pixels as specifying the other endpoint and an equivalent
counterclockwise extent, except as it affects joins.

If the last point in one arc coincides with the first point in the following arc,
the two arcs will join correctly. If the first point in the first arc coincides with
the last point in the last arc, the two arcs will join correctly. By specifying one
axis to be zero, a horizontal or vertical line can be drawn. Angles are com-
puted based solely on the coordinate system and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask, line-width,
line-style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-
y-origin, and clip-mask. They also use these GC mode-dependent com-
ponents: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin, dash-offset, and dash-list.

XDrawArc and XDrawArcs can generate “BadDrawable”, “BadGC”, and
“BadMatch” errors.

Structures

The XArc structure contains:
typedef struct {

short x, y;

unsigned short width, height;

short anglel, angle2; /* Degrees * 64 */
} XArc;

All x and y members are signed integers. The width and height members are
16-bit unsigned integers. You should be careful not to generate coordinates
and sizes out of the 16-bit ranges, because the protocol only has 16-bit fields
for these values.

Diagnostics

See also

“BadDrawable” A value for a Drawable argument does not name a defined
Window or Pixmap.

“BadGC” A value for a GContext argument does not name a defined
GContext.

“BadMatch” An InputOnly window is used as a Drawable.

“BadMatch” Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

194

XDrawLine(XS), XDrawPoint(XS), XDrawRectangle(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XDrawlmageString(XS)

XDrawlmageString

draw image text

Syntax
XDrawlmageString(display, d, gc, x, y, string, length)
Display *display:
Drawable d;
GC gc;
int x, y;
char *string;
int length;
XDrawlImageStringlé(display, d, gc, x, y, string, length)
Display *display;
Drawable d;
GC gc;
int x, y;
XChar2b *string;
int length;
Arguments
d Specifies the drawable.
display Specifies the connection to the X server.
8¢ Specifies the GC.
length Specifies the number of characters in the string argument.
string Specifies the character string.
x
y Specify the x and y coordinates, which are relative to the origin of
the specified drawable and define the origin of the first character.
Description

The XDrawlmageString16 function is similar to XDrawImageString except
that it uses 2-byte or 16-bit characters. Both functions also use both the fore-
ground and background pixels of the GC in the destination.

The effect is first to fill a destination rectangle with the background pixel
defined in the GC and then to paint the text with the foreground pixel. The
upper-left corner of the filled rectangle is at:

[x, y - font_ascent]

X Version 11 (Release 5) 6 January 1993 195

XDrawlmageString(XS)

The width is:
overall_width
The height is:
font_ascent + font_descent

The overall_width, font_ascent, and font_descent are as would be returned by
XQueryTextExtents using gc and string. The function and fill-style defined in
the GC are ignored for these functions. The effective function is GXcopy, and
the effective fill-style is FillSolid.

For fonts defined with 2-byte matrix indexing and used with XDrawImage-
String, each byte is used as a byte2 with a bytel of zero.

Both functions use these GC components: plane-mask, foreground, back-
ground, font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawlmageString and XDrawImageString16 can generate “BadDrawable”,
“BadGC”, and “BadMatch” errors. '

Diagnostics

“BadDrawable” A value for a Drawable argument does not name a defined
Window or Pixmap.

“BadGC” A value for a GContext argument does not name a defined
GContext.

“BadMatch” An InputOnly window is used as a Drawable.

“BadMatch” Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by

the request.
See also
XDrawString(XS), XDrawText(XS), XLoadFont(XS), XTextExtents(XS)
Xlib - C Language X Interface
196 X Version 11 (Release 5) 6 January 1993

XDrawLine

XDrawLine(XS)

draw lines, polygons, and line structure

Syntax

XDrawLine(display, d, gc, x1, y1, x2, y2)
Display *display;
Drawable d;

GC gc;
int x1, yl, x2, y2;

XDrawLines(display, d, gc, points, npoints, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;

int npoints;
int mode;

XDrawSegments (display, d, gc, segments, nsegments)
Display *display;
Drawable d;

GC gc;

XSegment *segments;
int nsegments;

Arguments

d
display
gc
mode

npoints
nsegments
points
segments
x1

vyl
x2

y2

X Version 11 (Release 5) 6 January 1993

Specifies the drawable.
Specifies the connection to the X server.
Specifies the GC.

Specifies the coordinate mode. You can pass CoordModeOrigin
or CoordModePrevious.

Specifies the number of points in the array.
Specifies the number of segments in the array.
Specifies an array of points.

Specifies an array of segments.

Specify the points (x1, y1) and (x2, y2) to be connected.

197

XDrawLine(XS)

Description

The XDrawLine function uses the components of the specified GC to draw a
line between the specified set of points (x1, y1) and (x2, y2). It does not per-
form joining at coincident endpoints. For any given line, XDrawLine does not
draw a pixel more than once. If lines intersect, the intersecting pixels are
drawn multiple times.

The XDrawLines function uses the components of the specified GC to draw
npoints-1 lines between each pair of points (point[i], point[i+1]) in the array of
XPoint structures. It draws the lines in the order listed in the array. The lines
join correctly at all intermediate points, and if the first and last points coin-
cide, the first and last lines also join correctly. For any given line, XDraw-
Lines does not draw a pixel more than once. If thin (zero line-width) lines
intersect, the intersecting pixels are drawn multiple times. If wide lines inter-
sect, the intersecting pixels are drawn only once, as though the entire Poly-
Line protocol request were a single, filled shape. CoordModeOrigin treats all
coordinates as relative to the origin, and CoordModePrevious treats all coor-
dinates after the first as relative to the previous point.

The XDrawSegments function draws multiple, unconnected lines. For each
segment, XDrawSegments draws a line between (x1, y1) and (x2, y2). It
draws the lines in the order listed in the array of XSegment structures and
does not perform joining at coincident endpoints. For any given line,
XDrawSegments does not draw a pixel more than once. If lines intersect, the
intersecting pixels are drawn multiple times.

All three functions use these GC components: function, plane-mask, line-
width, line-style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-
origin, and clip-mask. The XDrawLines function also uses the join-style GC
component. All three functions also use these GC mode-dependent com-
ponents: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin, dash-offset, and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate “BadDraw-
able”, “BadGC”, and “BadMatch” errors. XDrawLines can also generate a
“BadValue” error.

Structures

198

The XSegment structure contains:
typedef struct {
short x1, yl, x2, y2;
) XSegment;

All x and y members are signed integers. The width and height members are
16-bit unsigned integers. You should be careful not to generate coordinates
and sizes out of the 16-bit ranges, because the protocol only has 16-bit fields
for these values.

X Version 11 (Release 5) 6 January 1993

Diagnostics

XDrawLine(XS)

“BadDrawable”

“BadGC”

“BadMatch”
“BadMatch”

“BadValue”

See also

A value for a Drawable argument does not name a defined
Window or Pixmap.

A value for a GContext argument does not name a defined
GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

XDrawArc(XS), XDrawPoint(XS), XDrawRectangle(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 199

XDrawPoint(XS)

XDrawPoint

draw points and points structure

Syntax

XDrawPoint (display, d, gc, x, y)
Display *display;
Drawable d;
GC gc;
int x, y;

XDrawPoints(display, d, gc, points, npoints, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int mode;

Arguments

d Specifies the drawable.
display Specifies the connection to the X server.
8¢ Specifies the GC.

mode Specifies the coordinate mode. You can pass CoordModeOrigin
or CoordModePrevious.

npoints Specifies the number of points in the array.
points Specifies an array of points.

x
y Specify the x and y coordinates where you want the point drawn.

Description

200

The XDrawPoint function uses the foreground pixel and function com-
ponents of the GC to draw a single point into the specified drawable;
XDrawPoints draws multiple points this way. CoordModeOrigin treats all
coordinates as relative to the origin, and CoordModePrevious treats all coor-
dinates after the first as relative to the previous point. XDrawPoints draws
the points in the order listed in the array.

X Version 11 (Release 5) 6 January 1993

XDrawPoint(XS)

Both functions use these GC components: function, plane-mask, foreground,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generate “BadDrawable”, “BadGC”, and “BadMatch” errors.
XDrawPoints can generate “BadDrawable”, “BadGC”, “BadMatch”, and “Bad-
Value” errors.

Structures

The XPoint structure contains:
typedef struct {(

short x, y;
) XPoint;

All x and y members are signed integers. The width and height members are
16-bit unsigned integers. You should be careful not to generate coordinates
and sizes out of the 16-bit ranges, because the protocol only has 16-bit fields
for these values.

Diagnostics

See also

“BadDrawable” A value for a Drawable argument does not name a defined
Window or Pixmap.

“BadGC” A value for a GContext argument does not name a defined
GContext.

“BadMatch” An InputOnly window is used as a Drawable.

“BadMatch” Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

“Bad Value” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

XDrawArc(XS), XDrawLine(XS), XDrawRectangle(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 201

XDrawRectangle(XS)

XDrawRectangle

draw rectangles and rectangles structure

Syntax

XDrawRectangle(display, d, gc, x, y, width, height)
Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;

XDrawRectangles(display, d, gc, rectangles, nrectangles)
Display *display;
Drawable d;
GC gc;
XRectangle rectangles(];
int nrectangles;

Arguments

d Specifies the drawable.

display Specifies the connection to the X server.

8¢ Specifies the GC.

nrectangles Specifies the number of rectangles in the array.
rectangles Specifies an array of rectangles.

width

height Specify the width and height, which specify the dimensions of
the rectangle.

y Specify the x and y coordinates, which specify the upper-left
corner of therectangle.

Description

The XDrawRectangle and XDrawRectangles functions draw the outlines of
the specified rectangle or rectangles as if a five-point PolyLine protocol
request were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

202 X Version 11 (Release 5) 6 January 1993

XDrawRectangle(XS)

For the specified rectangle or rectangles, these functions do not draw a pixel
more than once. XDrawRectangles draws the rectangles in the order listed in
the array. If rectangles intersect, the intersecting pixels are drawn multiple
times.

Both functions use these GC components: function, plane-mask, line-width,
line-style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-
y-origin, and clip-mask. They also use these GC mode-dependent com-
ponents: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin, dash-offset, and dash-list.

XDrawRectangle and XDrawRectangles can generate “BadDrawable”,
“BadGC”, and “BadMatch” errors.

Structures

The XRectangle structure contains:

typedef struct |
short x, y;
unsigned short width, height;
} XRectangle;
All x and y members are signed integers. The width and height members are
16-bit unsigned integers. You should be careful not to generate coordinates
and sizes out of the 16-bit ranges, because the protocol only has 16-bit fields
for these values.

Diagnostics

See also

“BadDrawable” A value for a Drawable argument does not name a defined
Window or Pixmap.

“BadGC” A value for a GContext argument does not name a defined
GContext.

“BadMatch” An InputOnly window is used as a Drawable.

“BadMatch” Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

XDrawArc(XS), XDrawLine(XS), XDrawPoint(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 203

XDrawString(XS)

XDrawString

draw text characters

Syntax

XDrawString(display, d, gc, x, y, string, length)
Display *display;
Drawable d;
GC gc;
int x, y;
char *string;
int length;

XDrawStringlé(display, d, gc, x, y, string, length)
Display *display;
Drawable d;
GC gc;
int x, y;
XChar2b *string;
int length;

Arguments

d Specifies the drawable.

display Specifies the connection to the X server.

8¢ Specifies the GC.

length Specifies the number of characters in the string argument.

string Specifies the character string.

x
y Specify the x and y coordinates, which are relative to the origin of
the specified drawable and define the origin of the first character.
Description

204

Each character image, as defined by the font in the GC, is treated as an addi-
tional mask for a fill operation on the drawable. The drawable is modified
only where the font character has a bit set to 1. For fonts defined with 2-byte
matrix indexing and used with XDrawString16, each byte is used as a byte2

with a bytel of zero. bytel and byte2 are unsigned char in the XChar2b
structure.

X Version 11 (Release 5) 6 January 1993

XDrawString(XS)

Both functions use these GC components: function, plane-mask, fill-style,
font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also
use these GC mode-dependent components: foreground, background, tile,
stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawString and XDrawString16 can generate “BadDrawable”, “BadGC”,
and “BadMatch” errors.

Structures

The XChar2b structure contains:

typedef struct {
unsigned char bytel;
unsigned char byte2;
)} XChar2b;

bytel and byte2 make up the 2-byte or 16-bit characters of the XChar2b struc-
ture. bytel is the most significant byte.

Diagnostics

“BadDrawable” A value for a Drawable argument does not name a defined
Window or Pixmap.

“BadGC” A value for a GContext argument does not name a defined
GContext.

“BadMatch” An InputOnly window is used as a Drawable.
“BadMatch” Some argument or pair of arguments has the correct type

and range but fails to match in some other way required by
the request.

See also

XDrawImageString(XS), XDrawText(XS), XLoadFont(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 205

XDrawText(XS)

XDrawText

draw polytext text and text drawing structures

Syntax
XDrawText (display, d, gc, x, y, items, nitems)
Display *display;
Drawable d;
GC gc;
int x, y;
XTextItem *items;
int nitems;
XDrawTextl16(display, d, gc, x, y, items, nitems)
Display *display;
Drawable d;
GC gc;
int x, y;
XTextIteml6 *items;
int nitems;
Arguments
d Specifies the drawable.
display Specifies the connection to the X server.
8¢ Specifies the GC.
items Specifies an array of text items.
nitems Specifies the number of text items in the array.
x
y Specify the x and y coordinates, which are relative to the origin of
the specified drawable and define the origin of the first character.
Description

The XDrawText16 function is similar to XDrawText except that it uses 2-byte
or 16-bit characters. Both functions allow complex spacing and font shifts
between counted strings.

Each text item is processed in turn. A font member other than None in an
item causes the font to be stored in the GC and used for subsequent text. A
text element delta specifies an additional change in the position along the x
axis before the string is drawn. The delta is always added to the character ori-
gin and is not dependent on any characteristics of the font. Each character

206 X Version 11 (Release 5) 6 January 1993

XDrawText(XS)

image, as defined by the font in the GC, is treated as an additional mask for a
fill operation on the drawable. The drawable is modified only where the font
character has a bit set to 1. If a text item generates a “BadFont” error, the pre-
vious text items may have been drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing,
each XChar2b structure is interpreted as a 16-bit number with bytel as the
most-significant byte.

Both functions use these GC components: function, plane-mask, fill-style,
font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also
use these GC mode-dependent components: foreground, background, tile,
stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawText and XDrawText16 can generate “BadDrawable’, “BadFont”,
“BadGC”, and “BadMatch” errors.

Structures

The XTextItem and XTextItem16 structures contain:
typedef struct {

char *chars; /* pointer to string */

int nchars; /* number of characters */

int delta; /* delta between strings */

Font font; /* Font to print it in, None don’t change */

} XTextItem;

typedef struct {
XChar2b *chars; /* pointer to two-byte characters */

int nchars; /* number of characters */
int delta; /* delta between strings */
Font font; /* font to print it in, None don’t change */

} XTextIteml6;

If the font member is not None, the font is changed before printing and also is
stored in the GC. If an error was generated during text drawing, the previous
items may have been drawn. The baseline of the characters are drawn start-
ing at the x and y coordinates that you pass in the text drawing functions.

For example, consider the background rectangle drawn by XDrawImage-
String. If you want the upper-left corner of the background rectangle to be at
pixel coordinate (x,y), pass the (x,y + ascent) as the baseline origin coordinates
to the text functions. The ascent is the font ascent, as given in the XFontStruct
structure. If you want the lower-left corner of the background rectangle to be
at pixel coordinate (x,y), pass the (x,y - descent + 1) as the baseline origin
coordinates to the text functions. The descent is the font descent, as given in
the XFontStruct structure.

X Version 11 (Release 5) 6 January 1993 207

XDrawText(XS)

Diagnostics

“BadDrawable” A value for a Drawable argument does not name a defined
Window or Pixmap.

“BadFont” A value for a Font or GContext argument does not name a
defined Font.

“BadGC” A value for a GContext argument does not name a defined
GContexct.

“BadMatch” An InputOnly window is used as a Drawable.

See also

XDrawImageString(XS), XDrawString(XS), XLoadFont(XS)
Xlib - C Language X Interface

208 X Version 11 (Release 5) 6 January 1993

XEmptyRegion(XS)

XEmptyRegion

determine if regions are empty orequal

Syntax
Bool XEmptyRegion(r)
Region r;
Bool XEqualRegion(rl, r2)
Region rl, r2;
Bool XPointInRegion(r, x, y)
Region r;
int x, y;
int XRectInRegion(r, x, y, width, height)
Region r;
int x, y;
unsigned int width, height;
Arguments
r Specifies the region.
r1
2 Specify the two regions.
width
height Specify the width and height, which define the rectangle.
x
Y Specify the x and y coordinates, which define the point or the coordi-
nates of the upper-left corner of the rectangle.
Description

The XEmptyRegionfunction returns True if the region is empty.

The XEqualRegion function returns True if the two regions have the same
offset, size,and shape.

The XPointInRegion function returns True if the point (x, y) is contained in
the region r.

The XRectInRegion function returns Rectangleln if the rectangle is entirely in
the specified region, RectangleOut if the rectangle is entirely out of the speci-
fied region, and RectanglePart if the rectangle is partially in the specified
region.

X Version 11 (Release 5) 6 January 1993 209

XEmptyRegion(XS)

See also

XCreateRegion(XS), XIntersectRegion(XS)
Xlib - C Language X Interface

210 X Version 11 (Release 5) 6 January 1993 -

XErrorEvent(XS)

XErrorEvent

X error event structure

Structures

See also

The XErrorEvent structure contains:

typedef struct (
int type;

Display *display; /* Display the event was read from */
unsigned long serial; /* serial number of failed request */
unsigned char error_code; /* error code of failed request */
unsigned char request_code; /* Major op-code of failed request */
unsigned char minor_code; /* Minor op-code of failed request */
XID resourceid; /* resource id */

} XErrorEvent;

When you receive this event, the structure members are set as follows.

The serial member is the number of requests, starting from one, sent over the
network connection since it was opened. It is the number that was the value
of NextRequest immediately before the failing call was made. The
request_code member is a protocol request of the procedure that failed, as
defined in <X11/Xproto.h>.

AllPlanes(XS), XAnyEvent(XS), XButtonEvent(XS), XCre-
ateWindowEvent(XS), XCirculateEvent(XS), XCirculateRequestEvent(XS),
XColormapEvent(XS), XConfigureEvent(XS), XConfigureRequestEvent(XS),
XCrossingEvent(XS), XDestroyWindowEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),
XSelectionClearEvent(XS), XSelectionEvent(XS),
XSelectionRequestEvent(XS), XUnmapEvent(XS), XVisibilityEvent(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 211

XExposeEvent(XS)

XExposeEvent

Expose event structure

Structures

See also

The structure for Expose events contains:
typedef struct {

int type; /* Expose */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
int x, y;
int width, height;
int count; /* if nonzero, at least this many more */
} XExposeEvent;

When you receive this event, the structure members are setas follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The window member is set to the exposed (damaged) window. The x and y
members are set to the coordinates relative to the window’s origin and indi-
cate the upper-left corner of the rectangle. The width and height members are
set to the size (extent) of the rectangle. The count member is set to the num-
ber of Expose events that are to follow. If count is zero, no more Expose
events follow for this window. However, if count is nonzero, at least that
number of Expose events (and possibly more) follow for this window. Simple
applications that do not want to optimize redisplay by distinguishing
between subareas of its window can just ignore all Expose events with
nonzero counts and perform full redisplays on events with zero counts.

212

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XFocusChangeEvent(XS),
XGraphicsExposeEvent(XS), XGravityEvent(XS), XKeymapEvent(XS),
XMapEvent(XS), XMapRequestEvent(XS), XPropertyEvent(XS),
XReparentEvent(XS), XResizeRequestEvent(XS), XSelectionClearEvent(XS),

X Version 11 (Release 5) 6 January 1993

XExposeEvent(XS)

XSelectionEvent(XS), XSelectionRequestEvent(XS), XUnmapEvent(XS),
XVisibilityEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 213

XExtentsOfFontSet(XS)

XExtentsOfFontSet

obtain the maximum extents structure for a font set

Syntax

XFontSetExtents *XExtentsOfFontSet (font_set)
XFontSet font_set;

Arguments

font_set Specifies the font set.
Description

The XExtentsOfFontSet function returns an XFontSetExtents structure for the
fonts used by the Xmb and Xwc layers, for the given font set.

The XFontSetExtents structure is owned by Xlib and should not be modified
or freed by the client. It will be freed by a call to XFreeFontSet with the asso-
ciated XFontSet. Until freed, its contents will not be modified by Xlib.

See also

XCreateFontSet(XS), XFontsOfFontSet(XS), XFontSetExtents(XS)
Xlib - C Language X Interface

214 X Version 11 (Release 5) 6 January 1993

XFillRectangle(XS)

XFillRectangle

fill rectangles, polygons, orarcs

Syntax

XFillRectangle(display, d, gc, x, y, width, height)
Display *display;
Drawable d;
GC gc;
int x, y:
unsigned int width, height;

XFillRectangles(display, d, gc, rectangles, nrectangles)
Display *display;
Drawable d;
GC gc;
XRectangle *rectangles;
int nrectangles;

XFillPolygon(display, d, gc, points, npoints, shape, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int shape;
int mode;

XFillArc(display, d, gc, x, y, width, height, anglel, angle2)
Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;
int anglel, angle2;

XFillArcs(display, d, gc, arcs, narcs)
Display *display;
Drawable d;
GC gc;
XArc *arcs;
int narcs;

Arguments

anglel Specifies the start of the arc relative to the three-o’clock position
from the center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the
arc, in units of degrees * 64.

X Version 11 (Release 5) 6 January 1993 215

XFillRectangle(XS)

arcs Specifies an array of arcs.

d Specifies the drawable.

display Specifies the connection to the X server.

gc Specifies the GC.

mode Specifies the coordinate mode. You can pass CoordModeOrigin
or CoordModePrevious.

narcs Specifies the number of arcs in the array.

npoints Specifies the number of points in the array.

nrectangles Specifies the number of rectangles in the array.
points Specifies an array of points.

rectangles Specifies an array of rectangles.

shape Specifies a shape that helps the server to improve performance.
You can pass Complex, Convex, or Nonconvex.

width

height Specify the width and height, which are the dimensions of the
rectangle to be filled or the major and minor axes of the arc.

x

y Specify the x and y coordinates, which are relative to the origin
of the drawable and specify the upper-left corner of the rectan-
gle.

Description

216

The XFillRectangle and XFillRectangles functions fill the specified rectangle
or rectangles as if a four-point FillPolygon protocol request were specified for
each rectangle:

[x,y) [x+width,y] [x+width,y+height] [x,y+height]

Each function uses the x and y coordinates, width and height dimensions, and
GC you specify.

XFillRectangles fills the rectangles in the order listed in the array. For any
given rectangle, XFillRectangle and XFillRectangles do not draw a pixel
more than once. If rectangles intersect, the intersecting pixels are drawn mul-
tiple times.

Both functions use these GC components: function, plane-mask, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, and tile-stipple-y-origin.

X Version 11 (Release 5) 6 January 1993

XFillRectangle(XS)

XFillRectangle and XFillRectangles can generate “BadDrawable”, “BadGC”,
and “BadMatch” errors.

XFillPolygon fills the region closed by the specified path. The path is closed
automatically if the last point in the list does not coincide with the first point.
XFillPolygon does not draw a pixel of the region more than once. CoordMo-
deOrigin treats all coordinates as relative to the origin, and CoordModePrevi-
ous treats all coordinates after the first as relative to the previous point.

Depending on the specified shape, the following occurs:

e If shape is Complex, the path may self-intersect. Note that contiguous
coincident points in the path are not treated as self-intersection.

o If shape is Convex, for every pair of points inside the polygon, the line seg-
ment connecting them does not intersect the path. If known by the client,
specifying Convex can improve performance. If you specify Convex for a
path that is not convex, the graphics results are undefined.

e If shape is Nonconvex, the path does not self-intersect, but the shape is not
wholly convex. If known by the client, specifying Nonconvex instead of
Complex may improve performance. If you specify Nonconvex for a self-
intersecting path, the graphics results are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting
polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-
rule, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also
uses these GC mode-dependent components: foreground, background, tile,
stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillPolygon can generate “BadDrawable”, “BadGC”, “BadMatch”, and “Bad-
Value” errors.

For each arc, XFillArc or XFillArecs fills the region closed by the infinitely thin
path described by the specified arc and, depending on the arc-mode specified
in the GC, one or two line segments. For ArcChord, the single line segment
joining the endpoints of the arc is used. For ArcPieSlice, the two line seg-
ments joining the enc:];q)oints of the arc with the center point are used. XFil-
1Arcs fills the arcs in the order listed in the array. For any given arc, XFillArc
and XFillArcs do not draw a pixel more than once. If regions intersect, the
intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style,
arc-mode, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They
also use these GC mode-dependent components: foreground, background,
tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillArc and XFillArcs can generate “BadDrawable”, “BadGC”, and “Bad-
Match” errors.

X Version 11 (Release 5) 6 January 1993 217

XFillRectangle(XS)

Diagnostics

See also

“BadDrawable” A value for a Drawable argument does not name a defined

“BadGC”

“BadMatch”
“BadMatch”

“BadValue”

Window or Pixmap.

A value for a GContext argument does not name a defined
GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

218

XDrawArc(XS), XDrawPoint(XS), XDrawRectangle(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XFilterEvent(XS)

XFilterEvent

filter X events for an input method

Syntax

Bool XFilterEvent(event, w)
XEvent *event;
Window w;

Arguments

event Specifies the event to filter.

w Specifies the window for which the filter is to be applied.

Description

If the window argument is None, XFilterEvent applies the filter to the win-
dow specified in the XEvent structure. The window argument is provided so
that layers above Xlib that do event redirection can indicate to which window
an event has been redirected.

If XFilterEvent returns True, then some input method has filtered the event,
and the client should discard the event. If XFilterEvent returns False, then the
client should continue processing the event.

If a grab has occurred in the client, and XFilterEvent returns True, the client
should ungrab the keyboard.

See also

XNextEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 219

XFlush(XS)

XFlush

handle output buffer or event queue

Syntax

XFlush(display)
Display *display;

XSync(display, discard)
Display *display;
Bool discard;

int XEventsQueued(display, mode)
Display *display;
int mode;

int XPending(display)
Display *display;

Arguments

discard Specifies a Boolean value that indicates whether XSync discards
all events on the event queue.

display Specifies the connection to the X server.

mode Specifies the mode. You can pass QueuedAlready, QueuedAfter-
Flush, or QueuedAfterReading.

Description

220

The XFlush function flushes the output buffer. Most client applications need
not use this function because the output buffer is automatically flushed as
needed by calls to XPending, XNextEvent, and XWindowEvent. Events gen-
erated by the server may be enqueued into the library’s event queue.

The XSync function flushes the output buffer and then waits until all requests
have been received and processed by the X server. Any errors generated must
be handled by the error handler. For each protocol error received by Xlib,
XSync calls the client application’s error handling routine (see section 11.8.2 of
Xlib - C Language X Interface). Any events generated by the server are
enqueued into the library’s event queue.

Finally, if you passed False, XSync does not discard the events in the queue.
If you passed True, XSync discards all events in the queue, including those
events that were on the queue before XSync was called. Client applications
seldom need to call XSync.

X Version 11 (Release 5) 6 January 1993

See also

XFlush(XS)

If mode is QueuedAlready, XEventsQueued returns the number of events
already in the event queue (and never performs a system call). If mode is
QueuedAfterFlush, XEventsQueued returns the number of events already in
the queue if the number is nonzero. If there are no events in the queue,
XEventsQueued flushes the output buffer, attempts to read more events out
of the application’s connection, and returns the number read. If mode is
QueuedAfterReading, XEventsQueued returns the number of events already
in the queue if the number is nonzero. If there are no events in the queue,
XEventsQueued attempts to read more events out of the application’s connec-
tion without flushing the output buffer and returns the number read.

XEventsQueued always returns immediately without 1/0 if there are events
already in the queue. XEventsQueued with mode QueuedAfterFlush is
identical in behavior to XPending. XEventsQueued with mode QueuedAl-
ready is identical to the XQLength function.

The XPending function returns the number of events that have been received
from the X server but have not been removed from the event queue. XPend-
ing is identical to XEventsQueued with the mode QueuedAfterFlush speci-
fied.

AllPlanes(XS), XIfEvent(XS), XNextEvent(XS), XPutBackEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 221

XFocusChangeEvent(XS)

XFocusChangeEvent

Focusln and FocusOut event structure

Structures

222

The structure for FocusIn and FocusOut events contains:
typedef struct {

int type; /* FocusIn or FocusOut */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window; /* window of event */

int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */

int detail; /* NotifyAncestor, NotifyVirtual, NotifylInferior,

* NotifyNonlinear,NotifyNonlinearVirtual,
* NotifyPointer, NotifyPointerRoot,
* NotifyDetailNone */

)} XFocusChangeEvent;

typedef XFocusChangeEvent XFocusInEvent;

typedef XFocusChangeEvent XFocusOutEvent;

When you receive these events, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The window member is set to the window on which the FocusIn or FocusOut
event was generated. This is the window used by the X server to report the
event. The mode member is set to indicate whether the focus events are nor-
mal focus events, focus events while grabbed, focus events when a grab
activates, or focus events when a grab deactivates. The X server can set the
mode member to NotifyNormal, NotifyWhileGrabbed, NotifyGrab, or
NotifyUngrab.

All FocusOut events caused by a window unmap are generated after any
UnmapNotify event; however, the X protocol does not constrain the ordering
of FocusOut events with respect to generated EnterNotify, LeaveNotify,
VisibilityNotify, and Expose events.

Depending on the event mode, the detail member is set to indicate the notify
detail and can be NotifyAncestor, NotifyVirtual, NotifyInferior, NotifyNon-
linear, NotifyNonlinearVirtual, NotifyPointer, NotifyPointerRoot, or
NotifyDetailNone.

X Version 11 (Release 5) 6 January 1993

XFocusChangeEvent(XS)

See also

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XGraphicsExposeEvent(XS), XGravityEvent(XS), XKeymapEvent(XS),
XMapEvent(XS), XMapRequestEvent(XS), XPropertyEvent(XS),
XReparentEvent(XS), XResizeRequestEvent(XS), XSelectionClearEvent(XS),
XSelectionEvent(XS), XSelectionRequestEvent(XS), XUnmapEvent(XS),
XVisibilityEvent(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 223

XFontSetExtents(XS)

XFontSetExtents

XFontSetExtents structure

Structures

See also

The XFontSetExtents structure contains:

typedef struct {
XRectangle max_ink_extent; /* over all drawable characters */
XRectangle max_logical_extent; /* over all drawable characters */
) XFontSetExtents;

The XRectangles used to return font set metrics are the usual Xlib screen-
oriented XRectangles, with x, y giving the upper left corner, and width and
height always positive.

The max_ink_extent member gives the maximum extent, over all drawable
characters, of the rectangles which bound the character glyph image drawn in
the foreground color, relative to a constant origin. See XmbTextExtents and
XwcTextExtents for detailed semantics.

The max_logical_extent member gives the maximum extent, over all draw-
able characters, of the rectangles which specify minimum spacing to other
graphical features, relative to a constant origin. Other graphical features
drawn by the client, for example, a border surrounding the text, should not
intersect this rectangle. The max_logical_extent member should be used to
compute minimum inter-line spacing and the minimum area which must be
allowed in a text field to draw a given number of arbitrary characters.

Due to context-dependent rendering, appending a given character to a string
may increase the string’s extent by an amount which exceeds the font’s max
extent:

max possible added extent = (max_extent * <total # chars>) - prev_string_extent

224

XCreateFontSet(XS), XExtentsOfFontSet(XS), XFontsOfFontSet(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XFontsOfFontSet(XS)

XFontsOfFontSet

obtain fontset information

Syntax
int XFontsOfFontSet (font_set, font_struct_list_return,
font_name_list_return)
XFontSet font_set;
XFontStruct ***font_struct_list_return;
char ***font_name_list_return;
char *XBaseFontNameListOfFontSet (font_set)
XFontSet font_set;
char *XLocaleOfFontSet (font_set)
XFontSet font_set;
Bool XContextDependentDrawing(font_set)
XFontSet font_set;
Arguments
font_set Specifies the font set.
font_name_list_return
Returns the list of font names.
font_struct_list_return
Returns the list of font structs.
Description

The XFontsOfFontSet function returns a list of one or more XFontStructs and
font names for the fonts used by the Xmb and Xwc layers, for the given font
set. A list of pointers to the XFontStruct structures is returned to
font_struct_list_return. A list of pointers to null-terminated fully specified
font name strings in the locale of the font set is returned to
font_name_list_return. The font_name_list order corresponds to the
font_struct_list order. The number of XFontStruct structures and font names
is returned as the value of the function.

Because it is not guaranteed that a given character will be imaged using a sin-
gle font glyph, there is no provision for maﬁpin a character or default string
to the font properties, font ID, or direction hint for the font for the character.
The client may access the XFontStruct list to obtain these values for all the
fonts currently in use.

X Version 11 (Release 5) 6 January 1993 225

XFontsOfFontSet(XS)

See also

It is not required that fonts be loaded from the server at the creation of an
XFontSet. Xlib may choose to cache font data, loading it only as needed to
draw text or compute text dimensions. Therefore, existence of the per_char
metrics in the XFontStruct structures in the XFontStructSet is undefined.
Also, note that all properties in the XFontStruct structures are in the STRING
encoding.

The XFontStruct and font name lists are owned by Xlib and should not be
modified or freed by the client. They will be freed by a call to XFreeFontSet
with the associated XFontSet. Until freed, its contents will not be modified by
Xlib.

The XBaseFontNameListOfFontSet function returns the original base font
name list supplied by the client when the XFontSet was created. A null-
terminated string containing a list of comma-separated font names is returned
as the value of the function. Whitespace may appear immediately on either
side of separating commas.

If XCreateFontSet obtained an XLFD name from the font properties for the
font specified by a non-XLFD base name, the XBaseFontNameListOfFontSet
function will return the XLFD name instead of the non-XLFD base name.

The base font name list is owned by Xlib and should not be modified or freed
by the client. It will be freed by a call to XFreeFontSet with the associated
XFontSet. Until freed, its contents will not be modified by Xlib.

The XLocaleOfFontSet function returns the name of the locale bound to the
specified XFontSet, as a null-terminated string.

The returned locale name string is owned by Xlib and should not be modified
or freed by the client. It may be freed by a call to XFreeFontSet with the asso-
ciated XFontSet. Until freed, it will not be modified by Xlib.

The XContextDependentDrawing function returns True if text drawn with
the font_set might include context-dependent drawing.

226

XCreateFontSet(XS), XExtentsOfFontSet(XS), XFontSetExtents(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XFree(XS)

XFree

free client data
Syntax
XFree(data)
void *data;
Arguments

data Specifies the data that is to be freed.

Description

The XFree function is a general-purpose Xlib routine that frees the specified

data. You must use it to free any oll?ects that were allocated by Xlib, unless an
alternate function is explicitly specified for the object.

See also

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 227

XGetVisuallnfo(XS)

XGetVisualinfo

obtain visual information and visual structure

Syntax

XVisualInfo *XGetVisuallnfo(display, vinfo_mask, vinfo_template,
nitems_return)
Display *display;
long vinfo_mask;
XVisualInfo *vinfo_template;
int *nitems_return;

Status XMatchVisuallInfo(display, screen, depth, class, vinfo_return)
Display *display;
int screen;
int depth;
int class;
XVisualInfo *vinfo_return;

VisualID XVisualIDFromVisual(visual)
Visual *visual;

Arguments

tlass Specifies the class of the screen.
depth Specifies the depth of the screen.
display Specifies the connection to the X server.

nitems_return Returns the number of matching visual structures.

screen Specifies the screen.
visual Specifies the visual type.
vinfo_mask Specifies the visual mask value.

vinfo_return Returns the matched visual information.

vinfo_template Specifies the visual attributes that are to be used in matching
the visual structures.

Description

The XGetVisuallnfo function returns a list of visual structures that have
attributes equal to the attributes specified by vinfo_template. If no visual
structures match the template using the specified vinfo_mask, XGet-
VisualInfo returns a NULL. To free the data returned by this function, use
XFree.

228 X Version 11 (Release 5) 6 January 1993

XGetVisuallnfo(XS)

The XMatchVisuallnfo function returns the visual information for a visual
that matches the specified depth and class for a screen. Because multiple
visuals that match the specified depth and class can exist, the exact visual
chosen is undefined. If a visual is found, XMatchVisualInfo returns nonzero
and the information on the visual to vinfo_return. Otherwise, when a visual
is not found, XMatchVisualInfo returns zero.

The XVisualIDFromVisual function returns the visual ID for the specified
visual type.

Structures

The XVisualInfo structure contains:

/* Visual information mask bits */

#define VisualNoMask 0x0
#define VisuallDMask 0x1
#define VisualScreenMask 0x2
#define VisualDepthMask 0x4
#define VisualClassMask 0x8
#define VisualRedMaskMask 0x10
#define VisualGreenMaskMask 0x20
#define VisualBlueMaskMask 0x40

#define VisualColormapSizeMask 0x80
#define VisualBitsPerRGBMask 0x100
#define VisualAllMask Ox1FF

/* Values */

typedef struct {
Visual t*visual;
VisualID visualid;
int screen;
int depth;
int class;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
int colormap_size;
int bits_per_rgb;
)} XVisuallnfo;

See also

XFree(XS)
XIib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 229

XGetWindowAttributes(XS)

XGetWindowAttributes

get current window attribute or geometry and current window attributes structure

Syntax

Status XGetWindowAttributes(display, w, window_attributes_return)
Display *display;
Window w;
XWindowAttributes *window_attributes_return;

Status XGetGeometry(display, d, root_return, x_return, y_return,
width_return, height_return, border_width_return,
depth_return)

Display *display;

Drawable d;

Window *root_return;

int *x_return, *y_return;

unsigned int *width_return, t*height_return;
unsigned int *border_width_return;

unsigned int *depth_return;

Arguments

border_width_return
Returns the border width in pixels.

d Specifies the drawable, which can be a window or a pixmap.

depth_return Returns the depth of the drawable (bits per pixel for the
object).

display Specifies the connection to the X server.

root_return Returns the root window.

w Specifies the window whose current attributes you want to
obtain.

width_return
height_return Return the drawable’s dimensions (width and height).

window_attributes_return
Returns the specified window’s attributes in the XWin-
dowAttributes structure.

x_return

y_return Return the x and y coordinates that define the location of the
drawable. For a window, these coordinates specify the
upper-left outer corner relative to its parent’s origin. For pix-
maps, these coordinates are always zero.

230 X Version 11 (Release 5) 6 January 1993

Description

XGetWindowAttributes(XS)

The XGetWindowAttributes function returns the current attributes for the
specified window to an XWindowAttributes structure.

XGetWindowAttributes can generate “BadDrawable” and “BadWindow”

errors.

The XGetGeometry function returns the root window and the current
geometry of the drawable. The geometry of the drawable includes the x and y
coordinates, width and height, border width, and depth. These are described
in the argument list. It is legal to pass to this function a window whose class

is InputOnly.
Structures

The XWindowAttributes structure contains:

typedef struct |
int x, y;
int width, height;
int border_width;
int depth;
Visual *visual;
Window root;
int class;
int bit_gravity;
int win_gravity;
int backing_store;
unsigned long backing_planes;
unsigned long backing_pixel;

Bool save_under;
Colormap colormap;
Bool map_installed;

int map_state;
long all_event_masks;

long your_event_mask;
long do_not_propagate_mask;

Bool override_redirect;

Screen *screen;
} XWindowAttributes;

X Version 11 (Release 5) 6 January 1993

/'k
/i
/*
/i
/i
/t
/i
/t
/t
/*
/t
/'k

/i
/'k
/*

/*
/t

/*
/i

/*
/*

location of window */

wvidth and height of window */

border width of window */

depth of window */

the associated visual structure */
root of screen containing window */
InputOutput, InputOnly*/

one of the bit gravity values */

one of the window gravity values */
NotUseful, WhenMapped, Always */
planes to be preserved if possible */
value to be used when restoring

planes */

boolean, should bits under be

saved? */

color map to be associated with

window */

boolean, is color map currently
installed*/

IsUnmapped, IsUnviewable, IsViewable */
set of events all people have interest
in*/

my event mask */

set of events that should not
propagate */

boolean value for override-redirect */
back pointer to correct screen */

231

XGetWindowAttributes(XS)

232

The x and y members are set to the upper-left outer corner relative to the
parent window’s origin. The width and height members are set to the inside
size of the window, not including the border. The border_width member is
set to the window’s border width in pixels. The depth member is set to the
depth of the window (that is, bits per pixel for the object). The visual
member is a pointer to the screen’s associated Visual structure. The root
member is set to the root window of the screen containing the window. The
class member is set to the window’s class and can be either InputOutput or
InputOnly.

The bit_gravity member is set to the window’s bit gravity and can be one of
the following:

ForgetGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

The win_gravity member is set to the window’s window gravity and can be
one of the following:

UnmapGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity '

For additional information on gravity, see section 3.3 of Xlib - C Language X
Interface.

The backing_store member is set to indicate how the X server should main-
tain the contents of a window and can be WhenMapped, Always, or NotUse-
ful. The backing_planes member is set to indicate (with bits set to 1) which
bit planes of the window hold dynamic data that must be preserved in
backing_stores and during save_unders. The backing_pixel member is set
to indicate what values to use for planes not set in backing_planes.

The save_under member is set to True or False. The colormap member is set
to the colormap for the specified window and can be a colormap ID or None.
The map_installed member is set to indicate whether the colormap is
currently installed and can be True or False. The map_state member is set to
indicate the state of the window and can be IsUnmapped, IsUnviewable, or
IsViewable. IsUnviewable is used if the window is mapped but some ances-
tor is unmapped.

X Version 11 (Release 5) 6 January 1993

XGetWindowAttributes(XS)

The all_event_masks member is set to the bitwise inclusive OR of all event
masks selected on the window by all clients. The your_event_mask member is
set to the bitwise inclusive OR of all event masks selected by the querying
client. The do_not_propagate_mask member is set to the bitwise inclusive OR
of the set of events that should not propagate.

The override_redirect member is set to indicate whether this window over-
rides structure control facilities and can be True or False. Window manager
clients should ignore the window if this member is True.

The screen member is set to a screen pointer that gives you a back pointer to
the correct screen. This makes it easier to obtain the screen information
without having to loop over the root window fields to see which field
matches.

Diagnostics

“BadDrawable” A value for a Drawable argument does not name a defined
Window or Pixmap.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XQueryPointer(XS), XQueryTree(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 233

XGetWindowProperty(XS)

XGetWindowProperty

obtain and change window properties

Syntax

int XGetWindowProperty(display, w, property, long_offset, long_length,

delete, req_type, actual_type_return,
actual_format_return, nitems_return,
bytes_after_return, prop_return)

Display *display;

Window w;

Atom property;

long long_offset, long_length;

Bool delete;

Atom req_type;

Atom *actual_type_return;

int *actual_format_return;

unsigned long *nitems_return;

unsigned long *bytes_after_return;

unsigned char **prop_return;

Atom *XListProperties(display, w, num_prop_return)
Display *display;
Window w;
int *num_prop_return;

XChangeProperty (display, w, property, type, format, mode, data, nelements)
Display *display;
Window w;
Atom property, type;
int format;
int mode;
unsigned char *data;
int nelements;

XRotateWindowProperties(display, w, properties, num_prop, npositions)
Display *display;
Window w;
Atom properties[];
int num_prop;
int npositions;

XDeleteProperty (display, w, property)
Display *display;
Window w;
Atom property;

234 X Version 11 (Release 5) 6 January 1993

Arguments

XGetWindowProperty(XS)

actual_format_return

Returns the actual format of the property.

actual_type_return

Returns the atom identifier that defines the actual type of
the property.

bytes_after_return

data

delete

display

format

long_length

long_offset

mode

nelements

nitems_return

num_prop

Returns the number of bytes remaining to be read in the pro-
perty if a partial read was performed.

Specifies the property data.

Specifies a Boolean value that determines whether the pro-
perty is deleted.

Specifies the connection to the X server.

Specifies whether the data should be viewed as a list of 8-bit,
16-bit, or 32-bit quantities. Possible values are 8, 16, and 32.
This information allows the X server to correctly perform
byte-swap operations as necessary. If the format is 16-bit or
32-bit, you must explicitly cast your data pointer to an
(unsigned char *) in the call to XChangeProperty.

Specifies the length in 32-bit multiples of the data to be
retrieved.

Specifies the offset in the specified property (in 32-bit quanti-
ties) where the data is to be retrieved.

Specifies the mode of the operation. You can pass PropMo-
deReplace, PropModePrepend, or PropModeAppend.

Specifies the number of elements of the specified data for-
mat.

Returns the actual number of 8-bit, 16-bit, or 32-bit items
stored in the prop_return data.

Specifies the length of the properties array.

num_prop_return

npositions

prop_return

Returns the length of the properties array.
Specifies the rotation amount.

Returns the data in the specified format.

X Version 11 (Release 5) 6 January 1993 235

XGetWindowProperty(XS)

Description

property Specifies the property name.

properties Specifies the array of properties that are to be rotated.

req_type Specifies the atom identifier associated with the property
type or AnyPropertyType.

type Specifies the type of the property. The X server does not

interpret the type but simply passes it back to an application
that later calls XGetWindowProperty.

Specifies the window whose property you want to obtain,
change, rotate or delete.

236

The XGetWindowProperty function returns the actual type of the property;
the actual format of the property; the number of 8-bit, 16-bit, or 32-bit items
transferred; the number of bytes remaining to be read in the property; and a
pointer to the data actually returned. XGetWindowProperty sets the return
arguments as follows:

If the specified property does not exist for the specified window, XGetWin-
dowProperty returns None to actual_type_return and the value zero to
actual_format_return and bytes_after_return. The nitems_return argu-
ment is empty. In this case, the delete argument is ignored.

If the specified property exists but its type does not match the specified
type, XGetWindowProperty returns the actual property type to
actual_type_return, the actual property format (never zero) to
actual_format_return, and the property length in bytes (even if the
actual_format_return is 16 or 32) to bytes_after_return. It also ignores the
delete argument. The nitems_return argument is empty.

If the specified property exists and either you assign AnyPropertyType to
the reg_type argument or the specified type matches the actual property
type, XGetWindowProperty returns the actual property type to
actual_type_return and the actual property format (never zero) to
actual_format_return. It also returns a value to bytes_after_return and
nitems_return, by defining the following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

I =4 * long_offset

T=N-1

L = MINIMUM(T, 4 * long_length)

A=N- (I +1L)

The returned value starts at byte index I in the property (indexing from
zero), and its length in bytes is L. If the value for long_offset causes L to be
negative, a “BadValue” error results. The value of bytes_after_return is A,
giving the number of trailing unread bytes in the stored property.

X Version 11 (Release 5) 6 January 1993

XGetWindowProperty(XS)

XGetWindowProperty always allocates one extra byte in prop_return (even if
the property is zero length) and sets it to ASCII null so that simple properties
consisting of characters do not have to be copied into yet another string before
use. If delete is True and bytes_after_return is zero, XGetWindowProperty
deletes the property from the window and generates a PropertyNotify event
on the window.

The function returns Success if it executes successfully. To free the resulting
data, use XFree.

XGetWindowProperty can generate “BadAtom”, “BadValue”, and “BadWin-
dow” errors.

The XListProperties function returns a pointer to an array of atom properties
that are defined for the specified window or returns NULL if no properties
were found. To free the memory allocated by this function, use XFree.

XListProperties can generate a “BadWindow” error.

The XChangeProperty function alters the property for the specified window
and causes the X server to generate a PropertyNotify event on that window.
XChangeProperty performs the following:

e If mode is PropModeReplace, XChangeProperty discards the previous
property value and stores the new data.

e If mode is PropModePrepend or PropModeAppend, XChangeProperty
inserts the specified data before the beginning of the existing data or onto
the end of the existing data, respectively. The type and format must match
the existing property value, or a “BadMatch” error results. If the property
is undefined, it is treated as defined with the correct type and format with
zero-length data.

The lifetime of a property is not tied to the storing client. Properties remain
until explicitly deleted, until the window is destroyed, or until the server
resets. For a discussion of what happens when the connection to the X server
is closed, see section 2.6 of XIib - C Language X Interface. The maximum size of
a property is server dependent and can vary dynamically depending on the
amount of memory the server has available. (If there is insufficient space, a
“BadAlloc” error results.)

XChangeProperty can generate “BadAlloc”, “BadAtom”, “BadMatch”, “Bad-
Value”, and “BadWindow” errors.

The XRotateWindowProperties function allows you to rotate properties on a
window and causes the X server to generate PropertyNotify events. If the
property names in the properties array are viewed as being numbered starting
from zero and if there are num_prop property names in the list, then the value
associated with property name I becomes the value associated with property
name (I + npositions) mod N for all I from zero to N - 1. The effect is to rotate
the states by npositions places around the virtual ring of property names
(right for positive npositions, left for negative npositions). If npositions mod
N is nonzero, the X server generates a PropertyNotify event for each property

X Version 11 (Release 5) 6 January 1993 237

XGetWindowProperty(XS)

in the order that they are listed in the array. If an atom occurs more than once
in the list or no property with that name is defined for the window, a “Bad-
Match” error results. If a “BadAtom” or “BadMatch” error results, no proper-
ties are changed. '

XRotateWindowProperties can generate “BadAtom”, “BadMatch”, and
“BadWindow” errors.

The XDeleteProperty function deletes the specified property only if the pro-
perty was defined on the specified window and causes the X server to gen-
erate a PropertyN otify event on the window unless the property does not
exist.

XDeleteProperty can generate “BadAtom” and “BadWindow” errors.

Diagnostics
“BadAlloc” The server failed to allocate the requested resource or server
memory.
“BadAtom” A value for an Atom argument does not name a defined
Atom.
“BadValue” Some numeric value falls outside the range of values

See also

accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined
Window.

238

XFree(XS), XIntern Atom(XS)
X1ib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XGrabButton

XGrabButton(XS)

grab pointer buttons

Syntax

XGrabButton(display, button, modifiers, grab_window, owner_events,
event_mask, pointer_mode, keyboard_mode, confine_to, cursor)
Display *display;
unsigned int button;
unsigned int modifiers;
Window grab_window;
Bool owner_events;
unsigned int event_mask;
int pointer_mode, keyboard_mode;
Window confine_to;
Cursor cursor;

XUngrabButton(display, button, modifiers, grab_window)
Display *display;
unsigned int button;
unsigned int modifiers;
Window grab_window;

Arguments
button Specifies the pointer button that is to be grabbed or released
or AnyButton.
confine_to Specifies the window to confine the pointer in or None.
cursor Specifies the cursor that s to be displayed or None.
display Specifies the connection to the X server.

event_mask

grab_window
keyboard_mode

modifiers

Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event
mask bits.

Specifies the grab window.

Specifies further processing of keyboard events. You can
pass GrabModeSync or GrabModeAsync.

Specifies the set of keymasks or AnyModifier. The mask is
the bitwise inclusive OR of the valid keymask bits.

X Version 11 (Release 5) 6 January 1993 239

XGrabButton(XS)

owner_events Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to
the grab window if selected by the event mask.

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

Description

240

The XGrabButton function establishes a passive grab. In the future, the
pointer is actively grabbed (as for XGrabPointer), the last-pointer-grab time is
set to the time at which the button was pressed (as transmitted in the But-
tonPress event), and the ButtonPress event is reported if all of the following
conditions are true:

e The pointer is not grabbed, and the specified button is logically pressed
when the specified modifier keys are logically down, and no other buttons
or modifier keys are logically down.

e The grab_window contains the pointer.
¢ The confine_to window (if any) is viewable.

e A passive grab on the same button/key combination does not exist on any
ancestor of grab_window.

The interpretation of the remaining arguments is as for XGrabPointer. The
active grab is terminated automatically when the logical state of the pointer
has all buttons released (independent of the state of the logical modifier keys).

Note that the logical state of a device (as seen by client applications) may lag
the physical state if device event processing is frozen.

This request overrides all previous grabs by the same client on the same
button/key combinations on the same window. A modifiers of AnyModifier
is equivalent to issuing the grab request for all possible modifier combinations
(including the combination of no modifiers). It is not required that all modif-
iers specified have currently assigned KeyCodes. A button of AnyButton is
equivalent to issuing the request for all possible buttons. Otherwise, it is not
required that the specified button currently be assigned to a physical button.

If some other client has already issued a XGrabButton with the same
button/key combination on the same window, a “BadAccess” error results.
When using AnyModifier or AnyButton, the request fails completely, and a
“BadAccess” error results (no grabs are established) if there is a conflicting
grab for any combination. XGrabButton has no effect on an active grab.

XGrabButton can generate “BadCursor”, “BadValue”, and “BadWindow”
errors.

The XUngrabButton function releases the passive button/key combination on

the specified window if it was grabbed by this client. A modifiers of AnyMo-
difier is equivalent to issuing the ungrab request for all possible modifier

X Version 11 (Release 5) 6 January 1993

XGrabButton(XS)

combinations, including the combination of no modifiers. A button of
AnyButton is equivalent to issuing the request for all possible buttons.
XUngrabButton has no effect on an active grab.

XUngrabButton can generate “BadValue” and “BadWindow” errors.

Diagnostics

“BadCursor” A value for a Cursor argument does not name a defined Cur-
sor.

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XAllowEvents(XS), XGrabPointer(XS), XGrabKey(XS), XGrabKeyboard(XS),
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 241

XGrabKeyboard(XS)

XGrabKeyboard

grab the keyboard

Syntax

int XGrabKeyboard(display, grab_window, owner_events, pointer_mode,
keyboard_mode, time)
Display *display;
Window grab_window;
Bool owner_events;
int pointer_mode, keyboard_mode;
Time time;

XUngrabKeyboard(display, time)

Display *display;
Time time;

Arguments

display Specifies the connection to the X server.
grab_window Specifies the grab window.

keyboard_mode Specifies further processing of keyboard events. You can
pass GrabModeSync or GrabModeAsync.

owner_events Specifies a Boolean value that indicates whether the key-
board events are to be reported as usual.

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

Description

The XGrabKeyboard function actively grabs control of the keyboard and gen-
erates FocusIn and FocusOut events. Further key events are reported only to
the grabbing client. XGrabKeyboard overrides any active keyboard grab by
this client. If owner_events is False, all generated key events are reported
with respect to grab_window. If owner_events is True and if a generated key
event would normally be reported to this client, it is reported normally; other-
wise, the event is reported with respect to the grab_window. Both KeyPress
and KeyRelease events are always reported, independent of any event selec-
tion made by the client.

242 X Version 11 (Release 5) 6 January 1993

XGrabKeyboard(XS)

If the keyboard_mode argument is GrabModeAsync, keyboard event pro-
cessing continues as usual. If the keyboard is currently frozen by this client,
then processing of keyboard events is resumed. If the keyboard_mode argu-
ment is GrabModeSync, the state of the keyboard (as seen by client applica-
tions) appears to freeze, and the X server generates no further keyboard
events until the grabbing client issues a releasing XAllowEvents call or until
the keyboard grab is released. Actual keyboard changes are not lost while the
keyboard is frozen; they are simply queued in the server for later processing.

If pointer_mode is GrabModeAsync, pointer event processing is unaffected
by activation of the grab. If pointer_mode is GrabModeSync, the state of the
pointer (as seen by client applications) appears to freeze, and the X server
generates no further pointer events until the grabbing client issues a releasing
XAllowEvents call or until the keyboard grab is released. Actual pointer
changes are not lost while the pointer is frozen; they are simply queued in the
server for later processing.

If the keyboard is actively grabbed by some other client, XGrabKeyboard fails
and returns AlreadyGrabbed. If grab_window is not viewable, it fails and
returns GrabNotViewable. If the keyboard is frozen by an active grab of
another client, it fails and returns GrabFrozen. If the specified time is earlier
than the last-keyboard-grab time or later than the current X server time, it fails
and returns GrabInvalidTime. Otherwise, the last-keyboard-grab time is set
to the specified time (CurrentTime is replaced by the current X server time).

XGrabKeyboard can generate “BadValue” and “BadWindow” errors.

The XUngrabKeyboard function releases the keyboard and any queued
events if this client has it actively grabbed from either XGrabKeyboard or
XGrabKey. XUngrabKeyboard does not release the keyboard and any
queued events if the specified time is earlier than the last-keyboard-grab time
or is later than the current X server time. It also generates FocusIn and Focu-
sOut events. The X server automatically performs an UngrabKeyboard
request if the event window for an active keyboard grab becomes not view-
able.

Diagnostics

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined
Window.

X Version 11 (Release 5) 6 January 1993 243

XGrabKeyboard(XS)

See also

XAllowEvents(XS), XGrabButton(XS), XGrabKey(XS), XGrabPointer(XS)
Xlib - C Language X Interface

244 X Version 11 (Release 5) 6 January 1993

XGrabKey(XS)

XGrabKey

grab keyboard keys

Syntax

XGrabKey (display, keycode, modifiers, grab_window, owner_events,

pointer_mode, keyboard_mode)

Display *display;

int keycode;

unsigned int modifiers;

Window grab_window;

Bool owner_events;

int pointer_mode, keyboard_mode;

XUngrabKey (display, keycode, modifiers, grab_window)
Display *display;
int keycode;
unsigned int modifiers;
Window grab_window;

Arguments

display Specifies the connection to the X server.
grab_window Specifies the grab window.

keyboard_mode Specifies further processing of keyboard events. You can
pass GrabModeSync or GrabModeAsync.

keycode Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The mask is
the bitwise inclusive OR of the valid keymask bits.

eswner_events Specifies a Boolean value that indicates whether the key-
board events are to be reported as usual.

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

X Version 11 (Release 5) 6 January 1993 245

XGrabKey(XS)

Description

246

The XGrabKey function establishes a passive grab on the keyboard. In the
future, the keyboard is actively grabbed (as for XGrabKeyboard), the last-
keyboard-grab time is set to the time at which the key was pressed (as
transmitted in the KeyPress event), and the KeyPress event is reported if all
of the following conditions are true:

o The keyboard is not grabbed and the specified key (which can itself be a
modifier key) is logically pressed when the specified modifier keys are logi-
cally down, and no other modifier keys are logically down.

e Either the grab_window is an ancestor of (or is) the focus window, or the
grab_window is a descendant of the focus window and contains the
pointer.

e A passive grab on the same key combination does not exist on any ancestor
of grab_window.

The interpretation of the remaining arguments is as for XGrabKeyboard. The
active grab is terminated automatically when the logical state of the keyboard
has the specified key released (independent of the logical state of the modifier
keys).

Note that the logical state of a device (as seen by client applications) may lag
the physical state if device event processing is frozen.

A modifiers argument of AnyModifier is equivalent to issuing the request for
all possible modifier combinations (including the combination of no modif-
iers). It is not required that all modifiers specified have currently assigned
KeyCodes. A keycode argument of AnyKey is equivalent to issuing the
request for all possible KeyCodes. Otherwise, the specified keycode must be
in the range specified by min_keycode and max_keycode in the connection
setup, or a “BadValue” error results.

If some other client has issued a XGrabKey with the same key combination
on the same window, a “BadAccess” error results. When using AnyModifier
or AnyKey, the request fails completely, and a “BadAccess” error results (no
grabs are established) if there is a conflicting grab for any combination.

XGrabKey can generate “BadAccess”, “BadValue”, and “BadWindow” errors.

The XUngrabKey function releases the key combination on the specified win-
dow if it was grabbed by this client. It has no effect on an active grab. A
modifiers of AnyModifier is equivalent to issuing the request for all possible
modifier combinations (including the combination of no modifiers). A key-
code argument of AnyKey is equivalent to issuing the request for all possible
key codes.

XUngrabKey can generate “BadValue” and “BadWindow” error.

X Version 11 (Release 5) 6 January 1993

XGrabKey(XS)

Diagnostics

“BadAccess” A client attempted to grab a key/button combination
already grabbed by another client.

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XAllowAccess(XS), XGrabButton(XS), XGrabKeyboard(XS),
XGrabPointer(XS)
" Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 247

XGrabPointer(XS)

XGrabPointer

grab the pointer

Syntax

int XGrabPointer(display, grab_window, owner_events, event_mask,
pointer_mode, keyboard_mode, confine_to, cursor, time)
Display *display;
Window grab_window;
Bool owner_events;
unsigned int event_mask;
int pointer_mode, keyboard_mode;
Window confine_to;
Cursor cursor;
Time time;

XUngrabPointer(display, time)
Display *display;
Time time;

XChangeActivePointerGrab(display, event_mask, cursor, time)
Display *display;
unsigned int event_mask;
Cursor cursor;

Time time;
Arguments
confine_to Specifies the window to confine the pointer in or None.
cursor Specifies the cursor that is to be displayed during the grab or
None.
display Specifies the connection to the X server.

248

event_mask Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event
mask bits.

grab_window Specifies the grab window.

keyboard_mode Specifies further processing of keyboard events. You can
pass GrabModeSync or GrabModeAsync.

owner_events Specifies a Boolean value that indicates whether the pointer

events are to be reported as usual or reported with respect to
the grab window if selected by the event mask.

X Version 11 (Release 5) 6 January 1993

XGrabPointer(XS)

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

Description

The XGrabPointer function actively grabs control of the pointer and returns
GrabSuccess if the grab was successful. Further pointer events are reported
only to the grabbing client. XGrabPointer overrides any active pointer grab
by this client. If owner_events is False, all generated pointer events are
reported with respect to grab_window and are reported only if selected by
event_mask. If owner_events is True and if a generated pointer event would
normally be reported to this client, it is reported as usual. Otherwise, the
event is reported with respect to the grab_window and is reported only if
selected by event_mask. For either value of owner_events, unreported events
are discarded.

If the pointer_mode is GrabModeAsync, pointer event processing continues
as usual. If the pointer is currently frozen by this client, the processing of
events for the pointer is resumed. If the pointer_mode is GrabModeSync, the
state of the pointer, as seen by client applications, appears to freeze, and the X
server generates no further pointer events until the grabbing client calls XAl-
lowEvents or until the pointer grab is released. Actual pointer changes are
not lost while the pointer is frozen; they are simply queued in the server for
later processing.

If the keyboard_mode is GrabModeAsync, keyboard event processing is unaf-
fected by activation of the grab. If the keyboard_mode is GrabModeSync, the
state of the keyboard, as seen by client applications, appears to freeze, and the
X server generates no further keyboard events until the grabbing client calls
XAllowEvents or until the pointer grab is released. Actual keyboard changes
are not lost while the pointer is frozen; they are simply queued in the server
for later processing.

If a cursor is specified, it is displayed regardless of what window the pointer
is in. If None is specified, the normal cursor for that window is displayed
when the pointer is in grab_window or one of its subwindows; otherwise, the
cursor for grab_window is displayed.

If a confine_to window is specified, the pointer is restricted to stay contained
in that window. The confine_to window need have no relationship to the
grab_window. If the pointer is not initially in the confine_to window, it is
warped automatically to the closest edge just before the grab activates and
enter/leave events are generated as usual. If the confine_to window is subse-
quently reconfigured, the pointer is warped automatically, as necessary, to
keep it contained in the window.

X Version 11 (Release 5) 6 January 1993 249

XGrabPointer(XS)

250

The time argument allows you to avoid certain circumstances that come up if
applications take a long time to respond or if there are long network delays.
Consider a situation where you have two applications, both of which nor-
mally grab the pointer when clicked on. If both applications specify the
timestamp from the event, the second application may wake up faster and
successfully grab the pointer before the first application. The first application
then will get an indication that the other application grabbed the pointer
before its request was processed.

XGrabPointer generates EnterNotify and LeaveNotify events.

Either if grab_window or confine_to window is not viewable or if the
confine_to window lies completely outside the boundaries of the root win-
dow, XGrabPointer fails and returns GrabNotViewable. If the pointer is
actively grabbed by some other client, it fails and returns AlreadyGrabbed. If
the pointer is frozen by an active grab of another client, it fails and returns
GrabFrozen. If the specified time is earlier than the last-pointer-grab time or
later than the current X server time, it fails and returns GrabInvalidTime.
Otherwise, the last-pointer-grab time is set to the specified time (CurrentTime
is replaced by the current X server time).

XGrabPointer can generate “BadCursor”, “BadValue”, and “BadWindow”
errors.

The XUngrabPointer function releases the pointer and any queued events if
this client has actively grabbed the pointer from XGrabPointer, XGrabButton,
or from a normal button press. XUngrabPointer does not release the pointer
if the specified time is earlier than the last-pointer-grab time or is later than
the current X server time. It also generates EnterNotify and LeaveNotify
events. The X server performs an UngrabPointer request automatically if the
event window or confine_to window for an active pointer grab becomes not
viewable or if window reconfiguration causes the confine_to window to lie
completely outside the boundaries of the root window.

The XChangeActivePointerGrab function changes the specified dynamic pa-
rameters if the pointer is actively grabbed by the client and if the specified
time is no earlier than the last-pointer-grab time and no later than the current
X server time. This function has no effect on the passive parameters of a
XGrabButton. The interpretation of event_mask and cursor is the same as
described in XGrabPointer.

XChangeActivePointerGrab can generate a “BadCursor” and “BadValue”
error.

X Version 11 (Release 5) 6 January 1993

XGrabPointer(XS)

Diagnostics
“BadCursor” A value for a Cursor argument does not name a defined Cur-
sor.
“BadValue” Some numeric value falls outside the range of values

accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XAllowEvents(XS), XGrabButton(XS), XGrabKey(XS), XGrabKeyboard(XS)
XIib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 251

XGrabServer(XS)

XGrabServer

grab the server

Syntax

XGrabServer(display)
Display *display;

XUngrabServer (display)
Display *display;

Arguments

display Specifies the connection to the X server.

Description

The XGrabServer function disables processing of requests and close downs
on all other connections than the one this request arrived on. You should not
grab the X server any more than is absolutely necessary.

The XUngrabServer function restarts processing of requests and close downs

on other connections. You should avoid grabbing the X server as much as
possible.

See also

XGrabButton(XS), XGrabKey(XS), XGrabKeyboard(XS), XGrabPointer(XS)
Xlib - C Language X Interface

252 X Version 11 (Release 5) 6 January 1993

XGraphicsExposeEvent(XS)

XGraphicsExposeEvent

GraphicsExpose and NoExpose event structures

Structures

The structures for GraphicsExpose and N oExpose events contain:
typedef struct (

int type; /* GraphicsExpose */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Drawable drawable;
int x, y;
int width, height;
int count; /* if nonzero, at least this many more */
int major_code; /* core is CopyArea or CopyPlane */
int minor_code; /* not defined in the core */
} XGraphicsExposeEvent;
typedef struct {
int type; /* NoExpose */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Drawable drawable;
int major_code; /* core is CopyArea or CopyPlane */
int minor_code; /* not defined in the core */

} XNoExposeEvent;

When you receive these events, their structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

Both structures have these common members: drawable, major_code, and
minor_code. The drawable member is set to the drawable of the destination
region on which the graphics request was to be performed. The major_code
member is set to the graphics re?uest initiated by the client and can be either
X_CopyArea or X_CopyPlane. If it is X_CopyArea, a call to XCopyArea ini-
tiated the request. If it is X_CopyPlane, a call to XCopyPlane initiated the
request. These constants are defined in <X11/Xproto.h>. The minor_code
member, like the major_code member, indicates which graphics request was

X Version 11 (Release 5) 6 January 1993 253

XGraphicsExposeEvent(XS)

See also

initiated by the client. However, the minor_code member is not defined by the
core X protocol and will be zero in these cases, although it may be used by an
extension.

The XGraphicsExposeEvent structure has these additional members: x, vy,
width, height, and count. The x and y members are set to the coordinates
relative to the drawable’s origin and indicate the upper-left corner of the rec-
tangle. The width and height members are set to the size (extent) of the rec-
tangle. The count member is set to the number of GraphicsExpose events to
follow. If count is zero, no more GraphicsExpose events follow for this win-
dow. However, if count is nonzero, at least that number of GraphicsExpose
events (and possibly more) are to follow for this window.

254

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCopyArea(XS),
XCrossingEvent(XS), XDestroyWindowEvent(XS), XErrorEvent(XS),
XExposeEvent(XS), XFocusChangeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),
XSelectionClearEvent(XS), XSelectionEvent(XS),
XSelectionRequestEvent(XS), XUnmapEvent(XS), XVisibilityEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XGravityEvent(XS)

XGravityEvent

GravityNotify event structure

Structures

See also

The structure for GravityNotify events contains:
typedef struct {

int type; /* GravityNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;
Window window;
int x, y;

} XGravityEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The event member is set either to the window that was moved or to its
parent, depending on whether StructureNotify or SubstructureNotify was
selected. The window member is set to the child window that was moved. The
x and y members are set to the coordinates relative to the new parent
window’s origin and indicate the position of the upper-left outside corner of
the window.

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XKeymapEvent(XS),
XMapEvent(XS), XMapRequestEvent(XS), XPropertyEvent(XS),
XReparentEvent(XS), XResizeRequestEvent(XS), XSelectionClearEvent(XS),
XSelectionEvent(XS), XSelectionRequestEvent(XS), XUnmapEvent(XS),
XVisibilityEvent(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 255

XlconifyWindow(XS)

XlconifyWindow

manipulate top-level windows

Syntax
Status XIconifyWindow(display, w, screen_number)
Display *display;
Window w;
int screen_number;
Status XWithdrawWindow(display, w, screen_number)
Display *display;
Window w;
int screen_number;
Status XReconfigureWMWindow(display, w, screen_number, value_mask, values)
Display *display;
Window w;
int screen_number;
unsigned int value_mask;
XWindowChanges *values;
Arguments
display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.
value_mask Specifies which values are to be set using information in the
values structure. This mask is the bitwise inclusive OR of
the valid configure window values bits.
values Specifies the XWindowChanges structure.
w Specifies the window.
Description
The XIconifyWindow function sends a WM_CHANGE_STATE ClientMessage
event with a format of 32 and a first data element of IconicState (as described
in section 4.1.4 of the Inter-Client Communication Conventions Manual) and a
window of w to the root window of the specified screen with an event mask
set to SubstructureNotifyMask | SubstructureRedirectMask. Window man-
agers may elect to receive this message and if the window is in its normal
state, may treat it as a request to change the window’s state from normal to
iconicc If the WM_CHANGE_STATE property cannot be interned,
256 X Version 11 (Release 5) 6 January 1993

XlconifyWindow(XS)

XIconifyWindow does not send a message and returns a zero status. It
returns a nonzero status if the client message is sent successfully; otherwise, it
returns a zero status.

The XWithdrawWindow function unmaps the specified window and sends a
synthetic UnmapNotify event to the root window of the specified screen.
Window managers may elect to receive this message and may treat it as a
request to change the window’s state to withdrawn. When a window is in the
withdrawn state, neither its normal nor its iconic representations is visible. It
returns a nonzero status if the UnmapNotify event is successfully sent; other-
wise, it returns a zero status.

XWithdrawWindow can generate a “BadWindow” error.

The XReconfigureWMWindow function issues a ConfigureWindow request
on the specified top-level window. If the stacking mode is changed and the
request fails with a “BadMatch” error, the error is trapped by Xlib and a syn-
thetic ConfigureRequestEvent containing the same configuration parameters
is sent to the root of the specified window. Window managers may elect to
receive this event and treat it as a request to reconfigure the indicated win-
dow. It returns a nonzero status if the request or event is successfully sent;
otherwise, it returns a zero status.

XReconfigureWMWindow can generate “BadValue” and “BadWindow”
errors.

Diagnostics

See also

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a sfp:ecific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined
Window.

XChangeWindowAttributes(XS), XConfigureWindow(XS), XCre-
ateWindow(XS), XDestroyWindow(XS), XRaiseWindow(XS),
XMapWindow(XS), XUnmapWindow(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 257

XIfEvent(XS)

XIfEvent

check the event queue with a predicate procedure

Syntax

XIfEvent (display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate)();
XPointer arg;

Bool XCheckIfEvent(display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate)();
XPointer arg;

XPeekIfEvent (display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate)();
XPointer arg;

Arguments

arg Specifies the user-supplied argument that will be passed to
the predicate procedure.

display Specifies the connection to the X server.

event_return Returns either a copy of or the matched event’s associated
structure.

predicate Specifies the procedure that is to be called to determine if the
next event in the queue matches what you want.

Description

The XIfEvent function completes only when the specified predicate procedure
returns True for an event, which indicates an event in the queue matches.
XIfEvent flushes the output buffer if it blocks waiting for additional events.
XIfEvent removes the matching event from the queue and copies the struc-
ture into the client-supplied XEvent structure.

258 X Version 11 (Release 5) 6 January 1993

XIfEvent(XS)

When the predicate procedure finds a match, XCheckIfEvent copies the
matched event into the client-supplied XEvent structure and returns True.
(This event is removed from the queue.) If the predicate procedure finds no
match, XCheckIfEvent returns False, and the output buffer will have been
flushed. All earlier events stored in the queue are not discarded.

The XPeekIfEvent function returns only when the specified predicate pro-
cedure returns True for anevent. After the predicate procedure finds a match,
XPeekIfEvent copies the matched event into the client-supplied XEvent struc-
ture without removing the event from the queue. XPeekIfEvent flushes the
output buffer if it blocks waiting for additional events.

See also

XAnyEvent(XS), XNextEvent(XS), XPutBackEvent(XS) XSendEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 259

XlnstallColormap(XS)

XinstallColormap

control colomaps

Syntax

XInstallColormap(display, colormap)
Display *display;
Colormap colormap;

XUninstallColormap(display, colormap)
Display *display;
Colormap colormap;

Colormap *XListInstalledColormaps(display, w, num_return)
Display *display;
Window w;
int *num_return;

Arguments

colormap Specifies the colormap.
display Specifies the connection to the X server.
num_return Returns the number of currently installed colormaps.

w Specifies the window that determines the screen.

Description

260

The XInstallColormap function installs the specified colormap for its associ-
ated screen. All windows associated with this colormap immediately display
with true colors. You associated the windows with this colormap when you
created them by calling XCreateWindow, XCreateSimpleWindow,
XChangeWindowAttributes, or XSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server
generates a ColormapNotify event on each window that has that colormap.
In addition, for every other colormap that is installed as a result of a call to
XInstallColormap, the X server generates a ColormapNotify event on each
window that has that colormap.

XlInstallColormap can generate a “BadColor” error.

X Version 11 (Release 5) 6 January 1993

XlnstallColormap(XS)

The XUninstallColormap function removes the specified colormap from the
required list for its screen. As a result, the specified colormap might be unin-
stalled, and the X server might implicitly install or uninstall additional color-
maps. Which colormaps get installed or uninstalled is server-dependent
except that the required list must remain installed.

If the specified colormap becomes uninstalled, the X server generates a Color-
mapNotify event on each window that has that colormap. In addition, for
every other colormap that is installed or uninstalled as a result of a call to
XUninstallColormap, the X server generates a ColormapNotify event on each
window that has that colormap.

XUninstallColormap can generate a “BadColor” error.

The XListInstalledColormaps function returns a list of the currently installed
colormaps for the screen of the specified window. The order of the colormaps
in the list is not significant and is no explicit indication of the required list.
When the allocated list is no longer needed, free it by using XFree.

XListInstalledColormaps can generate a “BadWindow” error.

Diagnostics

See also

“BadColor” A value for a Colormap argument does not name a defined
Colormap.

“BadWindow” A value for a Window argument does not name a defined
Window.

XChangeWindowAttributes(XS), XCreateColormap(XS), XCre-
ateWindow(XS), XFree(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 261

XInternAtom(XS)

XinternAtom

create or retum atom names

Syntax

Atom XInternAtom(display, atom_name, only_if_exists)
Display *display;
char *atom_name;
Bool only_if_exists;

char *XGetAtomName(display, atom)
Display *display;

Atom atom;
Arguments
atom Specifies the atom for the property name you want returned.
atom_name Specifies the name associated with the atom you want
returned.
display Specifies the connection to the X server.

only_if exists Specifies a Boolean value that indicates whether XInternA-
tom creates the atom.

Description

262

The XInternAtom function returns the atom identifier associated with the
specified atom_name string. If only_if exists is False, the atom is created if it

oes not exist. Therefore, XIntemmAtom can return None. If the atom name is
not in the Host Portable Character Encoding the result is implementation
dependent. Case matters; the strings thing, Thing, and thinG all designate dif-
ferent atoms. The atom will remain defined even after the client’s connection
closes. It will become undefined only when the last connection to the X server
closes.

XIntemAtom can generate “BadAlloc” and “BadValue” errors.

The XGetAtomName function returns the name associated with the specified
atom. If the data returned by the server is in the Latin Portable Character
Encoding, then the returned string is in the Host Portable Character Encoding.
Otherwise, the result is implementation dependent. To free the resulting
string, call XFree.

XGetAtomName can generate a “BadAtom” error.

X Version 11 (Release 5) 6 January 1993

Diagnostics

XInternAtom(XS)

“BadAlloc”

“BadAtom”

“BadValue”

See also

The server failed to allocate the requested resource or server
memory.

A value for an Atom argument does not name a defined
Atom.

Some numeric value falls outside the range of values
accepted by the re&uest. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

XFree(XS), XGetWindowProperty(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 263

XlntersectRegion(XS)

XintersectRegion

region arithmetic

Syntax

XIntersectRegion(sra, srb, dr_return)
Region sra, srb, dr_return;

XUnionRegion(sra, srb, dr_return)
Region sra, srb, dr_return;

XUnionRectWithRegion(rectangle, src_region, dest_region_return)
XRectangle *rectangle;
Region src_region;
Region dest_region_return;

XSubtractRegion(sra, srb, dr_return)
Region sra, srb, dr_return;

XXorRegion(sra, srb, dr_return)
Region sra, srb, dr_return;

XoffsetRegion(r, dx, dy)
Region r;
int dx, dy;

XShrinkRegion(r, dx, dy)
Region r;
int dx, dy;

Arguments

264

dest_region_return

dr_return
dx

dy
r

rectangle

sra
srb

src_region

Returns the destination region.

Returns the result of the computation.

Specify the x and y coordinates, which define the amount you
want to move or shrink the specified region.

Specifies the region.

Specifies the rectangle.

Specify the two regions with which you want to perform the
computation.

Specifies the source region to be used.

X Version 11 (Release 5) 6 January 1993

XIntersectRegion(XS)

Description

The XIntersectRegion function computes the intersection of two regions.
The XUnionRegion function computes the union of two regions.

The XUnionRectWithRegion function updates the destination region from a
union of the specified rectangle and the specified source region.

The XSubtractRegion function subtracts srb from sra and stores the results in
dr_return.

The XXorRegion function calculates the difference between the union and
intersection of two regions.

The XOffsetRegion function moves the specified region by a specified
amount.

The XShrinkRegion function reduces the specified region by a specified
amount. Positive values shrink the size of the region, and negative values
expand the region.

See also

XCreateRegion(XS), XDrawRectangle(XS), XEmptyRegion(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 265

XKeymapEvent(XS)

XKeymapEvent

KeymapNotify event structure

Structures

See also

The structure for KeymapNotify events contains:

/* generated on EnterWindow and FocusIn when KeymapState selected */
typedef struct {

int type; /* KeymapNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
char key_vector(32];
} XKeymapEvent;

When you receive this event, the structure members are setas follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The window member is not used but is present to aid some toolkits. The
key_vector member is set to the bit vector of the keyboard. Each bit set to 1
indicates that the corresponding key is currently pressed. The vector is
represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to 8N +
7 with the least-significant bit in the byte representing key 8N.

266

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XMapEvent(XS), XMapRequestEvent(XS), XPropertyEvent(XS),
XReparentEvent(XS), XResizeRequestEvent(XS), XSelectionClearEvent(XS),
XSelectionEvent(XS), XSelectionRequestEvent(XS), XUnmapEvent(XS),
XVisibilityEvent(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XListFonts

XListFonts(XS)

obtain or free font names and information

Syntax

char **XListFonts(display, pattern, maxnames, actual_count_return)
Display *display;
char *pattern;

int maxnames;
int *actual_count_return;

XFreeFontNames(list)
char *list[];

char **XListFontsWithInfo(display, pattern, maxnames, count_return,

info_return)

Display *display;

char *pattern;

int maxnames;

int *count_return;
XFontStruct **info_return;

XFreeFontInfo(names, free_info, actual_count)
char **names;
XFontStruct *free_info;
int actual_count;

Arguments

actual_count

Specifies the actual number of matched font names returned
by XListFontsWithInfo.

actual_count_return

count_return
display
info_return

free_info

list

maxnames

Returns the actual number of font names.

Returns the actual number of matched font names.
Specifies the connection to the X server.

Retums the font information.

Specifies the font information returned by XList-
FontsWithInfo.

Specifies the array of strings you want to free.

Specifies the maximum number of names to be returned.

X Version 11 (Release 5) 6 January 1993 267

XListFonts(XS)

names Specifies the list of font names returned by XList-
FontsWithInfo.
pattern Specifies the null-terminated pattern string that can contain
wildcard characters.
Description

See also

The XListFonts function returns an array of available font names (as con-
trolled by the font search path; see XSetFontPath(XS)) that match the string
you passed to the pattern argument. The pattern string can contain any char-
acters, but each asterisk (*) is a wildcard for any number of characters, and
each question mark (?) is a wildcard for a single character. If the pattern
string is not in the Host Portable Character Encoding the result is implementa-
tion dependent. Use of uppercase or lowercase does not matter. Each
returned string is null-terminated. If the data returned by the server is in the
Latin Portable Character Encoding, then the returned strings are in the Host
Portable Character Encoding. Otherwise, the result is implementation depen-
dent. If there are no matching font names, XListFonts returns NULL. The
client should call XFreeFontNames when finished with the result to free the
memory.

The XFreeFontNames function frees the array and strings returned by XList-
Fonts or XListFontsWithInfo.

The XListFontsWithInfo function returns a list of font names that match the
specified pattern and their associated font information. The list of names is
limited to size specified by maxnames. The information returned for each
font is identical to what XLoadQueryFont would return except that the per-
character metrics are not returned. The pattern string can contain any charac-
ters, but each asterisk (*) is a wildcard for any number of characters, and each
question mark (?) is a wildcard for a single character. If the pattern string is
not in the Host Portable Character Encoding the result is implementation
dependent. Use of uppercase or lowercase does not matter. Each returned
string is null-terminated. If the data returned by the server is in the Latin
Portable Character Encoding, then the returned strings are in the Host Port-
able Character Encoding. Otherwise, the result is implementation dependent.
If there are no matching font names, XListFontsWithInfo returns NULL.

To free only the allocated name array, the client should call XFreeFontNames.
To free both the name array and the font information array, or to free just the
font information array, the client should call XFreeFontInfo.

The XFreeFontInfo function frees the the font information array. To free an
XFontStruct structure without closing the font, call XFreeFontInfo with the
names argument specified as NULL.

268

XLoadFont(XS), XSetFontPath(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XLoadFont(XS)

XLoadFont

load or unload fonts and font metric structures

Syntax

Font XLoadFont (display, name)
Display *display;
char *name;

XFontStruct *XQueryFont(display, font_ID)
Display *display;
XID font_ID;

XFontStruct *XLoadQueryFont(display, name)
Display *display;
char *name;

XFreeFont (display, font_struct)
Display *display;
XFontStruct *font_struct;

Bool XGetFontProperty(font_struct, atom, value_return)
XFontStruct *font_struct;
Atom atom;
unsigned long *value_return;

XUnloadFont (display, font)
Display *display;
Font font;

Arguments

atom Specifies the atom for the property name you want returned.
display Specifies the connection to the X server.

font Specifies the font.

font_ID Specifies the font ID or the GContext ID.

font_struct = Specifies the storage associated with the font.

8c Specifies the GC.
name Specifies the name of the font, which is a null-terminated
string.

value_return Returns the value of the font property.

X Version 11 (Release 5) 6 January 1993 269

XLoadFont(XS)

Description

270

The XLoadFont function loads the specified font and returns its associated
font ID. If the font name is not in the Host Portable Character Encoding the
result is implementation dependent. Use of uppercase or lowercase does not
matter. The interpretation of characters “?” and “*” in the name is not
defined by the core protocol but is reserved for future definition. A structured
format for font names is specified in the X Consortium standard X Logical Font
Description Conventions. If XLoadFont was unsuccessful at loading the speci-
fied font, a “BadName” error results. Fonts are not associated with a particu-
lar screen and can be stored as a component of any GC. When the font is no
longer needed, call XUnloadFont.

XLoadFont can generate “BadAlloc” and “BadName” errors.

The XQueryFont function returns a pointer to the XFontStruct structure,
which contains information associated with the font. You can query a font or
the font storedin a GC. ThefontID stored in the XFontStruct structure will be
the GContext ID, and you need to be careful when using this ID in other func-
tions (see XGContextFromGC(XS)). If the font does not exist, XQueryFont
returns NULL. To free this data, use XFreeFontInfo.

XLoadQueryFont can generate a “BadAlloc” error.

The XLoadQueryFont function provides the most common way for accessing
a font. XLoadQueryFont both opens (loads) the specified font and returns a
pointer to the appropriate XFontStruct structure. If the font name is not in the
Host Portable Character Encoding the result is implementation dependent. If
the font does not exist, XLoadQueryFont returns NULL.

The XFreeFont function deletes the association between the font resource ID
and the specified font and frees the XFontStruct structure. The font itself will
be freed when no other resource references it. The data and the font should
not be referenced again.

XFreeFont can generate a “BadFont” error.

Given the atom for that property, the XGetFontProperty function returns the
value of the specified font property. XGetFontProperty also returns False if
the property was not defined or True if it was defined. A set of predefined
atoms exists for font properties, which can be found in <X11/Xatom.h>. This
set contains the standard properties associated with a font. Although it is not
guaranteed, it is likely that the predefined font properties will be present.

The XUnloadFont function deletes the association between the font resource
ID and the specified font. The font itself will be freed when no other resource
references it. The font should not be referenced again.

XUnloadFont can generate a “BadFont” error.

X Version 11 (Release 5) 6 January 1993

Structures

XLoadFont(XS)

The XFontStruct structure contains all of the information for the font and con-
sists of the font-specific information as well as a pointer to an array of XChar-
Struct structures for the characters contained in the font. The XFontStruct,
XFontProp, and XCharStruct structures contain:

typedef struct (

short lbearing;

short rbearing;

short width;

short ascent;

short descent;

unsigned short attributes;
} XCharStruct;

/i
/*
/t
/*
/t
/'k

typedef struct (

Atom name;
unsigned long card32;
) XFontProp;

typedef struct { /*
unsigned char bytel;
unsigned char byte2;

} XChar2b;

typedef struct (
XExtData *ext_data;
Font fid;
unsigned direction;

/*
/*

/*
/'k
/*
/t
/*

unsigned min_char_or_byte2;
unsigned max_char_or_byte2;
unsigned min_bytel;
unsigned max_bytel;

Bool all_chars_exist;

/t
/t
/t

unsigned default_char;
int n_properties;
XFontProp *properties;

/*
/*
/*
/*

XCharStruct min_bounds;
XCharStruct max_bounds;
XCharStruct *per_char;

int ascent;

int descent; /*

} XFontStruct;

origin to left edge of raster */
origin to right edge of raster */
advance to next char's origin */
baseline to top edge of raster */
baseline to bottom edge of raster */
per char flags (not predefined) */

normal 16 bit characters are two bytes */

hook for extension to hang data */

Font id for this font */

hint about the direction font is

painted */

first character */

last character */

first row that exists */

last row that exists */

flag if all characters have nonzero

size */

char to print for undefined character */
how many properties there are */

pointer to array of additional
properties */

minimum bounds over all existing char */
maximum bounds over all existing char */
first_char to last_char information */
logical extent above baseline for
spacing */

logical decent below baseline for
spacing */

X supports single byte/character, two bytes/character matrix, and 16-bit char-
acter text operations. Note that any of these forms can be used with a font,
but a single byte/character text request can only specify a single byte (that is,
the first row of a 2-byte font). You should view 2-byte fonts as a two-
dimensional matrix of defined characters: bytel specifies the range of defined

+ X Version 11 (Release 5) 6 January 1993

271

XLoadFont(XS)

272

rows and byte2 defines the range of defined columns of the font. Single
byte/character fonts have one row defined, and the byte2 range specified in
the structure defines a range of characters.

The bounding box of a character is defined by the XCharStruct of that charac-
ter. When characters are absent from a font, the default_char is used. When
fonts have all characters of the same size, only the information in the
XFontStruct min and max bounds are used.

The members of the XFontStruct have the following semantics:

e The direct ion member can be either FontLeftToRight or FontRightToLeft.
It is just a hint as to whether most XCharStruct elements have a positive
(FontLeftToRight) or a negative (FontRightToLeft) character width metric.
The core protocol defines no support for vertical text.

e If themin_bytel and max_bytel members are both zero, min_char_or_byte2
specifies the linear character index corresponding to the first element of the
per_char array, and max_char_or_byte2 specifies the linear character index
of the last element.

If either min_bytel or max_bytel are nonzero, both min_char_or_byte2 and
max_char_or_byte2 are less than 256, and the 2-byte character index values
corresponding to the per_char array element N (counting from 0) are:

bytel = N/D + min_bytel
byte2 = N\D + min_char_or_byte2
where:
D = max_char_or_byte2 - min_char_or_byte2 + 1

/
\

o If the per_char pointer is NULL, all glyphs between the first and last char-
acter indexes inclusive have the same information, as given by both
min_bounds and max_bounds.

o If all_chars_exist is True, all characters in the per_char array have
nonzero bounding boxes.

e The default_char member specifies the character that will be used when
an undefined or nonexistent character is printed. The default_char is a
16-bit character (not a 2-byte character). For a font using 2-byte matrix for-
mat, the default_char has bytel in the most-significant byte and byte2 in
the least-significant byte. If the default_char itself specifies an undefined
or nonexistent character, no printing is performed for an undefined or
nonexistent character.

e The min_bounds and max_bounds members contain the most extreme values
of each individual XCharStruct component over all elements of this array
(and ignore nonexistent characters). The bounding box of the font (the
smallest rectangle enclosing the shape obtained by superimposing all of the
characters at the same origin [x,y]) has its upper-left coordinate at:

(x + min_bounds.lbearing, y - max_bounds.ascent]

integer division
integer modulus

X Version 11 (Release 5) 6 January 1993

XLoadFont(XS)

Its width is:
max_bounds.rbearing - min_bounds.lbearing

Its heightis:

max_bounds.ascent + max_bounds.descent

¢ Theascent member is the logical extent of the font above the baseline that
is used for determining line spacing. Specific characters may extend
beyond this.

e The descent member is the logical extent of the font at or below the base-
line that is used for determining line spacing. Specific characters may
extend beyond this.

e If the baseline is at Y-coordinate y, the logical extent of the font is inclusive
between the Y-coordinate values (y - font.ascent) and (y + font.descent - 1).
Typically, the minimum interline spacing between rows of text is given by
ascent +descent.

For a character origin at [x,y], the bounding box of a character (that is, the
smallest rectangle that encloses the character's shape) described in terms of
XCharStruct components is a rectangle with its upper-left corner at:

[x + lbearing, y - ascent]
Its widthiis:

rbearing - lbearing

Its height is:
ascent + descent

Theorigin for the next character is defined to be:
[x + width, y)

The 1bearing member defines the extent of the left edge of the character ink
from the origin. The rbearing member defines the extent of the right edge of
the character ink from the origin. The ascent member defines the extent of
the top edge of the character ink from the origin. The descent member
defines the extent of the bottom edge of the character ink from the origin. The
width member defines the logical width of the character.

Diagnostics
“BadAlloc” The server failed to allocate the requested resource or server
memory.
“BadFont” A value for a Font or GContext argument does not name a
defined Font.

“BadName” A fontor color of the specified name does not exist.

See also

XCreateGC(XS), XListFonts(XS), XSetFontPath(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 273

XLookupKeysym(XS)

XLookupKeysym

handle keyboard input events in Latin-1

Syntax
KeySym XLookupKeysym(key_event, index)
XKeyEvent *key_event;
int index;
XRef reshKeyboardMapping (event_map)
XMappingEvent *event_map;
int XLookupString(event_struct, buffer_return, bytes_buffer, keysyh_return,
status_in_out)
XKeyEvent *event_struct;
char *buffer_return;
int bytes_buffer;
KeySym *keysym_return;
XComposeStatus *status_in_out;
XRebindKeysym(display, keysym, list, mod_count, string, num_bytes)
Display *display;
KeySym keysym;
KeySym list[];
int mod_count;
unsigned char *string;
int num_bytes;
Arguments
buffer_return Returns the translated characters.
bytes_buffer Specifies the length of the buffer. No more than bytes_buffer
of translation are returned.
num_bytes Specifies the number of bytes in the string argument.
display Specifies the connection to the X server.
event_map Specifies the mapping event that is to be used.
event_struct Specifies the key event structure to be used. You can pass
XKeyPressedEvent or XKeyReleasedEvent.
index Specifies the index into the KeySyms list for the event’s Key-
Code.
key_event Specifies the KeyPress or KeyRelease event.
keysym Specifies the KeySym that is to be rebound.
274 X Version 11 (Release 5) 6 January 1993

XLookupKeysym(XS)

keysym_return Returns the KeySym computed from the event if this argu-

ment is not NULL.
list Specifies the KeySyms to be used as modifiers.
mod_count Specifies the number of modifiers in the modifier list.

status_in_out Specifies or returns the XComposeStatus structure or NULL.

string Specifies the string that is copied and will be returned by
XLookupString.

Description

See also

The XLookupKeysym function uses a given keyboard event and the index
you specified to return the KeySym from the list that corresponds to the Key-
Code member in the XKeyPressedEvent or XKeyReleasedEvent structure. If
no KeySym is defined for the KeyCode of the event, XLookupKeysym returns
NoSymbol.

The XRefreshKeyboardMapping function refreshes the stored modifier and
keymap information. You usually call this function when a MappingNotify
event with a request member of MappingKeyboard or MappingModifier
occurs. Theresult is to update Xlib’s knowledge of the keyboard.

The XLookupString function translates a key event to a KeySym and a string.
The KeySym is obtained by using the standard interpretation of the Shift,
Lock, and group modifiers as defined in the X Protocol specification. If the
KeySym has been rebound (see XRebindKeysym(XS)), the bound string will
be stored in the buffer. Otherwise, the KeySym is mapped, if possible, to an
ISO Latin-1 character or (if the Control modifier is on) to an ASCII control
character, and that character is stored in the buffer. XLookupString returns
the number of characters that are stored in the buffer.

If present (non-NULL), the XComposeStatus structure records the state, which
is private to Xlib, that needs preservation across calls to XLookupString to
implement compose processing. The creation of XComposeStatus structures
is implementation dependent; a portable program must pass NULL for this
argument.

The XRebindKeysym function can be used to rebind the meaning of a
KeySym for the client. It does not redefine any key in the X server but merely
provides an easy way for long strings to be attached to keys. XLookupString
returns this string when the appropriate set of modifier keys are pressed and
when the KeySym would have been used for the translation. No text conver-
sions are performed; the client is responsible for supplying appropriately
encoded strings. Note that you can rebind a KeySym that may not exist.

XButtonEvent(XS), XMapEvent(XS), XStringToKeysym(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 275

XMapEvent(XS)

XMapEvent

MapNotify and MappingNotify event structures

Structures

276

The structure for MapNotify events contains:
typedef struct (

int type; /* MapNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

Bool override_redirect; /* boolean, is override set... */
} XMapEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The event member is set either to the window that was mapped or to its
parent, depending on whether StructureNotify or SubstructureNotify was
selected. The window member is set to the window that was mapped. The
override_redirect member is set to the override-redirect attribute of the win-
dow. Window manager clients normally should ignore this window if the
override-redirect attribute is True, because these events usually are generated
from pop-ups, which override structure control.

The structure for MappingN otify events is:
typedef struct (

int type; /* MappingNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* unused */

int request; /* one of MappingModifier, MappingKeyboard,
MappingPointer */

int first_keycode; /* first keycode */

int count; /* defines range of change w. first_keycode*/

} XMappingEvent;

X Version 11 (Release 5) 6 January 1993

XMapEvent(XS)

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The request member is set to indicate the kind of mapping change that
occurred and can be MappingModifier, MappingKeyboard, Mapping-
Pointer. If it is MappingModifier, the modifier mapping was changed. If it is
MappingKeyboard, the keyboard mapping was changed. If it is Mapping-
Pointer, the pointer button mapping was changed. The first_keycode and
count members are set only if the request member was set to MappingKey-
board. The number in first_keycode represents the first number in the range
of the altered mapping, and count represents the number of keycodes altered.

See also

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapRequestEvent(XS), XPropertyEvent(XS),
XReparentEvent(XS), XResizeRequestEvent(XS), XSelectionClearEvent(XS),
XSelectionEvent(XS), XSelectionRequestEvent(XS), XUnmapEvent(XS),
XVisibilityEvent(XS)

X1ib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 277

XMapRequestEvent(XS)

XMapRequestEvent

MapRequest event structure

Structures

The structure for MapRequest events contains:
typedef struct {

int type; /* MapRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent;
Window window;
} XMapRequestEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The parent member is set to the parent window. The window member is set to
the window to be mapped.

See also

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XPropertyEvent(XS),
XReparentEvent(XS), XResizeRequestEvent(XS), XSelectionClearEvent(XS),
XSelectionEvent(XS), XSelectionRequestEvent(XS), XUnmapEvent(XS),
XVisibilityEvent(XS)

Xlib - C Language X Interface

278 X Version 11 (Release 5) 6 January 1993

XMapWindow(XS)

XMapWindow

map windows

Syntax

XMapWindow(display, w)
Display *display;
Window w;

XMapRaised(display, w)
Display *display;
Window w;

XMapSubwindows (display, w)
Display *display;

Window w;
Arguments
display Specifies the connection to the X server.
w Specifies the window.
Description

The XMapWindow function maps the window and all of its subwindows that
have had map requests. Mapping a window that has an unmapped ancestor
does not display the window but marks it as eligible for display when the
ancestor becomes mapped. Such a window is called unviewable. When all its
ancestors are mapped, the window becomes viewable and will be visible on
the screen if it is not obscured by another window. This function has no effect
if the window is already mapped.

If the override-redirect of the window is False and if some other client has
selected SubstructureRedirectMask on the parent window, then the X server
generates a MapRequest event, and the XMapWindow function does not
map the window. Otherwise, the window is mapped, and the X server gen-
erates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remem-
bered, the X server tiles the window with its background. If the window’s
background is undefined, the existing screen contents are not altered, and the
X server generates zero or more Expose events. If backing-store was main-
tained while the window was unmapped, no Expose events are generated. If
backing-store will now be maintained, a full-window exposure is always gen-
erated. Otherwise, only visible regions may be reported. Similar tiling and
exposure take place for any newly viewable inferiors.

X Version 11 (Release 5) 6 January 1993 279

XMapWindow(XS)

If the window is an InputOutput window, XMapWindow generates Expose
events on each InputOutput window that it causes to be displayed. If the
client maps and paints the window and if the client begins processing events,
the window is painted twice. To avoid this, first ask for Expose events and
then map the window, so the client processes input events as usual. The
event list will include Expose for each window that has appeared on the
screen. The client’s normal response to an Expose event should be to repaint
the window. This method usually leads to simpler programs and to proper
interaction with window managers.

XMapWindow can generate a “BadWindow” error.

The XMapRaised function essentially is similar to XMapWindow in that it
maps the window and all of its subwindows that have had map requests.
However, it also raises the specified window to the top of the stack.

XMapRaised can generate a “BadWindow” error.

The XMapSubwindows function maps all subwindows for a specified win-
dow in top-to-bottom stacking order. The X server generates Expose events
on each newly displayed window. This may be much more efficient than
mapping many windows one at a time because the server needs to perform
much of the work only once, for all of the windows, rather than for each win-
dow.

XMapSubwindows can generate a “BadWindow” error.

Diagnostics

“BadWindow” A value for a Window argument does not name a defined
Window.

See also
XChangeWindow Attributes(XS), XConfigureWindow(XS), XCre-
ateWindow(XS), XDestroyWindow(XS), XRaiseWindow(XS),
XUnmapWindow(XS)
X1ib - C Language X Interface

280 X Version 11 (Release 5) 6 January 1993

XmbDrawimageString

XmbDrawlmageString(XS)

draw image text using a single font set

Syntax

void XmbDrawImageString(display, d, font_set, gc,

Display *display;
Drawable d;
XFontSet font_set;
GC gc;

int x, y;

char *string;

int num_bytes;

void XwcDrawlImageString(display, d, font_set, gc,

Arguments

Display *display;
Drawable d;
XFontSet font_set;
GC gc;

int x, y;

wchar_t *string;
int num_wchars;

X, Yy, string, num_bytes)

X, Y, string, num_wchars)

d

display
font_set

gc

num_bytes

num_wchars

string

x
y

Specifies the drawable.
Specifies the font set.

Specifies the GC.

Specifies the character string.

Specify the x and y coordinates.

X Version 11 (Release 5) 6 January 1993

Specifies the connection to the X server.

Specifies the number of bytes in the string argument.

Specifies the number of characters in the string argument.

281

XmbDrawlmageString(XS)

Description

See also

XmbDrawImageString and XwcDrawImageString fill a destination rectangle
with the background pixel defined in the GC and then paint the text with the
foreground pixel. The filled rectangle is the rectangle returned to
overall_logical_return by XmbTextExtents or XwcTextExtents for the same
text and XFontSet.

When the XFontSet has missing charsets, each unavailable character is drawn
with the default string returned by XCreateFontSet. The behavior for an
invalid codepoint is undefined.

282

XDrawlImageString(XS), XDrawString(XS), XDrawText(XS),
XmbDrawString(XS), XmbDrawText(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XmbDrawString(XS)

XmbDrawString

draw text using a single font set

Syntax
void XmbDrawString(display, d, font_set, gc, x, y, string, num_bytes)
Display *display;
Drawable d;
XFontSet font_set;
GC gc;
int x, y;
char *string;
int num_bytes;
void XwcDrawString(display, d, font_set, gc, X, y, string, num_wchars)
Display *display;
Drawable d;
XFontSet font_set;
GC gc;
int x, y;
wchar_t *string;
int num_wchars;
Arguments
d Specifies the drawable.
display Specifies the connection to the X server.
font_set Specifies the font set.
8¢ Specifies the GC.
num_bytes Specifies the number of bytes in the string argument.
num_wchars Specifies the number of characters in the string argument.
string Specifies the character string.
x
y Specify the x and y coordinates.
Description

XmbDrawString and XwcDrawString draw the specified text with the fore-
ground pixel. When the XFontSet has missing charsets, each unavailable
character is drawn with the default string returned by XCreateFontSet. The
behavior for an invalid codepoint is undefined.

X Version 11 (Release 5) 6 January 1993 283

XmbDrawString(XS)

See also

XDrawlImageString(XS), XDrawString(XS), XDrawText(XS),
XmbDrawlImageString(XS), XmbDrawText(XS)
Xlib - C Language X Interface

284 X Version 11 (Release 5) 6 January 1993

XmbDrawText(XS)

XmbDrawText

draw text using multiple font sets

Syntax
void XmbDrawText (display, d, gc, x, y, items, nitems) -
Display *display;
Drawable d;
GC gc;
int x, y;
XmbTextItem *items;
int nitems;
void XwcDrawText(display, d, gc, x, y, items, nitems)
Display *display;
Drawable d;
GC gc;
int x, y;
XwcTextItem *items;
int nitems;
Arguments
d Specifies the drawable.
display Specifies the connection to the X server.
8¢ Specifies the GC.
items Specifies an array of text items.
nitems Specifies the number of text items in the array.
x
y Specify the x and y coordinates.
Description

XmbDrawText and XwcDrawText allow complex spacing and font set shifts
between text strings. Each text item is processed in turn, with the origin of a
text elementadvanced in the primary draw direction by the escapement of the
previous text item. A text item delta specifies an additional escapement of the
text item drawing origin in the primary draw direction. A font_set member
other than None in an item causes the font set to be used for this and subse-
quent text items in the text_items list. Leading text items with font_set
member setto None will not be drawn.

X Version 11 (Release 5) 6 January 1993 285

XmbDrawText(XS)

XmbDrawText and XwcDrawText do not perform any context-dependent
rendering between text segments. Clients may compute the drawing metrics
by passing each text segment to XmbTextExtents and XwcTextExtents or
XmbTextPerCharExtents and XwcTextPerCharExtents. When the XFontSet
has missing charsets, each unavailable character is drawn with the default
string returned by XCreateFontSet. The behavior for an invalid codepoint is
undefined.

Structures

The XmbTextItem structure contains:
typedef struct {

char *chars; /* pointer to string */
int nchars; /* number of characters */
int delta; /* pixel delta between strings */

XFontSet font_set; /* fonts, None means don’t change */
} XmbTextItem;

The XwcTextItem structure contains:
typedef struct {

wchar_t *chars; /* pointer to wide char string */
int nchars; /* number of wide characters */
int delta; /* pixel delta between strings */

XFontSet font_set; /* fonts, None means don’‘t change */
} XwcText Item;

See also

XDrawImageString(XS), XDrawString(XS), XDrawText(XS),
XmbDrawImageString(XS), XmbDrawString(XS)
Xlib - C Language X Interface

286 X Version 11 (Release 5) 6 January 1993

XmbLookupString(XS)

XmbLookupString

obtain composed input from an input method

int XmbLookupString(ic, event, buffer_return, bytes_buffer, keysym_return,
status_return)
XIC ic;
XKeyPressedEvent *event;
char *buffer_return;
int bytes_buffer;
KeySym *keysym_return;
Status *status_return;

int XwcLookupString(ic, event, buffer_return, bytes_buffer, keysym_return,
status_return)
XIC ic;
XKeyPressedEvent *event;
wchar_t *buffer_return;
int wchars_buf fer;
KeySym *keysym_return;
Status *status_return;

Arguments

buffer_return Returns a multibyte string or wide character string (if any)
from the input method.

bytes_buffer
wchars_buffer Specifies space available in return buffer.

event Specifies the key event to be used.
ic Specifies the input context.

keysym_return Returns the KeySym computed from the event if this argu-
ment is not NULL.

status_return Returns a value indicating what kind of data is returned.

Description

The XmbLookupString and XwcLookupString functions return the string
from the input method specified in the buffer_return argument. If no string is
returned, the buffer_return argument is unchanged.

X Version 11 (Release 5) 6 January 1993 287

XmbLookupString(XS)

288

The KeySym into which the KeyCode from the event was mapped is returned
in the keysym_return argument if it is non-NULL and the status_return argu-
ment indicates that a KeySym was returned. If both a string and a KeySym
are returned, the KeySym value does not necessarily correspond to the string
returned.

Note that XmbLookupString returns the length of the string in bytes and that
XwcLookupString returns the length of the string in characters.

XmbLookupString and XwcLookupString return text in the encoding of the
locale bound to the input method of the specified input context.

Note that each string returned by XmbLookupString and XwcLookupString
begins in the initial state of the encoding of the locale (if the encoding of the
locale is state-dependent).

NOTE In order to insure proper input processing, it is essential that the
client pass only KeyPress events to XmbLookupString and XwcLookup-
String. Their behavior when a client passes a KeyRelease event is unde-
fined.

Clients should check the status_return argument before using the other
returned values. These two functions both return a value to status_return
that indicates what has been returned in the other arguments. The possible
values returned are:

XBufferOverflow The input string to be returned s too large for the supplied
buffer_return. The required size (XmbLookupString in
bytes; XwcLookupString in characters) is returned as the
value of the function, and the contents of buffer_return
and keysym_return are not modified. The client should
recall the function with the same event and a buffer of
adequate size in order to obtain the string.

XLookupNone No consistent input has been composed so far. The con-
tents of buffer_return and keysym_return are not modified,
and the function returns zero.

XLookupChars Some input characters have been composed. They are
placed in the buffer_return argument, and the string length
is returned as the value of the function. The string is
encoded in the locale bound to the input context. The con-
tents of the keysym_return argument is not modified.

XLookupKeySym A KeySym has been returned instead of a string and is
retuned in keysym_return. The contents of the
buffer_return argument is not modified, and the function
returns zero.

XLookupBoth Both a KezSym and a string are returned; XLookupChars
and XLookupKeySym occur simultaneously.

X Version 11 (Release 5) 6 January 1993

XmbLookupString(XS)

It does not make any difference if the input context passed as an argument to
XmbLookupString and XwcLookupString is the one currently in possession
of the focus or not. Input may have been composed within an input context
before it lost the focus, and that input may be returned on subsequent calls to
XmbLookupString or XwcLookupString, even though it does not have any
more keyboard focus.

See also

XLookupKeysym(XS)
XIib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 289

XmbResetIC(XS)

XmbResetiC

reset the state of an input context

Syntax
char * XmbResetIC(ic)
XIC ic;
wchar_t * XwcResetIC(ic)
XIC ic;
Arguments

ic Specifies the input context.
Description

The XmbResetIC and XwcResetIC functions reset input context to initial
state. Any input pending on that context is deleted. Input method is required
to clear preedit area, if any, and update status accordingly. Calling
XmbResetIC or XwcResetIC does not change the focus.

The return value of XmbResetIC is its current preedit string as a multibyte
string. The return value of XwcResetIC is its current preedit string as a wide
character string. It is input method implementation dependent whether these
routines return a non-NULL string or NULL.

The client should free the returned string by calling XFree.

See also

XCreateIC(XS), XOpenIM(XS), XSetICFocus(XS), XSetICValues(XS)
Xlib - C Language X Interface

290 X Version 11 (Release 5) 6 January 1993

XmbTextEscapement(XS)

XmbTextEscapement

obtain the escapement of text

Syntax

int XmbTextEscapement (font_set, string, num_bytes)
XFontSet font_set;
char *string;
int num_bytes;

int XwcTextEscapement (font_set, string, num_wchars)
XFontSet font_set;
wchar_t *string;
int num_wchars;

Arguments

font_set Specifies thefont set.
num_bytes Specifies the number of bytes in the string argument.
num_wchars Specifies the number of characters in the string argument.

string Specifies the character string.

Description

The XmbTextEscapement and XwcTextEscapement functions return the
escapement in pixels of the specified string as a value, using the fonts loaded
for the specified font set. The escapement is the distance in pixels in the pri-
mary draw direction from the drawing origin to the origin of the next charac-
ter to be drawn, assuming that the rendering of the next character is not
dependent on the supplied string.

Regardless of the character rendering order, the escapement is always posi-
tive.

See also

XmbTextExtents(XS), XmbTextPerCharExtents(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 291

XmbTextExtents(XS)

XmbTextExtents

compute text extents

Syntax

int XmbTextExtents(font_set, string, num_bytes, overall_return)
XFontSet font_set;
char *string;
int num_bytes;
XRectangle *overall_ink_return;
XRectangle *overall_logical_return;

int XwcTextExtents(font_set, string, num_wchars, overall_return)
XFontSet font_set;
wchar_t *string;
int num_wchars;
XRectangle *overall_ink_return;
XRectangle *overall_logical_return;

Arguments
font_set Specifies the font set.
num_bytes Specifies the number of bytes in the string argument.

num_wchars Specifies the number of characters in the string argument.

overall_ink_return
Returns the overall ink dimensions.

overall_logical_return
Returns the overall logical dimensions.

string Specifies the character string.

Description

292

The XmbTextExtents and XwcTextExtents functions set the components of
the specified overall_ink_return and overall_logical_return arguments to the
overall bounding box of the string’s image, and a logical bounding box for
spacing purposes, respectively. They return the value returned by XmbTex-
tEscapement or XwcTextEscapement. These metrics are relative to the draw-
ing origin of the string, using the fonts loaded for the specified font set.

X Version 11 (Release 5) 6 January 1993

See also

XmbTextExtents(XS)

If the overall_ink_return argument is non-NULL, it is set to the bounding box
of the string’s character ink. Note that the overall_ink_return for a non-
descending horizontally drawn Latin character is conventionally entirely
above the baseline, that is,

overall_ink_return.height <= -overall_ink_return.y.

The overall_ink_return for a nonkerned character is entirely at and to the right
of the origin, that is, overall_ink_returnx>= 0. A character consisting of a
single pixel at the origin would set overall_ink_return fields y =0, x=0,
width = 1, height = 1.

If the overall_logical_return argument is non-NULL, it is set to the bounding
box which provides minimum spacing to other graphical features for the
strin%. Other graphical features, for example, a border surrounding the text,
should not intersect this rectangle.

When the XFontSet has missing charsets, metrics for each unavailable charac-
ter are taken from the default string returned by XCreateFontSet so that the
metrics represent the text as it will actually be drawn. The behavior for an
invalid codepoint’is undefined.

XmbTextEscapement(XS), XmbTextPerCharExtents(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 293

XmbTextListToTextProperty(XS)

XmbTextListToTextProperty

convert text lists and text property structures

Syntax

int XmbTextListToTextProperty(display,
Display *display;
char **list;
int count;
XICCEncodingStyle style;
XTextProperty *text_prop_return;

int XwcTextListToTextProperty(display,
Display *display;
wchar_t **list;
int count;
XICCEncodingStyle style;
XTextProperty *text_prop_return;

int XmbTextPropertyToTextList (display,
Display *display;
XTextProperty *text_prop;
char ***]ist_return;
int *count_return;

int XwcTextPropertyToTextList (display,
Display *display;
XTextProperty *text_prop;
wchar_t ***list_return;
int *count_return;

void XwcFreeStringList(list)
wchar_t **list;

char *XDefaultString()

Arguments

list, count, style, text_prop_return)

list, count, style, text_prop_return)

text_prop, list_return, count_return)

text_prop, list_return, count_return)

294

display Specifies the connection to the X server.

list Specifies a list of null-terminated character strings.

count Specifies the number of strings specified.

style Specifies the manner in which the property is encoded.

text_prop_return

Returns the XTextProperty structure.

X Version 11 (Release 5) 6 January 1993

XmbTextListToTextProperty(XS)

text_prop Specifies the XTextProperty structure to be used.
list_return Returns a list of null-terminated character strings.
count_return Returns the number of strings.

list Specifies the list of strings to be freed.

Description

The XmbTextListToTextProperty and XwcTextListToTextProperty functions
set the specified XTextProperty value to a set of null-separated elements
representing the concatenation of the specified list of null-terminated text
strings. A final terminating null is stored at the end of the value field of
text_prop_return but is not included in the nitems member.

The functions set the encoding field of text_prop_return to an Atom for the
specified display naming the encoding determined by the specified style, and
convert the specified text list to this encoding for storage in the
text_prop_return value field. If the style XStringStyle or XCom-
poundTextStyle is specified, this encoding is “STRING” or
“COMPOUND_TEXT", respectively. If the style XTextStyle is specified, this
encoding is the encoding of the current locale. If the style XStdICCTextStyle
is specified, this encoding is “STRING” if the text is fully convertible to
STRING, else “COMPOUND_TEXT".

If insufficient memory is available for the new value string, the functions
return XNoMemory. If the current locale is not supported, the functions
return XLocaleNotSupported. In both of these error cases, the functions do
not set text_prop_return.

To determine if the functions are guaranteed not to return XLocaleNotSup-
ported, use XSupportsLocale.

If the supplied text is not fully convertible to the specified encoding, the func-
tions return the number of unconvestible characters. Each unconvertible char-
acter is converted to an implementation-defined and encoding-specific default
string. Otherwise, the functions return Success. Note that full convertibility
to all styles except XStringStyle is guaranteed.

To free the storage for the value field, use XFree.

The XmbTextPropertyToTextList and XwcTextPropertyToTextList functions
return a list of text strings in the current locale representing the null-separated
elements of the specified XTextProperty structure. The data in text_prop
must be format 8.

Multiple elements of the property (for example, the strings in a disjoint text
selection) are separated by a null byte. The contents of the property are not
required to be null-terminated; any terminating null should not be included in
text_prop.nitems.

X Version 11 (Release 5) 6 January 1993 295

XmbTextListToTextProperty(XS)

296

If insufficient memory is available for the list and its elements, XmbTextPro-
pertyToTextList and XwcTextPropertyToTextList return XNoMemory. If the
current locale is not supported, the functions return XLocaleNotSupported.
Otherwise, if the encoding field of text_prop is not convertible to the encoding
of the current locale, the functions return XConverterNotFound. For sup-
ported locales, existence of a converter from COMPOUND_TEXT, STRING, or
the encoding of the current locale is guaranteed if XSupportsLocale returns
True for the current locale (but the actual text may contain unconvertible
characters.) Conversion of other encodings is implementation-dependent. In
all of these error cases, the functions do not set any return values.

Otherwise, XmbTextPropertyToTextList and XwcTextPropertyToTextList
return the list of null-terminated text strings to list_return, and the number of
text strings to count _return.

If the value field of text_prop is not fully convertible to the encoding of the
current locale, the functions return the number of unconvertible characters.
Each unconvertible character is converted to a string in the current locale that
is specific to the current locale. To obtain the value of this string, use XDe-
faultString. Otherwise, XmbTextPropertyToTextList and XwcTextProper-
tyToTextList return Success.

To free the storage for the list and its contents returned by XmbTextProper-
tyToTextList, use XFreeStringList. To free the storage for the list and its con-
tents returned by XwcTextPropertyToTextList, use XwcFreeStringList.

The XwcFreeStringList function frees memory allocated by XwcTextProper-
tyToTextList.

The XDefaultString function returns the default string used by Xlib for text
conversion (for example, in XmbTextListToTextProperty). The default string
is the string in the current locale which is output when an unconvertible char-
acter is found during text conversion. If the string returned by XDefault-
String is the empty string ("), no character is output in the converted text.
XDefaultString does not return NULL.

The string returned by XDefaultString is independent of the default string for
text drawing; see XCreateFontSet(XS) to obtain the default string for an
XFontSet.

The behavior when an invalid codepoint is supplied to any Xlib function is
undefined.

The returned string is null-terminated. It is owned by Xlib and should not be

modified or freed by the client. It may be freed after the current locale is
changed. Until freed, it will not be modified by Xlib.

X Version 11 (Release 5) 6 January 1993

XmbTextListToTextProperty(XS)

Structures

See also

The XTextProperty structure contains:

typedef struct (
unsigned char *value; /* property data */

Atom encoding; /* type of property */

int format; /* 8, 16, or 32 */

unsigned long nitems; /* number of items in value */
) XTextProperty;

The XICCEncodingStyle structure contains:

#define = XNoMemory -1
#define XLocaleNotSupported -2
#define XConverterNotFound -3

typedef enum (

XstringStyle, /* STRING */

XCompoundTextStyle, /* COMPOUND_TEXT */

XTextStyle, /* text in owner'’s encoding (current locale) */
XStdICCTextStyle /* STRING, else COMPOUND_TEXT */

) XICCEncodingStyle;

XSetTextProperty(XS), XStringListToTextProperty(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 297

XmbTextPerCharExtents(XS)

XmbTextPerCharExtents

obtain per-character information for a text string

Syntax

Status XmbTextPerCharExtents (font_set, string, num_bytes, ink_array_return,
logical_array_return, array_size,
num_chars_return, overall_return)

XFontSet font_set;

char *string;

int num_bytes;

XRectangle *ink_array_return;
XRectangle *logical_array_return;
int array_size;

int *num_chars_return;

XRectangle *overall_ink_return;
XRectangle *overall_logical_return;

Status XwcTextPerCharExtents (font_set, string, num_wchars,
ink_array_return, logical_array_return,
array_size, num_chars_return, overall_return)

XFontSet font_set;
wchar_t *string;
int num_wchars;
XRectangle *ink_array_return;
XRectangle *logical_array_return;
int array_size;
int *num_chars_return;
XRectangle *overall_ink_return;
XRectangle *overall_logical_return;
Arguments
array_size Specifies the size of ink_array_return and
logical_array_return. Note that the caller must pass in
arrays of this size.
font_set Specifies the font set.

ink_array_return

Returns the ink dimensions for each character.

logical_array_return

Returns the logical dimensions for each character.

num_bytes Specifies the number of bytes in the string argument.

num_chars_return

298

Returns the number characters in the string argument.

X Version 11 (Release 5) 6 January 1993

XmbTextPerCharExtents(XS)

num_wchars Specifies the number of characters in the string argument.

overall_ink_return
Returns the overall ink extents of the entire string.

overall_logical_return
Returns the overall logical extents of the entire string.

string Specifies the character string.

Description

See also

The XmbTextPerCharExtents and XwcTextPerCharExtents return the text
dimensions of each character of the specified text, using the fonts loaded for
the specified font set. Each successive element of ink_array_return and
logical_array_return is set to the successive character's drawn metrics, rela-
tive to the drawing origin of the string, one XRectangle for each character in
the supplied text string. The number of elements of ink_array_return and
logical_array_return that have been set is returned to num_chars_return.

Each element of ink_array_return is set to the bounding box of the corre-
sponding character's drawn foreground color. Each element of
logical_array_return is. set to the bounding box which provides minimum
spacing to other graphical features for the corresponding character. Other
gfaphical features should not intersect any of the logical_array_return rectan-
gles.

Note that an XRectangle represents the effective drawing dimensions of the
character, regardless of the number of font glyphs that are used to draw the
character, or the direction in which the character is drawn. If multiple charac-
ters map to a single character glyph, the dimensions of all the XRectangles of
those characters are the same.

When the XFontSet has missing charsets, metrics for each unavailable charac-
ter are taken from the default string returned by XCreateFontSet, so that the
metrics represent the text as it will actually be drawn. The behavior for an
invalid codepoint is undefined.

If the array_size is too small for the number of characters in the supplied text,
the functions return zero and num_chars_return is set to the number of rectan-
gles required. Otherwise, the routines return a non-zero value.

If the overall_ink_return or overall_logical_return argument is non-NULL,
XmbTextPerCharExtents and XwcTextPerCharExtents return the maximum
extent of the string’s metrics to overall_ink_return or overall_logical_return,
as returned by XmbTextExtents or XwcTextExtents.

XmbTextEscapement(XS), XmbTextExtents(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 299

xmkmf(XS)

xmkmf

create a Makefile from an Imakefile

Syntax

xinkmf [-a] [topdir [curdir]]

Description

The xmkmf command is the normal way to create a Makefile from an
Imakefile shipped with third-party software.

When invoked with no arguments in a directory containing an Imakefile, the
imake program is run with arguments appropriate for your system (conﬁg-

~ ured into xmkmf when X was built) and generates a Makefile.

See also

When invoked with the -a option, xmkmf builds the Makefile in the current
directory, and then automatically executes “make Makefiles” (in case there are
subdirectories), “make includes”, and “make depend” for you. This is the nor-
mal way to configure software that is outside the MIT X build tree.

If working inside the MIT X build tree (unlikely unless you are an X develop-
er, and even then this option is never really used), the topdirargument should
be specified as the relative pathname from the current directory to the top of
the build tree. Optionally, curdir may be specified as a relative pathname
from the top of the build tree to the current directory. It is necessary to sup-
ply curdir if the current directory has subdirectories, or the Makefile will not
be able to build the subdirectories. If a topdiris given, xmkmf assumes noth-
ing is installed on your system and looks for files in the build tree instead of
using the installed versions.

300

imake(XS)

X Version 11 (Release 5) 6 January 1993

XNextEvent(XS)

XNextEvent

select events by type

Syntax

XNextEvent (display, event_return)
Display *display;
XEvent *event_return;

XPeekEvent (display, event_return)
Display *display;
XEvent *event_return;

XWindowEvent (display, w, event_mask, event_return)
Display *display;
Window w;
long event_mask;
XEvent *event_return;

Bool XCheckWindowEvent (display, w, event_mask, event_return)
Display *display;
"Window w;
long event_mask;
XEvent *event_return;

XMaskEvent (display, event_mask, event_return)
Display *display;
long event_mask;
XEvent *event_return;

Bool XCheckMaskEvent (display, event_mask, event_return)
Display *display;
long event_mask;
XEvent *event_return;

Bool XCheckTypedEvent (display, event_type, event_return)
Display *display;
int event_type;
XEvent *event_return;

Bool XCheckTypedWindowEvent(display, w, event_type, event_return)
Display *display;
Window w;
int event_type;
XEvent *event_return;

X Version 11 (Release 5) 6 January 1993 301

XNextEvent(XS)

Arguments

display Specifies the connection to the X server.
event_mask Specifies the event mask.

event_return Returns the matched event’s associated structure.
event_return Returns the next event in the queue.

event_return Returns a copy of the matched event’s associated structure.

event_type Specifies the event type to be compared.
w Specifies the window whose event you are interested in.
Description

302

The XNextEvent function copies the first event from the event queueinto the
specified XEvent structure and then removes it from the queue. If the event
queue is empty, XNextEvent flushes the output buffer and blocks until an
event is received.

The XPeekEvent function returns the first event from the event queue, but it
does not remove the event from the queue. If the queue is empty,
XPeekEvent flushes the output buffer and blocks until an event is received. It
then copies the event into the client-supplied XEvent structure without
removing it from the event queue.

The XWindowEvent function searches the event queue for an event that
matches both the specified window and event mask. When it finds a match,
XWindowEvent removes that event from the queue and copies it into the
specified XEvent structure. The other events stored in the queue are not dis-
carded. If a matching event is not in the queue, XWindowEvent flushes the
output buffer and blocks until oneis received.

The XCheckWindowEvent function searches the event queue and then the
events available on the server connection for the first event that matches the
specified window and event mask. If it finds a match, XCheckWindowEvent
removes that event, copies it into the specified XEvent structure, and returns
True. The other events stored in the queue are not discarded. If the event you
requested is not available, XCheckWindowEvent returns False, and the out-
put buffer will have been flushed.

The XMaskEvent function searches the event queue for the events associated
with the specified mask. When it finds a match, XMaskEvent removes that
event and copies it into the specified XEvent structure. The other events
stored in the queue are not discarded. If the event you re?uested is not in the
queue, XMaskEvent flushes the output buffer and blocks until one is
received.

X Version 11 (Release 5) 6 January 1993

See also

XNextEvent(XS)

The XCheckMaskEvent function searches the event queue and then any
events available on the server connection for the first event that matches the
specified mask. If it finds a match, XCheckMaskEvent removes that event,
copies it into the specified XEvent structure, and returns True. The other
events stored in the queue are not discarded. If the event you requested is not
available, XCheckMaskEvent returns False, and the output buffer will have
been flushed.

The XCheckTypedEvent function searches the event queue and then any
events available on the server connection for the first event that matches the
specified type. If it finds a match, XCheckTypedEvent removes that event,
copies it into the specified XEvent structure, and returns True. The other
events in the queue are not discarded. If the event is not available, XCheck-
TypedEvent returns False, and the output buffer will have been flushed.

The XCheckTypedWindowEvent function searches the event queue and then
any events available on the server connection for the first event that matches
the specified type and window. If it finds a match, XCheckITypedWin-
dowEvent removes the event from the queue, copies it into the specified
XEvent structure, and returns True. The other events in the queue are not dis-
carded. If the event is not available, XCheckTypedWindowEvent returns
False, and the output buffer will have been flushed.

XAnyEvent(XS), XIfEvent(XS), XPutBackEvent(XS), XSendEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 303

XNoOp(XS)

XNoOp

No Operation

Syntax

XNoOp (display)
Display *display;

Arguments

display Specifies the connection to the X server.
Description

The XNoOp function sends a NoOperation protocol request to the X server,
thereby exercising the connection.

See also

Xlib - C Language X Interface

304 X Version 11 (Release 5) 6 January 1993

XOpenDisplay(XS)

XOApenDispIay

connect or disconnect to X server

Syntax
Display *XOpenDisplay(display_name)
char *display_name;
XCloseDisplay (display)
Display *display;
Arguments
display Specifies the connection to the X server.
display_name Specifies the hardware display name, which determines the
display and communications domain to be used. On a
POSIX-conformant system, if the display_name is NULL, it
defaults to the value of the DISPLAY environment variable.
Description

The XOpenDisplay function returns a Display structure that serves as the
connection to the X server and that contains all the information about that X
server. XOpenDisplay connects your application to the X server through TCP
or DECnet communications protocols, or through some local inter-process
communication protocol. If the hostname is a host machine name and a sin-
gle colon (:) separates the hostname and display number, XOpenDisplay
connects using TCP streams. If the hostname is not specified, Xlib uses what-
ever it believes is the fastest transport. If the hostname is a host machine
name and a double colon (::) separates the hostname and display number,
XOpenDisplay connects using DECnet. A single X server can support any or
all of these transport mechanisms simultaneously. A particular Xlib imple-
mentation can support many more of these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is
defined in <X1 1&1ib.h>. If XOpenDisplay does not succeed, it returns NULL.
After a successful call to XOpenDisplay, all of the screens in the display can
be used by the client. The screen number specified in the display_name argu-
ment is returned by the DefaultScreen macro (or the XDefaultScreen func-
tion). You can access elements of the Display and Screen structures only by
using the information macros or functions. For information about using mac-
ros and functions to obtain information from the Display structure, see sec-
tion 2.2.1 of XIib - C Language X Interface.

X Version 11 (Release 5) 6 January 1993 305

XOpenDisplay(XS)

The XCloseDisplay function closes the connection to the X server for the dis-
play specified in the Display structure and destroys all windows, resource IDs
(Window, Font, Pixmap, Colormap, Cursor, and GContext), or other
resources that the client has created on this display, unless the close-down
mode of the resource has been changed (see XSetCloseDownMode(XS)).
Therefore, these windows, resource IDs, and other resources should never be
referenced again or an error will be generated. Before exiting, you should call
XCloseDisplay explicitly so that any pending errors are reported as
XCloseDisplay performs a final XSync operation.

XCloseDisplay can generate a “BadGC” error.

See also

AllPlanes(XS), XFlush(XS), XSetCloseDownMode(XS)
Xlib - C Language X Interface

306 X Version 11 (Release 5) 6 January 1993

XOpenIM(XS)

XOpeniM

open, close, and obtain input method information

Syntax
XIM XOpenIM(display, db, res_name, res_class)
Display *display;
XrmDataBase db;
char *res_name;
char *res_class;
Status XCloseIM(im)
XIM im;
char * XGetIMValues(im, ...)
XIM im;
Display * XDisplayOfIM(im)
XIM im;
char * XLocaleOfIM(im)
XIM im;
Arguments
db Specifies a pointer to the resource database.
display Specifies the connection to the X server.
im Specifies the input method.
res_class Specifies the full class name of the application.
res_name Specifies the full resource name of the application.
Specifies the variable lengthargument list to get XIM values.
Description

The XOpenIM function opens an input method, matching the current locale
and modifiers specification. Current locale and modifiers are bound to the
input method at opening time. The locale associated with an input method
cannot be changed dynamically. This implies the strings returned b
XmbLookupString or XwcLookupString, for any input context affiliated wi

a given input method, will be encoded in the locale current at the time input
method is opened.

X Version 11 (Release 5) 6 January 1993 307

XOpenIM(XS)

308

Thespecific input method to which this call will be routed is identified on the
basis of the current locale. XOpenIM will identify a default input method
corresponding to the current locale. That default can be modified using XSet-
LocaleModifiers for the input method modifier.

The db argument is the resource database to be used by the input method for
looking ucF resources that are private to the input method. It is not intended
that this database be used to look up values that can be set as IC values in an
input context. If db is NULL, no data base is passed to the input method.

The res_name and res_class arguments specify the resource name and class of
the application. They are intended to be used as i)refixes by the input method
when looking up resources that are common to all input contexts that may be
created for this input method. The characters used for resource names and
classes must be in the X portable character set. The resources looked up are
not fully specified if res_name or res_class is NULL.

The res_name and res_class arguments are not assumed to exist beyond the
call to XOpenIM. The specified resource database is assumed to exist for the
lifetime of the input method.

XOpenIM returns NULL if no input method could be opened.
The XCloseIM function closes the specified input method.

The XGetIM Values function presents a variable argument list programming
interface for querying properties or features of the specified input method.
This function returns NULL if it succeeds; otherwise, it returns the name of the
first argument that could not be obtained.

Only one standard argument is defined by Xlib: XNQueryInputStyle, which
must be used to query about input styles supported by the input method.

A client should always query the input method to determine which styles are
supported. The client should then find an input style it is capable of support-
ing.

If the client cannot find an input style that it can support it should negotiate
with the user the continuation of the program (exit, choose another input
method, and so on).

The argument value must be a pointer to a location where the returned value
will be stored. The returned value is a pointer to a structure of type XIM-
Styles. Clients are responsible for freeing the XIMStyles data structure. To
do so, use XFree.

The XDisplayOfIM function returns the display associated with the specified
input method.

The XLocaleOfIM returns the locale associated with the specified input
method.

X Version 11 (Release 5) 6 January 1993

XOpenIM(XS)

See also

XCreateIC(XS), XSetICFocus(XS), XSetICValues(XS), XmbResetIC(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 309

XParseGeometry(XS)

XParseGeometry

parse window geometry

Syntax

int XParseGeometry(parsestring, x_return, y_return, width_return,

height_return)

char *parsestring;
int *x_return, *y_return;
unsigned int *width_return, *height_return;

int XWMGeometry(display, screen, user_geom, def_geom, bwidth, hints,

Xx_return, y_return, width_return, height_return,
gravity_return)

Display *display;

int screen;

char *user_geom;

char *def_geonm;

unsigned int bwidth;
XSizeHints *hints;

int *x_return, *y_return;
int *width_return;

int *height_return;

int *gravity_return;

Arguments

310

position

default_position

display

fheight
fwidth

parsestring
screen

width_return
height_return

xadder
yadder

Specify the geometry specifications.

Specifies the connection to the X server.

Specify the font height and width in pixels (increment size).
Specifies the string you want to parse.

Specifies the screen.
Return the width and height determined.

Specify additional interior padding needed in the window.

X Version 11 (Release 5) 6 January 1993

XParseGeometry(XS)

x_return

y_return Return the x and y offsets.

bwidth Specifies the border width.

hints Specifies the size hints for the window in its normal state.
def geom Specifies the application’s default geometry or NULL.

gravity_return Returns the window gravity.

user_geom Specifies the user-specified geometry or NULL.
Description

By convention, X applications use a standard string to indicate window size
and placement. XParseGeometry makes it easier to conform to this standard
because it allows you to parse the standard window geometry. Specifically,
this function lets you parse strings of the form:

[=) [<width>{xX)<height>] [{+-)<xoffset>{+-)<yof fset>]

The fields map into the arguments associated with this function. (Items
enclosed in “ <> " are integers, items in “[]“ are optional, and items enclosed
in “{}” indicate “choose one of.” Note that the brackets should not appear in
the actual string.) If the string is not in the Host Portable Character Encoding
the result is implementation dependent.

The XParseGeometry function returns a bitmask that indicates which of the
four values (width, height, xoffset, and yoffset) were actually found in the
string and whether the x and y values are negative. By convention, -0 is not
equal to +0, because the user needs to be able to say “position the window
relative to the right or bottom edge.” For each value found, the corresponding
argument is updated. For each value not found, the argument is left
unchanged. The bits are represented by XValue, YValue, WidthValue,
HeightValue, XNegative, or YNegative and are defined in <X11/Xutil.h>.
They will be set whenever one of the values is defined or one of the signs is
set.

If the function returns either the XValue or YValue flag, you should place the
window at the requested position.

The XWMGeometry function combines any geometry information (given in
the format used by XParseGeometry) specified by the user and by the calling
program with size hints (usually the ones to be swred in
WM_NORMAL_HINTS) and returns the position, size, and gravity
(NorthWestGravity, NorthEastGravity, SouthEastGravity, or SouthWest-
Gravity) that describe the window. If the base size is not set in the
XSizeHints structure, the minimum size is used if set. Otherwise, a base size
of zero is assumed. If no minimum size is set in the hints structure, the base
size is used. A mask (in the form returned by XParseGeometry) that
describes which values came from the user specification and whether or not

X Version 11 (Release 5) 6 January 1993 311

XParseGeometry(XS)

See also

the position coordinates are relative to the right and bottom edges is returned.
Note that these coordinates will have already been accounted for in the
x_return and y_return values.

Note that invalid geometry specifications can cause a width or height of zero
to be returned. The caller may pass the address of the hints win_gravity field
as gravity_return to update the hints directly.

312

XSetWMProperties(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XPolygonRegion(XS)

XPolygonRegion

generate regions

Syntax

Region XPolygonRegion(points, n, fill_rule)
XPoint points(];
int n;
int fill_rule;

XClipBox(r, rect_return)
Region r;
XRectangle *rect_return;

Arguments

fill_rule Specifies the fill-rule you want to set for the specified GC. You
can pass EvenOddRule or WindingRule.

n Specifies the number of points in the polygon.
points Specifies anarray of points.
r Specifies the region.

rect_return Returns the smallest enclosing rectangle.

Description

The XPolygonRegion function returns a region for the polygon defined by the
points array. For an explanation of fill_rule, see XCreateGC(XS).

The XClipBox function returns the smallest rectangle enclosing the specified
region.

See also

XCreateGC(XS), XDrawPoint(XS), XDrawRectangle(XS)
XIlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 313

XPropertyEvent(XS)

XPropertyEvent

PropertyNotify event structure

Structures

The structure for PropertyNotify events contains:
typedef struct {

int type; /* PropertyNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
Atom atom;
Time time;
int state; /* PropertyNewValue or PropertyDelete */
} XPropertyEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The window member is set to the window whose associated property was
changed. The atom member is set to the property’s atom and indicates which
property was changed or desired. The time member is set to the server time
when the property was changed. The state member is set to indicate whether
the property was changed to a new value or deleted and can be Proper-
tyNewValue or PropertyDelete. The state member is set to Proper-
tyNewValue when a property of the window is changed using XChangePro-
perty or XRotateWindowProperties (even when adding zero-length data
using XChangeProperty) and when replacing all or part of a property with
identical data using XChangeProperty or XRotateWindowProperties. The
state member is set to PropertyDelete when a property of the window is
deleted using XDeleteProperty or, if the delete argument is True, XGetWin-
dowProperty.

See also
XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
314 X Version 11 (Release 5) 6 January 1993

XPropertyEvent(XS)

XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGetWindowProperty(XS),
XGraphicsExposeEvent(XS), XGravityEvent(XS), XKeymapEvent(XS),
XMapEvent(XS), XMapRequestEvent(XS), XReparentEvent(XS),
XResizeRequestEvent(XS), XSelectionClearEvent(XS), XSelectionEvent(XS),
XSelectionRequestEvent(XS), XUnmapEvent(XS), XVisibilityEvent(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 315

XPutBackEvent(XS)

XPutBackEvent

put events back on the queue

Syntax

XPutBackEvent (display, event)
Display *display;
XEvent *event;

Arguments

display Specifies the connection to the X server.

. event Specifies the event.

Description

The XPutBackEvent function pushes an event back onto the head of the dis-
play’s event queue by cczgying the event into the queue. This can be useful if
you read an event and then decide that you would rather deal with it later.

There is no limit to the number of times in succession that you can call XPut-
BackEvent.

See also

XAnyEvent(XS), XIfEvent(XS), XNextEvent(XS), XSendEvent(XS)
Xlib - C Language X Interface

316 X Version 11 (Release 5) 6 January 1993

XPutimage

XPutImage(XS)

transfer images

Syntax

XPutImage(display, d, gc, image, src_x, src_y, dest_x, dest_y, width,

XImage *XGetImage(display, d, x, y, width, height, plane_mask, format)

height)
Display *display;
Drawable d;
GC gc;
XImage *image;
int src_x, src_y;
int dest_x, dest_y;
unsigned int width, height;

Display *display;

Drawable d;

int x, y;

unsigned int width, height;
unsigned long plane_mask;
int format;

XImage *XGetSublImage(display, d, x, y, width, height, plane_mask, format,

Arguments

. dest_image, dest_x, dest_y)
Display *display;
Drawable d;
int x, y;
unsigned int width, height;
unsigned long plane_mask;
int format;
XImage *dest_image;
int dest_x, dest_y;

d

Specifies the drawable.

dest_image Specify the destination image.

dest_x

dest_y Specify the x and y coordinates, which are relative to the origin
of the drawable and are the coordinates of the subimage or
which are relative to the origin of the destination rectangle,
specify its upper-left corner, and determine where the subim-
age is placed in the destination image.

display Specifies the connection to the X server.

X Version 11 (Release 5) 6 January 1993 317

XPutImage(XS)

format Specifies the format for the image. You can pass XYPixmap or
ZPixmap.

g Specifies the GC.

image Specifies the image you want combined with the rectangle.

plane_mask Specifies the plane mask.

src_x Specifies the offset in X from the left edge of the image defined
by the XImage data structure.

src_y Specifies the offset in Y from the top edge of the image defined
by the XImage data structure.

width

height Specify the width and height of the subimage, which define the
dimensions of the rectangle.

x

y Specify the x and y coordinates, which are relative to the origin
of the drawable and define the upper-left corner of the rectan-
gle.

Description

318

The XPutImage function combines an image in memory with a rectangle of
the specified drawable. If XYBitmap format is used, the depth of the image
must be one, or a “BadMatch” error results. The foreground pixel in the GC
defines the source for the one bits in the image, and the background pixel
defines the source for the zero bits. For XYPixmap and ZPixmap, the depth of
the image must match the depth of the drawable, or a “BadMatch” error
results. The section of the image defined by the src_x, src_y, width, and
height arguments is drawn on the specified part of the drawable.

This function uses these GC components: function, plane-mask, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode-
dependent components: foreground and background.

XPutImage can generate “BadDrawable”, “BadGC”, “BadMatch”, and “Bad-
Value” errors.

The XGetImage function returns a pointer to an XImage structure. This struc-
ture provides you with the contents of the specified rectangle of the drawable
in the format you specify. If the format argument is XYPixmap, the image
contains only the bit planes you passed to the plane_mask argument. If the
plane_mask argument only requests a subset of the planes of the display, the
depth of the returned image will be the number of planes requested. If the
format argument is ZPixmap, XGetlmage returns as zero the bits in all planes
not specified in the plane_mask argument. The function performs no range
checking on the values in plane_mask and ignores extraneous bits.

X Version 11 (Release 5) 6 January 1993

XPutlmage(XS)

XGetImage returns the depth of the image to the depth member of the XIm-
age structure. The depth of the image is as specified when the drawable was
created, except when getting a subset of the planes in XYPixmap format,
when the depth is given by the number of bits set to 1 in plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained
within the pixmap, or a “BadMatch” error results. If the drawable is a win-
dow, the window must be viewable, and it must be the case that if there were
no inferiors or overlapping windows, the specified rectangle of the window
would be fully visible on the screen and wholly contained within the outside
edges of the window, or a “BadMatch” error results. Note that the borders of
the window can be included and read with this request. If the window has
backing-store, the backing-store contents are returned for regions of the win-
dow that are obscured by noninferior windows. If the window does not have
backing-store, the returned contents of such obscured regions are undefined.
The returned contents of visible regions of inferiors of a different depth than
the specified window’s depth are also undefined. The pointer cursor image is
not included in the returned contents. If a problem occurs, XGetImage
returns NULL.

XGetImage can generate “BadDrawable”, “BadMatch”, and “BadValue” errors.

The XGetSubImage function updates dest_image with the specified subim-
age in the same manner as XGetImage. If the formatargument is XYPixmap,
the image contains only the bit planes you passed to the plane_mask argu-
ment. If the format argument is ZPixmap, XGetSubImage returns as zero the
bits in all planes not specified in the plane_mask argument. The function per-
forms no range checking on the values in plane_mask and ignores extraneous
bits. As a convenience, XGetSubImage returns a pointer to the same XImage
structure specified by dest_image.

The depth of the destination XImage structure must be the same as that of the
drawable. If the specified subimage does not fit at the specified location on
the destination image, the right and bottom edges are clipped. If the drawable
is a pixmap, the given rectangle must be wholly contained within the pixmap,
or a “BadMatch” error results. If the drawable is a window, the window must
be viewable, and it must be the case that if there were no inferiors or overlap-
ping windows, the specified rectangle of the window would be fully visible
on the screen and wholly contained within the outside edges of the window,
or a “BadMatch” error results. If the window has backing-store, then the
backing-store contents are returned for regions of the window that are
obscured by noninferior windows. If the window does not have backing-
store, the returned contents of such obscured regions are undefined. The
returned contents of visible regions of inferiors of a different depth than the
specified window’s depth are also undefined. If a problem occurs, XGetSu-
blmage returns NULL.

XGetSubImage can generate “BadDrawable”, “BadGC”, “BadMatch”, and
“BadValue” errors.

X Version 11 (Release 5) 6 January 1993 319

XPutlmage(XS)

Diagnostics

See also

”BadDrawa_ble”

“BadGC”

“BadMatch”
“BadMatch”

“BadValue”

A value for a Drawable argument does not name a defined
Window or Pixmap.

A value for a GContext argument does not name a defined
GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct ‘tiyge
and range but fails to match in some other way required by
the request.

Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

320

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XQueryBestSize(XS)

XQueryBestSize

determine efficient sizes

Syntax

Status XQueryBestSize(display, class, which_screen, width, height,
N width_return, height_return)

Display *display;
int class;
Drawable which_screen;

unsigned int width, height;

unsigned int *width_return, *height_return;

Status XQueryBestTile(display, which_screen, width, height, width_return,
height_return)
Display *display;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

Status XQueryBestStipple(display, which_screen, width, height, width_return,
height_return)
Display *display;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

Arguments
class Specifies the class that you are interested in. You can pass
TileShape, CursorShape, or StippleShape.
display Specifies the connection to the X server.
width
height Specify the width and height.

which_screen Specifies any drawable on the screen.
width_return

height_return Return the width and height of the object best supported by
the display hardware.

Description

The XQueryBestSize function returns the best or closest size to the specified
size. For CursorShape, this is the largest size that can be fully displayed on
the screen specified by which_screen. For TileShape, this is the size that can

X Version 11 (Release 5) 6 January 1993 321

XQueryBestSize(XS)

be tiled fastest. For StippleShape, this is the size that can be stippled fastest.
For CursorShape, the drawable indicates the desired screen. For TileShape
and StippleShape, the drawable indicates the screen and possibly the win-
dow class and depth. An InputOnly window cannot be used as the drawable
for TileShape or StippleShape, or a “BadMatch” error results.

XQueryBestSize can generate “BadDrawable”, “BadMatch”, and “BadValue”
errors.

The XQueryBestTile function returns the best or closest size, that is, the size
that can be tiled fastest on the screen specified by which_screen. The draw-
able indicates the screen and possibly the window class and depth. If an
InputOnly window is used as the drawable, a “BadMatch” error results.

XQueryBestTile can generate “BadDrawable” and “BadMatch” errors.

The XQueryBestStipple function returns the best or closest size, that is, the
size that can be stippled fastest on the screen specified by which_screen. The
drawable indicates the screen and possibly the window class and depth. If an
InputOnly window is used as the drawable, a “BadMatch” error results.

XQueryBestStipple can generate “BadDrawable” and “BadMatch” errors.

Diagnostics

“BadMatch” An InputOnly window is used as a Drawable.

“BadDrawable” A value for a Drawable argument does not name a defined
Window or Pixmap.

“BadMatch” The values do not exist for an InputOnly window.

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

See also
XCreateGC(XS), XSetArcMode(XS), XSetClipOrigin(XS), XSetFillStyle(XS),
XSetFont(XS), XSetLineAttributes(XS), XSetState(XS), XSetTile(XS)
X1ib - C Language X Interface

322 X Version 11 (Release 5) 6 January 1993

XQueryColor(XS)

XQueryColor

obtain color values

Syntax
XQueryColor(display, colormap, def_in_out)
Display *display;
Colormap colormap;
XColor *def_in_out;
XQueryColors(display, colormap, defs_in_out, ncolors)
Display *display;
Colormap colormap;
XColor defs_in_out([];
int ncolors;
Status XLookupColor(display, colormap, color_name, exact_def_return,
screen_def_return)
Display *display;
Colormap colormap;
char *color_name;
XColor *exact_def_return, *screen_def_return;
Status XParseColor(display, colormap, spec, exact_def_return)
Display *display;
Colormap colormap;
char *spec;
XColor *exact_def_return;
Arguments
colormap Specifies the colormap.
color_name Specifies the color name string (for example, red) whose
color definition structure you want returned.
def_in_out Specifies and returns the RGB values for the pixel specified in
the structure.

defs_in_out Specifies and returns an array of color definition structures
for the pixel specified in the structure.

display Specifies the connection to the X server.

exact_def return
Returns the exact RGB values.

ncolors Specifies the number of XColor structures in the color defini-
tion array.

X Version 11 (Release 5) 6 January 1993 323

XQueryColor(XS)

screen_def return
Returns the closest RGB values provided by the hardware.

spec Specifies the color name string; case is ignored.
exact_def return

Returns the exact color value for later use and sets the
DoRed, DoGreen, and DoBlue flags.

Description

The XQueryColor function returns the current RGB value for the pixel in the
XColor structure and sets the DoRed, DoGreen, and DoBlue flags. The .
XQueryColors function returns the RGB value for each pixel in each XColor
structure, and sets the DoRed, DoGreen, and DoBlue flags in each structure.

XQueryColor and XQueryColors can generate “BadColor” and “BadValue”
errors.

The XLookupColor function looks up the string name of a color with respect
to the screen associated with the specified colormap. It returns both the exact
color values and the closest values provided by the screen with respect to the
visual type of the specified colormap. If the color name is not in the Host
Portable Character Encoding the result is implementation dependent. Use of
uppercase or lowercase does not matter. XLookupColor returns nonzero if
the name is resolved, otherwise it returns zero.

The XParseColor function looks up the string name of a color with respect to
the screen associated with the specified colormap. It returns the exact color
value. If the color name is not in the Host Portable Character Encoding the
result is implementation dependent. Use of uppercase or lowercase does not
matter. XParseColor returns nonzero if the name is resolved, otherwise it
returns zero.

XLookupColor and XParseColor can generate “BadColor” error.

Color names

324

An RGB Device specification is identified by the prefix “rgb:” and conforms to
the following syntax:

rgb:<red>/<green>/<blue>
<red>, <green>, <blue> := h | hh | hhh | hhhh
h := single hexadecimal digits (case insignificant)

Note that h indicates the value scaled in 4 bits, kh the value scaled in 8 bits,
hhh the value scaled in 12 bits, and hhkhh the value scaled in 16 bits, respec-
tively.

X Version 11 (Release 5) 6 January 1993

XQueryColor(XS)

For backward compatibility, an older syntax for RGB Device is supported, but
its continued use is not encouraged. The syntax is aninitial sharp sign charac-
ter followed by a numeric specification, in one of the following formats:

#RGB (4 bits each)
#RRGGBB (8 bits each)
#RRRGGGBBB (12 bits each)

#RRRRGGGGBBBB (16 bits each)

The R, G, and B represent single hexadecimal digits. When fewer than 16 bits
each are specified, they represent the most-significant bits of the value (unlike
the “rgb:” syntax, in which values are scaled). For example, #3a7 is the same
as #3000a0007000.

An RGB intensity specification is identified by the prefix “rgbi:” and conforms
to the following syntax:

rgbi:<red>/<green>/<blue>
Note that red, green, and blue are floating point values between 0.0 and 1.0,
inclusive. The input format for these values is an optional sign, a string of
numbers possibly containing a decimal point, and an optional exponent field
containing an E or e followed by a possibly signedinteger string.

The standard device-independent string specifications have the following
syntax:

CIEXYZ:<X>/<Y>/<2>

CIEuvY:<u>/<v>/<Y>

CIExXyY:<x>/<y>/<Y>

CIELab:<L>/<a>/

CIELuv:<L>/<u>/<v>

TekHVC:<H>/<V>/<C>

All of the values (C,H,V,X,Y, Z,a,b, u, v, y, x) are floating point values. The
syntax for these values is an optional “+” or “ - ” sign, a string of digits possi-
bly containing a decimal point, and an optional exponent field consisting of
an “E” or “e” followed by an optional “+” or “-” followed by a string of

digits.
Diagnostics
“BadColor” A value for a Colormap argument does not name a defined
Colormap.
“BadValue” Some numeric value falls outside the range of values

accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

X Version 11 (Release 5) 6 January 1993 325

XQueryColor(XS)

See also

XAllocColor(XS), XCreateColormap(XS), XStoreColors(XS)
Xlib - C Language X Interface

326 X Version 11 (Release 5) 6 January 1993

XQueryPointer(XS)

XQueryPointer

get pointer coordinates

Syntax

Bool XQueryPointer(display, w, root_return, child_return, root_x_return,
root_y_return, win_x_return, win_y_return, mask_return)
Display *display;
Window w;
Window *root_return, *child_return;
int *root_x_return, *root_y_return;
int *win_x_return, *win_y_return;
unsigned int *mask_return;

Arguments
child_return Returns the child window that the pointer is located in, if
any.
display Specifies the connection to the X server.
mask_return Returns the current state of the modifier keys and pointer
buttons.
root_return Returns the root window that the pointer is in.

root_x_return
root_y_return Return the pointer coordinates relative to the root window’s
origin.

w Specifies the window.
win_x_return

win_y_return Return the pointer coordinates relative to the specified win-
dow.

Description

The XQueryPointer function returns the root window the pointer is logically
on and the pointer coordinates relative to the root window’s origin. If
XQueryPointer returns False, the pointer is not on the same screen as the
specified window, and XQueryPointer returns None to child_return and zero
to win_x_return and win_y_return. If XQueryPointer returns True, the
pointer coordinates returned to win_x_return and win_y_return are relative to
the origin of the specified window. In this case, XQueryPointer returns the
child that contains the pointer, if any, or else None to child_return.

X Version 11 (Release 5) 6 January 1993 327

XQueryPointer(XS)

XQueryPointer returns the current logical state of the keyboard buttons and
the modifier keys in mask_return. It sets mask_return to the bitwise inclusive
OR of one or more of the button or modifier key bitmasks to match the
current state of the mouse buttons and the modifier keys.

XQueryPointer can generate a “BadWindow” error.

Diagnostics

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XGetWindowAttributes(XS), XQueryTree(XS)
Xlib - C Language X Interface

328 X Version 11 (Release 5) 6 January 1993

XQueryTree(XS)

XQueryTree

query window tree information

Syntax

Status XQueryTree(display, w, root_return, parent_return, children_return,
nchildren_return)
Display *display;
Window w;
Window *root_return;
Window *parent_return;
Window **children_return;
unsigned int *nchildren_return;

Arguments

children_return Returns the list of children.
display Specifies the connection to the X server.

nchildren_return
Returns the number of children.

parent_return Returns the parent window.
root_return Returns the root window.

w Specifies the window whose list of children, root, parent, and
number of children you want to obtain.

Description

The XQueryTree function returns the root ID, the parent window ID, a pointer
to the list of children windows, and the number of children in the list for the
specified window. The children are listed in current stacking order, from bot-
tommost (first) to topmost (last). XQueryTree returns zero if it fails and
nonzero if it succeeds. To free this list when it is no longer needed, use XFree.

Known limitations

This really should return a screen *, not a root window ID.

See also

XFree(XS), XGetWindowAttributes(XS), XQueryPointer(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 329

XRaiseWindow(XS)

XRaiseWindow

change window stacking order

Syntax
XRaiseWindow(display, w)
Display *display;
Window w;
XLowerWindow(display, w)
Display *display;
Window w;
XCirculateSubwindows(display, w, direction)
Display *display;
Window w;
int direction;
XCirculateSubwindowsUp(display, w)
Display *display;
Window w;
XCirculateSubwindowsDown (display, w)
Display *display;
Window w;
XRestackWindows (display, windows, nwindows);
Display *display;
Window windows(];
int nwindows;
Arguments
direction Specifies the direction (up or down) that you want to circulate
the window. You can pass RaiseLowest or LowerHighest.
display Specifies the connection to the X server.
nwindows Specifies the number of windows to be restacked.
w Specifies the window.
windows Specifies an array containing the windows to be restacked.
330 X Version 11 (Release 5) 6 January 1993

XRaiseWindow(XS)

Description

The XRaiseWindow function raises the specified window to the top of the
stack so that no sibling window obscures it. If the windows are regarded as
overlapping sheets of paper stacked on a desk, then raising a window is
analogous to moving the sheet to the top of the stack but leaving its x and y
location on the desk constant. Raising a mapped window may generate
Expose events for the window and any mapped subwindows that were form-
erly obscured.

If the override-redirect attribute of the window is False and some other client
has selected SubstructureRedirectMask on the parent, the X server generates
a ConfigureRequest event, and no processing is performed. Otherwise, the
window is raised.

XRaiseWindow can generate a “BadWindow” error.

The XLowerWindow function lowers the specified window to the bottom of
the stack so that it does not obscure any sibling windows. If the windows are
regarded as overlapping sheets of paper stacked on a desk, then lowering a
window is analogous to moving the sheet to the bottom of the stack but leav-
ing its x and y location on the desk constant. Lowering a mapped window
will generate Expose events on any windows it formerly obscured.

If the override-redirect attribute of the window is False and some other client
has selected SubstructureRedirectMask on the parent, the X server generates
a ConfigureRequest event, and no processing is performed. Otherwise, the
window is lowered to the bottom of the stack.

XLowerWindow can generate a “BadWindow” error.

The XCirculateSubwindows function circulates children of the specified win-
dow in the specified direction. If you specify RaiseLowest, XCircula-
teSubwindows raises the lowest mapped child (if any) that is occluded by
another child to the top of the stack. If you specify LowerHighest, XCircula-
teSubwindows lowers the highest mapped child (if any) that occludes
another child to the bottom of the stack. Exposure processing is then per-
formed on formerly obscured windows. If some other client has selected Sub-
structureRedirectMask on the window, the X server generates a CirculateRe-
quest event, and no further processing is performed. If a child is actually res-
tacked, the X server generates a CirculateNotify event.

XCirculateSubwindows can generate “BadValue” and “BadWindow” errors.

The XCirculateSubwindowsUp function raises the lowest mapped child of
the specified window that is partially or completely occluded by another
child. Completely unobscured children are not affected. This is a conveni-
ence function equivalent to XCirculateSubwindows with RaiseLowest speci-
fied.

X Version 11 (Release 5) 6 January 1993 331

XRaiseWindow(XS)

XCirculateSubwindowsUp can generate a “BadWindow” error.

The XCirculateSubwindowsDown function lowers the highest mapped child
of the specified window that partially or completely occludes another child.
Completely unobscured children are not affected. This is a convenience func-
tion equivalent to XCirculateSubwindows with LowerHighest specified.

XCirculateSubwindowsDown can generate a “BadWindow” error.

The XRestackWindows function restacks the windows in the order specified,
from top to bottom. The stacking order of the first window in the windows
array is unaffected, but the other windows in the array are stacked under-
neath the first window, in the order of the array. The stacking order of the
other windows is not affected. For each window in the window array that is
not a child of the specified window, a “BadMatch” error results.

If the override-redirect attribute of a window is False and some other client
has selected SubstructureRedirectMask on the parent, the X server generates
ConfigureRequest events for each window whose override-redirect flag is
not set, and no further processing is performed. Otherwise, the windows will
be restacked in top to bottom order.

XRestackWindows can generate “BadWindow” error.

Diagnostics

See also

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined
Window.

332

XChangeWindowAttributes(XS), XConfigureWindow(XS), XCre-
ateWindow(XS), XDestroyWindow(XS), XMapWindow(XS),
XUnmapWindow(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XReadBitmapFile(XS)

XReadBitmapFile

manipulate bitmaps

Syntax

int XReadBitmapFile(display, d, filename, width_return, height_return,
bitmap_return, x_hot_return, y_hot_return)
Display *display;
Drawable d;
char *filename;
unsigned int *width_return, *height_return;
Pixmap *bitmap_return;
int *x_hot_return, *y_hot_return;

int XWriteBitmapFile(display, filename, bitmap, width, height, x_hot, y_hot)
Display *display;
char *filename;
Pixmap bitmap;
unsigned int width, height;
int x_hot, y_hot;

Pixmap XCreatePixmapFromBitmapData(display, d, data, width, height, fg, bg,
depth)
Display *display;
Drawable d;
char *data;
unsigned int width, height;
unsigned long fg, bg;
unsigned int depth;

Pixmap XCreateBitmapFromData(display, d, data, width, height)
Display *display;
Drawable d;
char *data;
unsigned int width, height;

Arguments

bitmap Specifies the bitmap.

bitmap_return Returns the bitmap that is created.

d Specifies the drawable that indicates the screen.
data Specifies the data in bitmap format.
data Specifies the location of the bitmap data.

X Version 11 (Release 5) 6 January 1993 333

XReadBitmapFile(XS)

depth Specifies the depth of the pixmap.

display Specifies the connection to the X server.

g _ _

bg Specify the foreground and background pixel values to use.

filename Specifies the file name to use. The format of the file name is
operating-system dependent.

width

height Specify the width and height.

width_return
height_return Return the width and height values of the read in bitmap file.

x_hot
y_hot Specify where to place the hotspot coordinates (or -1,-1 if
none are present) in the file.

x_hot_return
y_hot_return Return the hotspot coordinates.

Description

334

The XReadBitmapFile function reads in a file containing a bitmap. The file is
parsed in the encoding of the current locale. The ability to read other than the
standard format is implementation dependent. If the file cannot be opened,
XReadBitmapFile returns BitmapOpenFailed. If the file can be opened but
does not contain valid bitmap data, it returns BitmapFileInvalid. If insuffi-
cient working storage is allocated, it returns BitmapNoMemory. If the file is
readable and valid, it returns BitmapSuccess.

XReadBitmapFile returns the bitmap’s heightand width, as read from the file,
to width_return and height_return. It then creates a pixmap of the appropri-
ate size, reads the bitmap data from the file into the pixmap, and assigns the
pixmap to the caller’s variable bitmap. The caller must free the bitmap using
XFreePixmap when finished. If name_x_hot and name_y_hot exist, XRead-
BitmapFile returns them to x_hot_return and y_hot_return; otherwise, it
returns -1,-1.

XReadBitmapFile can generate “BadAlloc” and “BadDrawable” errors.

The XWriteBitmapFile function writes a bitmap out to a file in the X version
11 format. The file is written in the encoding of the current locale. If the file
cannot be opened for writing, it returns BitmapOpenFailed. If insufficient
memory is allocated, XWriteBitmapFile returns BitmapNoMemory; other-
wise, on no error, it returns BitmapSuccess. If x_hot and y_hot are not -1, -1,
XWriteBitmapFile writes them out as the hotspot coordinates for the bitmap.

X Version 11 (Release 5) 6 January 1993

XReadBitmapFile(XS)

XWriteBitmapFile can generate “Bad Drawable” and “BadMatch” errors.

The XCreatePixmapFromBitmapData function creates a pixmap of the given
depth and then does a bitmap-format XPutImage of the data into it. The
depth must be supported by the screen of the specified drawable, or a “Bad-
Match” error results.

XCreatePixmapFromBitmapData can generate “BadAlloc” and “BadMatch”
errors.

The XCreateBitmapFromData function allows you to include in your C pro-
gram (using #include) a bitmap file that was written out by XWriteBitmapFile
(X version 11 format only) without reading in the bitmap file. The following
example creates a gray bitmap:

#include *"gray.bitmap*
Pixmap bitmap;

bitmap = XCreateBitmapFromData(display, window, gray_bits, gray_width,
gray_height);

If insufficient working storage was allocated, XCreateBitmapFromData
returns None. It is your responsibility to free the bitmap using XFreePixmap
when finished.

XCreateBitmapFromData can generatea “BadAlloc” error.

Diagnostics

See also

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadDrawable” A value for a Drawable argument does not name a defined
Window or Pixmap.

“BadMatch” An InputOnly window is used as a Drawable.

XCreatePixmap(XS), XPutImage(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 335

XRecolorCursor(XS)

XRecolorCursor

manipulate cursors

Syntax

XRecolorCursor(display, cursor, foreground_color, background_color)
Display *display;
Cursor cursor;
XColor *foreground_color, *background_color;

XFreeCursor (display, cursor)
Display *display;
Cursor cursor;

Status XQueryBestCursor(display, d, width, height, width_return,

height_return)

Display *display;

Drawable d;

unsigned int width, height;

unsigned int *width_return, *height_return;

Arguments

background_color

cursor
d
display

Specifies the RGB values for the background of the source.
Specifies the cursor.
Specifies the drawable, which indicates the screen.

Specifies the connection to the X server.

foreground_color

width
height

width_return
height_return

336

Specifies the RGB values for the foreground of the source.

Specify the width and height of the cursor that you want the
size information for.

Return the best width and height that is closest to the speci-
fied width and height.

X Version 11 (Release 5) 6 January 1993

XRecolorCursor(XS)

Description

The XRecolorCursor function changes the color of the specified cursor, and if
the cursor is being displayed on a screen, the change is visible immediately.
Note that the pixel members of the XColor structures are ignored, only the
RGB values are used.

XRecolorCursor can generate a “BadCursor” error.

The XFreeCursor function deletes the association between the cursor resource
ID and the specified cursor. The cursor storage is freed when no other
resource references it. The specified cursor ID should not be referred to again.

XFreeCursor can generate a “BadCursor” error.

Some displays allow larger cursors than other displays. The XQueryBestCur-
sor function provides a way to find out what size cursors are actually possible
on the display. It returns the largest size that can be displayed. Applications
should be prepared to use smaller cursors on displays that cannot support
large ones.

XQueryBestCursor can generate a “BadDrawable” error.

Diagnostics

See also

“BadCursor’ A value for a Cursor argument does not name a defined Cur-
sor.

“BadDrawable” A value for a Drawable argument does not name a defined
Window or Pixmap.

XCreateColormap(XS), XCreateFontCursor(XS), XDefineCursor(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 337

XReparentEvent(XS)

XReparentEvent

ReparentNotify event structure

Structures

See also

The structure for ReparentNotify events contains:
typedef struct {

int type; /* ReparentNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

Window parent;

int x, y;

Bool override_redirect;
} XReparentEvent;

When you receive this event, the structure members are setas follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The event member is set either to the reparented window or to the old or the
new parent, depending on whether StructureNotify or SubstructureNotify
was selected. The window member is set to the window that was reparented.
The parent member is set to the new parent window. The x and y members
are set to the reparented window’s coordinates relative to the new parent
window’s origin and define the upper-left outer corner of the reparented win-
dow. The override_redirect member is set to the override-redirect attribute
of the window specified by the window member. Window manager clients
normally should ignore this window if the override_redirect member is
True.

338

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),

X Version 11 (Release 5) 6 January 1993

XReparentEvent(XS)

XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XResizeRequestEvent(XS), XSelectionClearEvent(XS),
XSelectionEvent(XS), XSelectionRequestEvent(XS), XUnmapEvent(XS),
XVisibilityEvent(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 339

XReparentWindow(XS)

XReparentWindow

reparent windows

Syntax

XReparentWindow(display, w, parent, x, y)
Display *display;
Window w;
Window parent;
int x, y;

Arguments

display Specifies the connection to the X server.

parent Specifies the parent window.

w Specifies the window.
x
y Specify the x and y coordinates of the position in the new parent
window.
Description

340

If the specified window is mapped, XReparentWindow automatically per-
forms an UnmapWindow request on it, removes it from its current position in
the hierarchy, and inserts it as the child of the specified parent. The window
is placed in the stacking order on top with respect to sibling windows.

After reparenting the specified window, XReparentWindow causes the X
server to generate a ReparentNotify event. The override_redirect member
returned in this event is set to the window’s corresponding attribute. Window
manager clients usually should ignore this window if this member is set to
True. Finally, if the specified window was originally mapped, the X server
automatically performs a MapWindow request on it.

The X server performs normal exposure processing on formerly obscured
windows. The X server might not generate Expose events for regions from
the initial UnmapWindow request that are immediately obscured by the final
MapWindow request. A “BadMatch” error results if:

e The new parent window is not on the same screen as the old parent win-
dow.

e Thenew parentwindow is the specified window or an inferior of the speci-
fied window.

X Version 11 (Release 5) 6 January 1993

XReparentWindow(XS)

¢ The new parent is InputOnly and the window is not.

e The specified window has a ParentRelative background, and the new
parent window is not the same depth as the specified window.

XReparentWindow can generate “BadMatch” and “BadWindow” errors.

Diagnostics

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XChangeSaveSet(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 341

XResizeRequestEvent(XS)

XResizeRequestEvent

ResizeRequest event structure

Structures

See also

The structure for ResizeRequest events contains:
typedef struct {

int type; /* ResizeRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
int width, height;
} XResizeRequestEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The window member is set to the window whose size another client attempted
to change. The width and height members are set to the inside size of the
window, excluding the border.

342

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XSelectionClearEvent(XS),
XSelectionEvent(XS), XSelectionRequestEvent(XS), XUnmapEvent(XS),
XVisibilityEvent(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XResourceManagerString(XS)

XResourceManagerString

obtain server resource properties

Syntax

char *XResourceManagerString(display)
Display *display;

char *XScreenResourceString(screen)
Screen *screen;

Arguments

display Specifies the connection to the X server.

screen Specifies the screen.

Description

See also

The XResourceManagerString returns the RESOURCE_MANAGER property
from the server’s root window of screen zero, which was returned when the
connection was opened using XOpenDisplay. The property is converted
from type STRING to the current locale. The conversion is identical to that
produced by XmbTextPropertyToTextList for a singleton STRING property.
The returned string is owned by Xlib, and should not be freed by the client.
Note that the property value must be in a format that is acceptable to
XrmGetStringDatabase. If no property exists, NULL is returned.

The XStringResourceString returns the SCREEN_RESOURCES property from
the root window of the specified screen. The property is converted from type
STRING to the current locale. The conversion is identical to that produced by
XmbTextPropertyToTextList for a singleton STRING property. Note that the
property value must be in a format that is acceptable to XrmGetStringData-
base. If no property exists, NULL is returned. The caller is responsible for
freeing the returned string, using XFree.

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 343

XrinEnumerateDatabase(XS)

XrmEnumerateDatabase
enumerate resource database entries
Syntax
#define XrmEnumAllLevels 0
#define XrmEnumOneLevel 1
Bool XrmEnumerateDatabase(database, name_prefix, class_prefix, mode, proc,
arg)
XrmDatabase database;
XrmNameList name_prefix;
XrmClassList class_prefix;
int mode;
Bool (*proc)();
XPointer arg;
Arguments
database Specifies the resource database.
name_prefix Specifies the resource name prefix.
class_prefix Specifies the resource class prefix.
mode Specifies the number of levels to enumerate.
proc Specifies the procedure that is to be called for each matching
entry.
arg Specifies the user-supplied argument that will be passed to the
procedure.
Description
The XrmEnumerateDatabase function calls the specified procedure for each
resource in the database that would match some completion of the given
name/class resource prefix. The order in which resources are found is
implementation-dependent. If mode is XrmEnumOneLevel, then a resource
must match the given name/class prefix with just a single name and class
appended. If mode is XrmEnumAllLevels, the resource must match the given
name/class prefix with one or more names and classes appended. If the pro-
cedure returns True, the enumeration terminates and the function returns
True. If the procedure always returns False, all matching resources are
enumerated and the function returns False.
344 X Version 11 (Release 5) 6 January 1993

XrinEnumerateDatabase(XS)

The procedure is called with the following arguments:

(*proc) (database, bindings, quarks, type, value, arg)
XrmDatabase *database;
XrmBindingList bindings;
XrmQuarkList quarks;
XrmRepresentation *type;
XrmValue *value;
XPointer closure;

The bindings and quarks lists are terminated by NULLQUARK. Note that
pointers to the database and type are passed, but these values should not be
modified.

See also

XrmGetResource(XS), XrmlInitialize(XS), XrmPutResource(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 345

XrinGetFileDatabase(XS)

XrmGetFileDatabase

retrieve and store resource databases

Syntax

XrmDatabase XrmGetFileDatabase(filename)
char *filename;

void XrmPutFileDatabase(database, stored_db)
XrmDatabase database;
char *stored_db;

XrmDatabase XrmGetStringDatabase(data)
char *data;

char *XrmLocaleOfDatabase(database)
XrmDatabase database;

XrmDatabase XrmGetDatabase(display)
Display *display;

void XrmSetDatabase(display, database)
Display *display;
XrmDatabase database;

void XrmDestroyDatabase(database)
XrmDatabase database;

Arguments

filename Specifies the resource database file name.
database Specifies the database that is to be used.
stored_db Specifies the file name for the stored database.
data Specifies the database contents using a string.
database Specifies the resource database.

display Specifies the connection to the X server.

Description

The XrmGetFileDatabase function opens the specified file, creates a new
resource database, and loads it with the specifications read in from the speci-
fied file. The specified file must contain a sequence of entries in valid
ResourceLine format (see section 15.1 of Xlib - C Language X Interface). The file
is parsed in the current locale, and the database is created in the current
locale. If it cannot open the specified file, XrmGetFileDatabase returns NULL.

346 X Version 11 (Release 5) 6 January 1993

XrmGetFileDatabase(XS)

The XrmPutFileDatabase function stores a copy of the specified database in
the specified file. Text is written to the file as a sequence of entries in valid
ResourceLine format (see section 15.1 of Xlib - C Language X Interface). The file
is written in the locale of the database. Entries containing resource names that
are not in the Host Portable Character Encoding, or containing values that are
not in the encoding of the database locale, are written in an implementation-
dependent manner. The order in which entries are written is implementation
dependent. Entries with representation types other than “String” are ignored.

The XrmGetStringDatabase function creates a new database and stores the
resources specified in the specified null-terminated string. XrmGetStringDa-
tabase is similar to XrmGetFileDatabase except that it reads the information
out of a string instead of out of a file. The string must contain a sequence of
entries in valid ResourceLine format (see section 15.1 of XIib - C Language X
Interface). The string is parsed in the current locale, and the database is creat-
ed in the current locale.

If database is NULL, XrmDestroyDatabase returns immediately.

The XrmLocaleOfDatabase function returns the name of the locale bound to
the specified database, as a null-terminated string. The returned locale name
string is owned by Xlib and should not be modified or freed by the client. Xlib
is not permitted to free the string until the database is destroyed. Until the
string is freed, it will not be modified by Xlib.

The XrmGetDatabase function returns the database associated with the speci-
fied display. Itreturns NULL if a database has not yet been set.

The XrmSetDatabase function associates the specified resource database (or
NULL) with the specified display. The database previously associated with
thedisplay (if any) is not destroyed. A client or toolkit may find this function
convenient for retaining a database once it is constructed.

File syntax

The syntax of a resource file is a sequence of resource lines terminated by
newline characters or end of file. The syntax of an individual resource line is:

ResourceLine = Comment [IncludeFile | ResourceSpec | <empty line>
Comment = "I*" {<any character except null or newline>)
IncludeFile = "#" WhiteSpace ®"include® WhiteSpace FileName WhiteSpace
FileName = «valid filename for operating system>

ResourceSpec = WhiteSpace ResourceName WhiteSpace ":" WhiteSpace Value
ResourceName = [Binding] (Component Binding] ComponentName

Binding = e e

WhiteSpace = {<space> | <horizontal tab>])

Component = *?*" | ComponentName

ComponentName = NameChar {NameChar)

Namechar = nal_lzl I IAI_.IZI I lo._lgl ' l-l l “_n

Value = {<any character except null or unescaped newline>}

X Version 11 (Release 5) 6 January 1993 347

XrmGetFileDatabase(XS)

See also

Elements separated by vertical bar (1) are alternatives. Curly braces ({..})
indicate zero or more repetitions of the enclosed elements. Square brackets
([...) indicate that the enclosed element is optional. Quotes ("...") are used
around literal characters.

IncludeFile lines are interpreted by replacing the line with the contents of the
specified file. The word “include” must be in lowercase. The filename is
interpreted relative to the directory of the file in which the line occurs (for
example, if the filename contains no directory or contains a relative directory
specification).

If a ResourceName contains a contiguous sequence of two or more Binding
characters, the sequence will be replaced with single “.” character if the
sequence contains only “.” characters, otherwise the sequence will be
replaced with a single “*” character.

A resource database never contains more than one entry for a given Resour-
ceName. If a resource file contains multiple lines with the same Resour-
ceName, the last line in the file is used.

Any whitespace character before or after the name or colon in a ResourceSpec
are ignored. To allow a Value to begin with whitespace, the two-character
sequence “\(Space)” (backslash followed by space) is recognized and replaced
by a space character, and the two-character sequence “\(Tab)” (backslash fol-
lowed by horizontal tab) is recognized and replaced by a horizontal tab char-
acter. To allow a Value to contain embedded newline characters, the two-
character sequence “\n” is recognized and replaced by a newline character.
To allow a Value to be broken across multiple lines in a text file, the two-
character sequence “\(newline)” (backslash followed by newline) is recognized
and removed from the value. To allow a Value to contain arbitrary character
codes, the four-character sequence “\nnn”, where each n is a digit character in
the range of “0”-“7”, is recognized and replaced with a single byte that con-
tains the octal value specified by the sequence. Finally, the two-character
sequence “\\"” is recognized and replaced with a single backslash.

348

XrmGetResource(XS), XrmlInitialize(XS), XrmPutResource(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XrmGetResource(XS)

XrmGetResource

retrieve database resources and search lists

Syntax

Bool XrmGetResource(database, str_name, str_class, str_type_return,
value_return)
XrmDatabase database;
char *str_name;
char *str_class;
char **str_type_return;
XrmValue *value_return;

Bool XrmQGetResource(database, quark_name, quark_class, quark_type_return,
value_return)
XrmDatabase database;
XrmNameList quark_name;
XrmClassList quark_class;
XrmRepresentation *quark_type_return;
XrmValue *value_return;

typedef XrmHashTable *XrmSearchList;

Bool XrmQGetSearchList(database, names, classes, list_return, list_length)
XrmDatabase database;
XrmNameList names;
XrmClassList classes;
XrmSearchList list_return;
int list_length;

Bool XrmQGetSearchResource(list, name, class, type_return, value_return)
XrmSearchList list;
XrmName name;
XrmClass class;
XrmRepresentation *type_return;
XrmValue *value_return;

Arguments

class Specifies the resource class.

classes Specifies a list of resource classes.

database Specifies the database that is to be used.

list Specifies the search list returned by XrmQGetSearchList.

list_length Specifies the number of entries (not the byte size) allocated
for list_return.

X Version 11 (Release 5) 6 January 1993 349

XrmGetResource(XS)

list_return Returns a search list for further use.
name Specifies the resource name.
names Specifies a list of resource names.

quark_class Specifies the fully qualified class of the value being retrieved
(as a quark). ‘

quark_name Specifies the fully qualified name of the value being
retrieved (as a quark).

quark_type_return
Returns the representation type of the destination (as a

quark).

str_class Specifies the fully qualified class of the value being retrieved
(as a string).

str_name Specifies the fully qualified name of the value being

retrieved (as a string).

str_type_return Returns the representation type of the destination (as a
string).

type_return Returns data representation type.

value_return Returns the value in the database.

Description

350

The XrmGetResource and XrmQGetResource functions retrieve a resource
from the specified database. Both take a fully qualified name/class pair, a
destination resource representation, and the address of a value (size/address
pair). The value and returned type point into database memory; therefore,
you must not modify the data.

The database only frees or overwrites entries on XrmPutResource, XrmQPu-
tResource, or XrmMergeDatabases. A client that is not storing new values
into the database or is not merging the database should be safe using the
address passed back at any time until it exits. If a resource was found, both
XrmGetResource and XrmQGetResource return True; otherwise, they return
False.

The XrmQGetSearchList function takes a list of names and classes and
returns a list of database levels where a match might occur. The returned list
is in best-to-worst order and uses the same algorithm as XrmGetResource for
determining precedence. If list_return was large enough for the search list,
XrmQGetSearchList returns True; otherwise, it returns False.

The size of the search list that the caller must allocate is dependent upon the
number of levels and wildcards in the resource specifiers that are stored in the
database. The worst case length is 3", where n is the number of name or class
components in names or classes.

X Version 11 (Release 5) 6 January 1993

XrmGetResource(XS)

When using XrmQGetSearchList followed by multiple probes for resources
with a common name and class prefix, only the common prefix should be
specified in thename and class list to XrmQGetSearchList.

The XrmQGetSearchResource function searches the specified database levels
for the resource that is fully identified by the specified name and class. The
search stops with the first match. XrmQGetSearchResource returns True if
the resource was found; otherwise, it returns False.

A call to XrmQGetSearchList with a name and class list containing all but the
last component of a resource name followed by a call to XrmQGetSear-
chResource with the last component name and class returns the same data-
base entry as XrmGetResource and XrmQGetResource with the fully quali-
fiedname and class.

Matching rules

The algorithm for determining which resource database entry matches a given
query is the heart of the resource manager. All queries must fully specify the
name and class of the desired resource (use of “*“ and “?” are not permitted).
The library supports up to 100 components in a full name or class. Resources
are stored in the database with only partially specified names and classes,
using pattern matching constructs. An asterisk (*) is a loose binding and is
used to represent any number of intervening components, including none. A
period (.) is a tight binding and is used to separate immediately adjacent com-
ponents. A question mark (?) is used to match any single component name or
class. A database entry cannot end in a loose binding; the final component
(which cannot be “?”) must be specified. The lookup algorithm searches the
database for the entry that most closely matches (is most specific for) the full
name and class being queried. When more than one database entry matches
the full name and class, precedence rules are used to select just one.

The full name and class are scanned from left to right (from highest level in
the hierarchy to lowest), one component at a time. At each level, the corre-
sponding component and/or binding of each matching entry is determined,
and these matching components and bindings are compared according to pre-
cedence rules. Each of the rules is applied at each level, before moving to the
next level, until a rule selects a single entry over all others. The rules (in order
of precedence) are:

1. An entry that contains a matching component (whether name, class, or
“?7") takes precedence over entries that elide the level (that is, entries that
match the level in a loose binding).

2. Anentry with a matching name takes precedence over both entries with a
matching class and entries that match using “?”. An entry with a match-
ing class takes precedence over entries that match using “ ?”.

3. An entry preceded by a tight binding takes precedence over entries pre-
ceded by a loose binding.

X Version 11 (Release 5) 6 January 1993 351

XrmGetResource(XS)

See also

XrmInitialize(XS), XrmMergeDatabases(XS), XrmPutResource(XS),
XrmUniqueQuark(XS)
Xlib - C Language X Interface

352 X Version 11 (Release 5) 6 January 1993

Xrminitialize(XS)

Xrminitialize

initialize the Resource Manager, Resource Manager structures, and parse the command line

Syntax

void XrmlInitialize();

void XrmParseCommand(database, table, table_count, name, argc_in_out,
argv_in_out)
XrmDatabase *database;
XrmOpt ionDescList table;
int table_count;
char *name;
int *argc_in_out;
char **argv_in_out;

Arguments

argc_in_out Specifies the number of arguments and returns the number
of remaining arguments.

argu_in_out Specifies the command line arguments and returns the
remaining arguments.

database Specifies the resource database.
name Specifies the application name.
table Specifies the table of command line arguments to be parsed.

table_count Specifies the number of entries in the table.

Description

The XrmlInitialize function initialize the resource manager. It must be called
before any other Xrm functions are used.

The XnnParseCommand function parses an (argc, argv) pair according to the
specified option table, loads recognized options into the specified database
with type “String,” and modifies the (argc, argv) pair to remove all recognized
options. If database contains NULL, XrmParseCommand creates a new data-
base and returns a pointer to it. Otherwise, entries are added to the database
specified. If a database is created, it is created in the current locale.

The specified table is used to parse the command line. Recognized options in

the table are removed from argv, and entries are added to the specified
resource database. The table entries contain information on the option string,

X Version 11 (Release 5) 6 January 1993 353

Xrminitialize(XS)

the option name, the style of option, and a value to provide if the option kind
is XrmoptionNoArg. The option names are compared byte-for-byte to argu-
ments in argv, independent of any locale. The resource values given in the
table are stored in the resource database without modification. All resource
database entries are created using a “String” representation type. The argc
argument specifies the number of arguments in argo and is set on return to
the remaining number of arguments that were not parsed. The name argu-
ment should be the name of your application for use in building the database
entry. The name argument is prefixed to the resourceName in the option
table before storing a database entry. No separating (binding) character is
inserted, so the table must contain either a period (.) or an asterisk (*) as the
first character in each resourceName entry. To specify a more completely
qualified resource name, the resourceName entry can contain multiple com-
ponents. If the name argument and the resourceNames are not in the Host
Portable Character Encoding the result is implementation dependent.

Structures

354

The XrmValue, XrmOptionKind, and XrmOptionDescRec structures contain:

typedef struct {
unsigned int size;
XPointer addr;

) XrmValue, *XrmValuePtr;

typedef enum {

XrmoptionNoArg, /* Value is specified in
XrmOpt ionDescRec.value */
XrmoptionlsArg, /* Value is the option string itself */
XrmoptionStickyArg, /* Value is characters immediately following
option */
XrmoptionSepArg, /* Value is next argument in argv */
XrmoptionResArg, /* Resource and value in next argument in argv */
XrmoptionSkipArg, /* Ignore this option and the next argument in
argv */
XrmoptionSkipLine, /* Ignore this option and the rest of argv */
XrmoptionSkipNArgs /* Ignore this option and the next
XrmOptionDescRec.value arguments in argv */
} XrmOptionKind;
typedef struct {
char *option; /* Option specification string in argv */
char *specifier; /* Binding and resource name (sans application
name) */
XrmOptionKind argKind; /* Which style of option it is */
XPointer value; /* Value to provide if XrmoptionNoArg or

Xmopt ionSkipNArgs */
} XrmOpt ionDescRec, *XrmOptionDescList;

X Version 11 (Release 5) 6 January 1993

XrmInitialize(XS)

See also

XrmGetResource(XS), XrmMergeDatabases(XS), XrmPutResource(XS),
XrmUniqueQuark(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 355

XrmMergeDatabases(XS)

XrmMergeDatabases

merge resource databases

Syntax

void XrmMergeDatabases(source_db, target_db)
XrmDatabase source_db, *target_db;

void XrmCombineDatabase(source_db, target_db, override)
XrmDatabase source_db, *target_db;
Bool override;

void XrmCombineFileDatabase(filename, target_db, override)
char *filename;
XrmDatabase *target_db;
Bool override;

Arguments

source_db Specifies the resource database that is to be merged into the tar-
get database.

target_db Specifies the resource database into which the source database is
to be merged.

filename Specifies the resource database file name.

Description

356

The XrmMergeDatabases function merges the contents of one database into
another. If the same specifier is used for an entry in both databases, the entry
in the source_db will replace the entry in the target_db (that is, it overrides
target_db). If target_db contains NULL, XrmMergeDatabases simply stores
source_db in it. Otherwise, source_db is destroyed by the merge, but the data-
base pointed to by target_db is not destroyed. The database entries are
merged without changing values or types, regardless of the locales of the
databases. Thelocale of the target database is not modified.

The XrmCombineDatabase function merges the contents of one database into
another. If the same specifier is used for an entry in both databases, the entry
in the source_db will replace the entry in the target_db if override is True; oth-
erwise, the entry in source_db is discarded. If target_db contains NULL,
XrmCombineDatabase simply stores source_db in it. Otherwise, source_db is
destroyed by the merge, but the database pointed to by target_db is not de-
stroyed. The database entries are merged without changing values or types,
regardless of the locales of the databases. The locale of the target database is
not modified.

X Version 11 (Release 5) 6 January 1993

XrmMergeDatabases(XS)

The XrmCombineFileDatabase function merges the contents of a resource
file into a database. If the same specifier is used for an entry in both the file
and the database, the entry in the file will replace the entry in the database if
override is True; otherwise, the entry in file is discarded. The file is parsed in
the current locale. If the file cannot be read a zero status is returned; other-
wise a nonzero status is returned. If target_db contains NULL, XrmCombine-
FileDatabase creates and returns a new database to it. Otherwise, the data-
base pointed to by target_db is not destroyed by the merge. The database
entries are merged without changing values or types, regardless of the locale
of the database. The locale of the target database is not modified.

See also

XrmGetResource(XS), XrmInitialize(XS), XrmPutResource(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 357

XrmPutResource(XS)

XrmPutResource

store database resources

Syntax

void XrmPutResource(database, specifier, type, value)
XrmDatabase *database;
char *specifier;
char *type;
XrmValue *value;

void XrmQPutResource(database, bindings, quarks, type, value)
XrmDatabase *database;
XrmBindingList bindings;
XrmQuarkList quarks;
XrmRepresentation type;
XrmValue *value;

void XrmPutStringResource(database, specifier, value)
XrmDatabase *database;
char *specifier;
char *value;

void XrmQPutStringResource(database, bindings, quarks, value)
XrmDatabase *database;
XrmBindingList bindings;
XrmQuarkList quarks;
char *value;

void XrmPutLineResource(database, line)

XrmDatabase *database;
char *line; -

Arguments

bindings Specifies a list of bindings.
database Specifies the resource database.
line Specifies the resource name and value pair as a single string.

quarks Specifies the complete or partial name or the class list of the
resource.

specifier Specifies a complete or partial specification of the resource.

358 X Version 11 (Release 5) 6 January 1993

XrmPutResource(XS)

type Specifies the type of the resource.
value Specifies the value of the resource, which is specified as a string.
Description

See also

If database contains NULL, XrmPutResource creates a new database and
returns a pointer to it. XrmPutResource is a convenience function that calls
XrmStringToBindingQuarkList followed by:

XrmQPutResource (database, bindings, quarks, XrmStringToQuark(type), value)

If the specifier and type are not in the Host Portable Character Encoding the
result is implementation dependent. The value is stored in the database
without modification.

If database contains NULL, XrmQPutResource creates a new database and
returns a pointer to it. If a resource entry with the identical bindings and
quarks already exists in the database, the previous value is replaced by the
new specified value. The value is stored in the database without modifica-
tion.

If database contains NULL, XrmPutStringResource creates a new database
and returns a pointer to it. XrmPutStringResource adds a resource with the
specified value to the specified database. XrmPutStringResource is a con-
venience function that first calls XrmStringToBindingQuarkList on the
specifier and then calls XrmQPutResource, using a “String” representation
type. If the specifier is not in the Host Portable Character Encoding the result
is implementation dependent. The value is stored in the database without
modification.

If database contains NULL, XrmQPutStringResource creates a new database
and returns a pointer to it. XrmQPutStringResource is a convenience routine
that constructs an XrmValue for the value string (by calling strlen to compute
the size) and then calls XrmQPutResource, using a “String” representation
type. The value is stored in the database without modification.

If database contains NULL, XrmPutLineResource creates a new database and
returns a pointer to it. XrmPutLineResource adds a single resource entry to
the specified database. The line must be in valid ResourceLine format (see
section 15.1 of XIib - C Language X Interface). The string is parsed in the locale
of the database. If the ResourceName is not in the Host Portable Character
Encoding the result is implementation dependent. Note that comment lines
are not stored.

XrmGetResource(XS), XrmInitialize(XS), XrmMergeDatabases(XS),
XmUniqueQuark(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 359

XrmUniqueQuark(XS)

XrmUniqueQuark

manipulate resource quarks

Syntax

XrmQuark XrmUniqueQuark()

#define XrmStringToName(string) XrmStringToQuark(string)
#define XrmStringToClass(string) XrmStringToQuark(string)
#define XrmStringToRepresentation(string) XrmStringToQuark(string)

XrmQuark XrmStringToQuark(string)
char *string;

XrmQuark XrmPermStringToQuark(string)
char *string;

#define XrmStringToName(string) XrmStringToQuark(string)
#define XrmStringToClass(string) XrmStringToQuark(string)
#define XrmStringToRepresentation(string) XrmStringToQuark(string)

XrmQuark XrmStringToQuark(string)
char *string;

XrmQuark XrmPermStringToQuark(string)
char *string;

#define XrmNameToString(name) XrmQuarkToString(name)
#define XrmClassToString(class) XrmQuarkToString(class)
#define XrmRepresentationToString(type) XrmQuarkToString(type)

char *XrmQuarkToString(quark)
XrmQuark quark;

#define XrmStringToNameList (str, name) XrmStringToQuarkList((str), (name))
#define XrmStringToClassList(str,class) XrmStringToQuarkList((str), (class))

void XrmStringToQuarkList(string, quarks_return)
char *string;
XrmQuarkList quarks_return;

XrmStringToBindingQuarkList (string, bindings_return, quarks_return)
char *string;
XrmBindingList bindings_return;
XrmQuarkList quarks_return;

360 X Version 11 (Release 5) 6 January 1993

XrmUniqueQuark(XS)

Arguments

bindings_return Returns the binding list.
quark Specifies the quark for which the equivalent string is desired.
quarks_return Returns the list of quarks.

string Specifies the string for which a quark or quark list is to be
allocated.

Description

The XrmUniqueQuark function allocates a quark that is guaranteed not to
represent any string that is known to the resource manager.

These functions can be used to convert from string to quark representation. If
the string is not in the Host Portable Character Encoding the conversion is
implementation dependent. The string argument to XrmStringToQuark need
not be permanently allocated storage. XrmPermStringToQuark is just like
XrmStringToQuark, except that Xlib is permitted to assume the string argu-
ment is permanently allocated, and hence that it can be used as the value to be
returned by XrmQuarkToString.

This function can be used to convert from quark representation to string. The
string pointed to by the return value must not be modified or freed. The
returned string is byte-for-byte equal to the original string passed to one of the
string-to-quark routines. If no string exists for that quark, XrmQuarkToString
returns NULL. For any given quark, if XrmQuarkToString returns a non-
NULL value, all future calls will return the same value (identical address).

These functions can be used to convert from string to quark representation. If
the string is not in the Host Portable Character Encoding the conversion is
implementation dependent. The string argument to XrmStringToQuark need
not be permanently allocated storage. XrmPermStringToQuark is just like
XrmnStringToQuark, except that Xlib is permitted to assume the string argu-
ment is permanently allocated, and hence that it can be used as the value to be
returned by XrmQuarkToString.

The XrmStringToQuarkList function converts the null-terminated string
(generally a fully qualified name) to a list of quarks. Note that the string must
be in the valid ResourceName format (see section 15.1 of XIib - C Language X
Interface). If the string is not in the Host Portable Character Encoding the
conversion is implementation dependent.

X Version 11 (Release 5) 6 January 1993 361

XrmUniqueQuark(XS)

See also

A binding list is a list of type XrmBindingList and indicates if components of
name or class lists are bound tightly or loosely (that is, if wildcarding of inter-
mediate components is specified).

typedef enum {XrmBindTightly, XrmBindLoosely} XrmBinding, *XrmBindingList;

XrmBindTightly indicates that a period separates the components, and
XrmBindLoosely indicates that an asterisk separates the components.

The XrmStringToBindingQuarkList function converts the specified string to
a binding list and a quark list. If the string is not in the Host Portable Charac-
ter Encoding the conversion is implementation dependent. Component
names in the list are separated by a period or an asterisk character. If the
string does not start with period or asterisk, a period is assumed. For exam-
ple, “*a.b*c” becomes:

quarks a b o
bindings loose tight loose

362

XrmGetResource(XS), XrmlInitialize(XS), XrmMergeDatabases(XS),
XrmPutResource(XS)
XIib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XSaveContext(XS)

XSaveContext

associative look-up routines

Syntax

int XSaveContext (display, rid, context, data)
Display *display;
XID rid;
XContext context;
XPointer data;

int XFindContext (display, rid, context, data_return)
Display *display;
XID rid;
XContext context;
XPointer *data_return;

int XDeleteContext(display, rid, context)
Display *display;
XID rid;
XContext context;

XContext XUniqueContext ()

Arguments

context Specifies the context type to which the data belongs.

data Specifies the data to be associated with the window and type.
data_return Returns the data.

display Specifies the connection to the X server.

rid Specifies the resource ID with which the data is associated.

Description

If an entry with the specified resource ID and type already exists, XSaveCon-
text overrides it with the specified context. The XSaveContext function
returns a nonzero error code if an error has occurred and zero otherwise. Pos-
sible errors are XCNOMEM (out of memory).

Because it is a return value, the data is a pointer. The XFindContext function
returns a nonzero error code if an error has occurred and zero otherwise. Pos-
sible errors are XCNOENT (context-not-found).

X Version 11 (Release 5) 6 January 1993 363

XSaveContext(XS)

See also

The XDeleteContext function deletes the entry for the given resource ID and
type from the data structure. This function returns the same error codes that
XFindContext returns if called with the same arguments. XDeleteContext
does not free the data whose address was saved.

The XUniqueContext function creates a unique context type that may be used
in subsequent calls to XSaveContext.

364

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XSelectInput(XS)

XSelectinput

select input events

Syntax
XSelect Input (display, w, event_mask)
Display *display;
Window w;
long event_mask;
Arguments
display Specifies the connection to the X server.
event_mask Specifies theevent mask.
w Specifies the window whose events you are interested in.
Description

The XSelectInput function requests that the X server report the events associ-
ated with the specified event mask. Initially, X will not report any of these
events. Events are reported relative to a window. If a window is not
interested in a device event, it usually propagates to the closest ancestor that
is interested, unless the do_not_propagate mask prohibits it.

Setting the event-mask attribute of a window overrides any previous call for
the same window but not for other clients. Multiple clients can select for the
same events on the same window with the following restrictions:

e Multiple clients can select events on the same window because their event
masks are disjoint. When the X server generates an event, it reports it to all
interested clients.

¢ Only one client at a time can select CirculateRequest, ConfigureRequest,
or MapRequest events, which are associated with the event mask Sub-
structureRedirectMask.

¢ Only oneclient at a time can select a ResizeRequest event, which is associ-
ated with the event mask ResizeRedirectMask.

¢ Only one client at a time can select a ButtonPress event, which is associ-
ated with the event mask ButtonPressMask.

The server reports the event to all interested clients.

XSelectInput can generate a “BadWindow” error.

X Version 11 (Release 5) 6 January 1993 365

XSelectInput(XS)

Diagnostics

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

Xlib - C Language X Interface

366 X Version 11 (Release 5) 6 January 1993

XSelectionClear Event(XS)

XSeIectionCIearEvent

SelectionClear event structure

Structures

See also

The structure for SelectionClear events contains:
typedef struct {

int type; /* SelectionClear */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
Atom selection;
Time time;

) XSelectionClearEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The selection member is set to the selection atom. The time member is set to
the last change time recorded for the selection. The window member is the
window that was specified by the current owner (the owner losing the selec-
tion) in its XSetSelectionOwner call.

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),

. XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),

XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),
XSelectionEvent(XS), XSelectionRequestEvent(XS),
XSetSelectionOwner(XS), XUnmapEvent(XS), XVisibilityEvent(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 367

XSelectionEvent(XS)

XSelectionEvent

SelectionNotify event structure

Structures

See also

The structure for SelectionNotify events contains:
typedef struct {

int type; /* SelectionNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window requestor;
Atom selection;
Atom target;
Atom property; /* atom or None */
Time time;
} XSelectionEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The requestor member is set to the window associated with the requestor of
the selection. The selection member is set to the atom that indicates the
selection. For example, PRIMARY is used for the primary selection. The tar-
get member is set to the atom that indicates the converted type. For example,
PIXMAP is used for a pixmap. The property member is set to the atom that
indicates which property the result was stored on. If the conversion failed,
the property member is set to None. The time member is set to the time the
conversion took place and can be a timestamp or CurrentTime. °

368

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),

X Version 11 (Release 5) 6 January 1993

XSelectionEvent(XS)

XSelectionClearEvent(XS), XSelectionRequestEvent(XS), XUnmapEvent(XS),
XVisibilityEvent(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 369

XSelectionRequestEvent(XS)

XSelectionRequestEvent

SelectionRequest event structure

Structures

See also

The structure for SelectionRequest events contains:
typedef struct {

int type; /* SelectionRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window owner;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;
) XSelectionRequestEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The owner member is set to the window that was specified by the current
owner in its XSetSelectionOwner call. The requestor member is set to the
window requesting the selection. The selection member is set to the atom
that names the selection. For example, PRIMARY is used to indicate the pri-
mary selection. The target member is set to the atom that indicates the type
the selection is desired in. The property member can be a property name or
None. The time member is set to the timestamp or CurrentTime value from
the ConvertSelection request.

370

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),

X Version 11 (Release 5) 6 January 1993

XSelectionRequestEvent(XS)

XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),
XSelectionClearEvent(XS), XSelectionEvent(XS), XSetSelectionOwner(XS),
XUnmapEvent(XS), XVisibilityEvent(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 371

XSendEvent(XS)

XSendEvent

send events and pointer motion history structure

Syntax

Status XSendEvent (display, w, propagate, event_mask, event_send)
Display *display;
Window w;
Bool propagate;
long event_mask;
XEvent *event_send;

unsigned long XDisplayMotionBufferSize(display)
Display *display;

XTimeCoord *XGetMotionEvents(display, w, start, stop, nevents_return)
Display *display;
Window w;
Time start, stop;
int *nevents_return;

Arguments

display Specifies the connection to the X server.
event_mask Specifies the event mask.
event_send Specifies the event that is to be sent.

nevents_return Returns the number of events from the motion history
buffer.

propagate Specifies a Boolean value.

start

stop Specify the time interval in which the events are returned
from the motion history buffer. You can pass a timestamp or
CurrentTime.

w Specifies the window the window the event is to be sent to,
PointerWindow, or InputFocus.

Description

372

The XSendEvent function identifies the destination window, determines
which clients should receive the specified events, and ignores any active
grabs. This function requires you to pass an event mask. For a discussion of
the valid event mask names, see section 10.3 of XIib - C Language X Interface.

X Version 11 (Release 5) 6 January 1993

XSendEvent(XS)

This function uses the w argument to identify the destination window as fol-
lows:

o [f w is PointerWindow, the destination window is the window that con-
tains the pointer.

e If w is InputFocus and if the focus window contains the pointer, the desti-
nation window is the window that contains the pointer; otherwise, the des-
tination window is the focus window.

To determine which clients should receive the specified events, XSendEvent
uses the propagate argument as follows:

o If event_mask is the empty set, the event is sent to the client that created
the destination window. If that client no longer exists, no event is sent.

o If propagate is False, the event is sent to every client selecting on destina-
tion any of the event types in the event_mask argument.

e If propagate is True and no clients have selected on destination any of the
event types in event-mask, the destination is replaced with the closest
ancestor of destination for which some client has selected a type in event-
mask and for which no intervening window has that type in its do-not-
progagate-mask. If no such window exists or if the window is an ancestor
of the focus window and InputFocus was originally specified as the desti-

nation, the event is not sent to any clients. Otherwise, the event is reported

to every client selecting on the final destination any of the types specified
in event_mask.

The event in the XEvent structure must be one of the core events or one of the
events defined by an extension (or a “BadValue” error results) so that the X
server can correctly byte-swap the contents as necessary. The contents of the
event are otherwise unaltered and unchecked by the X server except to force
send_event to True in the forwarded event and to set the serial number in the
event correctly.

XSendEvent returns zero if the conversion to wire protocol format failed and
returns nonzero otherwise. XSendEvent can generate “BadValue” and
“BadWindow” errors.

The server may retain the recent history of the pointer motion and do so to a
finer granularity than is reported by MotionNotify events. The XGetMo-
tionEvents function makes this history available.

The XGetMotionEvents function returns all events in the motion history
buffer that fall between the specified start and stop times, inclusive, and that
have coordinates that lie within the specified window (including its borders)
at its present placement. If the server does not support motion history, or if
the start time is later than the stop time, or if the start time is in the future, no
events are returned, and XGetMotionEvents returns NULL. If the stop time is
in the future, it is equivalent to specifying CurrentTime. XGetMotionEvents
can generate a “BadWindow” error.

X Version 11 (Release 5) 6 January 1993 373

XSendEvent(XS)

Structures

The XTimeCoord structure contains:

typedef struct {
Time time;
short x, y;
) XTimeCoord;

The t ime member is set to the time, in milliseconds. The x and y members are
set to the coordinates of the pointer and are reported relative to the origin of
the specified window.

Diagnostics

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XAnyEvent(XS), XIfEvent(XS), XNextEvent(XS), XPutBackEvent(XS)
Xlib - C Language X Interface

374 X Version 11 (Release 5) 6 January 1993

XSetArcMode(XS)

XSetArcMode

GC convenience routines

Syntax
XSetArcMode(display, gc, arc_mode)
Display *display;
GC gc;
int arc_mode;
XSetSubwindowMode (display, gc, subwindow_mode)
Display *display;
GC gc;
int subwindow_mode;
XSetGraphicsExposures(display, gc, graphics_exposures)
Display *display;
GC gc;
Bool graphics_exposures;
Arguments
arc_mode Specifies the arc mode. You can pass ArcChord or
ArcPieSlice.
display Specifies the connection to the X server.
gc Specifies the GC.
graphics_exposures
Specifies a Boolean value that indicates whether you want
GraphicsExpose and NoExpose events to be reported when
calling XCopyArea and XCopyPlane with this GC.
subwindow_mode
Specifies the subwindow mode. You can pass ClipByChil-
dren or IncludelInferiors.
Description

The XSetArcMode function sets the arc mode in the specified GC.
XSetArcMode can generate “BadAlloc”, “BadGC”, and “BadValue” errors.

The XSetSubwindowMode function sets the subwindow mode in the speci-
fied GC.

X Version 11 (Release 5) 6 January 1993 375

XSetArcMode(XS)

XSetSubwindowMode can generate “BadAlloc”, “BadGC”, and “BadValue”
errors.

The XSetGraphicsExposures function sets the graphics-exposures flag in the

specified GC.

XSetGraphicsExposures can generate “BadAlloc”, “BadGC”, and “BadValue”

errors.

Diagnostics

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadGC” A value for a GContext argument does not name a defined
GContext.

“BadValue” Some numeric value falls outside the range of values

accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

See also

XCopyArea(XS), XCreateGC(XS), XQueryBestSize(XS), XSetClipOrigin(XS),
XSetFillStyle(XS), XSetFont(XS), XSetLine Attributes(XS), XSetState(XS),
XSetTile(XS)

XIib - C Language X Interface

376 X Version 11 (Release 5) 6 January 1993

XSetClipOrigin(XS)

XSetClipOrigin

GC convenience routines

Syntax

XSetClipOrigin(display, gc, clip_x_origin, clip_y_origin)
Display *display;
GC gc;
int clip_x_origin, clip_y_origin;

XSetCl ipMask(display, gc, pixmap)
Display *display;
GC gc;
Pixmap pixmap;

XSetClipRectangles(display, gc, clip_x_origin, clip_y_origin, rectangles,

n, ordering)

Display *display;

GC gc;

int clip_x_origin, clip_y_origin;

XRectangle rectangles(];

int n;

int ordering;

Arguments

display Specifies the connection to the X server.

clip_x_origin
clip_y_origin Specify the x and y coordinates of the clip-mask origin.

gc Specifies the GC.
n Specifies the number of rectangles.
ordering Specifies the ordering relations on the rectangles. You can
pass Unsorted, YSorted, YXSorted, or YXBanded.
pixmap Specifies the pixmap or None.
rectangles Specifies an array of rectangles that define the clip-mask.
Description

The XSetClipOrigin function sets the clip origin in the specified GC. The
clip-mask origin is interpreted relative to the origin of whatever destination
drawable is specified in the graphics request.

X Version 11 (Release 5) 6 January 1993 377

XSetClipOrigin(XS)

XSetClipOrigin can generate “BadAlloc” and “BadGC” errors.

The XSetClipMask function sets the clip-mask in the specified GC to the
specified pixmap. If the clip-mask is set to None, the pixels are are always
drawn (regardless of the clip-origin).

XSetClipMask can generate “BadAlloc”, “BadGC”, “BadMatch”, and “Bad-
Value” errors.

The XSetClipRectangles function changes the clip-mask in the specified GC
to the specified list of rectangles and sets the clip origin. The output is clipped
to remain contained within the rectangles. The clip-origin is interpreted rela-
tive to the origin of whatever destination drawable is specified in a graphics
request. The rectangle coordinates are interpreted relative to the clip-origin.
The rectangles should be nonintersecting, or the graphics results will be unde-
fined. Note that the list of rectangles can be empty, which effectively disables
output. This is the opposite of passing None as the clip-mask in XCreateGC,
XChangeGC, and XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified
with the ordering argument. This may provide faster operation by the server.
If an incorrect ordering is specified, the X server may generate a “BadMatch”
error, but it is not required to do so. If no error is generated, the graphics
results are undefined. Unsorted means the rectangles are in arbitrary order.
YSorted means that the rectangles are nondecreasing in their Y origin.
YXSorted additionally constrains YSorted order in that all rectangles with an
equal Y origin are nondecreasing in their X origin. YXBanded additionally
constrains YXSorted by requiring that, for every possible Y scanline, all rec-
tangles that include that scanline have an identical Y origins and Y extents.

XSetClipRectangles can generate “BadAlloc”, “BadGC”, “BadMatch”, and
“BadValue” errors.

Diagnostics
“BadAlloc” The server failed to allocate the requested resource or server
memory.
“BadGC” A value for a GContext argument does not name a defined
GContext.

378

“BadMatch” Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a s;)ecific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

X Version 11 (Release 5) 6 January 1993

XSetClipOrigin(XS)

See also

XCreateGC(XS), XDrawRectangle(XS), XQueryBestSize(XS),
XSetArcMode(XS), XSetFillStyle(XS), XSetFont(XS), XSetLineAttributes(XS),
XSetState(XS), XSetTile(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 379

XSetCloseDownMode(XS)

XSetCloseDownMode

control clients

Syntax

XSetCloseDownMode (display, close_mode)
Display *display;
int close_mode;

XKillClient(display, resource)
Display *display;
XID resource;

Arguments

close_mode Specifies the client close-down mode. You can pass De-
stroyAll, RetainPermanent, or RetainTemporary.

display Specifies the connection to the X server.

resource Specifies any resource associated with the client that you want
to destroy or AllTemporary.

Description

380

The XSetCloseDownMode defines what will happen to the client’s resources
at connection close. A connection starts in DestroyAll mode. For information
on what happens to the client’s resources when the close_mode argument is
RetainPermanent or RetainTemporary, see section 2.6 of Xlib - C Language X
Interface.

XSetCloseDownMode can generate a “Bad Value” error.

The XKillClient function forces a close-down of the client that created the
resource if a valid resource is specified. If the client has already terminated in
either RetainPermanent or RetainTemporary mode, all of the client’s
resources are destroyed. If AllTemporary is specified, the resources of all
clients that have terminated in RetainTemporary are destroyed (see section
2.5 of Xlib - C Language X Interface). This permits implementation of window
manager facilities that aid debugging. A client can set its close-down mode to
RetainTemporary. If the client then crashes, its windows would not be de-
stroyed. The programmer can then inspect the application’s window tree and
use the window manager to destroy the zombie windows.

XKillClient can generate a “BadValue” error.

X Version 11 (Release 5) 6 January 1993

XSetCloseDownMode(XS)

Diagnostics

“BadValue” Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu-
ment, the full range defined by the argument’s type is
accepted. Any argument defined as a set of altermatives can
generate this error.

See also

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 381

XSetCommand(XS)

XSetCommand

set or read a window's WM_COMMAND property

Syntax

XSetCommand(display, w, argv, argc)
Display *display;
Window w;
char **argv;
int argc;

Status XGetCommand(display, w, argv_return, argc_return)
Display *display;
Window w;
char ***argv_return;
int *argc_return;

Arguments

argc Specifies the number of arguments.
argc_return Returns the number of arguments returned.
argo Specifies the application’s argument list.
argu_return Returns the application’s argument list.
display Specifies the connection to the X server.

w Specifies the window.

Description

The XSetCommand function sets the command and arguments used to
invoke the application. (Typically, argo is the argv array of your main pro-
gram.) If the strings are not in the Host Portable Character Encoding the
result is implementation dependent.

XSetCommand can generate “BadAlloc” and “BadWindow” errors.

The XGetCommand function reads the WM_COMMAND property from the
specified window and returns a string list. If the WM_COMMAND property
exists, it is of type STRING and format 8. If sufficient memory can be allo-
cated to contain the string list, XGetCommand fills in the argv_return and
argc_return arguments and returns a nonzero status. Otherwise, it returns a
zero status. If the data returned by the server is in the Latin Portable Charac-

382 X Version 11 (Release 5) 6 January 1993

XSetCommand(XS)

ter Encoding, then the returned strings are in the Host Portable Character
Encoding. Otherwise, the result is implementation dependent. To free the
memory allocated to the string list, use XFreeStringList.

Properties

WM_COMMAND
The command and arguments, null-separated, used to

invoke the application.
Diagnostics
“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XAllocClassHint(XS), XAllocIconSize(XS), X AllocSizeHints(XS),
XAllocWMHints(XS), XSetTransientForHint(XS), XSetTextProperty(XS),
XSetWMClientMachine(XS), XSetWMColormapWindows(XS),
XSetWMIconName(XS), XSetWMName(XS), XSetWMProperties(XS),
XSetWMProtocols(XS), XStringListToTextProperty(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 383

XSetErrorHandler(XS)

XSetErrorHandler

default error handlers

Syntax

int (*XSetErrorHandler(handler))()
int (*handler) (Display *, XErrorEvent *)

XGetErrorText (display, code, buffer_return, length)
Display *display;
int code;
char *buffer_return;
int length;

char *XDisplayName(string)
char *string;

int (*XSetIOErrorHandler(handler))()
int (*handler) (Display *);

XGetErrorDatabaseText (display, name, message, default_string, buffer_return,
length)
Display *display;
char *name, *message;
char *default_string;
char *buffer_return;
int length;

Arguments

384

buffer_return Returns the error description.

code Specifies the error code for which you want to obtain a
description.

default_string Specifies the default error message if none is found in the
database.

display Specifies the connection to the X server.

handler Specifies the program'’s supplied error handler.

length Specifies the size of the buffer.

X Version 11 (Release 5) 6 January 1993

XSetErrorHandler(XS)

message Specifies the type of the error message.

name Specifies the name of the application.

string Specifies the character string.
Description

Xlib generally calls the program’s supplied error handler whenever an error is
received. Itis not called on “BadName” errors from OpenFont, LookupColor,
or AllocNamedColor protocol requests or on “BadFont” errors from a
QueryFont protocol request. These errors generally are reflected back to the
program through the procedural interface. Because this condition is not
assumed to be fatal, it is acceptable for your error handler to return. How-
ever, the error handler should not call any functions (directly or indirectly) on
the display that will generate protocol requests or that will look for input
events. The previous error handler is returned.

The XGetErrorText function copies a null-terminated string describing the
specified error code into the specified buffer. The returned text is in the
encoding of the current locale. It is recommended that you use this function
to obtain an error description because extensions to Xlib may define their own
error codes and error strings.

The XDisplayName function returns the name of the display that XOpenDis-
play would attempt to use. If a NULL string is specified, XDisplayName
looks in the environment for the display and returns the display name that
XOpenDisplay would attempt to use. This makes it easier to report to the
user precisely which display the program attempted to open when the initial
connection attempt failed.

The XSetlOErrorHandler sets the fatal I/O error handler. Xlib calls the
program’s supplied error handler if any sort of system call error occurs (for
example, the connection to the server was lost). This is assumed to be a fatal
condition, and the called routine should not return. If the I/O error handler
does return, the client process exits.

Note that the previous error handler is returned.

The XGetErrorDatabaseText function returns a null-terminated message (or
the default message) from the error message database. Xlib uses this function
internally to look up its error messages. The default_string is assumed to be
in the encoding of the current locale. The buffer_return text is in the encoding
of the current locale.

X Version 11 (Release 5) 6 January 1993 385

XSetErrorHandler(XS)

The name argument should generally be the name of your application. The
message argument should indicate which type of error message you want. If
the name and message are not in the Host Portable Character Encoding the
result is implementation dependent. Xlib uses three predefined “application
names” to report errors (uppercase and lowercase matter): .

XProtoError The protocol error number is used as a string for the message

argument.

XlibMessage These are the message strings that are used internally by the
library.

XRequest For a core protocol request, the major request protocol num-

ber is used for the message argument. For an extension
request, the extension name (as given by InitExtension) fol-
lowed by a period (.) and the minor request protocol number
is used for the message argument. If no string is found in the
error database, the default_string is returned to the buffer
argument.

See also

XOpenDisplay(XS), XSynchronize(XS)
Xlib - C Language X Interface

386 X Version 11 (Release 5) 6 January 1993

XSetFillStyle

XSetFillStyle(XS)

GC convenience routines

Syntax

XSetFillstyle(display, gc, fill_style)
Display *display;
GC gc;
int fill_style;

XSetFillRule(display, gc, fill_rule)
Display *display;
GC gc;
int fill_rule;

Arguments

display Specifies the connection to the X server.

fill__rule Specifies the fill-rule you want to set: for the specified GC. You

can pass EvenOddRule or WindingRule.

fill_style Specifies the fill-style you want to set for the specified GC. You
can pass FillSolid, FillTiled, FillStippled, or FillOpaqueStip-

pled.
gc Specifies the GC.

Description

The XSetFillStyle function sets the fill-style in the specified GC.

XSetFillStyle can generate “BadAlloc”, “BadGC”, and “BadValue” errors.

The XSetFillRule function sets the fill-rule in the specified GC.

XSetFillRule can generate “BadAlloc”, “BadGC”, and “BadValue” errors.

X Version 11 (Release 5) 6 January 1993

387

XSetFillStyle(XS)

Diagnostics

See also

“BadAlloc”

“BadGC”

“BadValue”

The server failed to allocate the requested resource or server
memory.

A value for a GContext argument does not name a defined
GContext.

Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu-
ment, the full range defined by the argument’s type is accepted.
Any argument defined as a set of alternatives can generate this
error.

388

XCreateGC(XS), XQueryBestSize(XS), XSetArcMode(XS),
XSetClipOrigin(XS), XSetFont(XS), XSetLineAttributes(XS), XSetState(XS),

XSetTile(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XSetFontPath(XS)

XSetFontPath

set, get, or free the font search path

Syntax

XSetFontPath(display, directories, ndirs)
Display *display;
char **directories;
int ndirs;

char **XGetFontPath(display, npaths_return)
Display *display;
int *npaths_return;

XFreeFontPath(list)
char **list;

Arguments

directories Specifies the directory path used to look for a font. Setting
the path to the empty list restores the default path defined
for the X server.

display Specifies the connection to the X server.

list Specifies the array of strings you want to free.

ndirs Specifies the number of directories in the path.

npaths_return Returns the number of strings in the font path array.

Description

The XSetFontPath function defines the directory search path for font lookup.
There is only one search path per X server, not one per client. The encoding
and interpretation of the strings is implementation dependent, but typically
they specify directories or font servers to be searched in the order listed. An X
server is permitted to cache font information internally, for example, it might
cache an entire font from a file and not check on subsequent opens of that font
to see if the underlying font file has changed. However, when the font path is
changed the X server is guaranteed to flush all cached information about fonts
for which there currently are no explicit resource IDs allocated. The meaning
of an error from this request is implementation dependent.

X Version 11 (Release 5) 6 January 1993 389

XSetFontPath(XS)

XSetFontPath can generate a “BadValue” error.

The XGetFontPath function allocates and returns an array of strings contain-
ing the search path. The contents of these strings are implementation depen-
dent and are not intended to be interpreted by client applications. When it is
no longer needed, the data in the font path should be freed by using
XFreeFontPath.

The XFreeFontPath function frees the data allocated by XGetFontPath.

Diagnostics
“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.
See also

XListFonts(XS), XLoadFont(XS)
Xlib - C Language X Interface

390 X Version 11 (Release 5) 6 January 1993

XSetFont(XS)

XSetFont

GC convenience routines

Syntax

XSetFont (display, gc, font)
Display *display;
GC gc;
Font font;

Arguments

display Specifies the connection to the X server.

font Specifies the font.

gc Specifies the GC.

Description

The XSetFont function sets the current font in the specified GC.

XSetFont can generate “BadAlloc”, “BadFont”, and “BadGC” errors.

Diagnostics

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadFont” A value for a Font or GContext argument does not name a
defined Font.

“BadGC” A value for a GContext argument does not name a defined
GContext.

See also

XCreateGC(XS), XQueryBestSize(XS), XSetArcMode(XS),
XSetClipOrigin(XS), XSetFillStyle(XS), XSetLineAttributes(XS),
XSetState(XS), XSetTile(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 391

XSetICFocus(XS)

XSetICFocus

set and unset input context focus

Syntax
void XSetICFocus(ic)
XIC ic;
void XUnsetICFocus(ic)
XIC ic;
Arguments

ic Specifies the input context.
Description

The XSetICFocus function allows a client to notify an input method that the
focus window attached to the specified input context has received keyboard
focus. The input method should take action to provide appropriate feedback.
Complete feedback specification is a matter of user interface policy.

The XUnsetICFocus function allows a client to notify an input method that
the specified input context has lost the keyboard focus and that no more input
is expected on the focus window attached to that input context. The input
method should take action to provide appropriate feedback. Complete feed-
back specification is a matter of user interface policy.

See also

XCreateIC(XS), XOpenIM(XS), XSetICValues(XS), XmbResetIC(XS)
Xlib - C Language X Interface

392 X Version 11 (Release 5) 6 January 1993

XSetICValues(XS)

XSetICValues

set and obtain XIC values

Syntax

char * XSetICValues(ic, ...)
XIC ic;

char * XGetICValues(ic, ...)
XIC ic;

Arguments

ic Specifies the input context.

Specifies the variable length argument list to set or get XIC values.

Description

The XSetICValues function returns NULL if no error occurred; otherwise, it
returns the name of the first argument that could not be set. An argument
could be not set for any of the following reasons:

¢ Aread-only argument was set (for example, XNFilterEvents).

e The argument name is not recognized.

e The input method encountered an input method implementation depen-
dent error.

Each value to be set must be an appropriate datum, matching the data type
imposed by the semantics of the argument.

The XSetICValues can generate “BadAtom”, “BadColor”, “BadCursor”, “Bad-
Pixmap”, and “BadWindow” errors.

The XGetICValues function returns NULL if no error occurred; otherwise, it
returns the name of the first argument that could not be obtained. An argu-
ment could be not obtained for any of the following reasons:

e The argument name is not recognized.
¢ The input method encountered an implementation dependent error.
Each argument value (following a name) must point to a location where the

value is to be stored. XGetICValues allocates memory to store the values,
and client is responsible for freeing each value by calling XFree.

X Version 11 (Release 5) 6 January 1993 393

XSetICValues(XS)

Diagnostics
“BadAtom” A value for an Atom argument does not name a defined
Atom.
“BadColor” A value for a Colormap argument does not name a defined
Colormap.

“BadCursor” A value fora Cursor argumentdoes not name a defined Cur-
sor.

“BadPixmap” A value for a Pixmap argument does not name a defined Pix-
map.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XCreateIC(XS), XOpenIM(XS), XSetICFocus(XS), XmbResetIC(XS)
XIib - C Language X Interface

394 X Version 11 (Release 5) 6 January 1993

XSetInputFocus(XS)

| XSetinputFocus

control input focus

Syntax

XSet InputFocus(display, focus, revert_to, time)
Display *display;
Window focus;
int revert_to;
Time time;

XGet InputFocus(display, focus_return, revert_to_return)
Display *display;
Window *focus_return;
int *revert_to_return;

Arguments

display Specifies the connection to the X server.

focus Specifies the window, PointerRoot, or None.

focus_return Returns the focus window, PointerRoot, or None.

revert_to Specifies where the input focus reverts to if the window
becomes not viewable. You can pass RevertToParent,
RevertToPointerRoot, or RevertToNone.

revert_to_return
Returns the current focus state (RevertToParent, RevertTo-
PointerRoot, or RevertToNone).

time Specifies the time. You can pass either a timestamp or
CurrentTime.

Description

The XSetInputFocus function changes the input focus and the last-focus-
change time. It has no effect if the specified time is earlier than the current
last-focus-change time or is later than the current X server time. Otherwise,
the last-focus-change time is set to the specified time (CurrentTime is
replaced by the current X server time). XSetInputFocus causes the X server to
generate FocusIn and FocusOut events.

X Version 11 (Release 5) 6 January 1993 395

XSetInputFocus(XS)

Depending on the focus argument, the following occurs:

If focus is None, all keyboard events are discarded until a new focus win-
dow is set, and the revert_to argument is ignored.

If focus is a window, it becomes the keyboard’s focus window. If a gen-
erated keyboard event would normally be reported to this window or one
of its inferiors, the event is reported as usual. Otherwise, the event is
reported relative to the focus window.

If focus is PointerRoot, the focus window is dynamically taken to be the
root window of whatever screen the pointer is on at each keyboard event.
In this case, the revert_to argument is ignored.

The specified focus window must be viewable at the time XSetInputFocus is
called, or a “BadMatch” error results. If the focus window later becomes not
viewable, the X server evaluates the revert_to argument to determine the new
focus window as follows:

If revert_to is RevertToParent, the focus reverts to the parent (or the closest
viewable ancestor), and the new revert_to value is taken to be RevertTo-
None.

If revert_to is RevertToPointerRoot or RevertToNone, the focus reverts to
PointerRoot or None, respectively. When the focus reverts, the X server
generates FocusIn and FocusOut events, but the last-focus-change time is
not affected.

XSetInputFocus can generate “BadMatch”, “BadValue”, and “BadWindow”
errors.

The XGetInputFocus function returns the focus window and the current
focus state.

Diagnostics

See also

“BadValue” Some numeric value falls outside the range of values

accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

“BadWindow” A value for a Window argument does not name a defined

Window.

396

XWarpPointer(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XSetLineAttributes(XS)

XSetLineAttributes

GC convenience routines.

Syntax

XSetLineAttributes(display, gc, line_width, line_style, cap_style,

XSetDashes(display, gc, dash_offset, dash_list, n)

Arguments

join_style)
Display *display;
GC gc;
unsigned int line_width;
int line_style;
int cap_style;
int join_style;

Display *display;
GC gc;

int dash_offset;
char dash_list(];
int n;

cap_style Specifies the line-style and cap-style you want to set for the

specified GC. You can pass CapNotLast, CapButt, CapRound,
or CapProjecting.

dash_list Specifies the dash-list for the dashed line-style you want to set

for the specified GC.

dash_offset Specifies the phase of the pattern for the dashed line-style you

display
gc

want to set for the specified GC.
Specifies the connection to the X server.

Specifies the GC.

join_style Specifies the line join-style you want to set for the specified GC.

You can pass JoinMiter, JoinRound, or JoinBevel.

line_style Specifies the line-style you want to set for the specified GC.

You can pass LineSolid, LineOnOffDash, or LineDoub-
leDash.

line_width Specifies the line-width you want to set for the specified GC.

n

Specifies the number of elements in dash_list.

X Version 11 (Release 5) 6 January 1993 397

XSetLineAttributes(XS)

Description

The XSetLineAttributes function sets the line drawing components in the
specified GC.

XSetLineAttributes can generate “BadAlloc”, “BadGC”, and “BadValue”
errors. :

The XSetDashes function sets the dash-offset and dash-list attributes for
dashed line styles in the specified GC. There must be at least one element in
the specified dash_list, or a “BadValue” error results. The initial and alternat-
ing elements (second, fourth, and so on) of the dash_list are the even dashes,
and the others are the odd dashes. Each element specifies a dash length in

ixels. All of the elements must be nonzero, or a “BadValue” error results.

pecifying an odd-length list is equivalent to specifying the same list con-
catenated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels
into the dash-list the pattern should actually begin in any single graphics
request. Dashing is continuous through path elements combined with a join-
style but is reset to the dash-offset between each sequence of joined lines.

The unit of measure for dashes is the same for the ordinary coordinate system.
Ideally, a dash length is measured along the slope of the line, but implementa-
tions are only required to match this ideal for horizontal and vertical lines.
Failing the ideal semantics, it is suggested that the length be measured along
the major axis of the line. The major axis is defined as the x axis for lines
drawn at an angle of between -45 and +45 degrees or between 135 and 225
degrees from the x axis. For all other lines, the major axis is the y axis.

XSetDashes can generate “BadAlloc”, “BadGC”, and “BadValue” errors.

Diagnostics

398

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadGC” A value for a GContext argument does not name a defined
GContext.

“BadValue” Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu-
ment, the full range defined by the argument’s type is
accepted. Any argument defined as a set of alternatives can
generate this error.

X Version 11 (Release 5) 6 January 1993

XSetLineAttributes(XS)

See also

XCreateGC(XS), XQueryBestSize(XS), XSetArcMode(XS),

XSetClipOrigin(XS), XSetFillStyle(XS), XSetFont(XS), XSetState(XS),
XSetTile(XS)

X1ib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 399

XSetPointerMapping(XS)

XSetPointerMapping

manipulate pointer settings

Syntax

int XSetPointerMapping(display, map, nmap)
Display *display;
unsigned char mapl];
int nmap;

int XGetPointerMapping(display, map_return, nmap)
Display *display;
unsigned char map_return(];
int nmap;

Arguments

display Specifies the connection to the X server.
map Specifies the mapping list.
map_return Returns the mapping list.

nmap Specifies the number of items in the mapping list.

Description

The XSetPointerMapping function sets the mapping of the pointer. If it
succeeds, the X server generates a MappingNotify event, and XSetPointer-
Mapping returns MappingSuccess. Element mapl[i] defines the logical button
number for the physical button i+1. The length of the list must be the same as
XGetPointerMapping would return, or a “BadValue” error results. A zero ele-
ment disables a button, and elements are not restricted in value by the num-
ber of physical buttons. However, no two elements can have the same
nonzero value, or a “BadValue” error results. If any of the buttons to be
altered are logically in the down state, XSetPointerMapping returns Map-
pingBusy, and the mapping is not changed.

XSetPointerMapping can generate a “BadValue” error.

The XGetPointerMapping function returns the current mapping of the
pointer. Pointer buttons are numbered starting from one. XGetPointerMap-
ping returns the number of physical buttons actually on the pointer. The
nominal mapping for a pointer is mapli]=i+1. The nmap argument specifies
the length of the array where the pointer mapping is returned, and only the
first nmap elements are returned in map_return.

400 X Version 11 (Release 5) 6 January 1993

XSetPointer Mapping(XS)

Diagnostics

“BadValue” Some numeric value falls outside the range of values accepted
by the request. Unless a specific range is specified for an argu-
ment, the full range defined by the argument’s type is accepted.
Any argument defined as a set of alternatives can generate this
error.

See also

XChangeKeyboardControl(XS), XChangeKeyboardMapping(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 401

XSetScreenSaver(XS)

XSetScreenSaver

manipulate the screen saver

Syntax

XSetScreenSaver{display, timeout, interval, prefer_blanking,
allow_exposures)
Display *display;
int timeout, interval;
int prefer_blanking;
int allow_exposures;

XForceScreenSaver (display, mode)
Display *display;
int mode;

XActivateScreenSaver(display)
Display *display;

XResetScreenSaver (display)
Display *display;

XGetScreenSaver(display, timeout_return, interval_return,
prefer_blanking_return, allow_exposures_return)
Display *display;
int *timeout_return, *interval_return;
int *prefer_blanking_return;
int *allow_exposures_return;

Arguments

402

allow_exposures
Specifies the screen save control values. You can pass Don-
tAllowExposures, AllowExposures, or DefaultExposures.
allow_exposures_return
Returns the current screen save control value (DontAl-
lowExposures, AllowExposures, or DefaultExposures).
display Specifies the connection to the X server.

interval Specifies the interval, in seconds, between screen saver
alterations.

interval_return Returns the interval between screen saver invocations.

mode Specifies the mode that is to be applied. You can pass
ScreenSaverActive or ScreenSaverReset.

X Version 11 (Release 5) 6 January 1993

XSetScreenSaver(XS)

prefer_blanking Specifies how to enable screen blanking. You can pass
DontPreferBlanking, PreferBlanking, or DefaultBlanking.

prefer_blanking_return
Returns the current screen blanking preference (DontPrefer-
Blanking, PreferBlanking, or DefaultBlanking).

timeout Specifies the timeout, in seconds, until the screen saver turns
on.

timeout_return Returns the timeout, in seconds, until the screen saver turns
on.

Description

Timeout and interval are specified in seconds. A timeout of 0 disables the
screen saver (but an activated screen saver is not deactivated), and a timeout
of -1 restores the default. Other negative values generate a “BadValue” error.
If the timeout value is nonzero, XSetScreenSaver enables the screen saver.
An interval of 0 disables the random-pattern motion. If no input from devices
(keyboard, mouse, and so on) is generated for the specified number of timeout
seconds once the screen saver is enabled, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video
blanking, the screen simply goes blank. Otherwise, if either exposures are
allowed or the screen can be regenerated without sending Expose events to
clients, the screen is tiled with the root window background tile randomly re-
origined each interval minutes. Otherwise, the screens’ state do not change,
and the screen saver is not activated. The screen saver is deactivated, and all
screen states are restored at the next keyboard or pointer input or at the next
call to XForceScreenSaver with mode ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the
interval argument serves as a hint about how long the change period should
be, and zero hints that no periodic change should be made. Examples of ways
to change the screen include scrambling the colormap periodically, moving an
icon image around the screen periodically, or tiling the screen with the root
window background tile, randomly re-origined periodically.

XSetScreenSaver can generate a “BadValue” error.

If the specified mode is ScreenSaverActive and the screen saver currently is
deactivated, XForceScreenSaver activates the screen saver even if the screen
saver had been disabled with a timeout of zero. If the specified mode is
ScreenSaverReset and the screen saver currently is enabled, XForceScreen-
Saver deactivates the screen saver if it was activa}_tLed, and the activation timer
is reset to its initial state (as if device input had been received).

XForceScreenSaver can generate a “BadValue” error.

X Version 11 (Release 5) 6 January 1993 403

XSetScreenSaver(XS)

The XActivateScreenSaver function activates the screen saver.
The XResetScreenSaver function resets the screen saver.

The XGetScreenSaver function gets the current screen saver values.

Diagnostics
“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.
See also

Xlib - C Language X Interface

404 X Version 11 (Release 5) 6 January 1993

XSetSelectionOwner(XS)

XSetSelectionOwner

manipulate window selection

Syntax

XSetSelectionOwner (display, selection, owner, time)
Display *display;
Atom selection;
Window owner;
Time time;

Window XGetSelectionOwner(display, selection)
Display *display;
Atom selection;

XConvertSelection(display, selection, target, property, requestor, time)
Display *display;
Atom selection, target;
Atom property;
Window requestor;
Time time;

Arguments

display Specifies the connection to the X server.

owner Specifies the owner of the specified selection atom. You can pass a
window or None.

property Specifies the property name. You also can pass None.
requestor Specifies the requestor.

selection Specifies the selection atom.

target Specifies the target atom.

time Specifies the time. You can pass either a timestamp or Current-
Time.

Description

The XSetSelectionOwner function changes the owner and last-change time
for the specified selection and has no effect if the specified time is earlier than
the current last-change time of the specified selection or is later than the
current X server time. Otherwise, the last-change time is set to the specified
time, with CurrentTime replaced by the current server time. If the owner

X Version 11 (Release 5) 6 January 1993 405

XSetSelectionOwner(XS)

window is specified as None, then the owner of the selection becomes None
(that is, no owner). Otherwise, the owner of the selection becomes the client
executing the request.

If the new owner (whether a client or None) is not the same as the current
owner of the selection and the current owner is not None, the current owner is
sent a SelectionClear event. If the client that is the owner of a selection is
later terminated (that is, its connection is closed) or if the owner window it
has specified in the request is later destroyed, the owner of the selection auto-
matically reverts to None, but the last-change time is not affected. The selec-
tion atom is uninterpreted by the X server. XGetSelectionOwner returns the
owner window, which is reported in SelectionRequest and SelectionClear
events. Selections are global to the X server.

XSetSelectionOwner can generate “BadAtom” and “BadWindow” errors.

The XGetSelectionOwner function returns the window ID associated with
the window that currently owns the specified selection. If no selection was
specified, the function returns the constant None. If None is returned, there is
no owner for the selection.

XGetSelectionOwner can generate a “BadAtom” error.
XConvertSelection requests that the specified selection be converted to the
specified target type:

o If the specified selection has an owner, the X server sends a SelectionRe-
quest event to that owner.

e If no owner for the specified selection exists, the X server generates a Selec-
tionNotify event to the requestor with property None.

The arguments are passed on unchanged in either of the events. There are
two predefined selection atoms: PRIMARY and SECONDARY.

XConvertSelection can generate “BadAtom” and “BadWindow” errors.

Diagnostics

See also

“Bad Atom” A value for an Atom argument does not name a defined
Atom.

“BadWindow” A value for a Window argument does not name a defined
Window.

406

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XSetState

XSetState(XS)

GC convenience routines

Syntax

XSetState(display, gc, foreground, background, function, plane_mask)

Display *display;

GC gc;

unsigned long foreground, background;
int function;

unsigned long plane_mask;

XSetFunction(display, gc, function)
Display *display;
GC gc;
int function;

XSetPlaneMask(display, gc, plane_mask)
Display *display;
GC gc;
unsigned long plane_mask;

XSetForeground(display, gc, foreground)
Display *display;
GC gc;
unsigned long foreground;

XSetBackground(display, gc, background)
Display *display;
GC gc;
unsigned long background;

Arguments

background Specifies the background you want to set for the specified

GC.

display Specifies the connection to the X server.

foreground Specifies the foreground you want to set for the specified GC.

Sunction Specifies the function you want to set for the specified GC.

gc Specifies the GC.

plane_mask Specifies the plane mask.

X Version 11 (Release 5) 6 January 1993

407

XSetState(XS)

Description

The XSetState function sets the foreground, background, plane mask, and
function components for the specified GC.

XSetState can generate “BadAlloc”, “BadGC”, and “BadValue” errors.
XSetFunction sets a specified value in the specified GC.

XSetFunction can generate “BadAlloc”, “BadGC”, and “BadValue” errors.
The XSetPlaneMask function sets the plane mask in the specified GC.
XSetPlaneMask can generate “BadAlloc” and “BadGC” errors.

The XSetForeground function sets the foreground in the specified GC.
XSetForeground can generate “BadAlloc” and “BadGC” errors.

The XSetBackground function sets the background in the specified GC.

XSetBackground can generate “BadAlloc” and “BadGC” errors.

Diagnostics

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadGC” A value for a GContext argument does not name a defined
GContext.

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

See also

XCreateGC(XS), XQueryBestSize(XS), XSetArcMode(XS),
XSetClipOrigin(XS), XSetFillStyle(XS), XSetFont(XS),
XSetLineAttributes(XS), XSetTile(XS)

Xlib - C Language X Interface

408 X Version 11 (Release 5) 6 January 1993

XSetTextProperty(XS)

XSetTextProperty

set and read text properties

Syntax

void XSetTextProperty(display, w, text_prop, property)
Display *display;
Window w;
XTextProperty *text_prop;
Atom property;

Status XGetTextProperty(display, w, text_prop_return, property)
Display *display;
Window w;
XTextProperty *text_prop_return;
Atom property;

Arguments

display Specifies the connection to the X server.
property Specifies the property name.
text_prop Specifies the XTextProperty structure to be used.

text_prop_return
Returns the XTextProperty structure.

Description

The XSetTextProperty function replaces the existing specified property for the
named window with the data, type, format, and number of items determined
by the value field, the encoding field, the format field, and the nitems field,
respectively, of the specified XTextProperty structure. If the property does
not already exist, XSetTextProperty sets it for the specified window.

XSetTextProperty can generate “BadAlloc”, “BadAtom”, “BadValue”, and
“BadWindow” errors.

The XGetTextProperty function reads the specified property from the win-
dow and stores the data in the returned XTextProperty structure. It stores the
data in the value field, the type of the data in the encoding field, the format of
the data in the format field, and the number of items of data in the nitems
field. An extra byte containing null (which is not included in the nitems
member) is stored at the end of the value field of text_prop_return. The par-
ticular interpretation of the property’s encoding and data as “text” is left to

X Version 11 (Release 5) 6 January 1993 409

XSetTextProperty(XS)

the calling application. If the specified property does not exist on the win-
dow, XGetTextProperty sets the value field to NULL, the encoding field to
None, the format field to zero, and the nitems field to zero.

If it was able to read and store the data in the XTextProperty structure, XGet-
TextProperty returns a nonzero status; otherwise, it returns a zero status.

XGetTextProperty can generate “Bad Atom” and “BadWindow” errors.

Properties

WM_CLIENT_MACHINE
The string name of the machine on which the client applica-
tion is running.

WM_COMMAND
The command and arguments, null-separated, used to
invoke the application.

WM_ICON_NAME
The name to be used in an icon.

WM_NAME The name of the application.

Diagnostics
“BadAlloc” The server failed to allocate the requested resource or server
memory.
“BadAtom” A value for an Atom argument does not name a defined
Atom.
“BadValue” Some numeric value falls outside the range of values

See also

accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error. ‘

“BadWindow” A value for a Window argument does not name a defined
Window.

410

XAllocClassHint(XS), XAllocIconSize(XS), XAllocSizeHints(XS),
XAllocWMHints(XS), XSetCommand(XS), XSetTransientForHint(XS),
XSetWMClientMachine(XS), XSetWMColormapWindows(XS),
XSetWMIconName(XS), XSetWMName(XS), XSetWMProperties(XS),
XSetWMProtocols(XS), XStringListToTextProperty(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XSetTile(XS)

XSetTile

GC convenience routines

Syntax
XSetTile(display, gc, tile)
Display *display;
GC gc;
Pixmap tile;
XSetStipple(display, gc, stipple)
Display *display;
GC gc;
Pixmap stipple;
XSetTSOrigin(display, gc, ts_x_origin, ts_y_origin)
Display *display;
GC gc;
int ts_x_origin, ts_y_origin;
Arguments
display Specifies the connection to the X server.
8¢ Specifies the GC.
stipple Specifies the stipple you want to set for the specified GC.
tile Specifies the fill tile you want to set for the specified GC.
ts_x_origin
ts_y_origin Specify the x and y coordinates of the tileand stipple origin.
Description

The XSetTile function sets the fill tile in the specified GC. The tile and GC
must have the same depth, or a “BadMatch” error results.

XSetTile can generate “BadAlloc”, “BadGC”, “BadMatch”, and “BadPixmap”
errors.

The XSetStipple function sets the stipple in the specified GC. The stipple
must have a depth of one, or a “BadMatch” error results.

XSetStipple can generate “BadAlloc”, “BadGC”, “BadMatch”, and “BadPix-
map” errors. -

X Version 11 (Release 5) 6 January 1993 411

XSetTile(XS)

The XSetTSOrigin function sets the tile/stipple origin in the specified GC.
When graphics requests call for tiling or stippling, the parent’s origin will be
interpreted relative to whatever destination drawable is specified in the
graphics request.

XSetTSOrigin can generate “BadAlloc” and “BadGC” errors.

Diagnostics

See also

“BadAlloc”
“BadGC”

“BadMatch”

“BadPixmap”

The server failed to allocate the requested resource or server
memory.

A value for a GContext argument does not name a defined
GContext.

Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

A value for a Pixmap argument does not name a defined Pix-
map.

412

XCreateGC(XS), XQueryBestSize(XS), XSetArcMode(XS),
XSetClipOrigin(XS), XSetFillStyle(XS), XSetFont(XS),
XSetLineAttributes(XS), XSetState(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XSetTransientForHint(XS)

XSetTransientForHint
set or read a window's WM_TRANSIENT_FOR property

Syntax

XSetTransientForHint (display, w, prop_window)
Display *display;
Window w;
Window prop_window;

Status XGetTransientForHint(display, w, prop_window_return)
Display *display;
Window w;
Window *prop_window_return;

Arguments

display Specifies the connection to the X server.
w Specifies the window.

prop_window Specifies the window that the WM_TRANSIENT_FOR pro-
perty is to be set to.

prop_window_return
Returns the WM_TRANSIENT_FOR property of the specified
window.

Description

The XSetTransientForHint function sets the WM_TRANSIENT_FOR property
of the specified window to the specified prop_window.

XSetTransientForHint can generate “BadAlloc” and “BadWindow” errors.

The XGetTransientForHint function returns the WM_TRANSIENT_FOR pro-
perty for the specified window. It returns nonzero status on success; other-
wise it returns a zero status.

XGetTransientForHint can generate a “BadWindow” error.

Properties

WM_TRANSIENT_FOR
Setby application programs to indicate to the window man-
ager that a transient top-level window, such as a dialog box.

X Version 11 (Release 5) 6 January 1993 413

XSetTransientForHint(XS)

Diagnostics

See also

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadWindow” A value for a Window argument does not name a defined
Window.

414

XAllocClassHint(XS), XAllocIconSize(XS), XAllocSizeHints(XS),
XAllocWMHints(XS), XSetCommand(XS), XSetTextProperty(XS),
XSetWMClientMachine(XS), XSetWMColormapWindows(XS),
XSetWMIconName(XS), XSetWMN ame(XS), XSetWMProperties(XS),
XSetWMProtocols(XS), XStringListToTextProperty(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XSetWMClientMachine(XS)

XSetWMClientMachine

setorread a window's WM_CLIENT_MACHINE property

Syntax

void XSetWMClientMachine(display, w, text_prop)
Display *display;
Window w;
XText Property *text_prop;

Status XGetWMClientMachine(display, w, text_prop_return)
Display *display;
Window w;
XTextProperty *text_prop_return;

Arguments

display Specifies the connection to the X server.
text_prop Specifies the XTextProperty structure to be used.

text_prop_return
Returns the XTextProperty structure.

w Specifies the window.

Description

The XSetWMClientMachine convenience function calls XSetTextProperty to
set the WM_CLIENT_MACHINE property.

The XGetWMClientMachine convenience function performs an XGet-

TextProperty on the WM_CLIENT_MACHINE property. It returns nonzero
status on success; otherwise it returns a zero status.

Properties

WM_CLIENT_MACHINE
The string name of the machine on which the client applica-
tion is running.

See also

XAllocClassHint(XS), XAllocIconSize(XS), XAllocSizeHints(XS),
XAllocWMHints(XS), XSetCommand(XS), XSetTransientForHint(XS),
XSetTextProperty(XS), XSetWMColormapWindows(XS),

X Version 11 (Release 5) 6 January 1993 415

XSetWMClientMachine(XS)

XSetWMIconName(XS), XSetWMN ame(XS), XSetWMProperties(XS),
XSetWMProtocols(XS), XStringListToTextProperty(XS)
Xlib - C Language X Interface

416 X Version 11 (Release 5) 6 January 1993

XSetWMColormapWindows(XS)

XSetWMColormapWindows

set or read a window's WM_COLORMAP_WINDOWS property

Syntax

Status XSetWMColormapWindows(display, w, colormap_windows, count)
Display *display;
Window w;
Window *colormap_windows;
int count;

Status XGetWMColormapWindows(display, w, colormap_windows_return,
count_return)
Display *display;
Window w;
Window **colormap_windows_return;
int *count_return;

Arguments

display Specifies the connection to the X server.

colormap_windows
Specifies the list of windows.

colormap_windows_return
Returns the list of windows.

count Specifies the number of windows in the list.
count_return Returns the number of windows in the list.

w Specifies the window.

Description

The XSetWMColormapWindows function replaces the
WM_COLORMAP_WINDOWS property on the specified window with the list
of windows specified by the colormap_windows argument. It the property
does not already exist, XSetWMColormapWindows sets the
WM_COLORMAP_WINDOWS property on the specified window to the list of
windows specified by the colormap_windows argument. The property is
stored with a type of WINDOW and a format of 32. If it cannot intern the
WM_COLORMAP_WINDOWS atom, XSetWMColormapWindows returns a
zero status. Otherwise, it returns a nonzero status.

X Version 11 (Release 5) 6 January 1993 417

XSetWMColormapWindows(XS)

XSetWMColormapWindows can generate “BadAlloc” and “BadWindow”
errors.

The XGetWMColormapWindows function returns the list of window identif-
iers stored in the WM_COLORMAP_WINDOWS property on the specified win-
dow. These identifiers indicate the colormaps that the window manager may
need to install for this window. If the property exists, is of type WINDOW, is
of format 32, and the atom WM_COLORMAP_WINDOWS can be interned,
XGetWMColormapWindows sets the windows_return argument to a list of
window identifiers, sets the count_return argument to the number of elements
in the list, and returns a nonzero status. Otherwise, it sets neither of the
return arguments and returns a zero status. To release the list of window
identifiers, use XFree.

XGetWMColormapWindows can generate a “BadWindow” error.

Properties

WM_COLORMAP_WINDOWS
The list of window IDs that may need a different colormap
than that of their top-level window.

Diagnostics

See also

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadWindow” A value for a Window argument does not name a defined
Window.

418

XAllocClassHint(XS), XAllocIconSize(XS), XAllocSizeHints(XS),
XAllocWMHints(XS), XFree(XS), XSetCommand(XS),
XSetTransientForHint(XS), XSetTextProperty(XS), XSetWMClientMa-
chine(XS), XSetWMIconName(XS), XSetWMName(XS),
XSetWMProperties(XS), XSetWMProtocols(XS),
XStringListToTextProperty(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XSetWMlIconName(XS)

XSetWMiconName

set or read a window's WM_ICON_NAME property

Syntax

void XSetWMIconName(display, w, text_prop)
Display *display;
Window w;
XTextProperty *text_prop;

Status XGetWMIconName(display, w, text_prop_return)
Display *display;
Window w;
XTextProperty *text_prop_return;

XSetIconName(display, w, icon_name)
Display *display;
Window w;
char *icon_name;

Status XGetIconName(display, w, icon_name_return)
Display *display;
Window w;
char **icon_name_return;

Arguments

display Specifies the connection to the X server.

icon_name Specifies the icon name, which should be a null-terminated
string.

icon_name_return
Returns the window’s icon name, which is a null-terminated
string.

text_prop Specifies the XTextProperty structure to be used.

text_prop_return
Returns the XTextProperty structure.

w Specifies the window.

Description

The XSetWMIconName convenience function calls XSetTextProperty to set
the WM_ICON_NAME property.

X Version 11 (Release 5) 6 January 1993 419

XSetWMIconName(XS).

The XGetWMlIconName convenience function calls XGetTextProperty to
obtain the WM_ICON_NAME property. It returns nonzero status on success;
otherwise itreturns a zero status.

The XSetlconName function sets the name to be displayed in a window’s
icon.

XSetIconName can generate “BadAlloc” and “BadWindow” errors.

The XGetlconName function returns the name to be displayed in the speci-
fied window’s icon. If it succeeds, it returns nonzero; otherwise, if no icon
name has been set for the window, it returns zero. If you never assigned a
name to the window, XGetIconName sets icon_name_return to NULL. If the
data returned by the server is in the Latin Portable Character Encoding, then
the returned string is in the Host Portable Character Encoding. Otherwise, the
result is implementation dependent. When finished with it, a client must free
the icon name string using XFree.

XGetIconName can generate a “BadWindow” error.

Properties

WM_ICON_NAME
Thename to be used in an icon.

Diagnostics

See also

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadWindow” A value for a Window argument does not name a defined
Window.

420

XAllocClassHint(XS), XAllocIconSize(XS), XAllocSizeHints(XS),
XAllocWMHints(XS), XFree(XS), XSetCommand(XS),
XSetTransientForHint(XS), XSetTextProperty(XS), XSetWMClientMa-
chine(XS), XSetWMColormapWindows(XS), XSetWMName(XS),
XSetWMProperties(XS), XSetWMProtocols(XS),
XStringListToTextProperty(XS)

 Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XSetWMName(XS)

XSetWMName

set or read a window's WM_NAME property

Syntax

void XSetWMName(display, w, text_prop)
Display *display;
Window w;
XTextProperty *text_prop;

Status XGetWMName(display, w, text_prop_return)
Display *display;
Window w;
XTextProperty *text_prop_return;

XStoreName (display, w, window_name)
Display *display;
Window w;
char *window_name;

Status XFetchName(display, w, window_name_return)
Display *display;
Window w;
char **window_name_return;

Arguments

display Specifies the connection to the X server.
text_prop Specifies the XTextProperty structure to be used.

text_prop_return
Returns the XTextProperty structure.

w Specifies the window.

window_name Specifies the window name, which should be a null-
terminated string.

window_name_return
Returns the window name, which is a null-terminated string.

Description

The XSetWMName convenience function calls XSetTextProperty to set the
WM_NAME property.

X Version 11 (Release 5) 6 January 1993 421

XSetWMName(XS)

The XGetWMName convenience function calls XGetTextProperty to obtain
the WM_NAME property. It returns nonzero status on success; otherwise it
returns a zero status.

The XStoreName function assigns the name passed to window_name to the
specified window. A window manager can display the window name in
some prominent place, such as the title bar, to allow users to identify win-
dows easily. Some window managers may display a window’s name in the
window’s icon, although they are encouraged to use the window’s icon name
if one is provided by the application. If the string is not in the Host Portable
Character Encoding the result is implementation dependent.

XStoreName can generate “BadAlloc” and “BadWindow” errors.

The XFetchName function returns the name of the specified window. If it
succeeds, it returns nonzero; otherwise, no name has been set for the window,
and it returns zero. If the WM_NAME property has not been set for this win-
dow, XFetchName sets window_name_return to NULL. If the data returned
by the server is in the Latin Portable Character Encoding, then the returned
string is in the Host Portable Character Encoding. Otherwise, the result is
implementation dependent. When finished with it, a client must free the win-
dow name string using XFree.

XFetchName can generate a “BadWindow” error.

Properties

WM_NAME The name of the application.

Diagnostics

See also

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadWindow” A value for a Window argument does not name a defined
Window.

422

XAllocClassHint(XS), XAllocIconSize(XS), XAllocSizeHints(XS),
XAllocWMHints(XS), XFree(XS), XSetCommand(XS),
XSetTransieritForHint(XS), XSetTextProperty(XS), XSetWMClientMa-
chine(XS), XSetWMColormapWindows(XS), XSetWMIconName(XS),
XSetWMProperties(XS), XSetWMProtocols(XS),
XStringListToTextProperty(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XSetWMProperties

XSetWMProperties(XS)

set standard window properties

Syntax

void XSetWMProperties(display, w, window_name, icon_name, argv, argc,
normal_hints, wm_hints, class_hints)

Display *display;

Window w;

XTextProperty *window_name;
XTextProperty *icon_name;
char **argv;

int argc;

XSizeHints *normal_hints;
XWMHints *wm_hints;
XClassHint *class_hints;

void XmbSetWMProperties(display, w, window_name, icon_name, argv, argc,
normal_hints, wm_hints, class_hints)

Arguments

Display *display:

Window w;

char *window_name;

char *icon_name;

char *argvl];

int argc;

XSizeHints *normal_hints;
XWMHints *wm_hints;
XClassHint *class_hints;

argc

argo
class_hints
display

icon_name

normal_hints

w

Specifies the number of arguments.

Specifies the application’s argument list.

string.

Specifies the window.

X Version 11 (Release 5) 6 January 1993

Specifies the XClassHint structure to be used.
Specifies the connection to the X server.

Specifies the icon name, which should be a null-terminated

Specifies the size hints for the window in its normal state.

423

XSetWMProperties(XS)

window_name Specifies the window name, which should be a null-
terminated string.

wm_hints Specifies the XWMHints structure to be used.

Description

424

The XSetWMProperties convenience function provides a single programming
interface for setting those essential window properties that are used for com-
municating with other clients (particularly window and session managers).

If the window_name argument is non-NULL, XSetWMProperties calls
XSetWMName, which in turn, sets the WM_NAME property (see section
14.1.4 of Xlib - C Language X Interface). If the icon_name argument is non-
NULL, XSetWMProperties calls XSetWMIconName, which sets the
WM_ICON_NAME property (see section 14.1.5 of Xlib - C Language X Interface).
If the argv argument is non-NULL, XSetWMProperties calls XSetCommand,
which sets the WM_COMMAND property (see section 14.2.1 of Xlib - C Lan-
guage X Interface). Note that an argc of zero is allowed to indicate a zero-
length command. Note also that the hostname of this machine is stored using
XSetWMClientMachine (see section 14.2.2 of Xlib - C Language X Interface).

If the normal_hints argument is non-NULL, XSetWMProperties calls
XSetWMNormalHints, which sets the WM_NORMAL_HINTS property (see
section 14.1.7 of Xlib - C Language X Interface). If the wm_hints argument is
non-NULL, XSetWMProperties calls XSetWMHints, which sets the
WM_HINTS property (see section 14.1.6 of XIib - C Language X Interface).

If the class_hints argument is non-NULL, XSetWMProperties calls
XSetClassHint, which sets the WM_CLASS property (see section 14.1.8 of Xlib
- C Language X Interface). If the res_name member in the XClassHint structure
is set to the NULL pointer and the RESOURCE_NAME environment variable is
set, then the value of the environment variable is substituted for res_name. If
the res_name member is NULL, the environment variable is not set, and argv
and argo[0] are set, then the value of argv[0], stripped of any directory pre-
fixes, is substituted for res_name.

The XmbSetWMProperties convenience function provides a simple program-
ming interface for setting those essential window properties that are used for
communicating with other clients (particularly window and session manag-
ers).

If the window_name argument is non-NULL, XmbSetWMProperties sets the
WM_NAME property. If the icon_name argument is non-NULL, XmbSetWM-
Properties sets the WM_ICON_NAME property. The window_name and
icon_name arguments are null-terminated strings in the encoding of the
current locale. If the arguments can be fully converted to the STRING encod-
ing, the properties are created with type “STRING”: otherwise, the arguments
are converted to Compound Text, and the properties are created with type
“COMPOUND_TEXT".

X Version 11 (Release 5) 6 January 1993

XSetWMProperties(XS)

If the normal_hints argument is non-NULL, XmbSetWMProperties calls
XSetWMNormalHints, which sets the WM_NORMAL_HINTS property (see
section 14.1.7 of Xlib - C Language X Interface). If the wm_hints argument is
non-NULL, XmbSetWMProperties calls XSetWMHints, which sets the
WM_HINTS property (see section 14.1.6 of Xlib - C Language X Interface).

If the argv argument is non-NULL, XmbSetWMProperties sets the
WM_COMMAND property from argo and argc. Note that an argc of 0 indi-
cates a zero-length command.

The hostname of this machine is stored using XSetWMClientMachine (see
section 14.2.2 of Xlib - C Language X Interface).

If the class_hints argument is non-NULL, XmbSetWMProperties sets the
WM_CLASS property. If the res_name member in the XClassHint structure is
set to the NULL pointer and the RESOURCE_NAME environment variable is
set, the value of the environment variable is substituted for res_name. If the
res_narmne member is NULL, the environment variable is not set, and argv and
argv|[0] are set, then the value of argo[0], stripped of any directory prefixes, is
substituted for res_name.

It is assumed that the supplied class_hints.res_name and argv, the
RESOURCE_NAME environment variable, and the hostname of this machine
are in the encoding of the locale announced for the LC_CTYPE category. (On
POSIX-compliant systems, the LC_CTYPE, else LANG environment variable).
The corresponding WM_CLASS, WM_COMMAND, and
WM_CLIENT_MACHINE properties are typed according to the local host
locale announcer. No encoding conversion is performed prior to storage in
the properties.

For clients that need to process the property text in a locale, XmbSetWMPro-
perties sets the WM_LOCALE_NAME property to be the name of the current
locale. The name is assumed to be in the Host Portable Character Encoding,
and is converted to STRING for storage in the property.

XSetWMProperties and XmbSetWMProperties can generate “BadAlloc” and
“BadWindow” errors.

Properties

WM_CLASS Set by application programs to allow window and session
managers to obtain the application’s resources from the
resource database.

WM_CLIENT_MACHINE
The string name of the machine on which the client applica-
tion is running.

X Version 11 (Release 5) 6 January 1993 425

XSetWMProperties(XS)

WM_COMMAND

The command and arguments, null-separated, used to
invoke the application.

WM_HINTS Additional hints set by the client for use by the window
manager. The C type of this property is XWMHints.

WM_ICON_NAME
Thename to be used in an icon.

WM_NAME The name of the application.

WM_NORMAL_HINTS
Size hints for a window in its normal state. The C type of
this property is XSizeHints.

Diagnostics

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XAllocClassHint(XS), XAllocIconSize(XS), XAllocSizeHints(XS),
XAllocWMHints(XS), XParseGeometry(XS), XSetCommand(XS),
XSetTransientForHint(XS), XSetTextProperty(XS), XSetWMClientMa-
chine(XS), XSetWMColormapWindows(XS), XSetWMlIconName(XS),
XSetWMName(XS), XSetWMProtocols(XS), XStringListToTextProperty(XS),
XmbTextListToTextProperty(XS)

X1ib - C Language X Interface

426 X Version 11 (Release 5) 6 January 1993

XSetWMProtocols(XS)

XSetWMProtocols

setor read a window's WM__PROTOCOLS property

Syntax
Status XSetWMProtocols(display, w, protocols, count)
Display *display;
Window w;
Atom *protocols;
int count;
Status XGetWMProtocols(display, w, protocols_return, count_return)
Display *display;
Window w;
Atom **protocols_return;
int *count_return;
Arguments
display Specifies the connection to the X server.
count Specifies the number of protocols in the list.
count_return Returns the number of protocols in the list.
protocols Specifies the list of protocols.
protocols_return
Returns the list of protocols.
Description

The XSetWMProtocols function replaces the WM_PROTOCOLS property on
the specified window with the list of atoms specified by the protocols argu-
ment. If the property does not already exist, XSetWMProtocols sets the
WM_PROTOCOLS property on the specified window to the list of atoms
specified by the protocols argument. The property is stored with a type of
ATOM and a format of 32. If it cannot intern the WM_PROTOCOLS atom,
XSetWMProtocols returns a zero status. Otherwise, it returns a nonzero
status.

XSetWMProtocols can generate “BadAlloc” and “BadWindow” errors.

The XGetWMProtocols function returns the list of atoms stored in the
WM_PROTOCOLS property on the specified window. These atoms describe
window manager protocols in which the owner of this window is willing to
participate. If the property exists, is of type ATOM, is of format 32, and the

X Version 11 (Release 5) 6 January 1993 427

XSetWMProtocols(XS)

atom WM_PROTOCOLS can be interned, XGetWMProtocols sets the
protocols_return argument to a list of atoms, sets the count_return argument
to the number of elements in the list, and returns a nonzero status. Otherwise,
it sets neither of the return arguments and returns a zero status. To release the
list of atoms, use XFree.

XGetWMProtocols can generate a “BadWindow” error.
Properties

WM_PROTOCOLS
List of atoms that identify the communications protocols
between the client and window manager in which the client
is willing to participate.

Diagnostics

“BadAlloc” The server failed to allocate the requested resource or server
memory.

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XAllocClassHint(XS), XAllocIconSize(XS), XAllocSizeHints(XS),
XAllocWMHints(XS), XFree(XS), XSetCommand(XS),
XSetTransientForHint(XS), XSetTextProperty(XS), XSetWMClientMa-
chine(XS), XSetWMColormapWindows(XS), XSetWMlIconN ame(XS),
XSetWMN ame(XS), XSetWMProperties(XS), XStringListToTextProperty(XS)
Xlib - C Language X Interface

428 X Version 11 (Release 5) 6 January 1993

XStoreBytes(XS)

XStoreBytes

manipulate cut and paste buffers

Syntax

XStoreBytes(display, bytes, nbytes)
Display *display;
char *bytes;
int nbytes;

XStoreBuffer(display, bytes, nbytes, buffer)
Display *display;
char *bytes;
int nbytes;
int buffer;

char *XFetchBytes(display, nbytes_return)
Display *display;
int *nbytes_return;

char *XFetchBuffer(display, nbytes_return, buffer)
Display *display;
int *nbytes_return;
int buffer;

XRotateBuffers(display, rotate)

Display *display;
int rotate;

Arguments

buffer Specifies the buffer in which you want to store the bytes or
from which you want the stored data returned.

bytes Specifies the bytes, which are not necessarily ASCII or null-
terminated.

display Specifies the connection to the X server.
nbytes Specifies the number of bytes to be stored.
nbytes_return Returns the number of bytes in the buffer.

rotate Specifies how much to rotate the cut buffers.

X Version 11 (Release 5) 6 January 1993 429

XStoreBytes(XS)

Description

Note that the data can have embedded null characters, and need not be null
terminated. The cut buffer’s contents can be retrieved later by any client cal-
ling XFetchBytes.

XStoreBytes can generate a “BadAlloc” error.

If an invalid buffer is specified, the call has no effect. Note that the data can
have embedded null characters, and need not be null terminated.

XStoreBuffer can generate a “BadAlloc” error.

The XFetchBytes function returns the number of bytes in the nbytes_return
argument, if the buffer contains data. Otherwise, the function returns NULL
and sets nbytes to 0. The appropriate amount of storage is allocated and the
pointer returned. The client must free this storage when finished with it by
calling XFree.

The XFetchBuffer function returns zero to the nbytes_return argument if there
is no data in the buffer or if an invalid buffer is specified.

XFetchBuffer can generate a “BadValue” error.

The XRotateBuffers function rotates the cut buffers, such that buffer 0
becomes buffer n, buffer 1 becomes n + 1 mod 8, and so on. This cut buffer
numbering is global to the display. Note that XRotateBuffers generates “Bad-
Match” errors if any of the eight buffers have not been created.

XRotateBuffers can generate a “BadMatch” error.

Diagnostics
“BadAlloc” The server failed to allocate the requested resource or server
memory.
“BadAtom” A value for an Atom argument does not name a defined
Atom.

430

“BadMatch” Some argument or pair of arguments has the correct type
and range but fails to match in some other way required by
the request.

“BadValue” Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

X Version 11 (Release 5) 6 January 1993

XStoreBytes(XS)

See also

XFree(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 431

XStoreColors(XS)

XStoreColors

set colors

Syntax

XStoreColors(display, colormap, colors, ncolors)
Display *display;
Colormap colormap;
XColor colors|]);
int ncolors;

XStoreColor(display, colormap, color)
Display *display;
Colormap colormap;
XColor *color;

XStoreNamedColor(display, colormap, color, pixel, flags)
Display *display;
Colormap colormap;
char *color;
unsigned long pixel;

int flags;
Arguments
color Specifies the pixel and RGB values or the color name string (for
example, red).
colors Specifies an array of color definition structures to be stored.

colormap Specifies the colormap.

display Specifies the connection to the X server.

flags Specifies which red, green, and blue components are set.

ncolors Specifies the number of XColor structures in the color definition
array.

pixel Specifies the entry in the colormap.

Description

The XStoreColors function changes the colormap entries of the pixel values
specified in the pixel members of the XColor structures. You specify which
color components are to be changed by setting DoRed, DoGreen, and/or
DoBlue in the flags member of the XColor structures. If the colormap is an
installed map for its screen, the changes are visible immediately.

432 X Version 11 (Release 5) 6 January 1993

XStoreColors(XS)

XStoreColors changes the specified pixels if they are allocated writable in the
colormap by any client, even if one or more pixels generates an error. If a
specified pixel is not a valid index into the colormap, a “BadValue” error
results. If a specified pixel either is unallocated or is allocated read-only, a
“BadAccess” error results. If more than one pixel is in error, the one that gets
reported is arbitrary.

XStoreColors can generate “BadAccess”, “BadColor”, and “BadValue” errors.

The XStoreColor function changes the colormap entry of the pixel value
specified in the pixel member of the XColor structure. You specified this
value in the pixel member of the XColor structure. This pixel value must be a
read/write cell and a valid index into the colormap. If a specified pixel is not
a valid index into the colormap, a “BadValue” error results. XStoreColor also
changes the red, green, and/or blue color components. You specify which
color components are to be changed by setting DoRed, DoGreen, and/or
DoBlue in the flags member of the XColor structure. If the colormap is an
installed map for its screen, the changes are visible immediately.

XStoreColor can generate “BadAccess”, “BadColor”, and “BadValue” errors.

The XStoreNamedColor function looks up the named color with respect to
the screen associated with the colormap and stores the result in the specified
colormap. The pixel argument determines the entry in the colormap. The
flags argument determines which of the red, green, and blue components are
set. You can set this member to the bitwise inclusive OR of the bits DoRed,
DoGreen, and DoBlue. If the color name is not in the Host Portable Charac-
ter Encoding the result is implementation dependent. Use of uppercase or
lowercase does not matter. If the specified pixel is not a valid index into the
colormap, a “BadValue” error results. If the specified pixel either is unallo-
cated or is allocated read-only, a “BadAccess” error results.

XStoreNamedColor can generate “BadAccess”, “BadColor”, “BadName”, and
“BadValue” errors.

Diagnostics

“BadAccess” A client attempted to free a color map entry that it did not
already allocate.

“BadAccess” A client attempted to store into a read-only color map entry.

“BadColor” A value for a Colormap argument does not name a defined
Colormap.

“BadName” A fontor color of the specified name does not exist.

“BadValue” Some numeric value falls outside the range of values

accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument’s
type is accepted. Any argument defined as a set of alterna-
tives can generate this error.

X Version 11 (Release 5) 6 January 1993 433

XStoreColors(XS)

- See also

XAllocColor(XS), XCreateColormap(XS), XQueryColoz(XS)
Xlib - C Language X Interface

434 X Version 11 (Release 5) 6 January 1993

XStringListToTextProperty(XS)

XStringListToTextProperty

convert string lists and text property structure

Syntax

Status XStringListToTextProperty(list, count, text_prop_return)
char **list;
int count;
XText Property *text_prop_return;

Status XTextPropertyToStringList (text_prop, list_return, count_return)
XTextProperty *text_prop;
char ***list_return;
int *count_return;

void XFreeStringList(list)
char **list;

Arguments

count Specifies the number of strings.

count_return Returns the number of strings.

list Specifies the list of strings to be freed.

list Specifies a list of null-terminated character strings.
list_return Returns a list of null-terminated character strings.
text_prop Specifies the XTextProperty structure to be used.

text_prop_return
Returns the XTextProperty structure.

Description

The XStringListToTextProperty function sets the specified XTextProperty to
be of type STRING (format 8) with a value representing the concatenation of
the specified list of null-separated character strings. An extra null byte (which
is not included in the nitems member) is stored at the end of the value field of
text_prop_return. The strings are assumed (without verification) to be in the
STRING encoding. If insufficient memory is available for the new value
string, XStringListToTextProperty does not set any fields in the XTextPro-
perty structure and returns a zero status. Otherwise, it returns a nonzero
status. To free the storage for the value field, use XFree.

X Version 11 (Release 5) 6 January 1993 435

XStringListToTextProperty(XS)

The XTextPropertyToStringList function returns a list of strings representing
the null-separated elements of the specified XTextProperty structure. The
data in text_prop must be of type STRING and format 8. Multiple elements of
the property (for example, the strings in a disjoint text selection) are separated
})fy NULL (encoding 0). The contents of the property are not null-terminated.

insufficient memory is available for the list and its elements, XTextProper-
tyToStringList sets no return values and returns a zero status. Otherwise, it
returns a nonzero status. To free the storage for the list and its contents, use
XFreeStringList.

The XFreeStringList function releases memory allocated by XmbTextProper-
tyToTextList and XTextPropertyToStringList, and the missing charset list
allocated by XCreateFontSet.

Structures

See also

The XTextProperty structure contains:

typedef struct {
unsigned char *value; /* property data */

Atom encoding; /* type of property */

int format; /* 8, 16, or 32 */

unsigned long nitems; /* number of items in value */
} XTextProperty;

436

XAllocClassHint(XS), XAllocIconSize(XS), XAllocSizeHints(XS),
XAllocWMHints(XS), XFree(XS), XSetCommand(XS),
XSetTransientForHint(XS), XSetTextProperty(XS), XSetWMClientMa-
chine(XS), XSetWMColormapWindows(XS), XSetWMIconName(XS),
XSetWMName(XS), XSetWMProperties(XS), XSetWMProtocols(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XStringToKeysym(XS)

XStringToKeysym

convert keysyms

Syntax

KeySym XStringToKeysym(string)
char *string;

char *XKeysymToString(keysym)
KeySym keysym;

KeySym XKeycodeToKeysym(display, keycode, index)
Display *display;
KeyCode keycode;
int index;

KeyCode XKeysymToKeycode(display, keysym)
Display *display;
KeySym keysym;

Arguments

display Specifies the connection to the X server.

index Specifies the element of KeyCode vector.

keycode Specifies the KeyCode.

keysym Specifies the KeySym that is to be searched for or converted.

string Specifies the name of the KeySym that is to be converted.

Description

Standard KeySym names are obtained from <X11/keysymdef.h> by removing
the XK_ prefix from each name. KeySyms that are not part of the Xlib stan-
dard also may be obtained with this function. Note that the set of KeySysms
that are available in this manner and the mechanisms by which Xlib obtains
them is implementation dependent.

If the keysym name is not in the Host Portable Character Encoding the result
is implementation dependent. If the specified string does not match a valid
KeySym, XStringToKeysym returns NoSymbol.

The returned string is in a static area and must not be modified. The returned
string is in the Host Portable Character Encoding. If the specified KeySym is
not defined, XKeysymToString returns a NULL.

X Version 11 (Release 5) 6 January 1993 437

XStringToKeysym(XS)

The XKeycodeToKeysym function uses internal Xlib tables and returns the
KeySym defined for the specified KeyCode and the element of the KeyCode
vector. If no symbol is defined, XKeycodeToKeysym returns NoSymbol.

If the specified KeySym is not defined for any KeyCode, XKeysymToKeycode
returns zero.

See also

XLookupKeysym(XS)
Xlib - C Language X Interface

438 X Version 11 (Release 5) 6 January 1993

XSupportsLocale(XS)

XSupportsLocale

determine locale support and configure locale modifiers

Syntax

Bool XSupportsLocale()

char *XSetLocaleModifiers(modifier_list)
char *modifier_list;

Arguments

modifier_list Specifies the modifiers.

Description

The XSupportsLocale function returns True if Xlib functions are capable of
operating under the current locale. If it returns False, Xlib locale-dependent
functions for which the XLocaleNotSupported return status is defined will
return XLocaleNotSupported. Other Xlib locale-dependent routines will
operate in the “C” locale.

XSetLocaleModifiers sets the X modifiers for the current locale setting. The
modifier_list argument is a null-terminated string of the form
“|@category=value}”, that is, having zero or more concatenated
“@category=value” entries where category is a category name and value is the
(possibly empty) setting for that category. The values are encoded in the
current locale. Category names are restricted to the POSIX Portable Filename
Character Set.

The local host X locale modifiers announcer (on POSIX-compliant systems, the
XMODIFIERS environment variable) is appended to the modifier_list to pro-
vide default values on the local host. If a given category appears more than
once in the list, the first setting in the list is used. If a given category is not
included in the full modifier list, the category is set to an implementation-
dependent default for the current locale. empty value for a category ex-
plicitly specifies the implementation-dependent default.

If the function is successful, it returns a pointer to a string. The contents of the
string are such that a subsequent call with that string (in the same locale) will
restore the modifiers to the same settings. If modifier_list is a NULL pointer,
XSetLocaleModifiers also returns a pointer to such a string, and the current
locale modifiers are not changed.

If invalid values are given for one or more modifier categories supported by
the locale, a NULL pointer is returned, and none of the current modifiers are
changed.

X Version 11 (Release 5) 6 January 1993 439

XSupportsLocale(XS)

See also

At program startup the modifiers that are in effect are unspecified until the
first successful call to set them. Whenever the locale is changed, the modifiers
that are in effect become unspecified until the next successful call to set them.
Clients should always call XSetLocaleModifiers with a non-NULL
modifier_list after setting the locale, before they call any locale-dependent
Xlib routine.

The only standard modifier category currently defined is “im”, which identi-
fies the desired input method. The values for input method are not standard-
ized. A single locale may use multiple input methods, switching input
method under user control. The modifier may specify the initial input
method in effect, or an ordered list of input methods. Multiple input methods
may be specified in a single im value string in an implementation-dependent
manner.

The returned modifiers string is owned by Xlib and should not be modified or
freed by the client. It may be freed by Xlib after the current locale or modifiers
is changed. Until freed, it will not be modified by Xlib.

440

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XSynchronize(XS)

XSynchronize

enable or disable synchronization

Syntax

int (*XSynchronize(display, onoff))()
Display *display;
Bool onoff;

int (*XSetAfterFunction(display, procedure)) ()

Display *display;
int (*procedure)();

Arguments

display Specifies the connection to the X server.
procedure Specifies the function to be called.

onoff Specifies a Boolean value that indicates whether to enable or dis-
able synchronization.

Description

The XSynchronize function returns the previous after function. If onoff is
True, XSynchronize turns on synchronous behavior. If onoff is False, XSyn-
chronize turns off synchronous behavior.

The specified procedure is called with only a display pointer. XSetAfterFunc-
tion returns the previous after function.

See also

XSetErrorHandler(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 441

XTextExtents(XS)

XTextExtents

compute or query text extents

Syntax

XTextExtents(font_struct, string, nchars, direction_return,

font_ascent_return, font_descent_return, overall_return)
XFontStruct *font_struct;

char *string;

int nchars;

int *direction_return;

int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

XTextExtentslé6(font_struct, string, nchars, direction_return,

font_ascent_return, font_descent_return, overall_return)
XFontStruct *font_struct;

XChar2b *string;

int nchars;

int *direction_return;

int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

XQueryTextExtents(display, font_ID, string, nchars, direction_return,
font_ascent_return, font_descent_return, overall_return)
Display *display;
XID font_ID;
char *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

XQueryTextExtentslé(display, font_ID, string, nchars, direction_return,

font_ascent_return, font_descent_return, overall_return)
Display *display;

XID font_ID;

XChar2b *string;

int nchars;

int *direction_return;

int *font_ascent_return, *font_descent_return;

XCharStruct *overall_return;

Arguments

direction_return Returns the value of the direction hint (FontLeftToRight or
FontRightToLeft).

display Specifies the connection to the X server.

442 X Version 11 (Release 5) 6 January 1993

XTextExtents(XS)

font_ID Specifies either the font ID or the GContext ID that contains
the font.

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

font_struct Specifies the XFontStruct structure.
nchars Specifies the number of characters in the character string.
string Specifies the character string.

overall_return Returns the overall size in the specified XCharStruct struc-
ture.

Description

The XTextExtents and XTextExtents16 functions perform the size computa-
tion locally and, thereby, avoid the round-trip overhead of XQueryTextEx-
tents and XQueryTextExtents16. Both functions return an XCharStruct struc-
ture, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all charac-
ters in the string. The descent member is set to the maximum of the descent
metrics. The width member is set to the sum of the character-width metrics of
all characters in the string. For each character in the string, let W be the sum
of the character-width metrics of all characters precedi V*% it in the string. LetL
be the left-side-bearing metric of the character plus Let R be the right-
side-bearing metric of the character plus W. The lbearing member is set to
the minimum L of all characters in the string. The rbearing member is set to
the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing,
each XChar2b structure is interpreted as a 16-bit number with bytel as the
most-significant byte. If the font has no defined default character, undefined
characters in the string are taken to have all zero metrics.

The XQueryTextExtents and XQueryTextExtents16 functions return the
bounding box of the specified 8-bit and 16-bit character string in the specified
font or the font contained in the specified GC. These functions query the X
server and, therefore, suffer the round-trip overhead that is avoided by XTex-
tExtents and XTextExtents16. Both functions return a XCharStruct structure,
whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all charac-
ters in the string. The descent member is set to the maximum of the descent
metrics. Thewidth member is set to the sum of the character-width metrics of
all characters in the string. For each character in the string, let W be the sum

X Version 11 (Release 5) 6 January 1993 443

XTextExtents(XS)

of the character-width metrics of all characters preceding it in the string. Let L
be the left-side-bearing metric of the character plus W. Let R be the right-
side-bearing metric of the character plus W. The lbearing member is set to
the minimum L of all characters in the string. The rbearing member is set to
the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing,
each XChar2b structure is interpreted as a 16-bit number with bytel as the
most-significant byte. If the font has no defined default character, undefined
characters in the string are taken to have all zero metrics.

Characters with all zero metrics are ignored. If the font has no defined
default_char, the undefined characters in the string are also ignored.

XQueryTextExtents and XQueryTextExtents16 can generate “BadFont” and
“BadGC” errors.

Diagnostics
“BadFont” A value for a Font or GContext argument does not name a
defined Font.
“BadGC” A value for a GContext argument does not name a defined
GContext.
See also

444

XLoadFont(XS), XTextWidth(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XTextWidth(XS)

XTextWidth

compute text width

Syntax

int XTextWidth(font_struct, string, count)
XFontStruct *font_struct;
char *string;
int count;

int XTextWidthlé (font_struct, string, count)
XFontStruct *font_struct;
XChar2b *string;
int count;

Arguments

count Specifies the character count in the specified string.
font_struct Specifies the font used for the width computation.

string Specifies the character string.

Description

The XTextWidth and XTextWidth16 functions return the width of the speci-
fied 8-bit or 2-byte character strings.

See also

XLoadFont(XS), XTextExtents(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 445

XTranslateCoordinates(XS)

XTranslateCoordinates

translate window coordinates

Syntax

Bool XTranslateCoordinates(display, src_w, dest_w, src_x, src_y,

dest_x_return, dest_y_return, child_return)

Display *display;

Window src_w, dest_w;

int src_x, src_y;

int *dest_x_return, *dest_y_return;
Window *child_return;

Arguments

child_return

dest_w
dest_x_return
dest_y_return
display
src_w

src_x
src_y

Description

Returns the child if the coordinates are contained in a
mapped child of the destination window.

Specifies the destination window.

Return the x and y coordinates within the destination win-
dow.

Specifies the connection to the X server.

Specifies the source window.

Specify the x and y coordinates within the source window.

If XTranslateCoordinates returns True, it takes the src_x and src_y coordi-
nates relative to the source window’s origin and returns these coordinates to
dest_x_return and dest_y_return relative to the destination window’s origin.
If XTranslateCoordinates returns False, src_w and dest_w are on different
screens, and dest_x_return and dest_y_return are zero. If the coordinates are
contained in a mapped child of dest_w, that child is returned to child_return.
Otherwise, child_return is set to None.

XTranslateCoordinates can generate a “BadWindow” error.

446

X Version 11 (Release 5) 6 January 1993

XTranslateCoordinates(XS)

Diagnostics

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 447

XUnmapEvent(XS)

XUnmapEvent

UnmapNotify event structure

Structures

See also

The structure for UnmapNotify events contains:
typedef struct (

int type; /* UnmapNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

Bool from_configure;
} XUnmapEvent;

When you receive this event, the structure members are setas follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The event member is set either to the unmapped window or to its parent,
depending on whether StructureNotify or SubstructureNotify was selected.
This is the window used by the X server to report the event. The window
member is set to the window that was unmapped. The from_configure
member is set to True if the event was generated as a result of a resizing of the
window’s parent when the window itself had a win_gravity of UnmapGrav-

ity.

448

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),
XSelectionClearEvent(XS), XSelectionEvent(XS),
XSelectionRequestEvent(XS), XVisibili tyEvent(XS)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XUnmapWindow(XS)

XUnmapWindow

unmap windows

Syntax

XUnmapWindow(display, w)
Display *display;
Window w;

XUnmapSubwindows (display, w)
Display *display;

Window w;
Arguments
display Specifies the connection to the X server.
w Specifies the window.
Description

The XUnmapWindow function unmaps the specified window and causes the
X server to generate an UnmapNotify event. If the specified window is
already unmapped, XUnmapWindow has no effect. Normal exposure pro-
cessing on formerly obscured windows is performed. Any child window will
no longer be visible until another map call is made on the parent. In other
words, the subwindows are still mapped but are not visible until the parent is
mapped. Unmapping a window will generate Expose events on windows
that were formerly obscured by it.

XUnmapWindow can generate a “BadWindow” error.

The XUnmapSubwindows function unmaps all subwindows for the specified
window in bottom-to-top stacking order. It causes the X server to generate an
UnmapNotify event on each subwindow and Expose events on formerly
obscured windows. Using this function is much more efficient than unmap-
ping multiple windows one at a time because the server needs to perform
much of the work only once, for all of the windows, rather than for each win-
dow.

XUnmapSubwindows can generate a “BadWindow” error.

Diagnostics

“BadWindow” A value for a Window argument does not name a defined
Window.

X Version 11 (Release 5) 6 January 1993 449

XUnmapWindow(XS)

See also

XChangeWindowAttributes(XS), XConfigureWindow(XS), XCre-
ateWindow(XS), XDestroyWindow(XS), XMapWindow(XS)
XRaiseWindow(XS)

Xlib - C Language X Interface

450 X Version 11 (Release 5) 6 January 1993

XVaCreateNestedList(XS)

XVaCreateNestedList

allocate a nested variable argument list

Syntax

typedef void * XVaNestedList;

XVaNestedList XVaCreateNestedList (dummy, ...)
int dummy;

Arguments

dummy Unused argument (required by ANSI C).

Specifies the variable length argument list.

Description

The XVaCreateNestedList function allocates memory and copies its argu-
ments into a single list pointer which may be used as value for arguments
requiring a list value. Any entries are copied as specified. Data passed by
reference is not copied; the caller must ensure data remains valid for the life-
time of the nested list. The list should be freed using XFree when it is no
longer needed.

See also

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 451

XVisibilityNotifyEvent(XS)

XVisibilityNotifyEvent

VisibilityNotify event structure

Structures

452

The structure for VisibilityNotify events contains:
typedef struct {

int type; /* VisibiltyNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
int state;
} XVisibilityEvent;

When you receive this event, the structure members are set as follows.

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to a
client application, it sends an XGraphicsExposeEvent structure with the type
member set to GraphicsExpose. The display member is set to a pointer to the
display the event was read on. The send_event member is set to True if the
event came from a SendEvent protocol request. The serial member is set
from the serial number reported in the protocol but expanded from the 16-bit
least-significant bits to a full 32-bit value. The window member is set to the
window that is most useful to toolkit dispatchers.

The window member is set to the window whose visibility state changes. The
state member is set to the state of the window’s visibility and can be Visibili-
tyUnobscured, VisibilityPartiallyObscured, or VisibilityFullyObscured.
The X server ignores all of a window’s subwindows when determining the
visibility state of the window and processes VisibilityNotify events accord-
ing to the following: :

¢ When the window changes state from partially obscured, fully obscured, or
not viewable to viewable and completely unobscured, the X server gen-
erates the event with the state member of the XVisibilityEvent structure
set to VisibilityUnobscured.

* When the window changes state from viewable and completely unob-
scured or not viewable to viewable and partially obscured, the X server
generates the event with the state member of the XVisibilityEvent struc-
ture set to VisibilityPartiallyObscured.

¢ When the window changes state from viewable and completely unob-
scured, viewable and partially obscured, or not viewable to viewable and
fully obscured, the X server generates the event with the state member of
the XVisibilityEvent structure set to VisibilityFullyObscured.

X Version 11 (Release 5) 6 January 1993

See also

XVisibilityNotifyEvent(XS)

XAnyEvent(XS), XButtonEvent(XS), XCreateWindowEvent(XS),
XCirculateEvent(XS), XCirculateRequestEvent(XS), XColormapEvent(XS),
XConfigureEvent(XS), XConfigureRequestEvent(XS), XCrossingEvent(XS),
XDestroyWindowEvent(XS), XErrorEvent(XS), XExposeEvent(XS),
XFocusChangeEvent(XS), XGraphicsExposeEvent(XS), XGravityEvent(XS),
XKeymapEvent(XS), XMapEvent(XS), XMapRequestEvent(XS),
XPropertyEvent(XS), XReparentEvent(XS), XResizeRequestEvent(XS),
XSelectionClearEvent(XS), XSelectionEvent(XS),
XSelectionRequestEvent(XS), XUnmapEvent(XS),

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 453

XWarpPointer(XS)

XWarpPointer

move pointer
Syntax
XWarpPointer(display, src_w, dest_w, src_x, src_y, src_width, src_height,
dest_x, dest_y)
Display *display;
Window src_w, dest_w;
int src_x, src_y;
unsigned int src_width, src_height;
int dest_x, dest_y;
Arguments
dest_w Specifies the destination window or None.
dest_x
dest_y Specify the x and y coordinates within the destination window.
display Specifies the connection to the X server.
src_x
src_y
src_width
src_height Specify a rectangle in the source window.
src_w Specifies the source window or None.
Description

If dest_w is None, XWarpPointer moves the pointer by the offsets (dest_x,
dest_y) relative to the current position of the pointer. If dest_w is a window,
XWarpPointer moves the pointer to the offsets (dest_x, dest_y) relative to the
origin of dest_w. However, if src_w is a window, the move only takes place if
the window src_w contains the pointer and if the specified rectangle of src_w
contains the pointer.

The src_x and src_y coordinates are relative to the origin of src_w. If
src_height is zero, it 8 replaced with the current height of src_w minus src_y.
If src_width is zero, it is replaced with the current width of src_w minus
src_x.

There is seldom any reason for calling this function. The pointer should nor-
mally be left to the user. If you do use this function, however, it generates
events just as if the user had instantaneously moved the pointer from one
position to another. Note that you cannot use XWarpPointer to move the

454 X Version 11 (Release 5) 6 January 1993

XWarpPointer(XS)

pointer outside the confine_to window of an active pointer grab. An attempt
to do so will only move the pointer as far as the closest edge of the confine_to

window.

XWarpPointer can generate a “BadWindow” error.

Diagnostics

“BadWindow” A value for a Window argument does not name a defined
Window.

See also

XSetInputFocus(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 ' 455

X Toolkit (Xt)

X Toolkit Intrinsics - C Language Interface
MIT X Consortium Standard
X Version 11, Release 5

Joel McCormack
Digital Equipment Corporation
Western Software Laboratory

Paul Asente
Digital Equipment Corporation
Western Software Laboratory

Ralph R. Swick

Digital Equipment Corporation
External Research Group

MIT Project Athena

Copyright © 1989 by the Massachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this documentation for any
purpose and without fee is hereby granted, provided that the above copyright
notice and this permission notice appear in all copies. MIT makes no
representations about the suitibility for any purpose of the information in this
document. This document is provided "as is" without express or implied war-
ranty.

457

Intro

Intro(Xt)

introduction to X Toolkit Intrinsics

Description

The Intrinsics and a widget set make up the X Toolkit. The Intrinsics provide
the base mechanisms necessary to build a wide variety of widget sets and
application environments. The Intrinsics is a library package layered on top
of Xlib. As such, the Intrinsics provide mechanisms (functions and structures)
for extending the basic programming abstractions provided by the X Window

System.

The following table lists each of the functions provided by the X Toolkit
Intrinsics and the manual page on which it discussed. Functions marked with

anasterisk (*) arenew to X11 Release 5.

Function Manual page

XtAddCallback XtAddCallback(Xt)
XtAddCallbacks XtAddCallback(Xt)
XtAddExposureToRegion XtAddExposureToRegion(Xt)
XtAddGrab XtAddGrab(Xt)
XtAddRawEventHandler XtAddEventHandler(Xt)

* XtAllocateGC XtAllocateGC(Xt)
XtAppAddActions XtAppAddActions(Xt)
XtAppAddConverter XtAppAddConverter(Xt)
XtAppAddInput XtAppAddInput(Xt)
XtAppAddTimeOut XtAppAddTimeOut(Xt)
XtAppAddWorkProc XtAppAddWorkProc(Xt)
XtAppCreateShell XtAppCreateShell(Xt)
XtAppError XtAppError(Xt)
XtAppErrorMsg XtAppErrorMsg(Xt)
XtAppGetErrorDatabase XtAppGetErrorDatabase(Xt)

XtAppGetErrorDatabaseText
XtAppGetSelectionTimeout
* XtApplnitialize
XtAppMainLoop
XtAppNextEvent
XtAppPeekEvent
XtAppPending
XtAppProcessEvent
XtAppSetErrorHandler
XtAppSetErrorMsgHandler
* XtAppSetFallbackResources
XtAppSetSelectionTimeout

(Continued on next page)

X Version 11 (Release 5) 6 January 1993

XtAppGetErrorDatabase(Xt)
XtAppGetSelectionTimeout(Xt)
XtApplnitialize(Xt)
XtAppNextEvent(Xt)
XtAppNextEvent(Xt)
XtAppNextEvent(Xt)
XtAppNextEvent(Xt)
XtAppNextEvent(Xt)
XtAppError(Xt)
XtAppErrorMsg(Xt)
XtAppSetFallbackResources(Xt)
XtAppGetSelectionTimeout(Xt)

459

Intro(Xt)

460

(Continued)
Function Manual page
XtAppSetWamingHandler XtAppError(Xt)
XtAppSetWamingMsgHandler XtAppErrorMsg(Xt)
XtAppWarning XtAppError(Xt)
XtAppWamingMsg XtAppErrorMsg(Xt)
XtAugmentTranslations XtParseTranslationTable(Xt)
XtBuildEventMask XtBuildEventMask(Xt)
XtCallAcceptFocus XtCallAcceptFocus(Xt)
XtCallbackExclusive XtMenuPopup(Xt)
XtCallbackNone XtMenuPopup(Xt)
XtCallbackNonexclusive XtMenuPopup(Xt)
XtCallbackPopdown XtMenuPopdown(Xt)
XtCallCallbacks XtCallCallbacks(Xt)
XtCalloc XtMalloc(Xt)
XtCheckSubclass XtClass(Xt)
XtClass XtClass(Xt)
XtCloseDisplay XtDisplaylInitialize(Xt)
XtConfigureWidget XtConfigureWidget(Xt)
XtConvert XtConvert(Xt)
XtConvertCase XtSetKeyTranslator(Xt)

XtCreateApplicationContext
XtCreateManagedWidget
XtCreatePopupShell
XtCreateWidget
XtCreateWindow
XtDatabase

XtDestroyApplicationContext

XtDestroyWidget
XtDirectConvert
XtDisownSelection
XtDispatchEvent
XtDisplay
XtDisplayInitialize
XtFree

* XtGetActionList
XtGetApplicationResources
XtGetGC
XtGetResourceList
XtGetSelectionValue
XtGetSelectionValues
XtGetSubresources
XtGetSubvalues
XtGetValues
XtHasCallbacks
XtInstallAccelerators

(Continued on next page)

XtCreateApplicationContext(Xt)

XtCreateWidget(Xt)
XtCreatePopupShell(Xt)
XtCreateWidget(Xt)
XtCreateWindow(Xt)
XtDisplayInitialize(Xt)

XtCreate ApplicationContext(Xt)

XtCreateWidget(Xt)
XtConvert(Xt)
XtOwnSelection(Xt)
XtAppNextEvent(Xt)
XtDisplay(Xt)
XtDisplayInitialize(Xt)
XtMalloc(Xt)
XtGetActionList(Xt)
XtGetSubresources(Xt)
XtGetGC(Xt)
XtGetResourceList(Xt)
XtGetSelectionValue(Xt)
XtGetSelectionValue(Xt)
XtGetSubresources(Xt)
XtSetValues(Xt)
XtSetValues(Xt)
XtCallCallbacks(Xt)
XtParseAcceleratorTable(Xt)

X Version 11 (Release 5) 6 January 1993

Intro(Xt)

(Continued)

Function Manual page
XtInstallAllAccelerators XtParseAcceleratorTable(Xt)
XtIsComposite XtClass(Xt)

XtIsManaged XtClass(Xt)

XtIsRealized XtRealizeWidget(Xt)
XtIsSensitive XtSetSensitive(Xt)
XtIsSubclass XtClass(Xt)

* XtLanguageProc XtLanguageProc(Xt) :
XtMakeGeometryRequest XtMakeGeometryRequest(Xt)
XtMakeResizeRequest XtMakeGeometryRequest(Xt)
XtMalloc XtMalloc(Xt)
XtManageChild XtManageChildren(Xt)
XtManageChildren XtManageChildren(Xt)
XtMapWidget XtMapWidget(Xt)
XtMenuPopdown XtMenuPopdown(Xt)
XtMenuPopup XtMenuPopup(Xt)
XtMergeArgLists XtSetArg(Xt)
XtMoveWidget XtConfigureWidget(Xt)
XtNameToWidget XtNameToWidget(Xt
XtNew XtMalloc(Xt) :
XtNewString XtMalloc(Xt)

XtNumber XtOffset(Xt)

XtOffset XtOffset(Xt)
XtOpenDisplay XtDisplayInitialize(Xt)
XtOverrideTranslations XtParseTranslationTable(Xt)
XtOwnSelection XtOwnSelection(Xt)
XtParent XtDisplay(Xt)

XtParseAcceleratorTable
XtParseTranslationTable
XtPopdown

XtPopup
XtQueryGeometry
XtRealizeWidget
XtRealloc
XtRegisterCaseConverter
XtReleaseGC
XtRemoveAllCallbacks
XtRemoveCallback
XtRemoveCallbacks
XtRemoveEventHandler
XtRemoveGrab
XtRemovelnput
XtRemoveRawEventHandler
XtRemoveTimeOut
XtRemoveWorkProc

(Continued on next page)

X Version 11 (Release 5) 6 January 1993

XtParseAcceleratorTable(Xt)
XtParseTranslationTable(Xt)
XtMenuPopdown(Xt)
XtMenuPopup(Xt)
XtQueryGeometry(Xt)
XtRealizeWidget(Xt)
XtMalloc(Xt)
XtSetKeyTranslator(Xt)
XtGetGC(Xt)
XtAddCallback(Xt)
XtAddCallback(Xt)
XtAddCallback(Xt)
XtAddEventHandler(Xt)
XtAddGrab(Xt)
XtAppAddInput(Xt)
XtAddEventHandler(Xt)
XtAppAddTimeOut(Xt)
XtAppAddWorkProc(Xt)

461

Intro(Xt)

See also

(Continued)
Function Manual page
XtResizeWidget XtConfigureWidget(Xt)
XtScreen XtDisplay(Xt)

* XtScreenDatabase XtScreenDatabase(Xt)
XtSetArg XtSetArg(Xt)
XtSetKeyboardFocus XtSetKeyboardFocus(Xt)
XtSetKeyTranslator XtSetKeyTranslator(Xt)
XtSetMappedWhenManaged XtMapWidget(Xt)
XtSetSensitive XtSetSensitive(Xt)
XtSetSubvalues XtSetValues(Xt)
XtSetValues XtSetValues(Xt)
XtStringConversionWarning XtStringConversionWarning(Xt)
XtSuperClass XtClass(Xt)
XtToolkitInitialize XtCreateApplicationContext(Xt)
XtTranslateCoords XtTranslateCoords(Xt)
XtTranslateKeycode XtSetKeyTranslator(Xt)
XtUninstallTranslations XtParseTranslationTable(Xt)
XtUnmanageChild XtManageChildren(Xt)
XtUnmanageChildren XtManageChildren(Xt)
XtUnmapWidget XtMapWidget(Xt)
XtUnrealizeWidget XtRealizeWidget(Xt)
XtWidgetToApplicationContext XtCreateApplicationContext(Xt)
XtWidgetToWindow XtNameToWidget(Xt)
XtWindow XtDisplay(Xt)

462

X Toolkit Intrinsics - C Language Interface

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XtTranslateCoords(Xt)

XtTranslateCoords

translate widget coordinates

Syntax

void XtTranslateCoords(w, X, y, rootx_return, rooty_return)
Widget w;

Position x, y;

Position *rootx_return, *rooty_return;

Arguments

rootx_return,
rooty_return
Returns the root-relative x and y coordinates.

XY Specify the widget-relative x and y coordinates.
w Specifies the widget.
Description

While XtTranslateCoords is similar to the Xlib XTranslateCoordinates func-
tion, it does not generate a server request because all the required information
already is in the widget’s data structures.

See also

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 463

XtAddCallback(Xt)

XtAddCallback

add and remove callback procedures

Syntax

void XtAddCal lback(w, callback_name, callback, client_data)
Widget w;

String callback_name;

XtCallbackProc callback;

XtPointer client_data;

void XtAddCallbacks(w, callback_name, callbacks)
Widget w;

String callback_name;

XtCallbackList callbacks;

void XtRemoveCallback(w, callback_name, callback, client_data)
Widget w;

String callback_name;

XtCallbackProc callback;

XtPointer client_data;

void XtRemoveCallbacks(w, callback_name, callbacks)
Widget w;

String callback_name;

XtCallbackList callbacks;

void XtRemoveAllCallbacks(w, callback_name)

Widget w;
String callback_name;

Arguments

callback Specifies the callback procedure.

callbacks Specifies the null-terminated list of callback procedures and corre-
sponding client data.

callback_name
Specifies the callback list to which the procedure is to be appended
or deleted. or the client data to match on the registered callback
procedures.

client_data
Specifies the argument that is to be passed to the specified pro-
cedure wheniit is invoked by XtCallbacks or NULL.

w Specifies the widget.

464 X Version 11 (Release 5) 6 January 1993

XtAddCallback(Xt)

Description

The XtAddCallback function adds the specified callback procedure to the
specified widget’s callback list. XtAddCallback has been superceded by
XtSetTypeConverter.

The XtAddCallbacks add the specified list of callbacks to the specified
widget’s callback list.

The XtRemoveCallback function removes a callback only if both the pro-
cedure and the client data match.

The XtRemoveCallbacks function removes the specified callback procedures
from the specified widget’s callback list.

The XtRemoveAllCallbacks function removes all the callback procedures
from the specified widget’s callback list.

See also

XtCallCallbacks(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 465

XtAddEventHandler(Xt)

XtAddEventHandler

add and remove event handlers

Syntax

void XtAddEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widget w;

EventMask event_mask;

Boolean nonmaskable;

XtEventHandler proc;

XtPointer client_data;

void XtAddRawEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widget w;

EventMask event_mask;

Boolean nonmaskable;

XtEventHandler proc;

XtPointer client_data;

void XtRemoveEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widget w;

EventMask event_mask;

Boolean nonmaskable;

XtEventHandler proc;

XtPointer client_data;

void XtRemoveRawEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widget w;

EventMask event_mask;

Boolean nonmaskable;

XtEventHandler proc;

XtPointer client_data;

Arguments

client_data Specifies additional data to be passed to the client’s event
handler.

event_mask Specifies the event mask for which to call or unregister this pro-
cedure.

nonmaskable
Specifies a Boolean value that indicates whether this procedure
should be called or removed on the nonmaskable events (Gra-
phicsExpose, NoExpose, SelectionClear, SelectionRequest,
SelectionNotify, ClientMessage, and MappingNotify).

466 X Version 11 (Release 5) 6 January 1993

XtAddEventHandler(Xt)

proc Specifies the procedure that is to be added or removed.
w Specifies the widget for which this event handler is being
registered.
Description

The XtAddEventHandler function registers a procedure with the dispatch
mechanism that’is to be called when an event that matches the mask occurs
on the specified widget. If the procedure is already registered with the same
client_data, the specified mask is ORed into the existing mask. If the widget
is realized, XtAddEventHandler calls XSelectInput, if necessary.

The XtAddRawEventHandler function is similar to XtAddEventHandler
except that it does not affect the widget’s mask and never causes an XSelect-
Input for its events. Note that the widget might already have those mask bits
set because of other nonraw event handlers registered on it.

The XtRemoveEventHandler stops the specified procedure from being called
in response to the specified events. A handler is removed if both the pro-
cedure proc and client_data match a registered handler/data pair.

The XtRemoveRawEventHandler function stops the specified procedure
from receiving the specified events. Because the procedure is a raw event
handler, this does not affect the widget’s mask and never causes a call on
XSelectInput.

See also

XtAppNextEvent(Xt) and XtBuildEventMask(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 467

XtAddExposureToRegion(Xt)

XtAddExposureToRegion

merge exposure events into a region

Syntax
void XtAddExposureToRegion(event, region)
XEvent event;
Region region;
Arguments
event Specifies a pointer to the Expose or GraphicsExpose event.
region Specifies theregion object (as defined in <X11/Xutil.h>).
Description
The XtAddExposureToRegion function computes the union of the rectangle
defined by the exposure event and the specified region. Then, it stores the
results back in region. If the event argument is not an Expose or Graphics-
Expose event, XtAddExposureToRegion returns without an error and without
modifying region.
This function is used by the exposure compression mechanism. See Section
7.10.3 of X Toolkit Intrinsics - C Language Interface.
See also
X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface
468 X Version 11 (Release 5) 6 January 1993

XtAddGrab(Xt)

XtAddGrab

redirect user input to a modal widget

Syntax

void XtAddGrab(w, exclusive, spring_loaded)
Widget w;

Boolean exclusive;

Boolean spring_loaded;

void XtRemoveGrab(w)
Widget w;

Arguments

exclusive Specifies whether user events should be dispatched exclusively to
this widget or also to previous widgets in the cascade.

spring_loaded
Specifies whether this widget was popped up because the user
pressed a pointer button.

w Specifies the widget to add to or remove from the modal cascade.

Description

The XtAddGrab function appends the widget (and associated parameters) to
the modal cascade and checks that exclusive is True if spring_loaded is True.
If these are not True, XtAddGrab generates an error.

The modal cascade is used by XtDispatchEvent when it tries to dispatch a
user event. When at least one modal widget is in the widget cascade,
XtDispatchEvent first determines if the event should be delivered. It starts at
the most recent cascade entry and follows the cascade up to and including the
most recent cascade entry added with the exclusive parameter True.

This subset of the modal cascade along with all descendants of these widgets
comprise the active subset. User events that occur outside the widgets in this
subset are ignored or remapped. Modal menus with submenus generally add
a submenu widget to the cascade with exclusive False. Modal dialog boxes
that need to restrict user input to the most deeply nested dialog box add a
subdialog widget to the cascade with exclusive True. User events that occur
within the active subset are delivered to the appropriate widget, which is usu-
ally a child or further descendant of the modal widget.

Regardless of where on the screen they occur, remap events are always
delivered to the most recent widget in the active subset of the cascade that has
spring_loaded True, if any such widget exists.

X Version 11 (Release 5) 6 January 1993 469

XtAddGrab(Xt)

The XtRemoveGrab function removes widgets from the modal cascade start-
ing at the most recent widget up to and including the specified widget. It
issues an error if the specified widgetis not on the modal cascade.

See also

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

470 X Version 11 (Release 5) 6 January 1993

XtAllocateGC(Xt)

XtAllocateGC

obtain shareable GC with modifable fields

Syntax
GC XtAllocateGC(object, depth, value_mask, values, dynamic_mask, unused_mask)
Widget object;
Cardinal depth;
XtGCMask value_mask;
XGCValues *values;
XtGCMask dynamic_mask;
XtGCMask unused_mask;
Arguments
depth Specifies the depth for which the returned GC is valid, or 0.
dynamic_mask
Specifies fields of the GC that may be modified by the caller.
object Specifies an object, giving the screen for which the returned GC is
valid. Must be of class Object or any subclass thereof.
unused_mask
Specifies fields of the GC that will not be used by the caller.
values Specifies the values for the initialized fields.
value_mask
Specifies fields of the GC that are initialized from values.
Description

The Intrinsics provide a mechanism whereby cooperating objects can share a
graphics context (GC), thereby reducing both the number of GCs created and
the total number of server calls in any given application. The mechanism is a
simple caching scheme and allows for clients to declare both modifiable and
nonmodifiable fields of the shared GCs.

The XtAllocateGC function returns a shareable GC that may be modified by
the client. The object field of the specified widget or of the nearest widget
ancestor of the specified object and the specified depth argument supply the
root and drawable depths for which the GC is to be valid. If depth is zero the
depth is taken from the depth field of the specified widget or of the nearest
widget ancestor of the specified object.

X Version 11 (Release 5) 6 January 1993 471

XtAllocateGC(Xt)

See also

The value_mask argument specifies fields of the GC that will be initialized
with the respective member of the values structure. The dynamic_mask argu-
ment specifies fields that the caller intends to modify during program execu-
tion. The caller must insure that the corresponding GC field is set prior to
each use of the GC. The unused_mask argument specifies fields of the GC
that are of no interest to the caller. The caller may make no assumptions
about the contents of any fields specified in unused_mask. The caller may
assume that at all times all fields not specified in either dynamic_mask or
unused_mask have their default value if not specified in value_mask or the
value specified by values. If a field is specified in both value_mask and
dynamic_mask, the effect is as if it were specified only in dynamic_mask and
then immediately set to the value in values. If a field is set in unused_mask
and also in either value_mask or dynamic_mask, the specification in
unused_mask is ignored.

XtAllocateGC tries to minimize the number of unique GCs created by com-
paring the arguments with those of previous calls and returning an existing
GC when there are no conflicts. XtAllocateGC may modify and return an
existing GC if it was allocated with a nonzero unused_mask.

472

XtGetGC(Xt), and XtCreateGC(XS).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XtAppAddActions(Xt)

XtAppAddActions

register an action table

Syntax

void XtAppAddActions (app_context, actions, num_actions)
XtAppContext app_context;

XtActionList actions;

Cardinal num_actions;

Arguments

app_context
Specifies the application context.

actions Specifies the action table to register.

num_args Specifies the number of entries in this action table.

Description

The XtAppAddActions function adds the specified action table and registers
it with the translation manager.

See also

XtParseTranslationTable(Xt) and XtGetActionList(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 473

XtAppAddConverter(Xt)

XtAppAddConverter

register resource converter

Syntax

void XtAppAddConverter (app_context, from_type, to_type, converter,
convert_args, num_args)

XtAppContext app_context;

String from_type;

String to_type;

XtConverter converter;

XtConvertArgList convert_args;

Cardinal num_args;

Arguments

app_context
Specifies the application context.

converter Specifies the type converter procedure.

convert_args
Specifies how to compute the additional arguments to the con-
verter or NULL.

from_type Specifies the source type.

num_args Specifies the number of additional arguments to the converter or
zero.

to_type Specifies the destination type.

Description

The XtAppAddConverter registers the specified resource converter.

See also

XtConvert(Xt) and XtStringConversionWarning(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

474 X Version 11 (Release 5) 6 January 1993

XtAppAddInput(Xt)

XtAppAddinput

register or remove an input source

Syntax
XtInputId XtAppAddInput (app_context, source, condition, proc, client_data)
XtAppContext app_context;
int source;
XtPointer condition;
XtInputCallbackProc proc;
XtPointer client_data;
void XtRemovelnput (id)
XtInputld id;
Arguments
app_context
Specifies the application context that identifies the application.
client_data
Specifies the argument. that is to be passed to the specified pro-
cedure when input is available.
condition Specifies the mask that indicates a read, write, or exception condi-
tion or some operating system dependent condition.
id Specifies the ID returned from the corresponding XtAppAddInput
call.
proc Specifies the procedure that is to be called when input is available.
source Specifies the source file descriptor on a UNIX-based system or
other operating system dependent device specification.
Description

The XtAppAddInput function registers with the Intrinsics read routine a new
source of events, which is usually file input but can also be file output. Note
that file should be loosely interpreted to mean any sink or source of data.
XtAppAddInput also specifies the conditions under which the source can
generate events. When input is pending on this source, the callback pro-
cedure is called.

X Version 11 (Release 5) 6 January 1993 475

XtAppAddInput(Xt)

See also

The legal values for the condition argument are operating-system dependent.
On a UNIX-based system, the condition is some union of XtInputReadMask,
XtInputWriteMask, and XtInputExceptMask. The XtRemovelnput function
causes the Intrinsics read routine to stop watching for input from the input
source.

476

XtAppAddTimeOut(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XtAppAddTimeOut(Xt)

XtAppAddTimeOut, XtRemoveTimeOut

register and remove timeouts

Syntax

XtIntervalld XtAppAddTimeOut (app_context, interval, proc, client_data)
XtAppContext app_context;

unsigned long interval;

XtTimerCal lbackProc proc;

XtPointer client_data;

void XtRemoveTimeOut (timer)
XtIntervalld timer;

Arguments

app_context
Specifies the application context for which the timer is to be set.

client_data
Specifies the argument that is to be passed to the specified pro-
cedure whenit is called.

interval Specifies thetime interval in milliseconds.

proc Specifies the procedure that is to be called when time expires.
timer Specifies the ID for the timeout request to be destroyed.
Description

See also

The XtAppAddTimeOut function creates a timeout and returns an identifier
for it. The timeout value is set to interval. The callback procedure is called
when the time interval elapses, and then the timeout is removed.

The XtRemoveTimeOut function removes the timeout. Note that timeouts
are automatically removed once they trigger.

XtAppAddInput(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 477

XtAppAddWorkProc(Xt)

XtAppAddWorkProc

add and remove background processing procedures

Syntax

XtWorkProcld XtAppAddWorkProc (app_context, proc, client_data)
XtAppContext app_context;

XtWorkProc proc;

XtPointer client_data;

void XtRemoveWorkProc (id)
XtWorkProcld id;

Arguments
app_context
Specifies the application context that identifies the application.
client_data
Specifies the argument that is to be passed to the specified pro-
cedure wheniit is called.
proc Specifies the procedure that is to be called when the application is
idle.
id Specifies which work procedure to remove.
Description

The XtAppAddWorkProc function adds the specified work procedure for the
application identified by app_context.

The XtRemoveWorkProc function explicitly removes the specified back-
ground work procedure.

See also
XtAppNextEvent(Xt)
X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface
478 X Version 11 (Release 5) 6 January 1993

XtAppCreateShell(Xt)

XtAppCreateShell

create top-level widget instance

Syntax
Widget XtAppCreateShell (application_name, application_class, widget_class,
display, args, num_args)
String application_name;
String application_class;
WidgetClass widget_class;
Display display;
ArgList args;
Cardinal num_args;
Arguments
application_class
Specifies the class name of this application.
application_name
Specifies the name of the application instance.
args Specifies the argument list in which to set in the WM_COMMAND
property.
display Specifies the display from which to get the resources.
num_args Specifies the number of arguments in the argument list.
widget_class
Specifies the widget class that the application top-level widget
should be.
Description

The XtAppCreateShell function saves the specified application name and
application class for qualifying all widget resource specifiers. The application
name and application class are used as the left-most components in all widget
resource names for this application. XtAppCreateShell should be used to cre-
ate a new logical application within a program or to create a shell on another
display. In the first case, it allows the specification of a new root in the
resource hierarchy. In the second case, it uses the resource database associ-
ated with the other display.

Note that the widget returned by XtAppCreateShell has the WM_COMMAND
and WM_CLASS properties set for window and session managers if the speci-
fied widget_class is a subclass of ApplicationsShell (see Chapter 4 of X Toolkit
Intrinsics - C Language Interface).

X Version 11 (Release 5) 6 January 1993 479

XtAppCreateShell(Xt)

See also

XtApplnitialize(Xt) and XtCreateWidget(Xt)

X Toolkit Intrinsics - C Language Interface
X1ib - C Language X Interface

480 g X Version 11 (Release 5) 6 January 1993

XtAppError(Xt)

XtAppError, XtAppSetErrorHandler,
XtAppSetWarningHandler, XtAppWarning

low-level error handlers

Syntax
void XtAppError (app_context, message)
XtAppContext app_context;
String message;
void XtAppSetErrorHandler ‘(app_context, handler)
XtAppContext app_context;
XtErrorHandler handler;
void XtAppSetWarningHandler (app_context, handler)
XtAppContext app_context;
XtErrorHandler handler;
void XtAppWarning (app_context, message)
XtAppContext app_context;
String message;
Arguments
app_context
Specifies the application context.
message Specifies the nonfatal error message that is to be reported.
handler Specifies the new fatal error procedure, which should not return,
or the nonfatal error procedure, which usually returns.
message Specifies the message that is to be reported.
Description

The XtAppError function calls the installed error procedure and passes the
specified message.

The XtAppSetErrorHandler function registers the specified procedure, which
is called when a fatal error condition occurs.

The XtAppSetWamingHandler registers the specified procedure, which is
called when a nonfatal error condition occurs.

The XtAppWarning function calls the installed nonfatal error procedure and
passes the specified message.

X Version 11 (Release 5) 6 January 1993 481

XtAppError(Xt)

See also

XtAppGetErrorDatabase(Xt) and XtAppErrorMsg(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

482 X Version 11 (Release 5) 6 January 1993

XtAppErrorMsg(Xt)

XtAppErrorMsg

high-level error handlers

Syntax

void XtAppErrorMsg (app_context, name, type, class, default, params,
num_params)

XtAppContext app_context;

String name;

String type;

String class;

String default;

String params;

Cardinal num_params;

void XtAppSetErrorMsgHandler (app_context, msg_handler)
XtAppContext app_context;
XtErrorMsgHandler msg_handler;

void XtAppSetWarningMsgHandler (app_context, msg_handler)
XtAppContext app_context;
XtErrorMsgHandler msg_handler;

void XtAppWarningMsg (app_context, name, type, class, default, params,
num_params)

XtAppContext app_context;

String name;

String type;

String class;

String default;

String params;

Cardinal num_params;

Arguments

app_context
Specifies the application context.

class Specifies the resource class.

default Specifies the default message to use.
name Specifies the general kind of error.

type Specifies the detailed name of the error.

msg_handler

Specifies the new fatal error procedure, which should not return or

the nonfatal error procedure, which usually returns.

X Version 11 (Release 5) 6 January 1993

483

XtAppErrorMsg(Xt)

num_params
Specifies the number of values in the parameter list.

params Specifies a pointer to a list of values to be stored in the message.

Description

See also

The XtAppErrorMsg function calls the high-level error handler and passes the
specified information.

The XtAppSetErrorMsgHandler function registers the specified procedure,
which is called when a fatal error occurs.

The XtAppSetWamingMsgHandler function registers the specified pro-
cedure, whichis called when a nonfatal error condition occurs.

The XtAppWamingMsg function calls the high-level errorhandler and passes
the specified information.

484

XtAppGetErrorDatabase(Xt) and XtAppError(Xt).

X Toolkit Intrinsics - C Language Interface
X1ib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XtAppGetErrorDatabase(Xt)

XtAppGetErrorDatabase

obtain error database or message

Syntax

XrmDatabase *XtAppGetErrorDatabase (app_context)
XtAppContext app_context;

void XtAppGetErrorDatabaseText (app_context, name, type, class, default,
buffer_return, nbytes, database)

XtAppContext app_context;

String name, type, class;

String default;

string buffer_return;

int nbytes;

XrmDatabase database;

Arguments

app_context
Specifies the application context.

buffer_return
Specifies the buffer into which the error message is to be returned.

class Specifies the resource class of the error message.

database Specifies the name of the alternative database that is to be used or
NULL if the application’s database is to be used.

default Specifies thedefault message to use.

name, -

type Specifies the name and type that are concatenated to form the
resource name of the error message.

nbytes Specifies the size of the buffer in bytes.

Description

The XtAppGetErrorDatabase function returns the address of the error data-
base. The Intrinsics do a lazy binding of the error database and do not merge
in the database file until the first call to XtAppGetErrorDatabaseText.

The XtAppGetErrorDatabaseText returns the appropriate message from the
error database or returns the specified default message if one is not found in
the error database.

X Version 11 (Release 5) 6 January 1993 485

XtAppGetErrorDatabase(Xt)

See also

XtAppError(Xt) and XtAppErrorMsg(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

486 X Version 11 (Release 5) 6 January 1993

XtAppGetSelectionTimeout(Xt)

XtAppGetSelectionTimeout

set and obtain selection timeout values

Syntax

unsigned int XtAppGetSelectionTimeout (app_context)
XtAppContext app_context;

void XtAppSetSelectionTimeout (app_context, timeout)

XtAppContext app_context;
unsigned long timeout;

Argumenfs

app_context
Specifies the application context.

timeout Specifies the selection timeout in milliseconds.

Description

The XtAppGetSelectionTimeout function returns the current selection
timeout value, in milliseconds. The selection timeout is the time within which
the two communicating applications must respond to one another. The initial
timeout value is set by the selectionTimeout application resource, or, if selec-
tionTimeout is not specified, it defaults to five seconds.

The XtAppSetSelectionTimeout function sets the Intrinsics’s selection
timeout mechanism. Note that most applications should not set the selection
timeout.

See also

XtOwnSelection(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 487

XtApplnitialize(Xt)

XtApplnitialize

initialize application convenience procedure

Syntax
Widget XtApplnitialize(app_context_return, application_class, options,
num_options, argc_in_out, argv_in_out, fallback_resources, args,
num_args)
Xt AppContext *app_context_return;
String application_class;
XrmOpt ionDescList options;
Cardinal num_options;
int *argc_in_out;
String *argv_in_out;
String *fallback_resources;
ArglList args;
Cardinal num_args;
Arguments
app_context_return
Returns the application context, if non-NULL.
application_class
Specifies the class name of the application.
options Specifies the command line options table.
num_options
Specifies the number of entries in options.
argc_in_out
Specifies a pointer to the number of command line arguments.
argo_in_out
Specifies a pointer to the command line arguments.
fallback_resources
Specifies resource values to be used if the application class
resource file cannot be opened or read, or NULL.
args Specifies the argument list to override any other resource specifi-
cations for the created shell widget.
num_args Specifies the number of entries in the argument list.
488 X Version 11 (Release 5) 6 January 1993

XtApplnitialize(Xt)

Description

See also

To initialize the Intrinsics internals, create an application context, open and
initialize a display, and create the initial application shell instance, an applica-
tion may use the convenience procedure XtApplnitialize which combines the
functions of XtToolkitInitialize, XtCreateApplicationContext, XtDis-
playInitialize or XtOpenDisplay, and XtAppCreateShell.

XtApplnitialize calls XtToolkitInitialize followed by XtCre-
ateApplicationContext, then calls XtOpenDisplay with display_string NULL
and application_name NULL, and finally calls XtAppCreateShell with
application_name NULL, widget_class applicationShellWidgetClass, and
the specified args and num_args and returns the created shell. The modified
argc and argv returned by XtDiplaylInitialize are returned in argc_in_out and
argvu_in_out. If app_context_returns is not NULL, the created application
context is also returned. If the display specified by the command line cannot
be opened, and error message is issued and XtAppInitialize terminates the
application. If fallback_resources is non-NULL, XtAppSetFallbackResources
is called with the value prior to call XtOpenDisplay.

XtAppCreateShell(Xt), XtCreateApplicationContext(Xt) and XtDis-
playInitialize(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 489

XtAppNextEvent(Xt)

XtAppNextEvent

query and process events and input

Syntax

void XtAppNextEvent (app_context, event_return)
XtAppContext app_context;
XEvent event_return;

Boolean XtAppPeekEvent (app_context, event_return)
XtAppContext app_context;
XEvent event_return;

Xt InputMask XtAppPending (app_context)
XtAppContext app_context;

void XtAppProcessEvent (app_context, mask)
XtAppContext app_context;
Xt InputMask mask;

Boolean XtDispatchEvent (event)
XEvent event;

void XtAppMainLoop (app_context)
XtAppContext app_context;

Arguments

app_context
Specifies the application context that identifies the application.

event Specifies a pointer to the event structure that is to be dispatched to
the appropriate event handler.

event_retumn
Returns the event information to the specified event structure.

mask Specifies what types of events to process. The mask is the bitwise
inclusive OR of any combination of XttIMXEvent, XtIMTimer, and
XtIMAlternateInput. As a convenience, the XtToolkit defines the
symbolic name XtIMAII to be the bitwise inclusive OR of all event

types.

490 X Version 11 (Release 5) 6 January 1993

XtAppNextEvent(Xt)

Description

If no input is on the X input queue, XtAppNextEvent flushes the X output
buffer and waits for an event while looking at the other input sources and
timeout values and calling any callback procedures triggered by them. This
wait time can be used for background processing (see Section 7.9 of X Toolkit
Intrinsics - C Language Interface).

If there is an event in the queue, XtAppPeekEvent fills in the event and
returns a nonzero value. If no X input is on the queue, XtAppPeekEvent
flushes the output buffer and blocks until input is available (possibly calling
some timeout callbacks in the process). If the input is an event,
XtAppPeekEvent fills in the event and returns a nonzero value. Otherwise,
the input is for an alternate input source, and XtAppPeekEvent returns zero.

The XtAppPending function returns a nonzero value if there are events pend-
ing from the X server, timer pending, or other input sources pending. The
value returned is a bit mask that is the OR of XtIMXEvent, XtIMTimer, and
XtIMAIlternateInput (see XtAppProcessEvent). If there are no events pend-
ing, XtAppPending flushes the output buffer and returns zero.

The XtAppProcessEvent function processes one timer, alternate input, or X
event. If there is nothing of the appropriate type to process, XtAppPro-
cessEvent blocks until there is. If there is more than one type of thing avail-
able to process, it is undefined which will get processed. Usually, this pro-
cedure is not called by client applications (see XtAppMainLoop). XtAppPro-
cessEvent processes timer events by calling any appropriate timer callbacks,
alternate input by calling any appropriate alternate input callbacks, and X
events by calling XtDispatchEvent.

When an X event is received, it is passed to XtDispatchEvent, which calls the
appropriate event handlers and passes them the widget, the event, and
client-specific data registered with each procedure. If there are no handlers
for that event registered, the event is ignored and the dispatcher simply
returns. The order in which the handlers are called is undefined.

The XtDispatchEvent function sends those events to the event handler func-
tions that have been previously registered with the dispatch routine.
XtDispatchEvent returns True if it dispatched the event to some handler and
False if it found no handler to dispatch the event to. The most common use of
XtDispatchEvent is to dispatch events acquired with the XtAppNextEvent
procedure. However, it also can be used to dispatch user-constructed events.
XtDispatchEvent also is responsible for implementing the grab semantics for
XtAddGrab.

The XtAppMainLoop function first reads the next incoming X event by cal-
ling XtAppNextEvent and then it dispatches the event to the appropriate
registered procedure by calling XtDispatchEvent. This constitutes the main
loop of XtToolkit applications, and, as such, it does not return. Applications
are expected to exit in response to some user action. There is nothing special
about XtAppMainLoop; it is simply an infinite loop that calls

X Version 11 (Release 5) 6 January 1993 491

XtAppNextEvent(Xt)

See also

XtAppNextEvent and then XtDispatchEvent.

Applications can provide their own version of this loop, which tests some glo-
bal termination flag or tests that the number of top-level widgets is larger
than zero before circling back to the call to XtAppNextEvent

492

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XtAppSetFallbackResources(Xt)

XtAppSetFallbackResources

specify default set of resource values

Syntax

void XtAppSetFallbackResources(app_context, specification_list)
XtAppContext app_context;
String *specification_list;

Arguments

‘app_context
Specifies the application context in which the fallback specifica-

tions will be used.

specification_list
Specifies a NULL-terminated list of resource specifications to
preload the database, or NULL.

Description

The XtAppSetFallbackResources function specifies a default set of resource
values that will be used to initialize the resource database if no application-
specific class resource file is found.

Each entry in specification_list points to a string in the format of
XrmPutLineResource. The resource specifications in specification_list will be
merged into the screen resource database in place of the application-specific
class resource file if, following a call to XtAppSetFallbackResources when a
resource database is being created for a particular screen, the Intrinsics are not
able to find or read an application-specific class resource file and specifica-
tion_list is not NULL.

XtAppSetFallbackResources is not required to copy specification_list. The
caller must ensure that the contents of the list and of the strings addressed by
the list, remain valid until all displays are initialized or until XtAppSet-
FallbackResources is called again. The value NULL for specification_list
removes any previous fallback resource specification for the application con-
text. The intended use for fallback resources is to provide a minimal number
of resources that will make the application usable (or at least terminate with
helpful diagnostic messages) when some problem exists in finding and load-
ing the application defaults file.

X Version 11 (Release 5) 6 January 1993 493

XtAppSetFallbackResources(Xt)

See also

XtApplnitialize(Xt) and XtDisplayInitialize(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

494 X Version 11 (Release 5) 6 January 1993

XtBuildEventMask(Xt)

XtBuildEventMask

retrieve a widget's event mask
Syntax
EventMask XtBuildEventMask (w)
Widget w;
Arguments
w Specifies the widget.
Description

The XtBuildEventMask function returns the event mask representing the log-
ical OR of all event masks for event handlers registered on the widget with
XtAddEventHandler and all event translations, including accelerators,
installed on the widget. This is the same event mask stored into the XSetWin-
dowAttributes structure by XtRealizeWidget and sent to the server when
event handlers and translations are installed or removed on the realized
widget.

See also

XtAddEventHandler(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 495

XtCall AcceptFocus(Xt)

XtCaliAcceptFocus

call a widget's accept_focus procedure

Syntax

Boolean XtCallAcceptFocus(w, time)
Widget w;
Time time;

Arguments

time Specifies the X time of the event that is causing the accept focus.

w Specifies the widget.

Description

The XtCallAcceptFocus function calls the specified widget’s accept_focus
procedure, passing it the specified widget and time, and returns what the
accept_focus procedure returns. If accept_focus is NULL, XtCallAcceptFocus
returns False.

See also

XtSetKeyboardFocus(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

496 X Version 11 (Release 5) 6 January 1993

XtCallCallbacks(Xt)

XtCallCallbacks

process callbacks

Syntax

void XtCallCallbacks(w, callback_name, call_data)
Widget w;

String callback_name;

XtPointer call_data;

typedef enum {XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome)
XtCallbackStatus;

XtCallbackStatus XtHasCallbacks(w, callback_name)
Widget w;
String callback_name;

Arguments

callback_name
Specifies the callback list to be executed or checked.

call_data Specifies a callback-list specific data value to pass to each of the
callback procedure in the list.

w Specifies the widget.

Description

See also

The XtCallCallbacks function calls each procedure that is registered in the
specified widget’s callback list.

The XtHasCallbacks function first checks to see if the widget has a callback
list identified by callback_name. If the callback list does not exist, XtHasCall-
backs returns XtCallbackNoList. If the callback list exists but is empty, it
returns XtCallbackHasNone. If the callback list exists and has at least one
callback registered, it returns XtCallbackHasSome.

XtAddCallback(Xt)

X Toolkit Intrinsics - C Language Interface
X1ib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 497

XtClass(Xt)

XtClass

obtain andverify a widget's class

Syntax

WidgetClass XtClass (w)
Widget w;

WidgetClass XtSuperclass (w)
Widget w;

Boolean XtIsSubclass (w, widget_class)
Widget w;
WidgetClass widget_class;

void XtCheckSubclass (w, widget_class, message)
Widget w;

WidgetClass widget_class;

String message;

Boolean XtIsComposite (w)
Widget w;

Boolean XtIsManaged (w)
Widget w;

Arguments

w Specifies the widget.

widget_class
Specifies the widget class.

message Specifies the message that is to be used.

Description

498

The XtClass functionreturns a pointer to the widget’s class structure.

The XtSuperclass function returns a pointer to the widget’s superclass class
structure.

The XtIsSubclass function returns True if the class of the specified widget is
equal to or is a subclass of the specified widget class. The specified widget
can be any number of subclasses down the chain and need not be an immedi-
ate subclass of the specified widget class. Composite widgets that need to re-
strict the class of the items they contain can use XtIsSubclass to find out if a
widget belongs to the desired class of objects.

X Version 11 (Release 5) 6 January 1993

See also

XtClass(Xt)

The XtCheckSubclass macro determines if the class of the specified widget is
equal to or is a subclass of the specified widget class. The widget can be any
number of subclasses down the chain and need not be an immediate subclass
of the specified widget class. If the specified widget is not a subclass,
XtCheckSubclass constructs an error message from the supplied message, the
widget’s actual class, and the expected class and calls XtErrorMsg. XtCheck-
Subclass should be used at the entry point of exported routines to ensure that
the client has passed in a valid widget class for the exported operation.

XtCheckSubclass is only executed when the widget has been compiled with
the compiler symbol DEBUG defined; otherwise, it is defined as the empty
stringand generates no code.

The XtIsComposite function is a convenience function that is equivalent to
XtIsSubclass with compositeWidgetClass specified.

The XtIsManaged macro (for widget programmers) or function (for applica-
tion programmers) returns True if the specified child widget is managed or
False if it is not.

XtAppErrorMsg(Xt) and XtDisplay(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Veersion 11 (Release 5) 6 January 1993 499

XtConfigureWidget(Xt)

XtConfigureWidget, XtMoveWidget,
XtResizeWidget

move and resize widgets

Syntax

void XtConfigureWidget (w, x, y, width, height, border_width)
Widget w;

Position x;

Position y;

Dimension width;

Dimension height;

Dimension border_width;

void XtMoveWidget (w, X, Yy)
Widget w;

Position x;

Position y;

void XtResizeWidget (w, width, height, border_width)
Widget w;

Dimension width;

Dimension height;

Dimension border_width;

void XtResizeWindow (w)
Widget w;

Arguments

width, height, border_width
Specify the new widget size.

w Specifies the widget.
X,y Specify the new widget x and y coordinates.
Description

500

The XtConfigureWidget function returns immediately if the specified
geometry fields are the same as the old values. Otherwise, XtConfig-
ureWidget writes the new x, y, width, height, and border_width values into
the widtﬁet and, if the widget is realized, makes an Xlib XConfigureWindow
call on the widget’s window.

X Version 11 (Release 5) 6 January 1993

XtConfigureWidget(Xt)

If either the new width or height is different from its old value, XtConfig-
ureWidget calls the widget’s resize procedure to notify it of the size change;
otherwise, it simply returns.

The XtMoveWidget function returns immediately if the specified geometry
fields are the same as the old values. Otherwise, XtMoveWidget writes the
new x and y values into the widget and, if the widget is realized, issues an
Xlib XMoveWindow call on the widget’s window.

The XtResizeWidget function returns immediately if the specified geometry
fields are the same as the old values. Otherwise, XtResizeWidget writes the
new width, height, and border_width values into the widget and, if the widget
is realized, issues an XConfigureWindow call on the widget’s window.

If the new width or height are different from the old values, XtResizeWidget
calls the widget's resize procedure to notify it of the size change.

The XtResizeWindow function calls the XConfigureWindow Xlib function to
make the window of the specified widget match its width, height, and border
width. This request is done unconditionally because there is no way to tell if
these values match the current values. Note that the widget’s resize pro-
cedure is not called.

There are very few times to use XtResizeWindow; instead, you should use
XtResizeWidget.

See also

XtMakeGeometryRequest(Xt) and XtQueryGeometry(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface.

X Version 11 (Release 5) 6 January 1993 501

XtConvert(Xt)

XtConvert

invoke resource converters

Syntax

void XtConvert (w, from_type, from, to_type, to_return)
Widget w;

String from_type;

XrmValuePtr from;

String to_type;

XrmValuePtr to_return;

void XtDirectConvert (converter, args, num_args, from, to_return)
XtConverter converter;

XrmValuePtr args;

Cardinal num_args;

XrmValuePtr from;

XrmValuePtr to_return;

Arguments

args Specifies the argument list that contains the additional arguments
needed to perform the conversion (often NULL).

converter Specifies the conversion procedure that is to be called.
from Specifies the value to be converted.

from_type Specifies the source type.

num_args Specifies the number of additional arguments (often zero).
to_type Specifies the destination type.

to_return Returnsthe converted value.

w Specifies the widget to use for additional arguments (if any are
needed).

Description

502

The XtConvert function looks up the type converter registered to convert
from_type to to_type, computes any additional arguments needed, and then
calls XtDirectConvert.

The XtDirectConvert function looks in the converter cache to see if this
conversion procedure has been called with the specified arguments. If so, it
returns a descriptor for information stored in the cache; otherwise, it calls the
converter and enters the result in the cache.

X Version 11 (Release 5) 6 January 1993

XtConvert(Xt)

Before calling the specified converter, XtDirectConvert sets the return value
size to zero and the return value address to NULL. To determine if the conver-
sion was successful, the client should check to_return.address for non-NULL.

See also

XtAppAddConverter(Xt) and XtStringConversionWarning(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 503

XtCreate ApplicationContext(Xt)

XtCreateApplicationContext

create, destroy, and obtain an application context

Syntax

XtAppContext XtCreateApplicationContext()

void XtDestroyApplicationContext (app_context)
XtAppContext app_context;

XtAppContext XtWidgetToApplicationContext (w)
Widget w;

void XtToolkitInitialize()

Arguments

app_context
Specifies the application context.

w Specifies the widget for which you want the application context.

Description

See also

The XtCreateApplicationContext function returns an application context,
which is an opaque type. Every application must have at least one applica-
tion context.

The XtDestroy ApplicationContext function destroys the specified application
context as soon as it is safe to do so. If called from with an event dispatch (for
example, a callback procedure), XtDestroyApplicationContext does not de-
stroy the application context until the dispatch is complete.

The XtWidgetToApplicationContext function returns the application context
for the specified widget.

The semantics of calling XtToolkitInitialize more than once are undefined.

504

XtApplnitialize(Xt) and XtDisplayInitialize(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XtCreatePopupShell(Xt)

XtCreatePopupShell

create a pop-up shell

Syntax

Widget XtCreatePopupShell(name, widget_class, parent, args, num_args)
String name;

WidgetClass widget_class;

Widget parent;

ArgList args;

Cardinal num_args;

Arguments
args Specifies the argument list to override the resource defaults.
name Specifies the text name for the created shell widget.

num_args Specifies the number of arguments in the argument list.
parent Specifies the parent widget.

widget_class
Specifies the widget class pointer for the created shell widget.

Description

See also

The XtCreatePopupShell function ensures that the specified class is a sub-
class of Shell and, rather than using insert_child to attach the widget to the
parent’s children list, attaches the shell to the parent’s pop-ups list directly.

A spring-loaded pop-up invoked from a translation table already must exist
at the time that the translation is invoked, so the translation manager can find
the shell by name. Pop-ups invoked in other ways can be created “on-the-fly”
when the pop-up actually is needed. This delayed creation of the shell is par-
ticularly usetul when you pop up an unspecified number of pop-ups. You can
look to see if an appropriate unused shell (that is, not currently popped up)
exists and create a new shell if needed.

XtCreateWidget(Xt), XtPopdown(Xt) and XtPopup(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 505

XtCreateWidget(Xt)

XtCreateWidget

create and destroy widgets

Syntax

Widget XtCreateWidget (name, widget_class, parent, args, num_args)
String name;

WidgetClass widget_class;

Widget parent;

ArgList args;

Cardinal num_args;

Widget XtCreateManagedWidget(name, widget_class, parent, args, num_args)
String name;

WidgetClass widget_class;

Widget parent;

ArgList args;

Cardinal num_args;

void XtDestroyWidget (w)

Widget w;
Arguments
args Specifies the argument list to override the resource defaults.
name Specifies the resource name for the created widget, which is used

for retrieving resources and, for that reason, should not be the
same as any other widget that is a child of same parent.

num_args Specifies the number of arguments in the argument list.
parent Specifies the parent widget.
w Specifies the widget.

widget_class
Specifies the widget class pointer for the created widget.

Description

506

The XtCreateWidget function performs much of the boilerplate operations of
widget creation:

e Checks to see if the class_initialize procedure has been called for this class

and for all superclasses and, if not, calls those necessary in a superclass-
to-subclass order.

X Version 11 (Release 5) 6 January 1993

XtCreateWidget(Xt)

e Allocates memory for the widget instance.

e If the parent is a subclass of constraintWidgetClass, it allocates memory
for the parent’s constraints and stores the address of this memory into the
constraints field.

¢ Initializes the core nonresource data fields (for example, parent and
visible).

e Initializes the resource fields (for example, background_pixel) by using the
resource lists specified for this class and all superclasses.

e If the parent is a subclass of constraintWidgetClass, it initializes the
resource fields of the constraints record by using the constraint resource
list specified for the parent’s class and all superclasses up to con-
straintWidgetClass.

e Calls the initialize procedures for the widget by starting at the Core initial-
ize procedure on down to the widget’s initialize procedure.

o If the parentis a subclass of compositeWidgetClass, it puts the widget into
its parent’s children list by calling its parent’s insert_child procedure. For
further information, see Section 3.5 of X Toolkit Intrinsics - C Language Inter-
face.

e If the parent is a subclass of constraintWidgetClass, it calls the constraint
initialize procedures, starting at constraintWidgetClass on down to the
parent’s constraint initialize procedure.

Note that you can determine the number of arguments in an argument list by
using the XtNumber macro. For further information, see Section 11.2 of X
Toolkit Intrinsics - C Language Interface.

The XtCreateManagedWidget function is a convenience routine that calls
XtCreateWidget and XtManageChild.

The XtDestroyWidget function provides the only method of destroying a
widget, including widgets that need to destroy themselves. It can be called at
any time, including from an application callback routine of the widget being

destroyed. This requires a two-phase destroy process in order to avoid dan-
gling references to destroyed widgets.

In phase one, XtDestroyWidget performs the following:
o If the being_destroyed field of the widget is True, it returns immediately.

¢ Recursively descends the widget tree and sets the being_destroyed field to
True for the widget and all children.

e Adds the widget to a list of widgets (the destroy list) that should be de-
stroyed when it is safe to do so.

X Version 11 (Release 5) 6 January 1993 507

XtCreateWidget(Xt)

See also

Entries on the destroy list satisfy the invariant that if w2 occurs after wl on
the destroy list then w2 is not a descendent of w1l. (A descendant refers to
both normal and pop-up children.)

Phase two occurs when all procedures that should execute as a result of the
current event have been called (including all procedures registered with the
event and translation managers), that is, when the current invocation of
XtDispatchEvent is about to return or immediately if notin XtDispatchEvent.

In phase two, XtDestroyWidget performs the following on each entry in the
destroy list:

Calls the destroy callback procedures registered on the widget (and all
descendants) in post-order (it calls children callbacks before parent call-
backs).

If the widget’s parent is a subclass of compositeWidgetClass and if the
parent is not being destroyed, it calls XtUnmanageChild on the widget
and then calls the widget’s parent’s delete_child procedure (see Section 3.4
of X Toolkit Intrinsics - C Language Interface).

If the widget’s parent is a subclass of constraintWidgetClass, it calls the
constraint destroy procedure for the parent, then the parent’s superclass,
until finally it calls the constraint destroy procedure for con-
straintWidgetClass.

Calls the destroy methods for the widget (and all descendants) in post-
order. For each such widget, it calls the destroy procedure declared in the
widget class, then the destroy procedure declared in its superclass, until
finally it calls the destroy procedure declared in the Core class record.

Calls XDestroyWindow if the widget is realized (that is, has an X win-
dow). The server recursively destroys all descendant windows.

Recursively descends the tree and deallocates all pop-up widgets, con-
straint records, callback lists and, if the widget is a subclass of composite-
WidgetClass, children.

508

XtAppCreateShell(Xt) and XtCreatePopupShell(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XtCreateWindow(Xt)

XtCreateWindow

window creation convenience function

Syntax
void XtCreateWindow(w, window_class, visual, value_mask, attributes)
Widget w;
unsigned int window_class;
Visual *visual;
XtValueMask value_mask;
XSetWindowAttributes *attributes;
Arguments
attributes Specifies the window attributes to use in the X Create Window call.
value_mask
Specifies which attribute fields to use.
visual Specifies the visual type (usually CopyFromParent).
w Specifies the widget that is used to set the x,y coordinates and so
on.
window_class
Specifies the Xlib window class (for example, InputOutput, Input-
Only, or CopyFromParent).
Description
The XtCreateWindow function calls the Xlib XCreateWindow function with
values from the widget structure and the passed parameters. Then, it assigns
the created window to the widget’s window field.
XtCreateWindow evaluates the following fields of the Core widget structure:
depth
screen
parent -> core.window
X
Y
width
height
border_width
See also

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 509

XtDisplay(Xt)

XtDisplay

obtain window information about a widget

Syntax

Display *XtDisplay(w)
Widget w;

Widget XtParent (w)
Widget w;

Screen *XtScreen(w)
Widget w;

Window XtWindow(w)
Widget w;

Arguments

w Specifies the widget.

Description

XtDisplay returns the display pointer for the specified widget.
XtParent returns the parent widget for the specified widget.
XtScreen returns the screen pointer for the specified widget.

XtWindow returns the window of the specified widget.

See also

XtClass(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

510 X Version 11 (Release 5) 6 January 1993

XtDisplayInitialize(Xt)

XtDisplaylnitialize

initialize, open, or close a display

Syntax

void XtToolkitInitialize()

void XtDisplayInitialize(app_context, display, application_name,
application_class, options, num_options,
argc, argv)

XtAppContext app_context;

Display display;

String application_name;

String application_class;

XrmOpt ionDescRec *options;

Cardinal num_options;

Cardinal *argc;

char **argv;

Display *XtOpenDisplay(app_context, display_string, application_name,
application_class, options, num_options, argc, argv)

XtAppContext app_context;

String display_string;

String application_name;

String application_class;

XrmOptionDescRec *options;

Cardinal num_options;

Cardinal *argc;

String *argv;

void XtCloseDisplay(display)
Display *display;

XrmDatabase XtDatabase(display)
Display *display;

Arguments

argc Specifies a pointer to the number of command line parameters.

argo Specifies the command line parameters.

app_context
Specifies the application context.

application_class

Specifies the class name of this application, which usually is the
generic name for all instances of this application.

X Version 11 (Release 5) 6 January 1993 511

XtDisplayInitialize(Xt)

application_name
Specifies the name of the application instance.

display Specifies the display. Note that a display can be in at most one
application context.

num_options
Specifies the number of entries in the options list.

options Specifies how to parse the command line for any application-spe-
cific resources. The options argument is passed as a parameter to
XrmParseCommand. For further information, see Xlib - C Lan-

guage X Interface.

Description

512

The XtDisplaylnitialize function builds the resource database, calls the Xlib
XrmParseCommand function to parse the command line, and performs other
per display initialization. After XrmParseCommand has been called, argc
and argv contain only those parameters that were not in the standard option
table or in the table specified by the options argument. If the modified argc is
not zero, most applications simply print out the modified argv along with a
message listing the allowable options. On UNIX-based systems, the applica-
tion name is usually the final component of argv[0]. If the synchronize
resource is True for the specified application, XtDisplayInitialize calls the
Xlib XSynchronize function to put Xlib into synchronous mode for this dis-
play connection. If the reverseVideo resource is True, the Intrinsics exchange
XtDefaultForeground and XtDefaultBackground for widgets created on this
display. (See Section 9.7.1 of X Toolkit Intrinsics - C Language Interface).

The XtOpenDisplay function calls XOpenDisplay with the specified disFlay
name. If display_string is NULL, XtOpenDisplay uses thecurrent value of the
-display option specified in argv and if no display is specified in argv, uses
the user’s default display (on UNIX-based systems, this is the value of the
DISPLAY environment variable).

If this succeeds, it then calls XtDisplayInitialize and pass it the opened dis-
play and the value of the -name option specified in argv as the application
name. If no name option is specified, it uses the application name passed to
XtOpenDisplay. If the application name is NULL, it uses the last component
of argv[0]. XtOpenDisplay returns the newly opened display or NULL if it
failed.

XtOpenDisplay is provided as a convenience to the application programmer.

The XtCloseDisplay function closes the specified display as soon as it is safe
to do so. If called from within an event dispatch (for example, a callback pro-
cedure), XtCloseDisplay does not close the display until the dispatch is com-
plete. Note thatapplications need only call XtCloseDisplay if they are to con-
tinue executing after closing the display; otherwise, they should call
XtDestroy ApplicationContext or just exit.

X Version 11 (Release 5) 6 January 1993

XtDisplayInitialize(Xt)

The XtDatabase function returns the fully merged resource database that was
built by XtDisplayInitialize associated with the display that was passed in. If
this display has not been initialized by XtDisplayInitialize, the results are not
defined.

XtToolkitInitialize initializes internal Toolkit data structures. It does not set

up an application context or open a display. The semantics of calling XtTool-
kitInitialize more than once are undefined.

See also

XtAppCreateShell(Xt), XtAppInitialize(Xt), XtCreateApplicationContext(Xt),
XtLanguageProc(Xt) and XtScreenDatabase(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 513

XtGetActionList(Xt)

XtGetActionList

retrieve list of action procedures

Syntax

void XtGetActionList(widget_class, actions_return, num_actions_return)
WidgetClass widget_class;
XtActionList *actions_return;
Cardinal *num_actions_return;

Arguments

actions_return
Returns the action list.

num_actions_return
Returns the number of action procedures declared by the class.

widget_class Specifies the widget class whose actions are to be returned.

Description

See also

Occasionally a subclass will require the pointers to one or more of its
superclass’s action procedures. This would be needed, for example, in order
to envelope the superclass’s action. To retrieve the list of action procedures
registered in the superclass’s actions field, use XtGetActionList.

XtGetActionList returns the action table defined by the specified widget
class. This table does not include actions defined by the superclasses. If
widget_class is not initialized, or is not coreWidgetClass or a subclass
thereof, or if the class does not define any actions, *actions_return will be
NULL and *num_actions_return will be zero. If *actions_return is non-NULL
the client is responsible for freeing the table using XtFree when it is no longer
needed.

514

XtAppAddActions(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XtGetGC(Xt)

XtGetGC

obtain and destroy a sharable GC

Syntax

GC XtGetGC(w, value_mask, values)
Widget w;

XtGCMask value_mask;

XGCValues *values;

void XtReleaseGC(w, gc)
Widget w;
GC gc;

Arguments

gc Specifies the GC to be deallocated.
values Specifies theactual values for this GC.

value_mask
Specifies which fields of the values are specified.

w Specifies the widget.

Description

See also

The XtGetGC function returns a sharable, read-only GC. The parameters to
this function are the same as those for XCreateGC except that a widget is
passed instead of a display. XtGetGC shares only GCs in which all values in
the GC returned by XCreateGC are the same. In particular, it does not use the
value_mask provided to determine which fields of the GC a widget considers
relevant. The value_mask is used only to tell the server which fields should
be filled in with widget data and which it should fill in with default values.
For further information about value_mask and values, see XCreateGC(XS) in
the XIib - C Language X Interface.

The XtReleaseGC function deallocates the specified shared GC.

XCreateGC(XS) and XtAllocateGC(Xt).

X Toolkit Intrinsics - C Language Interface
X1ib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 515

XtGetResourceList(Xt)

XtGetResourceList

obtain resource list

Syntax

void XtGetResourceList(class, resources_return, num_resources_return);
WidgetClass class;

XtResourcelist *resources_return;

Cardinal *num_resources_return;

Arguments

num_resources_return
Specifies a pointer to where to store the number of entries in the
resource list.

resources_return
Specifies a pointer to where to store the returned resource list. The
caller must free this storage using XtFree when done with it.

widget_class
Specifies the widget class.

Description

See also

If it is called before the widget class is initialized (that is, before the first
widget of that class has been created), XtGetResourceList returns the
resource list as specified in the widget class record. If it is called after the
widget class has been initialized, XtGetResourceList returns a merged
resource list that contains the resources for all superclasses.

516

XtGetSubresources(Xt) and XtOffset(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XtGetSelectionValue(Xt)

XtGetSelectionValue

obtain selection values

Syntax

void XtGetSelectionValue(w, selection, target, callback, client_data, time)
Widget w;

Atom selection;

Atom target;

XtSelectionCallbackProc callback;

XtPointer client_data;

Time time;

void XtGetSelectionValues(w, selection, targets, count, callback,
closures, time)

Widget w;

Atom selection;

Atom *targets;

int count;

XtSelectionCallbackProc callback;

XtPointer* closures;

Time time;

Arguments

callback Specifies the callback procedure that is to be called when the selec-
tion value has been obtained.

client_data
Specifies the argument that is to be passed to the specified pro-
cedure when it is called.

client_data
Specifies the client data (one for each target type) that is passed to
the callback procedure when it is called for that target.

count Specifies the length of the targets and client_data lists.

selection Specifies the particular selection desired (either XA_PRIMARY or
XA_SECONDARY).

target Specifies the type of the information that is needed about the
selection.

targets Specifies the types of information that is needed about the selec-
tion.

X Version 11 (Release 5) 6 January 1993 517

XtGetSelectionValue(Xt)

time Specifies the timestamp that indicates when the selection value is
desired.
w Specifies the widget that is making the request.
Description

See also

The XtGetSelectionValue function requests the value of the selection that has
been converted to the target type. The specified callback will be called some
time after XtGetSelectionValue is called; in fact, it may be called before or
after XtGetSelectionValue returns.

The XtGetSelectionValues function is similar to XtGetSelectionValue except
that it takes a list of target types and a list of client data and obtains the
current value of the selection converted to each of the targets. The effect is as
if each target were specified in a separate call to XtGetSelectionValue. The
callback is called once with the correstﬂonding client data for each target.
XtGetSelectionValues does guarantee that all the conversions will use the
same selection value because the ownership of the selection cannot change in
the middle of the list, as would be when calling XtGetSelectionValue repeat-
edly.

518

XtAppGetSelectionTimeout(Xt) and XtOwnSelection(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XtGetSubresources(Xt)

XtGetSubresources

obtain subresources or application resources

Syntax

void XtGetSubresources(w, base, name, class, resources,

Widget w;

num_resources, args, num_args)

XtPointer base;

String name;

String class;
XtResourceList resources;
Cardinal num_resources;
ArgList args;

Cardinal num_args;

void XtGetApplicationResources(w, base, resources, num_resources,

Widget w;

args, num_args)

XtPointer base;

XtResourceList resources;
Cardinal num_resources;
ArgList args;

Cardinal num_args;

Arguments

args

base

class

name

Specifies the argumentlist to override resources obtained from the
resource database.

Specifies the base address of the subpart data structure where the
resources should be written.

Specifies the class of the subpart.

Specifies the name of the subpart.

num_args Specifies the number of arguments in theargument list.

num_resources

Specifies the number of resources in the resource list.

resources Specifies the resource list for the subpart.

w

Specifies the widget that wants resources for a subpart or that
identifies the resource database to search.

X Version 11 (Release 5) 6 January 1993 519

XtGetSubresources(Xt)

Description

The XtGetSubresources function constructs a name or class list from the
application name or class, the names or classes of all its ancestors, and the
widget itself. Then, it appends to this list the name or class pair passed in.
The resources are fetched from the argumentlist, the resource database, or the
default values in the resource list. Then, they are copied into the subpart
record. If args is NULL, num_args must be zero. However, if num_args is
zero, the argument list is not referenced.

The XtGetApplicationResources function first uses the passed widget, which
is usually an application shell, to construct a resource name and class list,
Then, it retrieves the resources from the argument list, the resource database,
or the resource list default values. After adding base to each address,
XtGetApplicationResources copies the resources into the address given in
the resource list. If args is NULL, num_args must be zero. However, if
num_args is zero, the argument list is not referenced. The portable way to
specify application resources is to declare them as members of a structure and
pass the address of the structure as the base argument.

See also
XtGetResourceList(Xt)
X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface
520 X Version 11 (Release 5) 6 January 1993

XtLanguageProc(Xt)

XtLanguageProc

set locale according to resource specification options

Syntax
XtLanguageProc XtSetLanguageProc(app_context, proc, client_data)
XtAppContext app_context;
XtLanguageProc proc;
XtPointer client_data;
Arguments
app_context Specifies the application context in which the language pro-
cedure is to be used, or NULL.
client_data Specified additional client data to be passed to the language
procedure when it is called.
proc Specifies the language procedure.
Description

Initially, no language procedure is set by the Intrinsics. To set the language
procedure for use by XtDisplayInitialize use XtSetLanguageProc.

XtSetLanguageProc sets the language procedure that will be called from
XtDisplaylInitialize for all subsequent Displays initialized in the specified
application context. If app_context is NULL, the specified language pro-
cedure is registered in all application contexts created by the calling process,
including any future application contexts that may be created. If proc is
NULL a default language procedure is registered. XtSetLanguageProc
returns the previously registered language procedure. If a language pro-
cedure has not yet been registered, the return value is unspecified but if this
return value is used in a subsequent call to XtSetLanguageProc, it will cause
the default language procedure to be registered.

Resource databases are specified to be created in the current process locale.
During display initialization prior to creating the per-screen resource data-
base, the Intrinsics will call out to a specified application procedure to set the
locale according to options found on the command line or in the per-display
resource specifications.

X Version 11 (Release 5) 6 January 1993 521

XtLanguageProc(Xt)

The callout procedure provided by the application is of type XtLanguageProc:

typedef String (*XtLanguageProc) (Display*, String, XtPointer);
Display *display;
String language;
XtPointer client_data;

display passes the display.

language passes the initial language value obtained from the command
line or server per-display resource specifications.

client_data passes the additional client data specified in the call to
XtSetLanguageProc.

See also

XtDisplayInitialize(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

522 X Version 11 (Release 5) 6 January 1993

XtMakeGeometryRequest(Xt)

XtMakeGeometryRequest

make geometry manager request

Syntax

XtGeometryResult XtMakeGeometryRequest(w, request, reply_return)
Widget w;

XtWidgetGeometry *request;

XtWidgetGeometry *reply_return;

XtGeometryResult XtMakeResizeRequest (w, width, height, width_return,

height_return)

Widget w;
Dimension width, height;
Dimension *width_return, *height_return

Arguments

reply_return

Returns the allowed widget size or may be NULL if the requesting
widget is not interested in handling XtGeometry Almost.

request Specifies the desired widget geometry (size, position, border

w

width, and stacking order).

Specifies the widget that is making the request.

width_return,
height_return

Description

Return the allowed widget width and height.

Depending on the condition, XtMakeGeometryRequest performs the
following:

If the widget is unmanaged or the widget’s parent is not realized, it makes
the changes and returns XtGeometryYes.

If the parent is not a subclass of compositeWidgetClass or the parent’s
geometry_manager is NULL, it issues an error.

If the widget’s being_destroyed field is True, it returns XtGeometryNo.

If the widget x, y, width, height and border_width fields are all equal to
the requested values, it returns XtGeometryYes; otherwise, it calls the
parent’s geometry_manager procedure with the given parameters.

X Version 11 (Release 5) 6 January 1993 523

XtMakeGeometryRequest(Xt)

See also

e If the parent’s geometry manager returns XtGeometryYes and if
XtCWQueryOnly is not set in the request_mode and if the widget is real-
ized, XtMakeGeometryRequest calls the XConfigureWindow Xlib func-
tion to reconfigure the widget’s window (set its size, location, and stacking
order as appropriate).

e If the geometry manager returns XtGeometryDone, the change has been
approved and actually has been done. In this case, XtMakeGeometry-
Request does no configuring and returns XtGeometryYes. XtMake-
GeometryRequest neverreturns XtGeometryDone.

Otherwise, XtMakeGeometryRequest returns the resulting value from the
parent’s geometry manager.

Children of primitive widgets are always unmanaged; thus, XtMake-
GeometryRequest always returns XtGeometryYes when called by a child of a
primitive widget.

The XtMakeResizeRequest function, a simple interface to XtMake-
GeometryRequest, creates a XtWidgetGeometry structure and specifies that
width and height should change. The geometry manager is free to modify
any of the other window attributes (position or stacking order) to satisfy the
resize request. If the return value is XtGeometryAlmost, width_return and
height_return contain a compromise width and height. If these are acceptable,
the widget should immediately make an XtMakeResizeRequest and request
that the compromise width and height be applied. If the widget is not
interested in XtGeometryAlmost replies, it can pass NULL for width_return
and height_return.

524

XtConfigureWidget(Xt) and XtQueryGeometry(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XtMalloc(Xt)

XtMalloc

memory management functions

Syntax

char *XtMalloc(size);
Cardinal size;

char *XtCalloc(num, size);
Cardinal num;
Cardinal size;

char *XtRealloc(ptr, num);
char *ptr;
Cardinal num;

void XtFree(ptr);
char *ptr;

type *XtNew(type);
type;

String XtNewString(string);
String string;

Arguments

num Specifies the number of bytes or array elements.

ptr Specifies a pointer to the old storage or to the block of storage that
is to be freed.

size Specifies the size of an array element (in bytes) or the number of
bytes desired.

string Specifies a previously declared string.

type Specifies a previously declared data type.

Description

The XtMalloc functions returns a pointer to a block of storage of at least the
specified size bytes. If there is insufficient memory to allocate the new block,
XtMalloc calls XtErrorMsg.

The XtCalloc function allocates space for the specified number of array ele-

ments of the specified size and initializes the space to zero. If there is insuffi-
cient memory to allocate the new block, XtCalloc calls XtErrorMsg.

X Version 11 (Release 5) 6 January 1993 525

XtMalloc(Xt)

The XtRealloc function changes the size of a block of storage (possibly mov-
ing it). Then, it copies the old contents (or as much as will fit) into the new
block and frees the old block. If there is insufficient memory to allocate the
new block, XtRealloc calls XtErrorMsg. If ptr is NULL, XtRealloc allocates the
new storage without copying the old contents; that is, it simply calls
XtMalloc.

The XtFree function returns storage and allows it to be reused. If ptris NULL,
XtFree returns immediately.

XtNew returns a pointer to the allocated storage. If there is insufficient mem-
ory to allocate the new block, XtNew calls XtErrorMsg. XtNew is a conveni-
ence macro that calls XtMalloc with the following arguments specified:

((type *) XtMalloc((unsigned) sizeof (type))

XtNewString returns a pointer to the allocated storage. If there is insufficient
memory to allocate the new block, XtNewString calls XtErrorMsg. XtNew-
String is a convenience macro that calls XtMalloc with the following argu-
ments specified:

(strcpy(XtMalloc((unsigned) strlen(str) + 1), str))

See also
XtErrorMsg(Xt)
X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface
526 X Version 11 (Release 5) 6 January 1993

XtManageChildren(Xt)

XtManageChildren

manage and unmanage children

Syntax

typedef Widget *WidgetList;

void XtManageChildren(children, num_children)
WidgetList children;

Cardinal num_children;

void XtManageChild(child)
Widget child;

void XtUnmanageChildren(children, num_children)
WidgetList children;
Cardinal num_children;

void XtUnmanageChild(child)
Widget child;

Arguments
child Specifies the child.
children Specifies a list of child widgets.

num_children
Specifies the number of children.

Description

The XtManageChildren function performs the following:

e Issues an error if the children do not all have the same parent or if the
parent is not a subclass of compositeWidgetClass.

e Returns immediately if the common parent is being destroyed; otherwise,
for each unique child on the list, XtManageChildren ignores the child if it
already is managed or is being destroyed and marks it if not.

e If the parent is realized and after all children have been marked, it makes
some of the newly managed children viewable:

— Calls the change_managed routine of the widgets’ parent.

— Calls XtRealizeWidget on each previously unmanaged child that is
unrealized.

— Maps each previously unmanaged child that has map_when_managed
True.

X Version 11 (Release 5) 6 January 1993 527

XtManageChildren(Xt)

Managing children is independent of the ordering of children and indepen-
dent of creating and deleting children. The layout routine of the parent
should consider children whose managed field is True and should ignore all
other children. Note that some composite widgets, especially fixed boxes, call
XtManageChild from their insert_child procedure.

If the parent widget is realized, its change_managed procedure is called to
notify it that its set of managed children has changed. The parent can reposi-
tion and resize any of its children. It moves each child as needed by calling
XtMoveWidget, which first updates the x and y fields and then calls XMove-
Window if the widget is realized.

The XtManageChild function constructs a WidgetList of length one and calls
XtManageChildren.

The XtUnmanageChildren function performs the following:

e Issues an error if the children do not all have the same parent or if the
parent is not a subclass of compositeWidgetClass.

e Returns immediately if the common parent is being destroyed; otherwise,
for each unique child on the list, XtUnmanageChildren performs the
following:

— Ignores the child if it already is unmanaged or is being destroyed and
marks it if not.

- If the child is realized, it makes it nonvisible by unmapping it.

e (alls the change_managed routine of the widgets’ parent after all children
have been marked if the parent is realized.

XtUnmanageChildren does not destroy the children widgets. Removing
widgets from a parent’s managed set is often a temporary banishment, and,
some time later, you may manage the children again.

The XtUnmanageChild function constructs a widget list of length one and
calls XtUnmanageChildren.

See also
XtMapWidget(Xt) and XtRealizeWidget(Xt).
X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface
528 X Version 11 (Release 5) 6 January 1993

XtMapWidget(Xt)

XtMapWidget

map and unmap widgets

Syntax

XtMapWidget (w)
Widget w;

void XtSetMappedWhenManaged(w, map_when_managed)
Widget w;

Boolean map_when_managed;

XtUnmapWidget (w)

Widget w;

Arguments

map_when_managed
Specifies a Boolean value that indicates the new value of the
map_when_managed field.

w Specifies the widget.

Description

If the widget is realized and managed and if the new value of
map_when_managed is True, XtSetMappedWhenManaged maps the win-
dow. If the widget is realized and managed and if the new value of
map_when_managed is False, it unmaps the window. XtSetMappedWhen-
Managed is a convenience function that is equivalent to (but slightly faster
than) calling XtSetValues and setting the new value for the mappedWhen-
Managed resource. As an alternative to using XtSetMappedWhenManaged
to control mapping, a client may set mapped_when_managed to False and
use XtMapWidget and XtUnmapWidget explicitly.

See also

XtManageChildren(Xt) and XtSetValues(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 529

XtMenuPopdown(Xt)

XtPopdown, XtCallbackPopdown,
XtMenuPopdown

unmap a pop-up

Syntax

void XtPopdown (popup_shell)
Widget popup_shell;

void XtCallbackPopdown(w, client_data, call_data)
Widget w;

XtPointer client_data;

XtPointer call_data;

void XtMenuPopdown (shell_name)
Sstring shell_name;

Arguments

call_data Specifies the callback data, which is not used by this procedure.

client_data
Specifies a pointer to the XtPopdownID structure.

popup_shell
Specifies the widget shell to pop down.

shell_name
Specifies the name of the widget shell to pop down.

w Specifies the widget.

Description

530

The XtPopdown function performs the following:
e Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

e Checks that popup_shell is currently popped_up; otherwise, it generates
an error.

e Unmaps popup_shell’'s window.

o If popup_shell’s grab_kind is either XtGrabNonexclusive or XtGrab-
Exclusive, it calls XtRemoveGrab.

e Sets popup_shell’s popped_up field to False.
e Calls the callback procedures on the shell’s popdown_callback list.

X Version 11 (Release 5) 6 January 1993

See also

XtMenuPopdown(Xt)

The XtCallbackPopdown function casts the client data parameter to an
XtPopdownlD pointer:
typedef struct (
Widget shell_widget;
Widget enable_widget;
) XtPopdownIDRec, *XtPopdownID;

The shell_widget is the pop-up shell to pop down, and the enable_widget is
the widget that was used to pop it up.

XtCallbackPopdown calls XtPopdown with the specified shell_widget and
then calls XtSetSensitive to resensitize the enable_widget.

If a shell name is not given, XtMenuPopdown calls XtPopdown with the
widget for which the translation is specified. If a shell_name is specified in
the translation table, XtMenuPopdown tries to find the shell by looking up
the widget tree starting at the parent of the widget in which it is invoked. If it
finds a shell with the specified name in the pop-up children of that parent, it
pops down the shell; otherwise, it moves up the parent chain as needed. If
XtMenuPopdown gets to the application top-level shell widget and cannot
find a matching shell, it generates an error.

XtCreatePopupShell(Xt) and XtPopup(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 531

XtMenuPopup(Xt)

XtMenuPopup

map a pop-up

Syntax

void XtPopup (popup_shell, grab_kind)
Widget popup_shell;
XtGrabKind grab_kind;

void XtCallbackNone(w, client_data, call_data)
Widget w;

XtPointer client_data;

XtPointer call_data;

void XtCallbackNonexclusive(w, client_data, call_data)
Widget w;

XtPointer client_data;

XtPointer call_data;

void XtCallbackExclusive(w, client_data, call_data)
Widget w;

XtPointer client_data;

XtPointer call_data;

void XtMenuPopup(shell_name)
String shell_name;

Arguments

call_data Specifies the callback data, which is not used by this procedure.

client_data
Specifies the pop-up shell.

grab_kind Specifies the way in which user events should be constrained.

popup_shell
Specifies the widget shell.
w Specifies the widget.
Description

532

The XtPopup function performs the following:
e Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

¢ Generates an error if the shell’s popped_up field is already True.

X Version 11 (Release 5) 6 January 1993

XtMenuPopup(Xt)

e Calls the callback procedures on the shell’s popup_callback list.

e Sets the shell popped_up field to True, the shell spring loaded field to
False, and the shell grab_kind field from grab_kind.

o If the shell’s create_popup_child field is non-NULL, XtPopup calls it with
popup_shell as the parameter.

o If grab_kind is either XtGrabNonexclusive or XtGrabExclusive, it calls:
XtAddGrab(popup_shell, (grab_kind == XtGrabExclusive), False)

e Calls XtRealizeWidget with popup_shell specified.
e Calls XMapWindow with popup_shell specified.
¢ Calls XMapRaised with popup_shell specified.

The XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive
functions call XtPopup with the shell specified by the client_data argument
and grab_kind set as the name specifies. XtCallbackNone, XtCallbackNonex-
clusive, and XtCallbackExclusive specify XtGrabNone, XtGrabNonex-
clusive, and XtGrabExclusive, respectively. Each function then sets the
widget that executed the callback list to be insensitive by using XtSet-
Sensitive. Using these functions in callbacks is not required. In particular, an
application must provide customized code for callbacks that create pop-up
shells dynamically or that must do more than desensitizing the button.

XtMenuPopup is known to the translation manager, which must perform spe-
cial actions for spring-loaded pop-ups. Calls to XtMenuPopup in a transla-
tion specification are mapped into calls to a nonexported action procedure,
and the translation manager fills in parameters based on the event specified
on the left-hand side of a translation.

If XtMenuPopup is invoked on ButtonPress (possibly with modifiers), the
translation manager pops up the shell with grab_kind set to XtGrabExclusive
and spring_loaded set to True. If XtMenuPopup is invoked on EnterWindow
(possibly with modifiers), the translation manager pops up the shell with
grab_kind set to XtGrabNonexclusive and spring_loaded set to False. Other-
wise, the translation manager generates an error. When the widget is popped
up, the following actions occur:

e Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.
e Generates an error if the shell’s popped_up field is already True.
e Calls the callback procedures on the shell’s popup_callback list.

* Sets the shell popped_up field to True and the shell grab_kind and
spring_loaded fields appropriately.

X Version 11 (Release 5) 6 January 1993 533

XtMenuPopup(Xt)

If the shell’s create_popup_child field is non-NULL, it is called with
popup_shell as the parameter.

e C(Calls:
XtAddGrab (popup_shell, (grab_kind == XtGrabExclusive), spring_loaded)

e Calls XtRealizeWidget with popup_shell specified.
e Calls XMapWindow with popup_shell specified.
e Calls XMapRaised with popup_shell specified.

(Note that these actions are the same as those for XtPopup.) XtMenuPopup
tries to find the shell by searching the widget tree starting at the parent of the
widget in which it is invoked. If it finds a shell with the specified name in the
pop-up children of that parent, it pops up the shell with the appropriate pa-
rameters. Otherwise, it moves up the parent chain as needed. If XtMenu-
Popup gets to the application widget and cannot find a matching shell, it gen-
erates an error.

See also
XtCreatePopupShell(Xt) and XtPopdown(Xt).
X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface
534 X Version 11 (Release 5) 6 January 1993

XtNameToWidget(Xt)

XtNameToWidget

translating strings to widgets or widgets to windows

Syntax
Widget XtNameToWidget (reference, names);
Widget reference;
String names;
Widget XtWindowToWidget(display, window)
Display *display;
Window window;
Arguments
display Specifies the display on which the window is defined.
names Specifies the fully qualified name of the desired widget.
reference Specifies the widget from which the search is to start.
window Specify the window for which you want the widget.
Description

The XtNameToWidget function looks for a widget whose name is the first
component in the specified names and that is a pop-up child of reference (or a
normal child if reference is a subclass of compositeWidgetClass). It then uses
that widget as the new reference and repeats the search after deleting the first
component from the specified names. If it cannot find the specified widget,
XtNameToWidget returns NULL.

Note that the names argument contains the name of a widget with respect to
the specified reference widget and can contain more than one widget name
(separated by periods) for widgets that are not direct children of the specified
reference widget.

If more than one child of the reference widget matches the name, XtName-
ToWidget can return any of the children. The Intrinsics do not require that all
children of a widget have unique names. If the specified names contain more
than one component and if more than one child matches the first component,
XtNameToWidget can return NULL if the single branch that it follows does
not contain the named widget. That is, XtNameToWidget does not back up
and follow other matching branches of the widget tree.

The XtWindowToWidget function translates the specified window and dis-
play pointer into the appropriate widget instance.

X Version 11 (Release 5) 6 January 1993 535

XtNameToWidget(Xt)

See also

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

536 X Version 11 (Release 5) 6 January 1993

XtOffset(Xt)

XtOffset

determine the byte offset or number of array elements

Syntax
Cardinal XtOffset(pointer_type, field_name)
Type pointer_type;
Field field_name;
Cardinal XtNumber (array)
ArrayVariable array;
Arguments
array Specifies a fixed-size array.
field_name
Specifies the name of the field for which to calculate the byte
offset.
pointer_type
Specifies a type that is declared as a pointer to the structure.
Description
The XtOffset macro is usually used to determine the offset of various
resource fields from the beginning of a widget and can be used at compile
time in static initializations.
The XtNumber macro returns the number of elements in the specified argu-
ment lists, resources lists, and other counted arrays.
See also

XtGetResourceList(Xt) and XtSetArg(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 537

XtOwnSelection(Xt)

XtOwnSelection

set selection owner

Syntax

Boolean XtOwnSelection(w, selection, time, convert_proc,
lose_selection, done_proc)

Widget w;

Atom selection;

Time time;

XtConvertSelectionProc convert_proc;

XtLoseSelectionProc lose_selection;

XtSelectionDoneProc done_proc;

void XtDisownSelection(w, selection, time)
Widget w;

Atom selection;

Time time;

Arguments

538

convert_proc
Specifies the procedure that is to be called whenever someone
requests the current value of the selection.

done_proc Specifies the procedure that is called after the requestor has
received the selection or NULL if the owner is not interested in
being called back.

lose_selection
Specifies the procedure that is to be called whenever the widget
has lost selection ownership or NULL if the owner is not interested
in being called back.

selection Specifies an atom that describes the type of the selection for
example:

XA_PRIMARY, XA_SECONDARY, or XA_CLIPBOARD

time Specifies the timestamp that indicates when the selection owner-
ship should commence or is to be relinquished.

w Specifies the widget that wishes to become the owner or to relin-
quish ownership.

X Version 11 (Release 5) 6 January 1993

XtOwnSelection(Xt)

Description

The XtOwnSelection function informs the Intrinsics selection mechanism that
a widget believes it owns a selection. It returns True if the widget has success-
fully become the owner and False otherwise. The widget may fail to become
the owner if some other widget has asserted ownership at a time later than
this widget. Note that widgets can lose selection ownership either because
someone else asserted later ownership of the selection or because the widget
voluntarily gave up ownership of the selection. Also note that the
lose_selection procedure is not called if the widget fails to obtain selection
ownership in the first place.

The XtDisownSelection function informs the Intrinsics selection mechanism
that the specified widget is to lose ownership of the selection. If the widget
does not currently own the selection either because it lost the selection or
because it never had the selection to begin with, XtDisownSelection does
nothing.

After a widget has called XtDisownSelection, its convert procedure is not
called even if a request arrives later with a timestamp during the period that
this widget owned the selection. However, its done procedure will be called
if a conversion that started before the call to XtDisownSelection finishes after
the call to XtDisownSelection.

See also

XtAppGetSelectionTimeout(Xt) and XtGetSelectionValue(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 539

XtParseAcceleratorTable(Xt)

XtParseAcceleratorTable

managing accelerator tables

Syntax

XtAccelerators XtParseAcceleratorTable(source)
String source;

void XtInstallAccelerators(destination, source)
Widget destination;
Widget source;

void XtInstallAllAccelerators(destination, source)
Widget destination;
Widget source;

Arguments .

source Specifies the accelerator table to compile.

destination
Specifies the widget on which the accelerators are to be installed.

source Specifies the widget or the root widget of the widget tree from
which the accelerators are to come.

Description

540

The XtParseAcceleratorTable function compiles the accelerator table into the
opaque internal representation.

The XtInstallAccelerators function installs the accelerators from source onto
destination by augmenting the destination translations with the source
accelerators. If the source display_accelerator method is non-NULL, XtInstall-
Accelerators calls it with the source widget and a string representation of the
accelerator table, which indicates that its accelerators have been installed and
that it should display them appropriately. The string representation of the
accelerator table is its canonical translation table representation.

The XtInstallAllAccelerators function recursively descends the widget tree
rooted at source and installs the accelerators of each widget encountered onto
destination. A common use is to call XtInstallAllAccelerators and pass the
application main window as the source.

X Version 11 (Release 5) 6 January 1993

XtParseAcceleratorTable(Xt)

See also

XtParseTranslationTable(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 541

XtParseTranslationTable(Xt)

XtParseTranslationTable

manage translation tables

Syntax
XtTranslations XtParseTranslationTable(table)
String table;
void XtAugmentTranslations(w, translations)
Widget w;
XtTranslations translations;
void XtOverrideTranslations(w, translations)
Widget w;
XtTranslations translations;
void XtUninstallTranslations(w)
Widget w;
Arguments
table Specifies the translation table to compile.
translations
Specifies the compiled translation table to merge in (must not be
NULL).
w Specifies the widget into which the new translations are to be
merged or removed.
Description
The XtParseTranslationTable function compiles the translation table into the
opaque internal representation of type XtTranslations. Note that if an empty
translation table is required for any purpose, one can be obtained by calling
XtParseTranslationTable and passing an empty string.
The XtAugmentTranslations function nondestructively merges the new
translations into the existing widget translations. If the new translations con-
tain an event or event sequence that already exists in the widget’s transla-
tions, the new translation is ignored.
The XtOverrideTranslations function destructively merges the new transla-
tions into the existing widget translations. If the new translations contain an
event or event sequence that already exists in the widget’s translations, the
new translation is merged in and override the widget’s translation.
542 X Version 11 (Release 5) 6 January 1993

XtParseTranslationTable(Xt)

To replace a widget’s translations completely, use XtSetValues on the
XtNtranslations resource and specifiy a compiled translation table as the
value.

The XtUninstallTranslations function causes the entire translation table for
widget to be removed.

See also

XtAppAddActions(Xt), XtCreatePopupShell(Xt), XtParseAcceleratorTable(Xt)
and XtPopup(Xt).

X Toolkit Intrinsics - C Language Interface
X1ib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 543

XtQueryGeometry(Xt)

XtQueryGeometry

query the preferred geometry of a child widget

Syntax

XtGeometryResult XtQueryGeometry(w, intended, preferred_return)
Widget w;
XtWidgetGeometry *intended, *preferred_return;

Arguments

intended Specifies any changes the parent plans to make to the child’s
geometry or NULL.

preferred_return
Returns the child widget’s preferred geometry.

w Specifies the widget.

Description

See also

To discover a child’s preferred geometry, the child’s parent sets any changes
that it intends to make to the child’s geometry in the corresponding fields of
the intended structure, sets the corresponding bits in intended-
>request_mode, and calls XtQueryGeometry.

XtQueryGeometry clears all bits in the preferred_return -> request_mode and
checks the query_geometry field of the specified widget’s class record. If
query_geometry is not NULL, XtQueryGeometry calls the query_geometry
procedure and passes as arguments the specified widget, intended, and
preferred_return structures. If the intended argument is NULL, XtQuery-
Geometry replaces it with a pointer to an XtWidgetGeometry structure with
request_mode=0 before calling query_geometry.

544

XtConfigureWidget(Xt) and XtMakeGeometryRequest(Xt).

X Toolkit Intrinsics - C Language Interface
X1ib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XtRealizeWidget(Xt)

XtRealizeWidget

realize and unrealize widgets

Syntax

void XtRealizeWidget (w)
Widget w;

Boolean XtIsRealized(w)
Widget w;

void XtUnrealizeWidget (w)
Widget w;

Arguments

w Specifies the widget.

Description

If the widget is already realized, XtRealizeWidget simply returns. Otherwise,
it performs the following:

¢ Binds all action names in the widget’s translation table to procedures (see
Section 10.2.2 of X Toolkit Intrinsics - C Language Interface).

e Makes a post-order traversal of the widget tree rooted at the specified
widget and calls the change_managed procedure of each composite
widget that has one or more managed children.

e Constructs an XSetWindowAttributes structure filled in with information
derived from the Core widget fields and calls the realize procedure for the
widget, which adds any widget-specific attributes and creates the X
window.

o If the widget is not a subclass of compositeWidgetClass, XtRealizeWidget
returns; otherwise, it continues and performs the following:

— Descends recursively to each of the widget’s managed children and
calls the realize procedures. Primitive widgets that instantiate children
are responsible for realizing those children themselves.

- Maps all of the managed children windows that have
mapped_when_managed True. (If a widget is managed but
mapped_when_managed is False, the widget is allocated visual space
but is not displayed. Some people seem to like this to indicate certain
states.)

X Version 11 (Release 5) 6 January 1993 545

XtRealizeWidget(Xt)

If the widget is a top-level shell widget (that is, it has no parent), and
mapped_when_managed is True, XtRealizeWidget maps the widget window.

The XtIsRealized function returns True if the widget has been realized, that is,
if the widget has a nonzero X window ID.

Some widget procedures (for example, set_values) might wish to operate dif-
ferently after the widget has been realized.

The XtUnrealizeWidget function destroys the windows of an existing widget
and all of its children (recursively down the widget tree). To recreate the win-
dows at a later time, call XtRealizeWidget again. If the widget was managed,
it will be unmanaged automatically before its window is freed.

See also

XtManageChildren(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

546 X Version 11 (Release 5) 6 January 1993

XtScreenDatabase(Xt)

XtScreenDatabase

obtain resource database for specified screen

Syntax

XrmDatabase XtScreenDatabase(screen)
Screen *screen;

Arguments

screen Specifies the screen whose resource database is to be returned.

Description

See also

The XtScreenDatabase function returns the fully merged resource database as
specified, associated with the ?ecified screen. If the specified screen does not
belong to a Display initialized by XtDisplayInitialize, the results are unde-
fined.

XtDisplayInitialize(Xt), and XtScreen(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 547

XtSetArg(Xt)

XtSetArg

set and merge ArgLists

Syntax

XtSetArg(arg, name, value)
Arg arg;

String name;

XtArgVal value;

ArgList XtMergeArgLists(argsl, num_argsl, args2, num_args2)
ArgList argsli;

Cardinal num_argsl;

ArglList args2;

Cardinal num_args2;

Arguments
arg Specifies the name-value pair to set.
argsl Specifies the first ArgList.
args2 Specifies the second ArgList.
num_args1
Specifies the number of arguments in the first argument list.
num_args2
Specifies the number of arguments in the second argument list.
name Specifies the name of the resource.
value Specifies the value of the resource if it will fit in an Xtargval or the
address.
Description

548

The XtSetAri function is usually used in a highly stylized manner to minim-
ize the probability of making a mistake; for example:

Arg args(20];

int n;

n=20;

XtSetArg(args(n), XtNheight, 100); n++;
XtSetArg(args(n), XtNwidth, 200); N++;

XtSetValues(widget, args, n);

X Version 11 (Release 5) 6 January 1993

See also

XtSetArg(Xt)

Alternatively, an application can statically declare the argument list and use
XtNumber:
static Args args(]) = {
{XtNheight, (XtArgval) 100},
{XtNwidth, (XtArgVal) 200},
)i
XtSetValues(Widget, args, XtNumber(args));
Note that you should not use auto-increment or auto-decrement within the
first argument to XtSetArg. XtSetArg can be implemented as a macro that
dereferences the first argument twice.

The XtMergeArgLists function allocates enough storage to hold the combined
ArgList structures and copies them into it. Note that it does not check for
duplicate entries. When it is no longer needed, free the returned storage by
using XtFree.

XtOffset(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 549

XtSetKeyTranslator(Xt)

XtSetKeyTranslator

convert KeySymto KeyCodes

Syntax

void XtSetKeyTranslator(display, proc)
Display *display;
XtKeyProc proc;

void XtTranslateKeycode(display, keycode, modifiers, modifiers_return,
keysym_return)

Display *display;

KeyCode keycode;

Modifiers modifiers;

Modifiers *modifiers_return;

KeySym *keysym_return;

void XtRegisterCaseConverter(display, proc, start, stop)
Display *display;

XtCaseProc proc;

KeySym start;

KeySym stop;

void XtConvertCase(display, keysym, lower_return, upper_return)
Display *display;

KeySym keysym;

KeySym *lower_return;

KeySym *upper_return;

Arguments

display Specifies the display.
keycode Specifies the ReyCode to translate.
keysym Specifies the ReySym to convert.

keysym_return
Returns the resulting Keysym.

lower_return
Returns the lowercase equivalent of the ReySym.

upper_return
Returns the uppercase equivalent of the Keysym.

modifiers Specifies the modifiers to the ReyCode.

550 X Version 11 (Release 5) 6 January 1993

XtSetKeyTranslator(Xt)

modifiers_return
Returns a mask that indicates the modifiers actually used to gen-

erate the KeySym.

proc Specifies the procedure that is to perform key translations or
conversions.

start Specifies the first Reysym for which this converter is valid.

stop Specifies the last Reysym for which this converter is valid.

Description

See also

The XtSetKeyTranslator function sets the specified procedure as the current
key translator. The default translator is XtTranslateKey, an XtKeyProc that
uses Shift and Lock modifiers with the interpretations defined by the core pro-
tocol. It is provided so that new translators can call it to get default
KeyCode-to-KeySym translations and so that the default translator can be
reinstalled.

The XtTranslateKeycode function passes the specified arguments directly to
the currently registered KeyCode to KeySym translator.

The XtRegisterCaseConverter registers the specified case converter. The start
and stop arguments provide the inclusive range of KeySyms for which this
converter is to be called. The new converter overrides any previous convert-
ers for KeySyms in that range. No interface exists to remove converters; you
need to register an identity converter. When a new converter is registered, the
Intrinsics refreshes the keyboard state if necessary. The default converter
understands case conversion for all KeySyms defined in the core protocol.

The XtConvertCase function calls the appropriate converter and returns the
results. A user-supplied XtKeyProc may need to use this function.

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 551

XtSetKeyboardFocus(Xt)

XtSetKeyboardFocus

focus events on a child widget

Syntax

XtSetKeyboardFocus(subtree, descendant)
Widget subtree, descendant;

Arguments

descendant
Specifies either the widget in the subtree structure which is to
receive the keyboard event, or None. Note that it is not an error to
specify None when no input focus was previously set.

w Specifies the widget for which the keyboard focus is to be set.

Description

552

If a future KeyPress or KeyRelease event occurs within the specified subtree,
XtSetKeyboardFocus causes XtDispatchEvent to remap and send the event to
the specified descendant widget.

When there is no modal cascade, keyboard events can occur within a widget
W in one of three ways:

e W has the X input focus.

e W has the keyboard focus of one of its ancestors, and the event occurs
within the ancestor or one of the ancestor’s descendants.

e No ancestor of W has a descendant within the keyboard focus, and the
pointer is within W.

When there is a modal cascade, a widget W receives keyboard events if an
ancestor of W is in the active subset of the modal cascade and one or more of
the previous conditions is True.

When subtree or one of its descendants acquires the X input focus or the
pointer moves into the subtree such that keyboard events would now be
delivered to subtree, a FocusIn event is generated for the descendant if
FocusNotify events have been selected by the descendant. Similarly, when W
loses the X input focus or the keyboard focus for one of its ancestors, a Focus-
Out event is generated for descendant if FocusNotify events have been
selected by the descendant.

X Version 11 (Release 5) 6 January 1993

XtSetKeyboardFocus(Xt)

See also

XtCallAcceptFocus(Xt)

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 553

XtSetSensitive(Xt)

XtSetSensitive

set and check a widget's sensitivity state

Syntax

void XtSetSensitive(w, sensitive)
Widget w;
Boolean sensitive;

Boolean XtIsSensitive(w)
Widget w;

Arguments

sensitive Specifies a Boolean value that indicates whether the widget should
receive keyboard and pointer events.

w Specifies the widget.

Description

See also

The XtSetSensitive function first calls XtSetValues on the current widget
with an argument list specifying that the sensitive field should change to the
new value. It then recursively propagates the new value down the managed
children tree by calling XtSetValues on each child to set the ancestor_sensitive
to the new value if the new values for sensitive and the child’s
ancestor_sensitive are not the same.

XtSetSensitive calls XtSetValues to change sensitive and ancestor_sensitive.
Therefore, when one of these changes, the wid§et’s set_values procedure
should take whatever display actions are needed (for example, greying out or
stippling the widget).

XtSetSensitive maintains the invariant that if parent has either sensitive or
ancestor_sensitive False, then all children have ancestor_sensitive False.

The XtIsSensitive function returns True or False to indicate whether or not
user input events are being dispatched. If both coresensitive and
core.ancestor_sensitive are True, XtIsSensitive returns True; otherwise, it
returns False.

554

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XtSetValues

XtSetValues(Xt)

obtain and set widget resources

Syntax

void XtSetValues(w, args,
Widget w;

ArgList args;

Cardinal num_args;

void XtSetSubvalues(base,
XtPointer base;
XtResourceList resources;
Cardinal num_resources;
ArgList args;

Cardinal num_args;

void XtGetValues(w, args,
Widget w;

ArgList args;

Cardinal num_args;

void XtGetSubvalues(base,
XtPointer base;
XtResourceList resources;
Cardinal num_resources;
ArglList args;

Cardinal num_args;

Arguments

num_args)

resources, num_resources, args, num_args)

num_args)

resources, num_resources, args, nhum_args)

args Specifies the argument list of name/address pairs that contain the
resource name and either the address into which the resource
value is to be stored or their new values.

base Specifies the base address of the subpart data structure where the
resources should be retrieved or written.

num_args Specifies the number of arguments in the argument list.

resources Specifies the nonwidgetresource list or values.

num_resources

Specifies the number of resources in the resource list.

w Specifies the widget.

X Version 11 (Release .5) 6 January 1993

555

XtSetValues(Xt)

Description

556

The XtSetValues function starts with the resources specified for the Core
widget fields and proceeds down the subclass chain to the widget. At each
stage, it writes the new value (if specified by one of the arguments) or the
existing value (if no new value is specified) to a new widget data record.
XtSetValues then calls the set_values procedures for the widget in
superclass-to-subclass order. If the widget has any non-NULL
set_values_hook fields, these are called immediately after the corresponding
set_values procedure. This procedure permits subclasses to set nonwidget
data for XtSetValues.

If the widget’s parent is a subclass of constraintWidgetClass, XtSetValues also
updates the widget’s constraints. It starts with the constraint resources speci-
fied for constraintWidgetClass and proceeds down the subclass chain to the
parent’s class. At each stage, it writes the new value or the existing value to a
new constraint record. It then calls the constraint set_values procedures from
constraintWidgetClass down to the parent’s class. The constraint set_values
procedures are called with widget arguments, as for all set_values pro-
cedures, not just the constraint record arguments, so that they can make
adjustments to the desired values based on full information about the widget.

XtSetValues determines if a geometry request is needed by comparing the
current widget to the new widget. If any geometry changes are required, it
makes the request, and the geometry manager returns XtGeometryYes,
XtGeometryAlmost, or XtGeometryNo. If XtGeometryYes, XtSetValues calls
the widget’s resize procedure. If XtGeometryNo, XtSetValues resets the
geometry fields to their original values. If XtGeometryAlmost, XtSetValues
calls the set_values_almost procedure, which determines what should be
done and writes new values for the geometry fields into the new widget.
XtSetValues then repeats this process, deciding once more whether the
geometry manager should be called.

Finally, if any of the set_values procedures returned True, XtSetValues causes
the widget’s expose procedure to be invoked by calling the Xlib XClearArea
function on the widget’s window.

The XtSetSubvalues function stores resources into the structure identified by
base.

The XtGetValues function starts with the resources specified for the core
widget fields and proceeds down the subclass chain to the widget. The value
field of a passed argument list should contain the address into which to store
the corresponding resource value. It is the caller’s responsibility to allocate
and deallocate this storage according to the size of the resource representation
type used within the widget.

X Version 11 (Release 5) 6 January 1993

See also

XtSetValues(Xt)

If the widget's parent-is a subclass of constraintWidgetClass, XtGetValues
then fetches the values for any constraint resources requested. It starts with
the constraint resources specified for constraintWidgetClass and proceeds
down to the subclass chain to the parent’s constraint resources. If the argu-
ment list contains a resource name that is not found in any of the resource
lists searched, the value at the corresponding address is not modified. Finally,
if the get_values_hook procedures are non-NULL, they are called in
superclass-to-subclass order after all the resource values have been fetched by
XtGetValues. This permits a subclass to provide nonwidget resource data to
XtGetValues.

The XtGetSubvalues function obtains resource values from the structure
identified by base.

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 557

XtStringConversionWarning(Xt)

XtStringConversionWarning

issue a conversion waming message

Syntax

void XtStringConversionWarning(src, dst_type)
String src, dst_type;

Arguments

src Specifies the string that could not be converted.

dst_type Specifies the name of the type to which the string could not be
converted.

Description

The XtStringConversionWaming function issues a warmning message with
name “conversionError”, type ”string”, class “XtToolkitError”, and the default
message string “Cannot convert "src” to type dst_type”.

See also

XtAppAddConverter(Xt), XtAppErrorMsg(Xt) and XtConvert(Xt).

X Toolkit Intrinsics - C Language Interface
Xlib - C Language X Interface

558 X Version 11 (Release 5) 6 January 1993

X Miscellaneous Utilities (Xmu)

Xmu Library
X Version 11, Release 5

Copyright © 1989 by the Massachusetts Institute of Technology

Permission to use, copy, modify, and distribute this documentation for any
purpose and without fee is hereby granted, provided that the above copyright
notice and this permission notice appear in all copies. MIT makes no
representations about the suitability for any purpose of the information in this
document. This documentation is provided “as is” without express or
implied warranty.

559

Intro(Xmu)

Intro

introduction to Xmu library functions and routines

Description

The Xmu library is a collection of miscellaneous utility functions and macros
for building applications and widgets. The Xmu library was added to X11 in
Release 4.

The following table lists each of the functions, routines and macros and the
manual page on which it discussed. Functions marked with an asterisk (*) are
new to X11 Release 5.

Function Manual Page
XA_ATOM_PAIR XmuAtom(Xmu)
XA_CHARACTER_POSITION XmuAtom(Xmu)
XA_CLASS XmuAtom(Xmu)
XA_CLIENT_WINDOW XmuAtom(Xmu)
XA_CLIPBOARD XmuAtom(Xmu)
XA_COMPOUND_TEXT XmuAtom(Xmuy)
XA_DECNET_ADDRESS XmuAtom(Xmu)
XA_DELETE XmuAtom(Xmu)
XA_FILENAME XmuAtom(Xmu)
XA_HOSTNAME XmuAtom(Xmu)
XA_IP_ADDRESS XmuAtom(Xmu)
XA_LENGTH XmuAtom(Xmu)
XA_LIST_LENGTH XmuAtom(Xmu)
XA_NAME XmuAtom(Xmu)
XA_NET_ADDRESS XmuAtom(Xmu)
XA_NULL XmuAtom(Xmu)
XA_OWNER_OS XmuAtom(Xmu)
XA_SPAN XmuAtom(Xmu)
XA_TARGETS XmuAtom(Xmu)
XA_TEXT XmuAtom(Xmu)
XA_TIMESTAMP XmuAtom(Xmu)
XA_USER XmuAtom(Xmu)
XctCreate XctData(Xmu)

XctReset XctData(Xmu)
XctNextltem XctData(Xmu)

XctFree XctData(Xmu)
XmuAddCloseDisplayHook XmuAddCloseDisplayHook(Xmu)
XmuAddInitializer XmuAddInitializer(Xmu)
XmuAllStandardColormaps XmuAliStandardColormaps(Xmu)
XmuCalllnitializers XmuAddInitializer(Xmu)

(Continued on next page)

X Version 11 (Release 5) 6 January 1993

561

(Continued)

Function Manual Page
XmuClientWindow XmuScreenOfWindow(Xmu)
XmuComparelSOLatin1 XmuComparelSOLatin1(Xmu)

XmuConvertStandardSelection
XmuCopyISOLatin1Lowered
XmuCopyISOLatin1Uppered
XmuCreateColormap
XmuCreatePixmapFromBitmap
XmuCreateStippledPixmap
XmuCursorNameToIndex
XmuCvtFunctionToCallback
XmuCvtStringToBackingStore
XmuCvtStringToBitmap

* XmuCvtStringToColorCursor
XmuCvtStringToCursor

* XmuCvtSrtingToGravity
XmuCvtStringToJustify
XmuCvtStringToLong
XmuCvtStringToOrientation
XmuCvtStringToShapeStyle
XmuCvtStringToWidget
XmuDeleteStandardColormap
XmuDisplayQueue
XmuDisplayQueueEntry

* XmuDQAddDisplay

XmuDQCreate

XmuDQDestroy

* XmuDQLookupDisplay
XmuDQRemoveDisplay
XmuDrawLogo
XmuDrawRoundedRectangle
XmuFillRoundedRectangle
XmuGetAtomName
XmuGetColormapAllocation
XmuGetHostname
XmulnternAtom
XmulnternStrings
XmuLocateBitmapFile
XmuLookupAPL
XmuLookupArabic
XmuLookupCloseDisplayHook
XmuLookupCyrillic
XmuLookupGreek
XmuLookupHebrew
XmuLookupJISX0201

*

(Continued on next page)

XmuConvertStandardSelection(Xmu)
XmuCopyISOLatin1lLowered(Xmu)
XmuCopyISOLatin1Lowered(Xmu)
XmuCreateColormap(Xmu)
XmuCreatePixmapFromBitmap(Xmuy)
XmuCreateStippledPixmap(Xmu)
XmuCursorNameTolndex(Xmu)
XmuCvtFunctionToCallback(Xmu)
XmuCvtStringToBackingStore(Xmuy)
XmuCvtStringToBitmap(Xmu)
XmuCvtStringToColorCursor(Xmu)
XmuCvtStringToCursor(Xmu)
XmuCvtStringToGravity(Xmu)
XmuCvtStringToJustify(Xmu)
XmuCvtStringToLong(Xmu)
XmuCvtStringToOrientation(Xmu)
XmuCvt5StringToShapeStyle(Xmu)
XmuCvtStringToWidget(Xmu)
XmuDeleteStandardColormap(Xmu)
XmuDisplayQueue(Xmu)
XmuDisplayQueue(Xmu)
XmuDisplayQueue(Xmu)
XmuDisplayQueue(Xmu)
XmuDisplayQueue(Xmu)
XmuDisplayQueue(Xmu)
XmuDisplayQueue(Xmu)
XmuDrawLogo(Xmu)
XmuDrawRoundedRectangle(Xmu)
XmuDrawRoundedRectangle(Xmu)
XmuAtom(Xmu)
XmuGetColormapAllocation(Xmu)
XmuGetHostname(Xmu)
XmuAtom(Xmu)

XmuAtom(Xmu)
XmuLocateBitmapFile(Xmu)
XmuLookupLatin1(Xmu)
XmuLookupLatin1(Xmu)
XmuRemoveCloseDisplayHook(Xmu)
XmuLookupLatin1(Xmu)
XmuLookupLatin1(Xmu)
XmuLookupLatin1(Xmu)
XmuLookupLatin1(Xmu)

X Version 11 (Release 5) 6 January 1993

Intro(Xmu)

(Continued)
Function Manual Page
XmuLookupKana XmuLookupLatin1(Xmu)
XmuLookupLatinl XmuLookupLatinl(Xmu)
XmuLookupLatin2 XmuLookupLatin1(Xmu)
XmuLookupLatin3 XmuLookupLatin1(Xmu)
XmuLookupLatin4 XmuLookupLatinl(Xmu)
XmuLookupStandardColormap XmuLookupStandardColormap(Xmu)
XmuMakeAtom XmuAtom(Xmu)
XmuNameOfAtom XmuAtom(Xmu)

* XmuNewCvtStringToWidget
XmuPrintDefaultErrorMessage
XmuReadBitmapData
XmuReadBitmapDataFromFile
XmuReleaseStippledPixmap
XmuRemoveCloseDisplayHook
XmuReshapeWidget
XmuScreenOf Window
XmuSimpleErrorHandler
XmuStandardColormap
XmuUpdateMapHints
XmuVisualStandardColormaps

* XmuWnCountOwnedResources

* XmuWnFetchResources

* XmuWnlinitializeNodes

* XmuWnNameToNode

See also

XmuNewCvtStringToWidget(Xmu)
XmuPrintDefaultErrorMessage(Xmu)
XmuReadBitmapData(Xmu)
XmuReadBitmapData(Xmu)
XmuCreateStippledPixmap(Xmu)
XmuRemoveCloseDisplayHook(Xmu)
XmuReshapeWidget(Xmu)
XmuScreenOf Window(Xmu)
XmuPrintDefaultErrorMessage(Xmu)
XmuStandardColormap(Xmu)
XmuScreenOfWindow(Xmu)
XmuVisualStandardColormaps(Xmu)
XmuWnCountOwnedResources(Xmu)
XmuWnFetchResources(Xmu)
XmuWnlInitializeNodes(Xmu)
XmuWnNameToNode(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

563

XctData(Xmu)

XctData

compound text functions

Syntax

cc ... =-1Xmu
#include <X11/Xmu/Xct.h>
typedef unsigned char *XctString;
XctData XctCreate(string, length, flags)
XctsString string;
int length;
XctFlags flags;

void XctReset (data)
XctData data;

XctResult XctNextItem(data)
XctData data;

void XctFree(data)
XctData data;

Arguments

string Compound Text string.

length Number of bytes in string.

flags Parsing control flags.

data Specifies the Compound Text structure.

Description

A Compound Text string is represented as indicated in the Syntax section
above.

The functions defined in this section are for parsing Compound Text strings
and decomposing them into individual segments. Definitions needed to use
these routines are in the include file <X11/Xmu/Xct.h>.

XctCreate returns an XctData structure that can be used for parsing a Com-

pound Text string. string need not be null terminated. The following flags are
defined to control parsing of the string:

564 | X Version 11 (Release 5) 6 January 1993

XctData(Xmu)

o XctSingleSetSegments -- This means that returned segments should con-
tain characters from only one set (C0, C1, GL, GR). When this is requested,
XctSegment is never returned by XctNextItem, instead XctCO0Segment,
XctC1Segment, XctGlSegment, and XctGRSegment are returned. C0 and
C1 segments are always returned as singleton characters.

o XctProvideExtensions -- This means that if the Compound Text string is
from a higher version than this code is implemented to, then syntactically
correct but unknown control sequences should be returned as XctExten-
sion items by XctNextItem. If this flag is not set, and the Compound Text
string version indicates that extensions cannot be ignored, then each
unknown control sequence will be reported as an XctError.

e XctAcceptCOExtensions -- This means that if the Compound Text string is
from a higher version than this code is implemented to, then unknown C0
characters should be treated as if they were legal, and returned as C0 char-
acters (regardless of how XctProvideExtensions is set) by XctNextItem. If
this flag is not set, then all unknown CO characters are treated according to
XctProvideExtensions.

e XctAcceptClExtensions -- This means that if the Compound Text string is
from a higher version than this code is implemented to, then unknown C1
characters should be treated as if they were legal, and returned as C1 char-
acters (regardless of how XctProvideExtensions is set) by XctNextItem. If
this flag is not set, then all unknown C1 characters are treated according to
XctProvideExtensions.

e XctHideDirection -- This means that horizontal direction changes should
be reported as XctHorizontal items by XctNextItem. If this flag is not set,
then direction changes are not returned as items, but the current direction
is still maintained and reported for other items. The current direction is
given as an enumeration, with the values XctUnspecified, XctLeftToRight,
and XctRightToLeft.

o XctFreeString -- This means that XctFree should free the Compound Text
string that is passed to XctCreate. If this flag is not set, the string is not
freed.

e XctShiftMuliGRToGL -- This means that XctNextItem should translate
GR segments on-the-fly into GL segments for the GR sets: GB2312.1980-1,
J1SX0208.1983-1, and KSC5601.1987-1.

XctReset resets the XctData structure to reparse the Compound Text string
from the beginning.

XctNextItem parses the next “item” from the Compound Text string. The
return value indicates what kind of item is returned. The item itself, its
length, and the current contextual state, are reported as components of the
XctData structure. XctResult is an enumeration, with the following values:

e XctSegment -- The item contains some mixture of C0, GL, GR, and C1 char-
acters. :

e XctC0Segment -- The item contains only CO0 characters.

X Version 11 (Release 5) 6 January 1993 565

XctData(Xmu)

¢ XctGLSegment -- The item contains only GL characters.

¢ XctC1Segment -- The item contains only C1 characters.

¢ XctGRSegment -- The item contains only GR characters.
¢ XctExtendedSegment -- The item contains an extended segment.

¢ XctExtension -- The item is an unknown extension control sequence.

¢ XctHorizontal — The item indicates a change in horizontal direction or
depth. The new direction and depthare recorded in the XctData structure.

¢ XctEndOfText - The end of the Compound Text string has been reached.

e XctError - The string contains a syntactic or semantic error; no further
parsing should be performed.

XctFree -- This frees all data associated with the XctData structure.

Structures

The following structure is defined for XctData :

typedef struct _XctRec (
XctString total_string;
int total_length;
XctFlags flags;
int version;

int can_ignore_exts;

XctString item;
int item_length;
int char_size;

char *encoding;
XctHDirection horizontal;
int horz_depth;

char *GL;

char *GL_encoding;
int GL_set_size;

int GL_char_size;
char *GR;

char *GR_encoding;
int GR_set_size;

int GR_char_size;
char *GLGR_encoding;

struct _XctPriv *priv;
} *XctData;

566

/*
/t
/t
/t

/*

as given to XctCreate */

as given to XctCreate */

as given to XctCreate */

indicates version of the CT spec

the string was produced from */
non-zero if ignoring extensions

is acceptable, else zero */

the action item */

the length of item in bytes */
number of bytes per character in
item, zero meaning variable */

the XLFD encoding name for item */
the direction of item */

current direction nesting depth */
{I1) F string for the current GL */
XLFD encoding name for current GL */
94 or 96 */

number of bytes per GL
*{I} F" string for the
XLFD encoding name for
94 or 96 */

number of bytes per GR character */
XLFD encoding name for the

current GL+GR, if known */

private to parser */

character */
current GR */
current GR */

X Version 11 (Release 5) 6 January 1993

The following is the return type defined for XctNextItem:

typedef enum {
XctSegment, /*
XctC0Segment, /*

XctGLSegment, /*
XctClSegment, /*
XctGRSegment, /*
XctExtendedSegment, /*
XctExtension, /*
XctHorizontal, /*
XctEndOfText, /*

XctError /*
} XctResult;

See also

used when XctSingleSetSegments
used when XctSingleSetSegments
used when XctSingleSetSegments
used when XctSingleSetSegments
used when XctSingleSetSegments
an extended segment */

used when XctProvideExtensions

XctData(Xmu)

not requested */

is
is
is
is

is

requested
requested
requested
requested

requested

horizontal direction or depth change */

end of text string */
syntactic or semantic error */

*/
*/
*/
*/

*/

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

567

XmuAddCloseDisplayHook(Xmu)

XmuAddCloseDisplayHook

add a callback to display

Syntax

cc ... =-IXmu

#include <X11/Xmu/CloseHook.h>

CloseHook XmuAddCloseDisplayHook(dpy, func, arg)
Display *dpy;
int (*func)();
caddr_t arg;

Arguments

dpy Specifies the connection to the X server.
func Specifies the function to call at display close.
arg Specifies arbitrary data to pass to func.

Description

See also

The XmuAddCleseDisplayHook function adds a callback for the given dis-
play. When the display is closed, the given function will be called with the
givendisplay and argument as:

(*func) (dpy, arg)
The function is declared to return an int even though the value is ignored,
because some compilers have problems with functions returning void.

This routine returns NULL if it was unable to add the callback, otherwise it
returns an opaque handle that can be used to remove or lookup the callback.

568

XmuRemoveCloseDisplayHook(Xmu)
XIib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XmuAddInitializer(Xmu)

XmuAddlnitiaIizer

register procedure

Syntax

cc ... -IXmu

#include <X11/Xmu/Initer.h>

void XmuAddInitializer(func, data)
void (*func)();
caddr_t data;

void XmuCalllInitializers(app_con)
XtAppContext app_con;

Arguments
func Specifies the procedure to register.
data Specifies private data for the procedure.

app_con Specifies the application context to initialize.

Description

The XmuAddInitializer function registers a procedure to be invoked the first
time XmucCalllnitializers is called on a given application context.

The XmuCalllnitializers function calls each of the procedures that have been
registered with XmuAddInitializer, if this is the first time the application con-
text has been passed to XmuCallInitializers; otherwise, this function does
nothing.

See also

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 569

XmuAllStandardColormaps(Xmu)

XmuAllStandardColormaps

standard colormaps

Syntax

c ... =-IXmu

#include <X11/Xmu/StdCmap.h>

Status XmuAllStandardColormaps(dpy)
Display *dpy;

Arguments

dpy Specifies the connection to the X server.

Description

570

To create all of the appropriate standard colormaps for every visual of every
screen on a given display, use XmuAllStandardColormaps.

The XmuAllStandardColormaps function defines and retains as permanent
resources all standard colormaps that are meaningful for the visuals of each
screen of the display. It returns O on failure, non-zero on success. If the pro-
perty of any standard colormap is already defined, this function will redefine
it.

This function is used by window managers or a special client at the start of a
session.

The standard colormaps of a screen are defined by properties associated with
the screen’s root window. The property names of standard colormaps are
predefined, and each property name except RGB_DEFAULT_MAP may describe
at most one colormap.

The standard colormaps are: RGB_BEST_MAP, RGB_RED_MAP,
RGB_GREEN_MAP, RGB_BLUE_MAP, RGB_DEFAULT MAP, and
RGB_GRAY_MAP. Therefore, a screen may have at most six standard color-
map properties defined.

A standard colormap is associated with a particular visual of the screen. A
screen may have multiple visuals defined, including visuals of the same class
at different depths. Note that a visual id might be repeated for more than one
depth, so the visual id and the depth of a visual identify the visual. The char-
acteristics of the visual will determine which standard colormaps are mean-
ingful under that visual, and will determine how the standard colormap is
defined. Because a standard colormap is associated with a specific visual,

X Version 11 (Release 5) 6 January 1993

XmuAllStandardColormaps(Xmu)

there must be a method of determining which visuals take precedence in
defining standard colormaps.

The method used here is: for the visual of greatest depth, define all standard
colormaps meaningful to that visual class, according to this order of descend-
ing precedence: DirectColor; PseudoColor; TrueColor and GrayScale; and
finally StaticColor and StaticGray.

This function allows success on a per screen basis. For example, if a map on
screen 1 fails, the maps on screen 0, created earlier, will remain. However,
none on screen 1 will remain. If a map on screen 0 fails, none will remain.

See XmuVisualStandardColormaps(Xmu) for which standard colormaps are
meaningful under these classes of visuals. To create all of the appropriate
standard colormaps for a given visual on a given screen, use XmuVisualStan-
dardColormaps.

See also

XmuVisualStandardColormaps(Xmu), XmuLookupStandardColormap(Xmu),
XmuGetColormapAllocation(Xmu), XmuStandardColormap(Xmu), XmuCre-
ateColormap(Xmu), XmuDeleteStandardColormap(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 571

XmuAtom(Xmu)

XmuAtom

Xmu atom functions and macros

Syntax

cc ... -IXmu

#include <X11/Xmu/Atoms.h>

AtomPtr XmuMakeAtom(name)
char * name;

char *XmuNameOfAtom(atom_ptr)
AtomPtr atom_ptr;

Atom XmulnternAtom(d, atom_ptr)
Display *d;
AtomPtr atom_ptr;

char *XmuGetAtomName(d, atom)
Display *d;
Atom atom;

void XmulnternStrings(d, names, count, atoms)
Display *d;
string *names;
Cardinal count;
Atom *atoms;

XA_ATOM_PAIR(d)
XA_CHARACTER_POSITION (d)
XA_CLASS(d)
XA_CLIENT_WINDOW(d)
XA_CLIPBOARD(d)
XA_COMPOUND_TEXT(d)
XA_DECNET_ADDRESS(d)
XA_DELETE(d)
XA_FILENAME(d)
XA_HOSTNAME (d)
XA_IP_ADDRESS(d)
XA_LENGTH (d)
XA_LIST_LENGTH(d)
XA_NAME (d)
XA_NET_ADDRESS(d)
XA_NULL (d)
XA_OWNER_0S(d)
XA_SPAN(d)
XA_TARGETS (d)
XA_TEXT(d)
XA_TIMESTAMP(d)
XA_USER(d)

572 X Version 11 (Release 5) 6 January 1993

XmuAtom(Xmu)

Arguments
atom Specifies theatom whose name is desired.
atoms Returns the list of Atom values.
atom_ptr Specifies the AtomPtr.
count Specifies the number of strings.
d Specifies the connection to the X server.
name Specifies the atom name.
names Specifies the strings to intern.
Description

See also

The XmuMakeAtom function creates and initializes an opaque object, an
AtomPtr, for an Atom with the given name.

XmuNameOfAtom can be used to cache the Atom value for one or more dis-
plays. The function returns the name of an AtomPtr.

The XmulInternAtom function returns the Atom for an AtomPtr. The Atom is
cached, such that subsequent requests do not cause another round-trip to the
server.

The XmuGetAtomName function returns the name of an Atom. The result is
cached, such that subsequent requests do not cause another round-trip to the
server.

The XmulntemStrings function converts a list of atom names into Atom
values. The results are cached, such that subsequent requests do not cause
further round-trips to the server. The caller is responsible for preallocating
the array pointed at by atoms.

These "XA_" macros take a display as an argument and return an Atom. The
name of the atom is obtained from the macro name by removing the leading
characters “XA_". The Atom value is cached, such that subsequent requests
do not cause another round-trip to the server.

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 573

XmuComparelSOLatin1(Xmu)

XmuComparelSOLatin1

compare two Latin-1 strings

Syntax

cc ... -IXmu

#include <X11/Xmu/CharSet.h>

int XmuComparelSOLatinl(first, second)
char *first, *second;

Arguments

first Specifies a string to compare.
second Specifies a string to compare.

Description

The XmuCompareISOLatin1 function compares two null-terminated Latin-1
strings, ignoring case differences, and returns an integer greater than, equal to,
or less than 0, according to whether the first is lexicographically greater than,
equal to, or less than the second.

The two strings are assumed to be encoded using ISO 8859-1.

See also

XmuLookupLatin1(Xmu), XmuCopyISOLatin1Lowered(Xmu)
Xlib - C Language X Interface

574 X Version 11 (Release 5) 6 January 1993

XmuConvertStandardSelection(Xmu)

XmuConvertStandardSelection

convert standard selection

Syntax

cC ... -1Xmu
#include <X11/Xmu/StdSel.h>

Boolean XmuConvertStandardSelection (w, time, selection, target, type, value,
length, format)
Widget w;
Time time;
Atom *selection, *target, *type;
caddr_t *value;
unsigned long *length;
int *format;

Arguments
w Specifies the widget that currently owns the selection.
time Specifies the time at which the selection was established.

selection Argument ignored.

target Specifies the target type of the selection.

type Returns the property type of the converted value.
value Returns the converted value.

length Returns the number of elements in the converted value.
format Returns the size in bits of the elements.

Description

The XmuConvertStandardSelection function converts the following standard
selections: CLASS, CLIENT _WINDOW, DECNET_ADDRESS, HOST-
NAME, IP_ADDRESS, NAME, OWNER_OS, TARGETS, TIMESTAMP, and
USER.

XmuConvertStandardSelection returns True if the conversion was successful,
otherwise it returns False.

See also

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 575

XmuCopyISOLatin1Lowered(Xmu)

XmuCopylSOLatin1Lowered

copies Latin-1 uppercase string to lowercase

Syntax
cc ... -IXmu
#include <X11/Xmu/CharSet.h>
void XmuCopylISOLatinlLowered(dst, src)
char *dst, *src;
void XmuCopyISOLatinlUppered(dst, src)
char *dst, *src;
Arguments
dst returns the string copy
src specifies the string to copy
Description
The XmuCopyISOLatin1Lowered function copies a null-terminated string
from src to dst (including the null), changing all Latin-1 uppercase letters to
lowercase. The string is assumed to be encoded using I1SO 8859-1.
The XmuCopyISOLatin1Uppered function copies a null-terminated string
from src to dst (including the null), changing all Latin-1 lowercase letters to
uppercase. The string is assumed to be encoded using ISO 8859-1.
See also
XmuLookupLatin1(Xmu), XmuCompareISOLatin1(Xmu)
Xlib - C Language X Interface
576 X Version 11 (Release 5) 6 January 1993

XmuCreateColormap(Xmu)

XmuCreateColormap

create colormap

Syntax

c ... -IXmu

#include <X11/Xmu/StdCmap.h>
Status XmuCreateColormap(dpy, colormap)

Display *dpy;
XStandardColormap *colormap;

Arguments

dpy Specifies the connection under which the map is created.
colormap Specifies the map to be created.

Description

Resources created by this function are not made permanent; that is the caller’s
responsibility.

To create any one colormap that is described by an XStandardColormap
structure, use XmuCreateColormap.

This function returns 0 on failure, and non-zero on success. The base_pixel of
the colormap is set on success. Resources created by this function are not
made permanent. No argument error checking is provided; use at your own
risk.

All colormaps are created with read-only allocations, with the exception of
read-only allocations of colors failing to return the expected pixel value, and
these are individually defined as read/write allocations. This is done so that
all the cells defined in the colormap are contiguous for use in image pro-
cessing. This typically happens with White and Black in the default map.

Colormaps of static visuals are considered to be successfully created if the
map of the static visual matches the definition given in the standard colormap
structure.

X Version 11 (Release 5) 6 January 1993 577

XmuCreateColormap(Xmu)

See also

XmuAllStandardColormaps(Xmu), XmuVisualStandard Colormaps(Xmu),
XmuLookupStandardColormap(Xmu), XmuGetColormapAllocation(Xmu),
XmuStandardColormap(Xmu), XmuDeleteStandardColormap(Xmu)

Xlib - C Language X Interface

578 X Version 11 (Release 5) 6 January 1993

XmuCreatePixmapFromBitmap(Xmu)

XmuCreatePixmapFromBitmap

create pixmap from bitmap

Syntax

cC ... -IXmu

#include <X11/Xmu/Drawing.h>

Pixmap XmuCreatePixmapFromBitmap (dpy, d, bitmap, width, height, depth,
fore, back)
Display *dpy:
Drawable d;
Pixmap bitmap;
unsigned int width, height, depth;
unsigned long fore, back;

Arguments
dpy Specifies the connection to the X server.
d Specifies the screen the pixmap is created on.

bitmap Specifies the bitmap source.

width Specifies the width of the pixmap.
height Specifies the height of the pixmap.
depth Specifies the depth of the pixmap.
fore Specifies the foreground pixel value.
back Specifies the background pixel value.

Description

XmuCreatePixmapFromBitmap creates a pixmap of the specified width,
height, and depth, on the same screen as the specified drawable, and then per-
forms an XCopyPlane from the specified bitmap to the pixmap, using the
speciﬁgg foreground and background pixel values. The created pixmap is
returned.

See also

XCopyPlane(XS), XmuDrawRoundedRectangle(Xmu), XmuDrawLogo(Xmu),
XmuCreateStippledPixmap(Xmu), XmuReadBitmapData(Xmu),
XmuLocateBitmapFile(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 579

XmuCreateStippled Pixmap(Xmu)

XmuCreateStippledPixmap

creates stippled pixmap

Syntax

cC ... -IXmu

#include <X11/Xmu/Drawing.h>

Pixmap XmuCreateStippledPixmap(screen, fore, back, depth)
Screen *screen;
Pixel fore, back;
unsigned int depth;

void XmuReleaseStippledPixmap(screen, pixmap)
Screen *screen;
Pixmap pixmap;

Arguments

screen Specifies the screen the pixmap is created on.

fore Specifies the foreground pixel value.

back Specifies the background pixel value.
depth Specifies the depth of the pixmap.
pixmap Specifies the pixmap to free.

Description

See also

XmuCreateStippledPixmap creates a two pixel by one pixel stippled pixmap
of specified depth on the specified screen.

The pixmap is cached so that multiple requests share the same pixmap. The
pixmap should be freed with XmuReleaseStippledPixmap to maintain
correct reference counts.

The XmuReleaseStippledPixmap function frees a pixmap created with
XmuCreateStippledPixmap.

580

XmuDrawRoundedRectangle(Xmu), XmuDrawLogo(Xmu),
XmuReadBitmapData(Xmu), XmuLocateBitmapFile(Xmu), XmuCre-
atePixmapFromBitmap(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XmuCursorNameTolndex(Xmu)

XmuCursorNameTolndex
cursor utilities
Syntax
o ... -IXmu
#include <X11/Xmu/CurUtil.h>
int XmuCursorNameTolIndex (name)
char *name;
Arguments
name Specifies the name of the cursor.
Description
XmuCursorNameTolIndex takes the name of a standard cursor and returns its
indexin the standard cursor font.
The cursor names are formed by removing the “XC_" prefix from the cursor
defines listed on the XCreateFontCursor(XS) manual page of XIib - C Language
X Interface.
See also

XCreateFontCursor(XS)()
Xlib - C Language X Interface

{nwy)

X Version 11 (Release 5) 6 January 1993 581

XmuCvtFunctionToCallback(Xmu)

XmuCvtFunctionToCallback

convert callback procedure to callback list

Syntax
e ... <IXmu
#include <X11/Xmu/Converters.h>
void XmuCvtFunctionToCallback(args, num_args, fromVal, toVal)
XrmValue *args;
Cardinal *num_args;
XrmValuePtr fromVal;
XrmValuePtr toVal;
Arguments
args Argument ignored.
num_args Argument ignored.
fromVal Specifies string to convert.
toVal Returns the converted value.
Description
This XmuCvtFunctionToCallback function converts a callback procedure to a
callback list containing that procedure, with NULL closure data.
To use this converter, include the following in your widget’s ClassInitialize
procedure:
XtAddConverter(XtRCallProc, XtRCallback,
XmuCvtFunctionToCallback, WuLL, 0);
See also

XmuCvtStringToBackingStore(Xmu), XmuCvtStringToBackingStore(Xmu),
XmuCvtStringToShapeStyle(Xmu), XmuReshapeWidget(Xmu),
XmuCvtStringToWidget(Xmu)

Xlib - C Language X Interface

582 X Version 11 (Release 5) 6 January 1993

XmuCotStringToBackingStore(Xmu)

XmuCvtStringToBackingStore

convert string to backing-store integer

Syntax

cc ... -IXmu

#include <X11/Xmu/Converters.h>

void XmuCvtStringToBackingStore(args, num_args, fromVal, toVal)
XrmValue *args;
Cardinal *num_args;
XrmValuePtr fromval;
XrmValuePtr tovVal;

Arguments

args Argument ignored.

num_args This argument must be a pointer to a Cardinal containing the
value 0.

fromVal Specifies the string to convert.

toVal Returns the converted value.

Description

See also

The XmuCvtStringToBackingStore function converts a string to a backing-
store integer, as defined in <X11/X.k >. The string "notUseful” converts to
NotUseful, "whenMapped" converts to WhenMapped, and "always" converts
to Always. The string "default” converts to the value Always+ When-
Mapped+ NotUseful. The case of the string does not matter. To use this con-
verter, include the following in your widget’s ClassInitialize procedure:
XtAddConverter(XtRString, XtRBackingStore,
XmuCvtStringToBackingStore, NULL, 0);

XmuCvtFunctionToCallback(Xmu), XmuCvtStringToColorCursor(Xmu),
XmuCvtStringToCursor(Xmu), XmuCvtStringToGravity(Xmu),
XmuCvtStringToJustify(Xmu), XmuCvtStringToLong(Xmu),
XmuCvtStringToOrientation(Xmu), XmuCvtStringToShapeStyle(Xmu),
XmuNewCvtStringToWidget(Xmu), XmuReshapeWidget(Xmu),
XmuCvtStringToWidget(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 583

XmuCotStringToBitmap(Xmu)

XmuCvtStringToBitmap

convert string to bitmap

Syntax

cc ... -1Xmu

#include <X11/X.h>

void XmuCvtStringToBitmap(args, num_args, fromVal, toVal)
XrmValuePtr args;
Cardinal *num_args;
XrmValuePtr fromVal;
XrmValuePtr toVal;

Arguments

args Sole argument specifies the Screen on which to create the bitmap.
num_args Must be the value 1.

fromVal Specifies the string to convert.

toVal Returns the converted value.

Description

See also

The XmuCvtStringToBitmap function creates a bitmap (a Pixmap of depth
one) suitable for window manager icons.

The string argument is the name of a file in standard bitmap file format. For
the possible filename specifications, see XmuLocateBitmapFile(Xmu). To use
this converter, include the following in your widget’s ClassInitialize pro-
cedure:

static XtConvertArgRec screenConvertArg() = {
{XtBaseOffset,
(XtPointer)XtOf fset (Widget, core.screen),
sizeof (Screen *))
)i
XtAddConverter(XtRString, XtRBitmap, XmuCvtStringToBitmap,
screenConvertArg, XtNumber(screenConvertArg));

584

XmuCvtFunctionToCallback(Xmu), XmuCvtStringToBackingStore(Xmu),
XmuCvtStringToShapeStyle(Xmu), XmuReshapeWidget(Xmu),
XmuCvtStringToWidget(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XmuCotStringToColorCursor(Xmu)

XmuCvtStringToColorCursor

convert string to color cursor

Syntax

cC ... =-IXmu
#include <X11/Xmu/Converters.h>

Boolean XmuCvtStringToColorCursor(dpy, args, num_args, fromVal, toVal, data)
Display *dpy
XrmValuePtr args;
Cardinal *num_args;
XrmValuePtr fromVal;
XrmValuePtr toVal;
XtPointer *data;

Arguments

dpy Specifies the display to use for conversion warnings.
args Specifies therequired conversion arguments.
num_args Specifies the number of required conversion arguments, which is

fromVal Specifies the string to convert.
toVal Returns the converted value.
data This argument is ignored.

Description

This function converts a string to a Cursor with the foreground and back-
ground pixels specified by the conversion arguments. The string can either be
a standard cursor name formed by removing the “XC_" prefix from any of the
cursor defines listed on the XCreateFontCursor(XS) manual page of the Xlib
Manual, a font name and glyph index in decimal of the form "FONT fontname
index [[font] index]", or a bitmap filename acceptable to XmuLocateBitmap-
File.

X Version 11 (Release 5) 6 January 1993 585

XmuCutStringToColorCursor(Xmu)

See also

To use this converter, include the following in the widget ClassInitialize pro-
cedure:

static XtConvertArgRec colorCursorConvertArgs(]) = |
(XtWidgetBaseOffset, (XtPointer) XtOffsetOf (WidgetRec, core.screen),
sizeof (Screen *)},
{XtResourceString, (XtPointer) XtNpointerColor, sizeof (Pixel)},
{XtResourceString, (XtPointer) XtNpointerColorBackground, sizeof (Pixel
'}

(XtWidgetBaseOffset, (XtPointer) XtOffsetOf (WidgetRec, core.colormap),
sizeof (Colormap)}
i

XtSetTypeConverter (XtRString, XtRColorCursor, XmuCvtStringToColorCursor,
colorCursorConvertArgs, XtNumber(colorCursorConvertArgs),
XtCacheByDisplay, NULL);

The widget must recognize XtNpointerColor and XtNpointerColorBack-
ground as resources, or specify other appropriate foreground and background
resources. The widget’s Realize and SetValues methods must cause the con-
verter to be invoked with the appropriate arguments when one of the fore-
ground, background, or cursor resources has changed, or when the window is
created, and must assign the cursor to the window of the widget.

586

XmuCvtFunctionToCallback(Xmu), XmuCvtStringToBackingStore(Xmu),
XmuCvtStringToCursor(Xmu), XmuCvtStringToGravity(Xmu),
XmuCvtStringToJustify(Xmu), XmuCvtStringToLong(Xmu),
XmuCvtStringToOrientation(Xmu), XmuCvtStringToShapeStyle(Xmu),
XmuNewCvtStringToWidget(Xmu), XmuReshapeWidget(Xmu),
XmuCvtStringToWidget(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XmuCvtStringToCursor(Xmu)

XmuCvtStringToCursor

convert string to cursor

Syntax

cc ... -IXmu

#include <X11/Xmu/Converters.h>

void XmuCvtStringToCursor(args, num_args, fromVal,toval)
XrmValuePtr args;
Cardinal *num_args;
XrmValuePtr fromval;
XrmValuePtr toVal;

Arguments

args Specifies the required conversion argument, the screen.
num_args Specifies the number of required conversion arguments, which is

fromVal Specifies the string to convert.
toVal Returns the converted value.

Description

The XmuCvtStringToCursor function converts a string to a Cursor. The
string can either be a standard cursor name formed by removing the “XC_*
prefix from any of the cursor defines listed on the XCreateFontCursor(XS), a
font name and glyph index in decimal of the form "FONT fontname index
[[font] index]", or a bitmap filename acceptable to XmuLocateBitmapFile. To
use this converter, include the following n your widget’s ClassInitialize pro-
cedure:
static XtConvertArgRec screenConvertArg() = {
{XtBaseOffset,
(XtPointer)XtOffsetOf (WidgetRec, core.screen),
sizeof (Screen *)}
)i

XtAddConverter (XtRString, XtRCursor, XmuCvtStringToCursor,
screenConvertArg, XtNumber(screenConvertArg));

X Version 11 (Release 5) 6 January 1993 587

XmuCutStringToCursor(Xmu)

See also

XCreateFontCursor(XS), XmuCvtFunctionToCallback(Xmu),
XmuCvtStringToBackingStore(Xmu), XmuCvtStringToColorCursor(Xmu),
XmuCvtStringToGravity(Xmu), XmuCvtStringToJustify(Xmu),
XmuCvtStringToLong(Xmu), XmuCvtStringToOrientation(Xmu),
XmuCvtStringToShapeStyle(Xmu), XmuCvtStringToWidget(Xmu),
XmuNewCvtStringToWidget(Xmu), XmuReshapeWidget(Xmu)

Xlib - C Language X Interface

588 X Version 11 (Release 5) 6 January 1993

XmuCuotStringToGravity(Xmu)

XmuCvtStringToGravity

convert string to enumeration value

Syntax

cC ... =IXmu

#include <X11/Xmu/Converters.h>

void XmuCvtStringToGravity(args, num_args, fromvVal, toVal)
XrmValuePtr *args;
Cardinal *num_args;
XrmValuePtr fromval;
XrmValuePtr tovVal;

Arguments

args Argument ignored.

num_args This argument must be a pointer to a Cardinal containing the
value 0.

fromVal Specifies the string to convert.
toVal Returns the converted value.

Description

The XmuCvtStringToGravity function converts a string to an XtGravity
enumeration value. The string "forget” and a NULL value convert to Forget-
Gravity, "NorthWestGravity" converts to NorthWestGravity, the strings
"NorthGravity" and "top” convert to NorthGravity, "NorthEastGravity" con-
verts to NorthEastGravity, the strings "West" and "left" convert to WestGrav-
ity, "CenterGravity" converts to CenterGravity, "EastGravity" and "right" con-
vert to EastGravity, "SouthWestGravity” converts to SouthWestGravity,
"SouthGravity" and "bottom" convert to SouthGravity, "SouthEastGravity"
converts to SouthEastGravity, "StaticGravity" converts to StaticGravity, and
"UnmapGravity" converts to UnmapGravity. The case of the string does not
matter. To use this converter, include the following in your widget’s class ini-
tialize procedure:

XtAddConverter (XtRString, XtRGravity, XmuCvtStringToGravity, NULL, 0);

X Version 11 (Release 5) 6 January 1993 589

XmuCotStringToGravity(Xmu)

See also

XmuCvtFunctionToCallback(Xmu), XmuCvtStringToBackingStore(Xmu),
XmuCvtStringToColorCursor(Xmu), XmuCvtStringToCursor(Xmu),
XmuCvtStringToJustify(Xmu), XmuCvtStringToLong(Xmu),
XmuCvtStringToOrientation(Xmu), XmuCvtStringToShapeStyle(Xmu),
XmuNewCvtStringToWidget(Xmu), XmuReshapeWidget(Xmu),
XmuCvtStringToWidget(Xmu)

Xlib - C Language X Interface

590 X Version 11 (Release 5) 6 January 1993

XmuCotStringToJustify(Xmu)

XmuCvtStringToJustify

convert string to XtJustify value

Syntax

cc ... -IXmu

#include <X11/Xmu/Converters.h>

void XmuCvtStringToJustify(args, num_args, fromVal, toval)
XrmValuePtr *args;
Cardinal *num_args;
XrmValuePtr fromVal;
XrmValuePtr toVal;

Arguments

args Argument ignored.

num_args Argumentignored.

fromVal Specifies the string to convert.
toVal Returns the converted value.

Description

The XmuCvtStringToJustify function converts a string to an XtJustify
enumeration value. The string "left" converts to XtJustifyLeft, "center" con-
verts to XtJustifyCenter, and "right" converts to XtJustifyRight. The case of
the string does not matter. To use this converter, include the following in
your widget’s ClassInitialize procedure:

XtAddConverter (XtRString, XtRJustify,
XmuCvtStringToJustify, ~uLL, 0);

See also

XmuCvtFunctionToCallback(Xmu), XmuCvtStringToBackingStore(Xmu),
XmuCvtStringToColorCursor(Xmu), XmuCvtStringToCurson(Xmu),
XmuCvtStringToGravity(Xmu), XmuCvtStringToLong(Xmu),
XmuCvtStringToOrientation(Xmu), XmuCvtStringToShapeStyle(Xmu),
XmuNewCvtStringToWidget(Xmu), XmuReshapeWidget(Xmu),
XmuCvtStringToWidget(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 591

XmuCvotStringToLong(Xmu)

XmuCvtStringToLong

convert string to integer of type long

Syntax

cC ... -IXmu

#include <X11/Xmu/Converters.h>

void XmuCvtStringToLong(args, num_args, fromVal, tovVal)
XrmValuePtr args;
Cardinal *num_args;
XrmValuePtr fromval;
XrmValuePtr toVal;

Arguments

args Argument ignored.
num_args This argument must be a pointer to a Cardinal containing 0.

fromVal Specifies the string to convert.
toVal Returns the converted value.

Description

The XmuCvtStringToLong function converts a string to an integer of type
long. The num_args argument must be zero. It parses the string using sscanf
with a format of "%Id". To use this converter, include the following in your
widget’s ClasslInitialize procedure:

XtAddConverter (XtRString, XtRLong, XmuCvtStringToLong,
NULL, O);

See also

XmuCvtFunctionToCallback(Xmu), XmuCvtStringToBackingStore(Xmu),
XmuCvtStringToColorCursor(Xmu), XmuCvtStringToCursor(Xmu),
XmuCvtStringToGravity(Xmu), XmuCvtStringToJustify(Xmu),
XmuCvtStringToOrientation(Xmu), XmuCvtStringToShapeStyle(Xmu),
XmuNewCvtStringToWidget(Xmu), XmuReshapeWidget(Xmu),
XmuCvtStringToWidget(Xmu)

Xlib - C Language X Interface

592 X Version 11 (Release 5) 6 January 1993

XmuCuotStringToOrientation(Xmu)

XmuCvtStringToOrientation

convert string to XtOrientation enumeration value

Syntax
cc ... <IXmu
#include <X11/Xmu/Converters.h>
void XmuCvtStringToOrientation(args, num_args, fromVal, toval)
XrmValuePtr *args;
Cardinal *num_args;
XrmValuePtr fromval;
XrmValuePtr tovVal;
Arguments
args Argument ignored.
num_args Argument ignored.
fromVal Specifies the string to convert.
toVal Returns the converted value.
Description
The XmuCvtStringToOrientation function converts a string to an XtOrienta-
tion enumeration value. The string "horizontal" converts to XtorientHorizon-
tal and "vertical” converts to XtorientVertical. The case of the string does not
matter. To use this converter, include the following in your widget’s ClassIn-
itialize procedure:
XtAddConverter (XtRString, XtROrientation,
XmuCvtStringToOrientation, wLL, 0);
See also

XmuCvtFunctionToCallback(Xmu), XmuCvtStringToBackingStore(Xmu),
XmuCvtStringToColorCursor(Xmu), XmuCvtStringToCursor(Xmu),
XmuCvtStringToGravity(Xmu), XmuCvtStringToJustify(Xmu),
XmuCvtStringToLong(Xmu), XmuCvtStringToShapeStyle(Xmu),
XmuNewCvtStringToWidget(Xmu), XmuReshapeWidget(Xmu),
XmuCvtStringToWidget(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 593

XmuCotStringToShapeStyle(Xmu)

XmuCvtStringToShapeStyle

convert string to integer shape style

Syntax

c ... =IXmu

#include <X11/Xmu/Converters.h>

Boolean XmuCvtStringToShapeStyle(dpy, args, num_args, from, toval, data)
Display *dpy;
XrmValue *args;
Cardinal *num_args;
XrmValue *fromvVal;
XrmValue *toval;
XtPointer *data;

Argquments
dpy Display to use for conversion wamings.
args Argumentis ignored.

num_args Argumentis ignored.
fromVal Value to convert from.

toVal Place to store the converted value.
data Argument is ignored.
Description

The XmuCvtStringToShapeStyle function converts a string to an integer
shape style. The string "rectangle’ converts to XmuShapeRectangle, "oval”
converts to XmuShapeOval, "ellipse” converts to XmuShapeEllipse, and
"roundedRectangle” converts to XmuShapeRoundedRectangle. The case of
the string does not matter. To use this converter, include the following in
your widget’s ClassInitialize procedure:

XtSetTypeConverter(XtRString, XtRShapeStyle,
XmuCvtStringToShapeStyle, NULL, 0, XtCacheNone, NULL);

See also

XmuCvtFunctionToCallback(Xmu), XmuCvtStringToBackingStore(Xmu),
XmuCvtStringToBackingStore(Xmu), XmuReshapeWidget(Xmu),
XmuCvtStringToWidget(Xmu)

Xlib - C Language X Interface

594 X Version 11 (Release 5) 6 January 1993

XmuCvotStringToWidget(Xmu)

XmuCvtStringToWidget

convert string to immediate child widget

Syntax

cC ... =-1Xmu

#include <X11/Xmu/Converters.h>

void XmuCvtStringToWidget (args, num_args, fromvVal,toVal)
XrmValuePtr args;
Cardinal *num_args;

XrmValuePtr fromval;
XrmValuePtr toval;

Arguments

args This sole argumentis the parent Widget.
num_args This argument must be 1.

fromVal Specifies the string to convert.

toVal Returns the converted value.

Description

The XmuCvtStringToWidget function converts a string to an immediate child
widget of the parent widget passed as an argument.

Note that this converter only works for child widgets that have already been
created; there is no lazy evaluation. The string is first compared against the
names of the normal and popup children, and if a match is found the corre-
sponding child is returned. If no match is found, the string is compared
against the classes of the normal and popup children, and if a match is found
the corresponding child is returned. The case of the string is significant. To
use this converter, include the following in your widget’s ClassInitialize pro-
cedure:
static XtConvertArgRec parentCvtArg() = |
(XtBaseOffset,
(XtPointer)XtOf fset (Widget, core.parent),
sizeof (Widget) },
)i
XtAddConverter(XtRString, XtRWidget, XmuCvtStringToWidget,
parentCvtArg, XtNumber(parentCvtArg));

See also

XmuCvtFunctionToCallback(Xmu), XmuCvtStringToBackingStore(Xmu),
XmuCvtStringToShapeStyle(Xmu), XmuReshapeWidget(Xmu)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 595

XmuDeleteStandardColormap(Xmu)

XmuDeleteStandardColormap

delete standard colormap property

Syntax

c ... =-IXmu

#include <X11/Xmu/StdCmap.h>

void XmuDeleteStandardColormap(dpy, screen, property)
Display *dpy;
int screen;
Atom property;

Arguments

dpy Specifies the connection to the X server.
screen Specifies the screen of the display.
property Specifies the standard colormap property.

Description

See also

To remove any standard colormap property, use XmuDeleteStandardColor-
map.

This function removes the specified property from the specified screen, releas-
ing any resources used by the colormap(s) of the property, if possible.

596

XmuAllStandardColormaps(Xmu), XmuVisualStandardColormaps(Xmu),
XmuLookupStandardColormap(Xmu), XmuGetColormapAllocation(Xmu),
XmuStandardColormap(Xmu), XmuCreateColormap(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XmuDisplayQueue(Xmu)

XmuDisplayQueue

display queue functions

Syntax

cc ... -1Xmu
#include <X11/Xmu/DisplayQue.h>

XmuDisplayQueue *XmuDQCreate(closefunc, freefunc, data)
int (*closefunc)();
int (*freefunc)();
caddr_t data;

XmuDisplayQueueEntry *XmuDQAddDisplay(q, dpy, data)
XmuDisplayQueue *q;
Display *dpy;
caddr_t data;

XmuDisplayQueueEntry *XmuDQLookupDisplay(q, dpy)
XmuDisplayQueue *q;
Display *dpy;

Bool XmuDQRemoveDisplay(q, dpy)
XmuDisplayQueue *q;
Display *dpy;

Bool XmuDQDestroy(q, docallbacks)
XmuDisplayQueue *q;
Bool docallbacks;

Arguments
q Specifies the queue to be acted on.
dpy Specifies the display to add, lookup or remove.
data Specifies private data for the function or free function.

docallbacks Specifies whether close functions should be called.
closefunc Specifies the close function.
freefunc Specifies the free function.

X Version 11 (Release 5) 6 January 1993 597

XmuDisplayQueue(Xmu)

Description

598

The XmuDQCreate function creates and returns an empty XmuDis-
playQueue (which is really just a set of displays, but is called a queue for his-
torical reasons). The queue s initially empty, but displays can be added using
XmuAddDisplay. The data value is simply stored in the queue for use by the
closefunc and freefunc callbacks. Whenever a display in the queue is closed
using XCloseDisplay, the closefunc (if non-NULL) is called with the queue
and the display’s XmuDisplayQueueEntry as follows:

(*closefunc) (queue,entry)

The freeproc (if non-NULL) is called whenever the last display in the queue is
closed, as follows:

(*freefunc) (queue)

The application is responsible for actually freeing the queue, by calling
XmuDQDestroy.

The XmuDQAddDisplay function adds the specified display to the queue. If
successful, the queue entry is returned, otherwise NULL is returned. The data
value is simply stored in the queue entry for use by the queue’s freefunc call-
back. This function does not attempt to prevent duplicate entries in the
queue; the caller should use XmuDQLookupDisplay to determine if a display
has already been added to a queue.

The XmuDQLookupDisplay function returns the queue entry for the
specified display, or NULL if the display is not in the queue.

This macro returns the number of displays in the specified queue.
XmuDQNDisplays(4g)
The XmuDQRemoveDisplay function removes the specified display from the

specified queue. No callbacks are performed. If the display is not found in
the queue, False is returned, otherwise True is returned.

The XmuDQDestroy function releases all memory associated with the
specified queue. If docallbacks is True, then the queue’s closefunc callback (if
non-NULL) is first called for each display in the queue, even though
XCloseDisplay is not called on the display.

X Version 11 (Release 5) 6 January 1993

XmuDisplayQueue(Xmu)

Structures

typedef struct _XmuDisplayQueueEntry {
struct _XmuDisplayQueueEntry *prev, *next;
Display *display;
CloseHook closehook;
caddr_t data;
} XmuDisplayQueueEntry;

typedef struct _XmuDisplayQueue {
int nentries;
XmuDisplayQueueEntry *head, *tail;
int (*closefunc)();
int (*freefunc)();
caddr_t data;
} XmuDisplayQueue;

See also

XOpenDisplay(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 599

XmuDrawLogo(Xmu)

XmuDrawLogo

draw X Window System logo

Syntax

cc ... -IXmu

#include <X11/Xmu/Drawing.h>

XmuDrawLogo (dpy, drawable, gcFore, gcBack, x, y, width, height)
Display *dpy;
Drawable drawable;
GC gcFore, gcBack;
int x, y;
unsigned int width, height;

Arguments

dpy Specifies the connection to the X server.
drawable Specifies the drawable.

gcFore Specifies the foreground GC.

gcBack Specifies the background GC.

x Specifies the upper left x coordinate.

Y Specifies the upper left y coordinate.
width Specifies the logo width.

height Specifies the logo height.

Description

See also

The XmuDrawLogo function draws the official X Window System logo. The
bounding box of the logo in the drawable is given by x, y, width, and height.
The logo itself is filled using gcFore, and the rest of the rectangle is filled using
gcBack.

600

XmuDrawRoundedRectangle(Xmu), XmuCreateStippled Pixmap(Xmu),
XmuReadBitmapData(Xmu), XmuLocateBitmapFile(Xmu), XmuCre-
atePixmapFromBitmap(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993

XmuDrawRoundedRectangle(Xmu)

XmuDrawRoundedRectangle

draw rounded rectangle

Syntax
cc ... -IXmu
#include <X11/Xmu/Drawing.h>
void XmuDrawRoundedRectangle(dpy, draw, gc, x, y, w, h, ew, eh)
Display *dpy;
Drawable draw;
GC gc;
int x, y, w, h, ew, eh;
void XmuFillRoundedRectangle(dpy, draw, gc, X, y, W, h, ew, eh)
Display *dpy;
Drawable draw;
GC gc;
int x, y, w, h, ew, eh;
Arguments
dpy Specifies the connection to the X server.
draw Specifies the drawable.
gc Specifies the GC.
x Specifies the upper left x coordinate.
y Specifies the upper left y coordinate.
w Specifies the rectangle width.
h Specifies the rectangle height.
ew Specifies the corner width.
eh Specifies the corner height.
Description

The XmuDrawRoundedRectangle function draws a rounded rectangle. The
dimension’s of the rectangle are x, y, w, h; ew and eh are the sizes of a bound-
ing box that the corners are drawn inside of; ew should be no more than half
of w, and eh should be no more than half of k. The current GC line attributes
control all attributes of the line.

X Version 11 (Release 5) 6 January 1993 601

XmuDrawRoundedRectangle(Xmu)

The XmuFillRoundedRectangle function draws a filled rounded rectangle.
The dimensions of the rectangle are x, y, w, h; ew and eh are the sizes of a
boundingbox that the corners are drawn inside of; ew should be no more than
half of w, and eh should be no more than half of h. The current GC fill settings
control all attributes of the fill contents.

See also -
XmuDrawLogo(Xmu), XmuCreateStippledPixmap(Xmu),
XmuReadBitmapData(Xmu), XmuLocateBitmapFile(Xmu), XmuCre-
atePixmapFromBitmap(Xmu)
X1ib - C Language X Interface

602 X Version 11 (Release 5) 6 January 1993

XmuGetColormapAllocation(Xmu)

XmuGetColormapAllocation

determine best allocation of colors

Syntax

cC ... -1Xmu

#include <X11/Xmu/StdCmap.h>

Status XmuGetColormapAllocation(vinfo, property, red_max,
green_max, blue_max)
XVisuallInfo *vinfo;
Atom property;
unsigned long *red_max, *green_max, *blue_max;

Arguments

vinfo Specifies visual information for a chosen visual.
property Specifies one of the standard colormap property names.
red_max Returns maximum red value.

green_max Returns maximum green value.

blue_max Returns maximum blue value.

Description

See also

To determine the best allocation of reds, greens, and blues in a standard color-
map, use XmuGetColormapAllocation.

XmuGetColormapAllocation returns 0 on failure, non-zero on success. It is
assumed that the visual is appropriate for the colormap property.

XmuAllStandardColormaps(Xmu), XmuVisualStandardColormaps(Xmu),
XmuLookupStandardColormap(Xmu), XmuStandardColormap(Xmu),
XmuCreateColormap(Xmu), XmuDeleteStandardColormap(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 603

XmuGetHostname(Xmu)

XmuGetHostname

host name

Syntax

cc ... -IXmu

#include <X11/Xmu/Error.h>

int XmuGetHostname(buf, maxlen)

char *buf;
int maxlen;
Arguments
buf returns the host name

maxlen specifies the length of buf

Description

The XmuGetHostname function stores the null-terminated name of the local
host in buf, and returns length of the name. The function hides operating sys-
tem differences, such as whether to call gethostname or uname.

See also

gethostname(SLIB), uname(C)
Xlib - C Language X Interface

604 X Version 11 (Release 5) 6 January 1993

XmuLocateBitmapFile(Xmu)

XmuLocateBitmapFile

locate and retum bitmap

Syntax

cc ... -IXmu

#include <X11/Xmu/Drawing.h>

Pixmap XmuLocateBitmapFile(screen, name, srcname, srcnamelen, widthp,
heightp, xhotp, yhotp)
Screen *screen;
char *name;
char *srcname;
int srcnamelen;
int *widthp, *heightp, *xhotp, *yhotp;

Arguments

screen Specifies the screen the pixmap is created on.
name Specifies the file to read from.

srcname Returns the full filename of the bitmap.
srcnamelen Specifies the length of the srcname bulffer.
width Returns the width of the bitmap.

height Returns the height of the bitmap.

xhotp Returns the x coordinate of the hotspot.
yhotp Returns the y coordinate of the hotspot.

Description

The XmuLocateBitmapFile function reads a file in standard bitmap file for-
mat, using XReadBitmapFile, and returns the created bitmap.

The filename may be absolute, or relative to the global resource named bit-
mapFilePath with class BitmapFilePath. If the resource is not defined, the
default value is the build symbol BITMAPDIR, which is typically
fusr/include/X11/bitmaps. If srcnamelen is greater than zero and srcname is not
NULL, the null-terminated filename will be copied into srcname. The size and
hotspot of the bitmap are also returned.

X Version 11 (Release 5) 6 January 1993 605

(nwy)

XmuLocateBitmapFile(Xmu)

See also

XmuDrawRoundedRectangle(Xmu), XmuDrawLogo(Xmu), XmuCre-
ateStippledPixmap(Xmu), XmuReadBitmapData(Xmu),
XmuLocateBitmapFile(Xmu), XmuCreatePixmapFromBitmap(Xmu),
XReadBitmapFile(XS)

Xlib - C Language X Interface

606 X Version 11 (Release 5) 6 January 1993

XmuLookupLatinl(Xmu)

XmuLookupLatin1

map key event to Latin1 string

Syntax

CC «e0 -lxmll

#include <X11/Xmu/CharSet.h>

int XmuLookupLatinl(event, buffer, nbytes, keysym, status)
XKeyEvent *event;
char *buffer;
int nbytes;
KeySym *keysym;
XComposeStatus *status;

int XmuLookupLatin2(event, buffer, nbytes, keysym, status)
XKeyEvent *event;
char *buffer;
int nbytes;
KeySym *keysym;
XComposeStatus *status;

int XmuLookupLatin3(<event, buffer, nbytes, keysym, status)
XKeyEvent *event;
char *buffer;
int nbytes;
KeySym *keysym;
XComposeStatus *status;

int XmuLookupLatin4(event, buffer, nbytes, keysym, status)
XKeyEvent *event;
char *buffer;
int nbytes;
KeySym *keysym;
XComposeStatus *status;

int XmuLookupAPL(event, buffer, nbytes, keysym, status)
XKeyEvent *event;
char *buffer;
int nbytes;
KeySym *keysym;
XComposeStatus *status;

int XmuLookupKana(event, buffer, nbytes, keysym, status)
XKeyEvent *event;
char *buffer;
int nbytes;
KeySym *keysym;
XComposeStatus *status;

X Version 11 (Release 5) 6 January 1993 607

XmuLookupLatin1(Xmu)

int XmuLookupJISX0201(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

KeySym *keysym;
XComposeStatus *status;

int XmuLookupArabic(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

KeySym *keysynm;
XComposeStatus *status;

int XmuLookupCyrillic(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

KeySym *keysym;
XComposeStatus *status;

int XmuLookupGreek(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

KeySym *keysym;
XComposeStatus *status;

int XmuLookupHebrew(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

KeySym *keysynm;
XComposeStatus *status;

Arguments

event Specifies the key event.

buffer Returns the translated characters.
nbytes Specifies the length of the buffer.
keysym Returns the computed KeySym, or None.
status Specifies or returns the compose state.

608

X Version 11 (Release 5) 6 January 1993

XmuLookupLatin1(Xmu)

Description

See also

The XmuLookupLatinl function is identical to XLookupString, and exists
only for naming symmetry with other functions.

The XmuLookupLatin2 function is similar to XLookupString, except that it
maps a key event to a Latin-2 (ISO 8859-2) string, or to a ASCII control string.

The XmuLookupLatin3 function is similar to XLookupString, except that it
maps a key event to a Latin-3 (ISO 8859-3) string, or to an ASCII control string.

The XmuLookupLatin4 function is similar to XLookupString, except that it
maps a key event to a Latin-4 (ISO 8859-4) string, or to an ASCII control string.

The XLookupAPL function is similar to XLookupString, except that it maps a
key event to an APL string.

The XmuLookupKana function is similar to XLookupString, except that it
maps a key event to a string in an encoding consisting of Latin-1 (ISO 8859-1)
and ASCII control string in the Graphics Left half (values 0 to 127), and Kata-
kana in the Graphics Right half (values 128 to 255), using the values from
JISX201-1976.

The XmuLookupJISX0201 function is similar to XLookupString, except that it
maps a key event to a string in the JISX0201-1976 encoding, including ASCII
control string.

The XmuLookupArabic function is similar to XLookupString, except that it
maps a key event to a Latin/Arabic (ISO 8859-6) string, or to an ASCII control
string.

The XmuLookupCyrillic function is similar to XLookupString, except that it
maps a key event to a Latin/Cyrillic (ISO 8859-5) string, or to an ASCII control
string.

The XmuLookupGreek function is similar to XLookupString, except that it
maps a key event to a Latin/Greek (ISO 8859-7) string, or to an ASCII control
string.

The XmuLookupHebrew function is similar to XLookupString, except that it
maps a key event to a Latin/Hebrew (ISO 8859-8) string, or to an ASCII control
string.

XmuCopyISOLatin1Lowered(Xmu), XmuCompareISOLatin1(Xmu),
XLookupKeysym(XS), XLookupString(XS)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 609

XmuLookupStandardColormap(Xmu)

XmuLookupStandardColormap

create standard colormap

Syntax

cc ... -IXmu

#include <X11/Xmu/StdCmap.h>

Status XmuLookupStandardColormap(dpy, screen, visualid, depth, property,
replace, retain)
Display *dpy;
int screen;
VisuallD visualid;
unsigned int depth;
Atom property;
Bool replace;
Bool retain;

Arguments

dpy Specifies the connection to the X server.
screen Specifies the screen of the display.
visualid Specifies the visual type.

depth Specifies the visual depth.

property Specifies the standard colormap property.
replace Specifies whether or not to replace.

retain Specifies whether or not to retain.

Description

To create a standard colormap if one does not currently exist, or replace the
currently existing standard colormap, use XmuLookupStandardColormap.

Given a screen, a visual, and a property, this function determines the best allo-
cation for the property under the specified visual, and determines whether to
create a new colormap or to use the default colormap of the screen.

If replace is True, any previous definition of the property is replaced. If retain
is True, the property and the colormap will be made permanent for the dura-
tion of the server session. However, pre-existing property definitions that are
not replaced cannot be made permanent by a call to this function; a request to
retain resources pertains to newly created resources.

610 X Version 11 (Release 5) 6 January 1993

XmuLookupStandardColormap(Xmu)

This function returns 0 on failure, non-zero on success. A request to create a
standard colormap upon a visual which cannot support such a map is con-
sidered a failure. An example of this would be requesting any standard color-
map property on a monochrome visual, or requesting an RGB_BEST_MAP on a
display whose colormap size is 16.

See also

XmuAllStandardColormaps(Xmu), XmuVisualStandardColormaps(Xmu),
XmuGetColormapAllocation(Xmu), XmuStandardColormap(Xmu), XmuCre-
ateColormap(Xmu), XmuDeleteStandardColormap(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 611

XmuNewCuvtStringToWidget(Xmu)

XmuNewCvtStringToWidget

convert string to immediate child widget

Syntax

cC ... =IXmu

#include <X11/Xmu/Converters.h>

Boolean XmuNewCvtStringToWidget (dpy, args, num_args, fromval, toVal, data)
Display *dpy;
XrmValuePtr *args;
Cardinal *num_args;
XrmValuePtr fromval;
XrmValuePtr toVal;
XtPointer *data;

Arguments
dpy The display to use for conversion warnings.
args This sole argument is the parent Widget.

num_args This argument must be a pointer to a Cardinal containing the
value 1.

fromVal Specifies the string to convert.

toVal Returns the converted value.
data This argument is ignored.
Description

612

This converter is identical in functionality to XmuCvtStringToWidget, except
that it is a new-style converter, allowing the specification of a cache type at
the time of registration. Most widgets will not cache the conversion results, as
the application may dynamically create and destroy widgets, which would
cause cached values to become illegal. To use this converter, include the fol-
lowing in the widget’s class initialize procedure:

static XtConvertArgRec parentCvtArg(] = {
{XtWidgetBaseOffset, (XtPointer)XtOffsetOf(WidgetRec, core.parent),
sizeof (Widget))
);
XtSetTypeConverter (XtRString, XtRWidget, XmuNewCvtStringToWidget,
parentCvtArg, XtNumber(parentCvtArg), XtCacheNone, NULL);

X Version 11 (Release 5) 6 January 1993

XmuNewCotStringToWidget(Xmu)

See also

XmuCvtFunctionToCallback(Xmu), XmuCvtStringToBackingStore(Xmu),
XmuCvtStringToColorCursor(Xmu), XmuCvtStringToCursor(Xmu),
XmuCvtStringToGravity(Xmu), XmuCvtStringToJustify(Xmu),
XmuCvtStringToLong(Xmu), XmuCvtStringToOrientation(Xmu),
XmuCvtStringToShapeStyle(Xmu), XmuReshapeWidget(Xmu),
XmuCvtStringToWidget(Xmu)

Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 613

XmuPrintDefaultErrorMessage(Xmu)

XmuPrintDefaultErrorMessage

prints error message

Syntax

cC ... <IXmu

#include <X11/Xmu/Error.h>

int XmuPrintDefaultErrorMessage(dpy, event, fp)
Display *dpy;
XErrorEvent *event;
FILE *fp;

int XmuSimpleErrorHandler(dpy, errorp)

Display *dpy;
XErrorEvent *errorp;

Arguments

dpy Specifies the connection to the X server.
errorp Specifies the error.

event Specifies the error.

fr Specifies where to print the error message.

Description

The XmuPrintDefaultErrorMessage function prints an error message,
equivalent to Xlib’s default error message for protocol errors. It returns a
non-zero value if the caller should consider exiting, otherwise it returns 0.
This function can be used when you need to write your own error handler,
but need to print out an error from within that handler.

The XmuSimpleErrorHandler function ignores errors for BadWindow errors
for XQueryTree and XGetWindowAttributes, and ignores BadDrawable
errors for XGetGeometry; it returns 0 in those cases. Otherwise, it prints the
default error message, and returns a non-zero value if the caller should con-
sider exiting, and 0 if the caller should not exit.

See also

XQueryTree(XS), XGetWindowAttributes(XS), XGetGeometry(XS)
Xlib - C Language X Interface

614 X Version 11 (Release 5) 6 January 1993

XmuReadBitmapData(Xmu)

XmuReadBitmapData

read bitmap file description

Syntax

cc ... -IXmu
#include <X11/Xmu/Drawing.h>

int XmuReadBitmapData(fstream, width, height, datap, x_hot, y_hot)
FILE *fstream;
unsigned int *width, *height;
unsigned char *datap;
int *x_hot, *y_hot;

int XmuReadBitmapDataFromFile(filename, width, height, datap, x_hot, y_hot)
char *filename;
unsigned int *width, *height;
unsigned char **datap;
int *x_hot, *y_hot;

Arguments

stream Specifies the stream to read from.
width Returns the width of the bitmap.

height Returns the height of the bitmap.

datap Returns the parsed bitmap data.

x_hot Returns the x coordinate of the hotspot.
y_hot Returns the y coordinate of the hotspot.
filename Specifies the file to read from.

Description
The XmuReadBitmapData function reads a standard bitmap file description
from the specified stream, and returns the parsed data in a format suitable for

passing to XCreateBitmapFromData. The return value of the function has the
same interpretation as the return value for XReadBitmapFile.

The XmuReadBitmapDataFromFile function reads a standard bitmap file
description from the specified file, and returns the parsed data in a format
suitable for passing to XCreateBitmapFromData. The return value of the
function has the same interpretation as the return value for XReadBitmapFile.

X Version 11 (Release 5) 6 January 1993 615

XmuReadBitmapData(Xmu)

See also

XmuDrawRoundedRectangle(Xmu), XmuDrawLogo(Xmu), XmuCre-
ateStippledPixmap(Xmu), XmuLocateBitmapFile(Xmu), XmuCre-
atePixmapFromBitmap(Xmu), XCreateBitmapFromData(XS),
XReadBitmapFile(XS)

Xlib - C Language X Interface

616 X Version 11 (Release 5) 6 January 1993

XmuRemoveCloseDisplayHook(Xmu)

XmuRemoveCloseDisplayHook

delete callback

Syntax

cC ... -IXmu
#include <X11/Xmu/CloseHook.h>

Bool XmuRemoveCloseDisplayHook(dpy, handle, func, arg)
Display *dpy;
CloseHook handle;
int (*func)();
caddr_t arg;

Bool XmuLookupCloseDisplayHook(dpy, handle, func, arg)
Display *dpy;
CloseHook handle;
int (*func)();
caddr_t arg;

Arguments

dpy Specifies the connection to the X server.
handle Specifies the callback by id, or NULL.
func Specifies the callback by function.

arg Specifies the function data to match.

Description

See also

The XmuRemoveCloseDisplayHook function deletes a callback that is added
with XmuAddCleseDisplayHook. If handleis not NULL, it specifies the call-
back to remove, and the func and arg parameters are ignored. If handle is
NULL, the first callback found to match the specified func and arg will be
removed. Returns True if a callback was removed, otherwise it returns False.

The XmuLookupCloseDisplayHook function determines if a callback is
installed. If handle is not NULL, it specifies the callback to look for, and the
func and arg parameters are ignored. If handle is NULL, the function looks for
any callback for the specified func and arg. Returns True if a matching call-
back exists, otherwise it returns False.

XmuAddCloseDisplayHook(Xmu)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 617

XmuReshapeWidget(Xmu)

XmuReshapeWidget

reshape widget

Syntax

cc ... -IXmu

#include <X11/Xmu/Converters.h>
Boolean XmuReshapeWidget (w, shape_style, corner_width, corner_height)
Widget w;

int shape_style;
int corner_width, corner_height;

Arguments

w Specifies the widget to reshape.

shape_style Specifies the new shape.
corer_width Specifies the width of the rounded rectangle corner.
corner_height Specifies the height of the rounded rectangle corner.

Description

The XmuReshapeWidget function reshapes the specified widget, using the
Shape extension, to a rectangle, oval, ellipse, or rounded rectangle, as
specified by shape_style (XmuShapeRectangle, XmuShapeOval,
XmuShapeEllipse, and XmuShapeRoundedRectangle, respectively).

13

The shape is bounded by the outside edges of the rectangular extents of the
widget. If the shape is a rounded rectangle, corner_width and corner_height
specify the size of the bounding box inside of which the corners are drawn
(see XmuFillRoundedRectangle(Xmu)); otherwise, corner_width and
corner_height are ignored. The origin of the widget within its parent remains
unchanged.

See also

XmuCvtFunctionToCallback(Xmu), XmuCvtStringToBackingStore(Xmu),
XmuCvtStringToBackingStore(Xmu), XmuCvtStringToShapeStyle(Xmu),
XmuCvtStringToWidget(Xmu)

Xlib - C Language X Interface

618 , X Version 11 (Release 5) 6 January 1993

XmuScreenOfWindow(Xmu)

XmuScreenOfWindow

retums screen of specified window

Syntax

cC ... =1Xmu

#include <X11/Xmu/WinUtil.h>

Screen *XmuScreenOfWindow (dpy, w)
Display *dpy;
Window w;

Window XmuClientWindow(dpy, win)
Display *dpy:
Window win;

Bool XmuUpdateMapHints(dpy, w, hints)
Display *dpy:
Window w;
XSizeHints *hints;

Arguments

dpy Specifies the connection to the X server.
hints Specifies the new hints, or NULL.

w Specifies the window.

win Specifies the window.

Description

The XmuScreenOfWindow function returns the Screen on which the
specified window was created.

The XmuClientWindow function finds a window, at or below the specified
window, that has a WM_STATE property. If such a window is found, it is
returned; otherwise the argument window is returned.

The XmuUpdateMapHints function clears the PPosition and PSize flags and
sets the USPosition and USSize flags in the hints structure, then stores the
hints for the window using XSetWMNormalHints and returns True. If NULL
is passed for the hints structure, then the current hints are read back from the
window using XGetWMNormalHints and are used instead, and True is
returned; otherwise False is returned.

X Version 11 (Release 5) 6 January 1993 619

XmuScreenOfWindow(Xmu)

See also

Xlib - C Language X Interface

620 X Version 11 (Release 5) 6 January 1993

XmuStandardColormap(Xmu)

XmuStandardColormap

create standard colormap

Syntax

cC ... -IXmu

#include <X11/Xmu/StdCmap.h>

XStandardColormap *XmuStandardColormap(dpy, screen, visualid, depth,
property, cmap, red_max,
green_max, blue_max)

Display dpy:

int screen;

VisuallD visualid;

unsigned int depth;

Atom property;

Colormap cmap;

unsigned long red_max, green_max, blue_max;

Arguments
dpy Specifies the connection to the X server.
screen Specifies the screen of the display.

visualid Specifies the visual type.

depth Specifies the visual depth.

property Specifies the standard colormap property.
cmap Specifies the colormap ID, or None.
red_max Specifies thered allocation.

green_max Specifies the green allocation.

blue_max Specifies the blue allocation.

Description

To create any one standard colormap, use XmuStandardColormap.

This function creates a standard colormap for the given screen, visualid, and
visual depth, with the given red, green, and blue maximum values, with the
given standard property name. Upon success, it returns a pointer to an
XStandardColormap structure, which describes the newly created colormap.
Upon failure, it returns NULL. If cmap is the default colormap of the screen,
the standard colormap will be defined on the default colormap; otherwise a
new colormap is created.

X Version 11 (Release 5) 6 January 1993 « 621

XmuStandardColormap(Xmu)

See also

XmuAllStandardColormaps(Xmu), XmuVisualStandardColormaps(Xmu),
XmuLookupStandardColormap(Xmu), XmuGetColormapAllocation(Xmu),
XmuCreateColormap(Xmu), XmuDeleteStandardColormap(Xmu)

Xlib - C Language X Interface

622 X Version 11 (Release 5) 6 January 1993

XmuVisualStandardColormaps(Xmu)

XmuVisualStandardColormaps

define standard colomap properties for given visual

Syntax

cc ... =IXmu
#include <X11/Xmu/StdCmap.h>

Status XmuVisualStandardColormaps(dpy, screen, visualid, depth, replace,
retain)

Display *dpy:

int screen;

VisuallID visualid;

unsigned int depth;

Bool replace;

Bool retain;

Arguments

dpy Specifies the connection to the X server.
screen Specifies the screen of the display.
visualid Specifies the visual type.

depth Specifies the visual depth.

replace Specifies whether or not to replace.
retain Specifies whether or not to retain.

Description

The XmuVisualStandardColormaps function defines all appropriate standard
colormap properties for the given visual.

If replace is True, any previous definition will be removed. If retain is True, If
replace is True, If replace is True, If replace is True, new properties will be
retained for the duration of the server session. This function returns 0 on
failure, non-zero on success. On failure, no new. properties will be defined,
but old ones may have been removed if replace was True.

Not all standard colormaps are meaningful to all visual classes. This routine
will check and define the following properties for the following classes, pro-
vided that the size of the colormap is not too small. For DirectColor and
PseudoColor the routine checks: RGB_DEFAULT_MAP, RGB_BEST_MAP,
RGB_RED_MAP, RGB_GREEN_MAP, RGB_BLUE_MAP, and
RGB_GRAY_MAP. For TrueColor and StaticColor the routine checks:
RGB_BEST_MAP. For GrayScale and StaticGray, the routine checks:
RGB_GRAY_MAP.

X Version 11 (Release 5) 6 January 1993 623

XmuVisualStandardColormaps(Xmu)

See also

XmuAllStandardColormaps(Xmu), XmuLookupStandardColormap(Xmu),
XmuGetColormapAllocation(Xmu), XmuStandardColormap(Xmu), XmuCre-
ateColormap(Xmu), XmuDeleteStandardColormap(Xmu)

Xlib - C Language X Interface

624 X Version 11 (Release 5) 6 January 1993

XmuWnCountOwnedResources(Xmu)

XmuWnCountOwnedResources

count widget resources

Syntax

o ... =]Xmu

#include <X11/Xmu/WidgetNode.h>

void XmuWnCountOwnedResources(node, owner_node, constraints)
XmuWidgetNode *node;
XmuWidgetNode *owner_node;
Bool constraints;

Arguments

node Specifies the widget class whose resources are being examined.

owner_node Specifies the widget class of the ancestor of node whose contri-
butions are being counted.

constraints Specifies whether or not to count constraint resources or nor-
mal resources.

Description

Note

Each widget class inherits the resources of its parent. The XmuWnCoun-
tOwnedResources function is used to count the number of resources contri-
buted by a particular widget class.

The XmuWnCountOwnedResources, XmuWnFetchResources, XmuWidget-
Node, and XmuWnlInitializeNodes functions are used for building a descrip-
tion of the structure of and resources associated with a hierarchy of widget
classes. These functions are typically used by applications that manipulate
the widget set itself.

See also

The XmuWnlInitializeNodes function must be called before using XmuWn-
CountOwnedResources.

XmuWnFetchResources(Xmu), XmuWnlInitializeNodes(Xmu),
XmuWnNameToNode(Xmu)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 625

XmuWnFetchResources(Xmu)

XmuWnFetchResources

obtain widget class resources

Syntax

cc ... =-IXmu

#include <X11/Xmu/WidgetNode.h>

void XmuWnFetchResources(node, toplevel, top_node)
XmuWidgetNode *node;
Widget toplevel;
XrmValuePtr *top_node;

Arguments

node Specifies the widget class for which resources should be obtained.

toplevel Specifies the widget that should be used for creating an instance of
node from which resources are extracted. This is typically the
value returned by XtApplInitialize.

top_node Specifies the ancestor of node that should be treated as the root of
the widget inheritance tree (used in determining which ancestor
contributed which resources).

Description

The XmuWnFetchResources function is used to determine the resources pro-
vided by a widget class or classes.

The XmuWnFetchResources, XmuWnCountOwnedResources, XmuWidget-
Node, and XmuWnlInitializeNodes functions are used for building a descrip-
tion of the structure of and resources associated with a hierarchy of widget
classes. These functions are typically used by applications that manipulate
the widget set itself.

Note
The function XmuWnlnitializeNodes must be called before XmuWn-
FetchResources is used.

See also
XmuWnCountOwnedResources(Xmu), XmuWnlnitializeNodes(Xmu),
XmuWnNameToNode(Xmu)
Xlib - C Language X Interface

626 X Version 11 (Release 5) 6 January 1993

XmuWnlnitializeNodes(Xmu)

XmuWhnlInitializeNodes

manipulate widget set

Syntax

cc ... =-IXmu

#include <X11/Xmu/WidgetNode.h>
void XmuWnInitializeNodes(node_array, num_nodes)

XmuWidgetNode *node_array;
int num_nodes;

Arguments

node_array Specifies a list of widget classes, in alphabetical order.
num_nodes Specfies the number of widget classes in the node array.

Description

The XmuWnlnitializeNodes function must be called before before XmuWn-
CountOwnedResources, XmuWnFetchResources, or XmuWidgetNode are
used.

The XmuWnCountOwnedResources, XmuWnFetchResources, and
XmuWidgetNode functions are used for building a description of the struc-
ture of and resources associated with a hierarchy of widget classes. These
functions are typically used by applications that manipulate the widget set
itself.

See also

XmuWnCountOwnedResources(Xmu), XmuWnFetchResources(Xmu),
XmuWnNameToNode(Xmu)
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 627

XmuWnNameToNode(Xmu)

XmuWnNameToNode

obtain number of resouces owned by widget

Syntax

c ... -IXmu

#include <X11/Xmu/WidgetNode.h>

void XmuWidgetNode *XmuWnNameToNode(node_list, num_nodes, name)
XWidgetNode *node_list;
int num_nodes;
char *name;

Arguments

node_list Specifies a list of widget nodes.
num_nodes Specifies the number of nodes in the list.

name Specifes the name of the widget class in the node list to search
for.

Description

The XmuWnNameToNode function returns the WidgetNode in the list that
matches the given widget name or widget class name. If no match is found, it
returns NULL.

The XmuWnNameToNode, XmuWnCountOwnedResources, XmuWn-
FetchResources, and XmuWnlInitializeNodes functions are used for building
a description of the structure of and resources associated with a hierarchy of
widget classes. These functions are typically used by applications that mani-
pulate the widget set itself.

Note
The function XmuWnlInitializeNodes must be called before XmuWnNameTo-
Node is used.

See also
XmuWnCountOwnedResources(Xmu), XmuWnFetchResources(Xmu),
XmuWnlnitializeN odes(Xmu)
Xlib - C Language X Interface

628 X Version 11 (Release 5) 6 January 1993

X Extensions (Xext)

X11 Nonrectangular Window Shape Extension
MIT X Consortium Standard
Version 1.0

Keith Packard

X Consortium
Laboratory for Computer Science
Massachusetts Institute of Technology

Copyright © 1989 by the Massachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this documentation for any
purpose and without fee is hereby granted, provided that the above copyright
notice and this permission notice appear in all copies. MIT makes no
representations about the suitibility for any purpose of the information in this
document. This document is provided “as is" without express or implied war-
ranty.

629

Intro

Intro(Xext)

introduction to the X Extensions library

Description

The X Extensions library provides mechanisms that were not provided in the

core protocol in Xlib.

The following table lists each of the functions and routines and the manual

page on which it is discussed.

Function Manual Page
Xmbuf Xmbuf(Xext)
XmbufChangeBuffer Attributes Xmbuf(Xext)
XmbufChangeWindow Attributes Xmbuf(Xext)
XmbufCreateBuffers Xmbuf(Xext)
XmbufCreateStereoWindow Xmbuf(Xext)
XmbufDestroyBuffers Xmbuf(Xext)
XmbufDisplayBuffers Xmbuf(Xext)
XmbufGetBuffer Attributes Xmbuf(Xext)
XmbufGetScreenlnfo Xmbuf(Xext)
XmbufGetVersion Xmbuf(Xext)
XmbufGetWindow Attributes Xmbuf(Xext)
XmbufQueryExtension Xmbuf(Xext)
XShape XShape(Xext)
XShapeCombineMask XShape(Xext)
XShapeCombineRectangles XShape(Xext)
XShapeCombineRegion XShape(Xext)
XShapeCombineShape XShape(Xext)
XShapeGetRectangles XShape(Xext)
XShapelnputSelected XShape(Xext)
XShapeOffsetShape XShape(Xext)
XShapeQueryExtension XShape(Xext)
XShapeQueryExtents XShape(Xext)
XShapeQueryVersion XShape(Xext)
XShapeSelectInput XShape(Xext)
XShm XShm(Xext)
XShmAttach XShm(Xext)
XShmCreateImage XShm(Xext)
XShmCreatePixmap XShm(Xext)
XShmDetach XShm(Xext)
XShmGetEventBase XShm(Xext)
XShmGetImage XShm(Xext)
XShmPixmapFormat XShm(Xext)
XShmPutImage XShm(Xext)
XShmQueryExtension XShm(Xext)
XShmQueryVersion XShm(Xext)

X Version 11 (Release 5) 6 January 1993

631

Intro(Xext)

See also

Xlib - C Language X Interface

632 X Version 11 (Release 5) 6 January 1993

XShape(Xext)

XShape

X nonrectangular shape functions

Syntax

#include <X11/extensions/shape.h>

Bool XShapeQueryExtension (
Display *dpy,
int *event_basep,
int *error_basep);

Status XShapeQueryVersion (
Display *dpy,
int *major_versionp,
int *minor_versionp);

void XShapeCombineRegion ¢
Display *dpy,
Window dest,
int destKind,
int xOff,
int yoOff,
struct _XRegion *r,
int op);

void XShapeCombineRectangles {
Display *dpy,
XID dest,
int destKind,
int xOff,
int yoff,
XRectangle *rects,
int n_rects,
int op,
int ordering);

void XShapeCombineMask (
Display *dpy,
XID dest,
int destKind,
int xOff,
int yoff,
Pixmap src,
int op);

X Version 11 (Release 5) 6 January 1993 633

XShape(Xext)

634

void XShapeCombineShape {

Display *dpy,
XID dest,

int destKind,
int xOff,

int yoff,
Pixmap src,
int srckKind,
int op);

void XShapeOffsetShape (

Display *dpy,
XID dest,

int destKind,
int xOff,

int yoff);

Status XShapeQueryExtents ({

Display *dpy,
Window window,

int *bShaped,

int *xbs,

int *ybs,

unsigned int *wbs,
unsigned int *hbs,
int *cShaped,

int *xcs,

int *ycs,

unsigned int *wcs,
unsigned int *hcs);

void XShapeSelectInput (

Display *dpy,
Window window,
unsigned longmask);

unsigned long XShapelnputSelected

Display *dpy,
Window window);

XRectangle *XShapeGetRectangles {

Display *dpy,
Window window,
int kind,

int *count,

int *ordering);

X Version 11 (Release 5) 6 January 1993

XShape(Xext)

Structures

typedef struct {
int type; /* of event */

unsigned long serial; /* % of last request processed by server */
Bool send_event; /* true if this came frome a SendEvent request */
Display *display; /* Display the event was read from */

Window window; /* window of event */

int kind; /* ShapeBounding or ShapeClip */
int x, y; /* extents of new region */
unsigned width, height;
Time time; /* server timestamp when region changed */
Bool shaped; /* true if the region exists */
} XShapeEvent;

Description

The X11 Nonrectangular Window Shape Extension adds nonrectangular win-
dows to the X Window System.

Predefined values

Operations:

ShapeSet
ShapeUnion
Shapelntersect
ShapeSubtract
Shapelnvert

Shape Kinds:

ShapeBounding
ShapeClip

Event defines:

ShapeNotifyMask
ShapeNotify

See also

X11 Nonrectangular Window Shape Extension
Xlib - C Language X Interface

X Version 11 (Release 5) 6 January 1993 635

XShm(Xext)

XShm

shared memory extensions

Syntax

636

#include <X11/Xlib.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <X11/extensions/XShm.h>

Status XShmAttach (display, shminfo)
Display *display;
XShmSegmentInfo *shminfo;

XImage XShmCreatelmage (display, visual, depth, format, data, shminfo,

width, height)

Display *display;

Visual *visual;

int format;

char *data;

XShmSegment Info *shminfo;

unsigned int width, height, depth;

Pixmap XShmCreatePixmap (display, drawable, data, shminfo, width, height,
depth)
Display *display;
Drawable drawable;
char *data;
XShmSegmentInfo *shminfo;
unsigned int width, height, depth;

Status XShmDetach (display, shminfo)
Display *display;
XShmSegment Info *shminfo;

int XShmGetEventBase (display)
Display *display;

Status XShmGetImage (display, drawable, image, x, y, plane_mask)
Display *display;
Drawable drawable;
XImage *image;
int x, y;
unsigned long plane_mask;

int XShmPixmapFormat (display)
Display *display;

X Version 11 (Release 5) 6 January 1993

XShm(Xext)

Status XShmPutImage (display, drawable, gc, image, src_x, src_y, dest_x,

dest_y, width, height, send_event)

Display *display;
Drawable drawable;

GC gc;

XImage *image;

int src_x, src_y, dest_x, dest_y;
unsigned int width, height;
Boolean send_event;

Status XShmQueryExtension (display)
Display *display;

Status XShmQueryVersion (display, major, minor, pixmaps)
Display *display;
int *major, *minor;
Boolean *pixmaps;

Arguments

data
depth
dest_x
dest_y
display
drawable

format

8¢
height
image

major

minor

plane_mask

pixmaps

Specifies a pointer to theimage data.

Specifies the depth of the image.

Specifies the x and y coordinates, which are relative to the ori-
gin of the drawable and are coordinates of the subimage.

Specifies X server connection.
Specifies the drawable.

Specifies the format of the image (XYBitmap, XYPixmap, ZPix-
map).

Specifies the GC.
Specifies the height of the image, in pixels.
Specifies the image you want combined with the shape.

Indicates major version number for the shared memory exten-
sion.

Indicates minor version number for the shared memory exten-
sion.

Indicates which planes are to be read.

Indicates whether or not shared memory pixmaps are sup-
ported.

X Version 11 (Release 5) 6 January 1993 637

XShm(Xext)

send_event Indicates whether or not a completion event should occur
when the image write is complete.

shminfo Specifies a pointer to the XShmSegmentInfo structure.

src_x Specifies the offset in X from the left edge of the image defined
by the XImage data structure.

src_y Specifies the offset in Y from the top edge of the image defined
by the XImage data structure.

visual Specifies a pointer to the visual.

width Specifies the width of the image, in pixels.

Description

The XShmPutImage function combines an image in memory with a shape of
the specified drawable. If XYBitmap format is used, the depth must be one, or
a “BadMatch” errorresults. The foreground pixel in the GC defines the source
for the one bits in the image, and the background pixel defines the source for
the zero bits. For XYPixmap and ZPixmap, the depth must match the depth
of the drawable, or a “BadMatch” error results.

The XShmCreateImage function allocates the memory needed for an XImage
structure for the specified display but does not allocate space for the image
itself.

The XShmGetImage function reads image data into a shared memory XImage
where display is the display of interest, drawable is the source drawable,
image is the destination XImage, x and y are offsets within the drawable, and
plane_mask defines which planes are to be read.

The XShmQueryExtension function checks to see if the shared memory
extensions are available for the specified display.

The XShmQueryVersion function returns the version numbers of the exten-
sion implementation. Shared memory pixmaps are supported if the pixmaps
argumentreturns true.

The XShmAttach function tells the server to attach to your shared memory
segment. If all goes well, you will get a non-zero status, back and your XIm-
age is ready for use.

The XShmDetach function tells the server to detach from your shared mem-
ory segment.

The XShmPixmapFormat function gets the format for the server. If your

application can deal with the server pixmap data format, a shared memory
segent and shminfo structure are created.

638 X Version 11 (Release 5) 6 January 1993

XShm(Xext)

The XShmCreatePixmap function points to a pixmap which you can manipu-
late in all of the usual ways, with the added bonus of being able to edit its con-
tents directly through the shared memory segment.

The XShmGetEventBase function gets the completion event value.

Structures

typedef struct {
int type; /* type of event */
unsigned long serial; /* number of last request processed by server */
Boolean send_event; /* True if event came from a SendEvent request */
Display *display; /* Display the event was read from */
Drawable drawable; /* drawable of request */
int major_code; /* ShmReqCode */
int minor_code; /* X_ShmPutImage */
ShmSeg shmseg; /* the ShmSeg used in the request */
unsigned long offset; /* the offset into ShmSeg used */

} XShmComplet ionEvent;

See also

Xlib - C Language X Interface

(1xay)

X Version 11 (Release 5) 6 January 1993 639

Xmbuf(Xext)

Xmbuf

X multibuffering functions

Syntax

#include <Xl1/extensions/multibuf.h>

Bool XmbufQueryExtension (
Display *dpy,
Display *dpy,
int *event_base_return,
int *error_base_return);

Status XmbufGetVersion|(
Display *dpy,
int *major_version_return,
int *minor_version_return);

int XmbufCreateBuffers(
Display *dpy,
Window window,
int count,
int update_action,
int update_hint,
Multibuffer *buffers_update);

void XmbufDestroyBuffers|(
Display *dpy,
Window window) ;

void XmbufDisplayBuffers(
Display *dpy,
int count,
Multibuffer *buffers,
int min_delay,
int max_delay);

Status XmbufGetWindowAttributes(
Display *dpy,
Window window,
XmbufWindowAttributes *attributes);

void XmbufChangeWindowAttributes(
Display *dpy,
Window window,
unsigned long valuemask,
XmbufSetWindowAttributes *attributes);

Status XmbufGetBufferAttributes(
Display *dpy,
Multibuffer buffer,
XmbufBuf ferAttributes *attributes);

640 X Version 11 (Release 5) 6 January 1993

Xmbuf(Xext)

void XmbufChangeBuf ferAttributes(
Display *dpy,
Multibuffer buffer,
unsigned long valuemask,
XmbufSetBufferAttributes *attributes);

Status XmbufGetScreenlInfo (
Display *dpy,
Drawable drawable,
int *nmono_return,
XmbufBufferInfo **mono_info_return,
int *nstereo_return,
XmbufBuf ferInfo **stereo_info_return);

Window XmbufCreateStereoWindow (
Display *dpy,
Window parent,
int x,
int vy,
unsigned int width,
unsigned int height,
unsigned int border_width,
int depth,
unsigned int class, /* InputOutput, InputOnly*/
Visual *visual,
unsigned long valuemask,
XSetWindowAttributes *attributes,
Multibuffer *left_return,
Multibuffer *right_return);

Structures

Events:

typedef struct {
int type; /* of event */
unsigned long serial; /* # of last request processed by server */
int send_event; /* true if this came frome a SendEvent request */
Display *display; /* Display the event was read from */
Multibuffer buffer; /* buffer of event */
int state; /* see Clobbered constants above */

) XmbufClobberNotifyEvent;

typedef struct {(
int type; /* of event */
unsigned long serial; /* # of last request processed by server */
int send_event; /* true if this came frome a SendEvent request */
Display *display; /* Display the event was read from */
Multibuffer buffer; /* buffer of event */

] XmbufUpdateNotifyEvent;

X Version 11 (Release 5) 6 January 1993 641

Xmbuf(Xext)

Per-window attributes that can be got:
typedef struct {

int displayed_index; /* which buffer is being displayed */
int update_action; /* Undefined, Background, Untouched, Copied */
int update_hint; /* Frequent, Intermittent, Static */

int window_mode; /* Mono, Stereo */

int nbuffers; /* Number of buffers */

Multibuffer *buffers; /* Buffers */

} XmbufWindowAttributes;
Per-window attributes that can be set:

typedef struct (
int update_hint; /* Frequent, Intermittent, Static */
} XmbufSetWindowAttributes;

Per-buffer attributes that can be got:

typedef struct {
Window window; /* which window this belongs to */
unsigned long event_mask; /* events that have been selected */
int buffer_index; /* which buffer is this */
int side; /* Mono, Left, Right */

) XmbufBufferAttributes;

Per-buffer attributes that can be set:

typedef struct {
unsigned long event_mask; /* events that have been selected */
) XmbufSetBufferAttributes;

Per-screen buffer info (there will be lists of them):

typedef struct (
VisualID visualid; /* visual usuable at this depth */
int max_buffers; /* most buffers for this visual */
int depth; /* depth of buffers to be created */

} XmbufBufferInfo;

Description

642

The application programming library for the X11 Double-Buffering, Multi-
Buffering, and Stereo Extension contains the interfaces described below. With
the exception of XmbufQueryExtension, if any of these routines are called
with a display that does not support the extension, the ExtensionEr-
rorHandler (which can be set with XSetExtensionErrorHandler and functions
the same way as XSetErrorHandler) will be called and the function will then
return.

XmbufQueryExtension returns True if the multibuffering/stereo extension is
available on the given display. If the extension exists, the value of the first
event code (which should be added to the event type constants Multibuffer-
ClobberNotify and MultibufferUpdateNotify to get the actual values) is
stored into event_base_return and the value of the first error code (which
should be added to the error type constant MultibufferBadBuffer to get the
actual value) is stored into error_base_return.

X Version 11 (Release 5) 6 January 1993

Xmbuf(Xext)

XmbufGetVersion gets the major and minor version numbers of the exten-
sion. The return value is zero if an error occurs or non-zero if no error hap-
pens.

XmbufCreateBuffers requests that “count” buffers be created with the
givenupdate_action and update_hint and be associated with the indicated
window. The number of buffers created is returned (zero if an error occurred)
and buffers_update is filled in with that many Multibuffer identifiers.

XmbufDestroyBuffers destroys the buffers associated with the given win-
dow.

XmbufDisplayBuffers displays the indicated buffers their appropriate win-
dows within max_delay milliseconds after min_delay milliseconds have
passed. No two buffers may be associated with the same window or else a
Matc error is generated.

XmbufGetWindowAttributes gets the multibuffering attributes that apply to
all buffers associated with the given window. The list of buffers returns may
be freed with XFree. Returns non-zero on success and zero if an error occurs.

XmbufChangeWindowAttributes sets the multibuffering attributes that
apply to all buffers associated with the given window. This is currently lim-
ited to the update_hint.

XmbufGetBufferAttributes gets the attributes for the indicated buffer.
Returns non-zero on success and zero if an error occurs.

XmbufChangeBufferAttributes sets the attributes for the indicated buffer.
This is currently limited to the event_mask.

XmbufGetScreenInfo gets the parameters controlling how mono and stereo
windows may be created on the screen of the given drawable. The numbers of
sets of visual and depths are returned in nmono_return and nstereo_return. If
nmono_return is greater than zero, then mono_info_return is set to the
address of an array of XmbufBufferInfo structures describing the various
visuals and depths that may be used. Otherwise, mono_info_return is set to
NULL. Similarly, stereo_info_return is set according to nstereo_return. The
storage returned in mono_info_return and stereo_info_return may be released
by XFree. If no errors are encounted, non-zero will be returned.

XmbufCreateStereoWindow creates a stereo window in the same way that
XCreateWindow creates a mono window. The buffer ids for the left and right
buffers are returned in left_return and right_return, respectively. If an exten-
sion error handler that returns is installed, None will be returned if the exten-
sion is not available on this display.

X Version 11 (Release 5) 6 January 1993 643

Xmbuf(Xext)

Predefined values

Update_action field:

MultibufferUpdateActionUndefined
MultibufferUpdateActionBackground
MultibufferUpdateActionUntouched
MultibufferUpdateActionCopied

Update_hint field:

MultibufferUpdateHintFrequent
MultibufferUpdateHintIntermittent
MultibufferUpdateHintStatic

Valuemask fields:

MultibufferWindowUpdateHint
MultibufferBufferEventMask

Mono vs. stereo and left vs. right:

MultibufferModeMono
MultibufferModeStereo
MultibufferSideMono
MultibufferSideLeft
MultibufferSideRight

Clobber state:

MultibufferUnclobbered
MultibufferPartiallyClobbered
MultibufferFullyClobbered

Event stuff:

MultibufferClobberNotifyMask
MultibufferUpdateNotifyMask
MultibufferClobberNotify
MultibufferUpdateNotify
MultibufferNumberEvents
MultibufferBadBuffer
MultibufferNumberErrors

See also

Extending X for Double Buffering, Multi-Buffering, and Stereo
Xlib - C Language X Interface

644 X Version 11 (Release 5) 6 January 1993

L&

CO

OPEN SYSTEMS SOFTWARE

Please help us to writecomputer manuals that meet your needs by completing this
form. Please post the completed form to the Publications Manager nearest you: The
Santa Cruz Operation, Ltd., Croxley Centre, Hatters Lane, Watford WD1 8YN,
United Kingdom; The Santa Cruz Operation, Inc., 400 Encinal Street, PO. Box 1900,
Santa Cruz, California 95061, USA or SCO Canada, Inc., 130 Bloor Street West, 10th
Floor, Toronto, Ontario, Canada M5S INS5.

Volume title:
(Copy this from thetitle page of the manual)

Product:
(for example, SCO UNIX System V Release 3.2 Operating System Version 4.0)

How long have you used this product?
Q Less thanonemonth O Less than sixmonths O Less than one year

Q 1to 2 years Q More than 2 years

How much have you read of this manual?
Q Entire manual Q Specific chapters Q Used only for reference

Agree Disagree
The software was fully and accurately described
The manual was well organized
The writing was at an appropriate technical level
(neither too complicated nor too simple)
It was easy to find the information I was looking for
Examples were clear and easy to follow
INlustrations added to my understanding of the software
Iliked the page design of the manual

00
O

O000D0 0D
00000
O00O0OD

If you have specific comments or if you have found specific inaccuracies,
please report these on the back of this form or on a separate sheet of paper.
In the case of inaccuracies, please list the relevant page number.

May we contact you further about how to improve SCO documentation?
If so, please supply the following details:

Name Position

Company
Address
City & Post/Zip Code

Country

Telephone Facsimile

	2023_04_06_20_41_52
	2023_04_06_20_43_57
	2023_04_06_20_46_48
	2023_04_06_20_49_19
	2023_04_06_20_51_23
	2023_04_06_20_53_30

