MICROSOET XENIX

PROGRAMMER’S
MANUAL

'VOL.2B

2, ’/""':r’ :
G e,
i % v,w,::’l:f;;ﬁ. i, L e
.
’Jﬁ’/:’?ﬁ;f;' 2 i A

-
-
-

. //15'(’% . - «‘ -' ’;',.-f:/ f/:,j/ ,/ {/,ﬂ: ' &z fﬁf% % : ; .WW
Z ',.-" 2 2 7 s R /:,-" % .g::a;:' i, ,. 2 s g 2

%
o
7

=

s

e

,,,J,.
2

2




XENIX OS
Programmer’s Manual

Volume 2B




Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or nondisclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement.

©1979, Bell Telephone Laboratories, Incorporated.
Reprinted with permission.

Copyright 1979, Bell Telephone Laboratories, Incorporated.
Holders of a UNIX™software license are permitted to copy this document, or any portion of

it, as necessary for a licensed use of the software, provided this copyright notice and state-
ment of permission are included.

8601-100-01




Yace: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Computer program input generally has some structure; in fact, every com-
puter program that does input can be thought of as defining an ‘“‘input
language” which it accepts. An input language may be as complex as a pro-
gramming language, or as simple as a sequence of numbers. Unfortunately,
usual input facilities are limited, difficult to use, and often are lax about check-
ing their inputs for validity.

Yacc provides a general tool for describing the input to a computer pro-
gram. The Yacc user specifies the structures of his input, together with codg to
be invoked as each such structure is recognized. Yacc turns such a specification
into -a subroutine that handles the input process; frequently, it is convenient
and appropriate to have most of the flow of control in the user’s application
handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to
return the next basic input item. Thus, the user can specify his input in terms
of individual input characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a
very general one: LALR(1) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also
been used for less conventional languages, including a phototypesetter

language, several desk calculator languages, a document retrieval system, and a
Fortran debugging system.

July 31, 1978




Yace: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program.
The Yacc user prepares a specification of the input process; this includes rules describing the
input structure, code to be invoked when these rules are recognized, and a low-level routine to
do the basic input. Yacc then generates a function to control the input process. This function,
called a parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up
the basic items (called tokens) from the input stream. These tokens are organized according to
the input structure rules, called grammar rules; when one of these rules has been recognized,
then user code supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of C! and the actions, and output subroutine, are in C
as well. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structure and gives it a name. For example, one grammar rule might be

date : month_name day ", year ;

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. The comma ““,”’ is enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
input. Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, recognizing the lower level structures, and communicates these
tokens to the parser. For historical reasons, a structure recognized by the lexical analyzer is
called a rerminal symbol, while the structure recognized by the parser is called a nonterminal sym-
bol. To avoid confusion, terminal symbols will usually be referred to as rokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

’

month_name : 'J''a"‘'n"
month_name : ‘F 'e" b ;

month name : ‘D" ’e" ¢ ;

might be used in the above example. The lexical analyzer would only need to recognize indivi-
dual letters, and month_name would be a nonterminal symbol. Such low-level rules tend to
waste time and space, and may complicate the specification beyond Yacc’s ability to deal with it.
Usually, the lexical analyzer would recognize the month names, and return an indication that a
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month_name was seen; in this case, month_name would be a token.

Literal characters such as ‘‘,”’ must also be passed through the lexical analyzer, and are
also considered tokens.

Specification files are very flexible. It is realively easy to add to the above example the
rule

date : month /" day */" year ;

allowing
7/4/1776

as a synonym for .
July 4, 1776 .

In most cases, this new rule could be ‘‘slipped in’’ to a working system with mlmmal effort,
and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input -ITOTS are
detected as early as is theoretically possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data substantially reduced, but the bad data
can usually be quickly found. Error handling, provided as part of the input specifications, per-
mits the reentry of bad data, or the continuation of the input process after skipping over the
bad data.

In some cases, Yacc fails to produce a parser when given a set of spécifications. For
example, the specifications may be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The former cases represent design errors;
the latter cases can often be corrected by making the lexical analyzer more powerful, or by
rewriting some of the grammar rules. While Yacc cannot handle all possible specifications, its
power compares favorably with similar systems;, moreover, the constructions which are difficult
for Yacc to handle are also frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid Yacc specifications for their input revealed
errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere.2 3.4 Yacc has been extensively
used in numerous practical applications, including /int,5 the Portable C Compiler,5 and a system
for typesetting mathematics.”

The next several sections describe the basic process of preparing a Yacc specification; Sec-
tion 1 describes the preparation of grammar rules, Section 2 the preparation of the user sup-
plied actions associated with these rules, and Section 3 the preparation of lexical analyzers. Sec-
tion 4 describes the operation of the parser. Section 5 discusses various reasons why Yacc may
be unable to produce a parser from a specification, and what to do about it. Section 6 describes
a simple mechanism for handling operator precedences in arithmetic expressions. Section 7
discusses error detection and recovery. Section 8 discusses the operating environment and spe-
cial features of the parsers Yacc produces. Section 9 gives some suggestions which should
improve the style and efficiency of the specifications. Section 10 discusses some advanced
topics, and Section 11 gives acknowledgements. Appendix A has a brief example, and Appen-
dix B gives a summary of the Yacc input syntax. Appendix C gives an example using some of
the more advanced features of Yacc, and, finally, Appendix D describes mechanisms and syntax
no longer actively supported, but provided for historical continuity with older versions of Yacc.

1: Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be
declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include
the lexical analyzer as part of the specification file; it may be useful to include other programs
as well. Thus, every specification file consists of three sections: the declarations, (grammar)
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rules, and programs. The sections are separated by double percent ‘%%’ marks. (The percent
““% is generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%

rules

%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second %% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or
multi-character reserved symbols. - Comments may appear wherever a name is legal; they are
enclosed in /* ... +/, as in C and PL/I

The rules section is made up of one or more grammar rules. A grammar rule has the
form:
A : BODY ;
A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot *“.’, underscore
* , and non-initial digits. Upper and lower case letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes ““”’. As in C, the backslash ¢\
is an escape character within literals, and all the C escapes are recognized. Thus

\n’ newline

\r’ return

N\ single quote ™’
W backslash ‘\”’
A\t tab

\b’ backspace
\f form feed
\xxx” ““‘xxx”’ in octal

For a number of technical reasons, the NUL character (\0" or 0) should never be used in gram-
mar rules.
If there are several grammar rules with the same left hand side, the vertical bar ‘“\”’ can

be used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

A : BCD ;
A : E F ;
A : G ;

can be given to Yacc as
A

Qmw
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It is not necessary that all grammar rules with the same left side appear together in the gram-
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the émpty string, this can be indicated in the obvious
way: '

empty :

Names representing tokens must be declared; this is most simply done by writing
%token namel name2...

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the declarations section is assumed to represent a nonterminal symbol Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance.
The parser is designed to recognize the start symbol; thus, this symbol represents the largest,
most general structure described by the grammar rules. By default, the start symbol is taken to
be the left hand side of the first grammar rule in the rules section. It is possible, and in fact
desirable, to declare the start symbol explicitly in the declarations section using the %start key-
word:

Y%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If
the tokens up to, but not including, the endmarker form a structure which matches the start
symbol, the parser function returns to its caller after the endmarker is seen; it. accepts the input.
If the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropri-
ate; see section 3, below. Usually the endmarker represents some reasonably obvious I/0
status, such as ‘‘end-of-file’’ or ‘‘end-of-record”’.

2: Actions

With each grammar rule, the user may associate actions to be performed each time the
rule is recognized in the input process. These actions may return values, and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return values for
tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subpro-
grams, and alter external vectors and variables. An action is specified by one or more state-
ments, enclosed in curly braces ““{’’ and “‘}’. For example,

A : C B
{ hello( 1, "abc" ); }
and
XXX YYY Z7Z7Z
{ printf ("a message\n");

flag = 25; |}
are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action state-
ments are altered slightly. The symbol “‘dollar sign’ ““$”’ is used as a signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable ‘‘$3$’° to some value. For
example, an action that does nothing but return the value 1 is




{88 =1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may
use the pseudo-variables $1, 82, . . ., which refer to the values returned by the components of
the right side of a rule, reading from left to right. Thus, if the rule is

A : BCD ;
for example, then $2 has the value returned by C, and $3 the value returned by D.
As a more concrete example, consider the ruie
expr (expr )Y
The value returned by this rule is usually the value of the expr in parentheses. This can be
indicated by
expr (" expr ) { 88 =82 }

By default, the value of a rule is the value of the first element in it (§1). Thus, grammar
rules of the form

A : B ;
frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in the
middle of a rule as well as at the end. This rule is assumed to return a value, accessible
through the usual mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule

A : B

the effect is to set xto 1, and y to the value returned by C.
Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new
nonterminal symbol name, and a new rule matching this name to the empty string. The inte-

rior action is the action triggered off by recognizing this added rule. Yacc actually treats the
above example as if it had been written:

SACT /* empty */
{88 =1, |
A : B $ACT C
{ x=292, y=283 )

»

In many applications, output is not done directly by the actions; rather, a data structure,
such as a parse tree, is constructed in memory, and transformations are applied to it before out-
put is generated. Parse trees are particularly easy to construct, given routines to build and
maintain the tree structure desired. For example, suppose there is a C function node, written
so that the call

node( L, nl, n2)

creates a node with label L, and descendants nl and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:




expr expr ‘+  expr
{ 8% = node( '+, $1, $3); }

in the specification.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks “%{>> and ““%)”.
These declarations and definitions have global scope, so they are known to the action state-
ments and the lexical analyzer. For example,

%{ int variable = 0; %)}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in ‘‘yy’’; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be
found in Section 10.

3: Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens
(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called
yylex. The function returns an integer, the roken number, representing the kind of token read.
If there is a value associated with that token, it should be assigned to the external variable yyi-
val.

The parser and the lexical analyzer must agree on these token numbers in order for com-
munication between them to take place. The numbers may be chosen by Yacc, or chosen by
the user. In either case, the “‘# define’” mechanism of C is used to allow the lexical analyzer
to return these numbers symbolically. For example, suppose that the token name DIGIT has
been defined in the declarations section of the Yacc specification file. The relevant portion of
the lexical analyzer might look like:

yylex O{
extern int yylval;
int c;
¢ = getchar();
switch( c ) {

case 0":
case '1":

case '9":
yylval = ¢~"0";
return( DIGIT ),

The intent is to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs section of
the specification file, the identifier DIGIT will be defined as the token number associated with
the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the
need to avoid using any token names in the grammar that are reserved or significant in C or the
parser; for example, the use of token names if or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name error is reserved for error
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handling, and should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the
default situation, the numbers are chosen by Yacc. The default token number for a literal char-
acter is the numerical value of the character in the local character set. Other names are
assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token
name or literal in the declarations section can be immediately followed by a nonnegative integer.
This integer is taken to be the token number of the name or literal. Names and literals not
defined by this mechanism retain their default definition. It is important that all token numbers
be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token
number cannot be redefined by the user; thus, all lexical analyzers should be prepared to return
0 or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lex program developed by
Mike Lesk.8 These lexical analyzers are designed to work in close harmony with Yacc parsers.
The specifications for these lexical analyzers use regular expressions instead of grammar rules.
Lex can be easily used to produce quite complicated lexical analyzers, but there remain some
languages (such as FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

4: How the Parser Works

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself,
however, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is
also capable of reading and remembering the next input token (called the lookahead token).
The current state is always the one on the top of the stack. The states of the finite state
machine are given small integer labels; initially, the machine is in state 0, the stack contains
only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error. A
move of the parser is done as foliows:

1.  Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done; if it needs one, and does not have one, it calls yylex to obtain
the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or
popped off of the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The lookahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right hand side of a grammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessary to consult the lookahead token to decide whether to reduce, but usu-
ally it is not; in fact, the default action (represented by a **.”’) is often a reduce action.
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Reduce actions are associated with individual grammar rules. Grammar rules are also
given small integer numbers, leading to some confusion. The action

reduce 18
refers to grammar rule 18, while the action
IF shift 34

refers to state 34.
Suppose the rule being reduced is

A : Xyz ;

The reduce action depends on the left hand symbol (A in this case), and the number of sym-
bols on the right hand side (three in this case). To reduce, first pop off the top three states
from the stack (In general, the number of states popped equals the number of symbols on the
right side of the rule). In effect, these states were the ones put on the stack while recognizing
x, », and z, and no longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perform what is in effect a
shift of A. A new state is obtained, pushed onto the stack, and parsing continues. There are
significant differences between the processing of the left hand symbol and an ordinary shift of a
token, however, so this action is called a goro action. In particular, the lookahead token is
cleared by a shift, and is not affected by a goto. In any case, the uncovered state contains an
entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action *‘turns back the clock’ in the parse, popping the states off the
stack to go back to the state where the right hand side of the rule was first seen. The parser
then behaves as if it had seen the left side at that time. If the right hand side of the rule is
empty, no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter-
nal variable yylval is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable yyval is copied
onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accepr action indicates
that the entire input has been seen and that it matches the specification. This action appears
only when the lookahead token is the endmarker, and indicates that the parser has successfully
done its job. The error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything that would result in a legal input.
The parser reports an error, and attempts to recover the situation and resume parsing: the error
recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification




%token DING DONG DELL

%%

rhyme : sound place
sound - DING DONG
place : DELL

b

When Yacc is invoked with the —v option, a file called y.outpur is produced, with a
human-readable description of the parser. The y.output file corresponding to the above gram-
mar (with some statistics stripped off the end) is:
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state 0
$accept : rhyme S$end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme Send

$end accept
. error

state 2
rhyme : sound_place

DELL shift 5
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
. efrror

state 4
rhyme : sound place (1)

reduce 1

state 5
place : DELL_ (3)

reduce 3

state 6
sound : DING DONG_ (2)
reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _ character is used to indicate what has been seen, and what
is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

%% Initially, the current state is state 0. The parser needs to refer to the input in order to
f,;:ﬁ decide between the actions available in state 0, so the first token, DING, is read, becoming the

lookahead token. The action in state 0 on DING is is ‘‘shift 3", so state 3 is pushed onto the
stack, and the lookahead token is cleared. State 3 becomes the current state. The next token,
DONG, is read, becoming the lookahead token. The action in state 3 on the token DONG is
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“shift 6”°, so state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the parser reduces by
rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is ‘‘shift 5°°, so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In
state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side, so
one state, 5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side
of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so the top two states are popped off,
uncovering state 0 again. In state 0, there is a goto on rhyme causing the parser to enter state
1. In state 1, the input is read; the endmarker is obtained, indicated by ‘‘$end’’ in the y.output
file. The action in state 1 when the endmarker is seen is to accept, successfully ending the
parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes
spend with this and other simple examples will probably be repaid when problems arise in more
complicated contexts.

5: Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the grammar rule

expr expr =" expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram-
mar rule does not completely specify the way that all complex inputs should be structured. For
example, if the input is

exXpr — expr — expr ,
the rule allows this input to be structured as either
( expr — expr ) — expr
or as
expr — ( expr — expr )
(The first is called left association, the second right association).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to
consider the problem that confronts the parser when it is given an input such as

expr — expr — expr
When the parser has read the second expr, the input that it has seen:

expr — expr

matches the right side of the grammar rule above. The parser could reduce the input by apply-
ing this rule; after applying the rule; the input is reduced to expr(the left side of the rule). The
parser would then read the final part of the input:
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- expr
and again reduce. The effect of this is to take the left associative interpretation.
Alternatively, when the parser has seen

expr — expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

expr — expr — expr
It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving
expr — expr

Now the rule can be reduced once more; the effect is to take the right associative interpreta-
tion. Thus, having read

expr — expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a shift / reduce conflict. It may also happen that the parser has a choice of
two legal reductions; this is called a reduce / reduce conflict. Note that there are never any
““Shift/shift’’ conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a choice. A rule describing which
choice to make in a given situation is called a disambiguating rule.

Yacc invokes two disambiguating rules by default:
In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Contflicts may arise because of mistakes in input or logic, or because the grammar rules,
while consistent, require a more complex parser than Yacc can construct. The use of actions
within rules can also cause conflicts, if the action must be done before the parser can be sure
which rule is being recognized. In these cases, the application of disambiguating rules is inap-
propriate, and leads to an incorrect parser. For this reason, Yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat unna-
tural, and produces slower parsers; thus, Yacc will produce parsers even in the presence of
conflicts.

As an example of the power of disambiguating rules, consider a fragment from a program-
ming language involving an ‘‘if-then-else’’ construction:

stat : IF " cond ") stat

- I IF "( cond ‘)" stat ELSE stat
In these rules, /F and ELSE are tokens, cond is a nonterminal symbol describing conditional
(logical) expressions, and star is a nonterminal symbol describing statements. The first rule will
be called the simple-ifrule, and the second the if-else rule.
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These two rules form an ambiguous construction, since input of the form
IF (C1 ) IF ( C2) S1 ELSE 82

can be structured according to these rules in two ways:

IF (Cl1) {
IF ( C2) S1
}

ELSE S2

or

IF ( C1) {
IF ( C2) S1
ELSE S2

)

The second interpretation is the one given in most programming languages having this con-
struct. Each ELSE is associated with the last preceding ‘‘un-ELSE'd’’ [F. In this example, con-
sider the situation where the parser has seen

IF (Cl)IF (C2) Sl
and is looking at the ELSE. It can immediately reduce by the simple-if rule to get
IF ( C1 ) stat
and then read the remaining input,
ELSE S2
and reduce
IF ( C1 ) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.
On the other hand, the ELSE may be shifted, S$2 read, and then the right hand portion of

IF (C1 ) IF ( C2) Sl ELSE S2
can be reduced by the if-else rule to get

IF ( C1) stat
which can be reduced by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired.

Once again the parser can do two valid things — there is a shift/reduce conflict. The
application of disambiguating rule 1 tells the parser to shift in this case, which leads to the
desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol,
ELSE, and particuiar inputs already seen, such as

IF (C1) IF (C2) Sl

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state of
the parser.

The conflict messages of Yacc are best understood by examining the verbose (—v) eption
output file. For example, the output corresponding to the above conflict state might be:

=
s
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23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat : IF ( cond ) stat_ (18)
stat : IF ( cond ) stat ELSE stat

ELSE  shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF ( cond ) stat

and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF ( cond ) stat ELSE stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by ‘., is to be done if the input symbol is not mentioned explicitly,.in the above
actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18: .

stat : IF (" cond )" stat

Once again, notice that the numbers following ‘‘shift’’ commands refer to other states, while
the numbers following ‘‘reduce” commands refer to grammar rule numbers. In the y.output
file, the rule numbers are printed after those rules which can be reduced. In most one states,
there will be at most reduce action possible in the state, and this will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really tough cases, the
user might need to know more about the behavior and construction of the parser than can be
covered here. In this case, one of the theoretical references?2. 3.4 might be consulted; the ser-
vices of a local guru might also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used con-
structions for arithmetic expressions can be naturally described by the notion of precedence lev-
els for operators, together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to create parsers that
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form

expr : expr OP expr
and
expr : UNARY_ expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information is
sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and
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construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section.
This is done by a series of lines beginning with a Yacc keyword: %left, %right, or %nonassoc,
followed by a list of tokens. All of the tokens.on the same line are assumed to have the same
precedence level and associativity; the lines are listed in order of increasing precedence or bind-
ing strength. Thus,

%left "+ "—~
Yleft "=/

describes the precedence and associativity of the four arithmetic operators. Plus and minus are
left associative, and have lower precedence than star and slash, which are also left associative.
The keyword %right is used to describe right associative operators, and the keyword %nonassoc
is used to describe operators, like the operator .LT. in Fortran, that may not associate with
themselves; thus,

A LT. B ILT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations, the description

%right "=’
%left "+ "=’
%left "« '/°

%%

expr expr ‘=" expr
expr ‘+ expr
expr ‘—' expr

!
|
| expr '+ expr
|
|

might be used to structure the input
a =b =ocd — e — f*g
as follows:
a=(b=(((c+d)—e) — (f*g) ))

When this mechanism is used, unary operators must, in general, be given a precedence. Some-
times a unary operator and a binary operator have the same symbolic representation, but
different precedences. An example is unary and binary "—"; unary minus may be given the
same strength as multiplication, or even higher, while binary minus has a lower strength than
multiplication. The keyword, %prec, changes the precedence level associated with a particular
grammar rule. Y%prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It causes the pre-
cedence of the grammar rule to become that of the following token name or literal. For exam-
ple, to make unary minus have the same precedence as muitiplication the rules might resemble:

i
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%left "+ "’
%left "« °/°

%%

expr expr "+ expr
| expr —" expr
| expr '+ expr
! expr /" expr
! "—" expr Y%prec “*
[ NAME

5

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give
rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construc-
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two
disambiguating rules given at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.

Contflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of pre-
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre-
cedences, and use them in an essentially ‘‘cookbook’’ fashion, until some experience has been
gained. The y.output file is very useful in deciding whether the parser is actually doing what was
intended.

7: Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete
or alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to
continue scanning the input to find further syntax errors. This leads to the problem of getting
the parser ‘‘restarted’’ after an error. A general class of algorithms to do this involves discard-
ing a number of tokens from the input string, and attempting to adjust the parser so that input
can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably
general, feature. The token name “‘error’ is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and recovery
might take place. The parser pops its stack until it enters a state where the token ‘“‘error’’ is
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2

legal. It then behaves as if the token ‘‘error’ were the current lookahead token, and performs
the action encountered. The lookahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an error is
detected when the parser is already in error state, no message is given, and the input token is
quietly deleted.

As an example, a rule of the form
stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state-
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
* beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reini-
tialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier
are rules such as

stat : error 7’

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next ";". All tokens after the error and before the next ";” cannot be shifted, and
are discarded. When the *;" is seen, this rule will be reduced, and -any ‘‘cleanup’’ action associ-

ated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to
permit a line to be reentered after an error. A possible error rule might be

input error \n" { printf( "Reenter last line: " ); } input
{ 83 = $4; |}

There is one potential difficulty with this approach; the parser must correctly process three
input tokens before it admits that it has correctly resynchronized after the error. If the reen-
tered line contains an error in the first two tokens, the parser deletes the offending tokens, and
gives no message; this is clearly unacceptable. For this reason, there is a mechanism that can
be used to force the parser to believe that an error has been fully recovered from. The state-

ment

yyerrok ;
in an action resets the parser to its normal mode. The last example is better written
input error \n’
{ yyerrok;
printf( "Reenter last line: " ); |}
input

{ $$ = 84; |}

3

As mentioned above, the token seen immediately after the ‘‘error’” symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example, an
error recovery action might-take upon itself the job of finding the correct place to resume input.
In this case, the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error were to call some
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sophisticated resynchronization routine, supplied by the user, that attempted to advance the
input to the beginning of the next valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille-
gal token must be discarded, and the error state reset. This could be done by a rule like

stat error
{ resynch();
yyerrok ;
yyclearin ; }

?

These mechanisms are admittedly crude, but do allow for a simple, fairly effective
recovery of the parser from many errors; moreover, the user can get control to deal with the
error actions required by other portions of the program.

8: The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called
y.tab.c on most systems (due to local file system conventions, the names may differ from instal-
lation to installation). The function produced by Yacc is called yyparse; it is an integer valued
function. When it is called, it in turn repeatedly calls yylex, the lexical analyzer supplied by the
user (see Section 3) to obtain input tokens. Eventually, either an error is detected, in which
case (if no error recovery is possible) yyparse returns the value 1, or the lexical analyzer returns
the endmarker token and the parser accepts. In this case, yyparse returns the value 0.

The user must provide a certain amount of environment for this parser in order to obtain
a working program. For example, as with every C program, a program called main must be
defined, that eventually calls yyparse. In addition, a routine called yyerror prints a message
when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the ini-
tial effort of using Yacc, a library has been provided with default versions of main and yyerror.
The name of this library is system dependent; on many systems the library is accessed by a ~ly
argument to the loader. To show the triviality of these default programs, the source is given
below:

main (){
‘ return( yyparse() );

and

# include <stdio.h>

yyerror(s) char s; {
fprintf( stderr, "%s\n", s );

The argument to yyerror is a string containing an error message, usually the string ‘‘syntax
error’”’. The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the lookahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is
useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value,
the parser will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ-
ment, it may be possible to set this variable by using a debugging system.
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9: Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification
file. The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names. This
rule comes under the heading of ‘‘knowing who to blame when things go wrong.”

b.  Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other. '

c.  Put all rules with the same left hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

d.  Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text

of this paper (where space permits). The user must make up his own mind about these stylistic

- questions; the central problem, however, is to make the rules visible through the morass of
action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called ‘‘left recursive’’ grammar
rules: rules of the form

name name rest_of rule ;

These rules frequently arise when writing specifications of sequences and lists:

list : item
| list *,” item
and
seq : item
seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.
With right recursive rules, such as
seq : item
( item seq
the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.

More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so,
consider writing the sequence specification with an empty rule:
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seq : /* empty */
seq item
Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to
decide which empty sequence it has seen, when it hasn’t seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings. Or names might be entered into a
symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declara-
tions, followed by 0 or more statements. Consider:

%{
int dflag;
%}
... other declarations ...
%%
prog decls stats
decls /* empty */
{ dflag = 1; }
| decls declaration
stats /* empty */

{ dflag = 0; }
] stats statement

5
. other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading declarations, except for the
first token in the first statement. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of ‘‘backdoor’’ approach can be elaborated to a noxious degree. Nevertheless,
it represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit the user to use words like *‘if”’, which are normally
reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework
of Yacc; it is difficult to pass information to the lexical analyzer telling it ‘“this instance of ‘if” is
a keyword, and that instance is a variable’’. The user can make a stab at it, using the mechan-
ism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better
that the keywords be reserved, that is, be forbidden for use as variable names. There are
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powerful stylistic reasons for preferring this, anyway.

10: Advanced Topics
This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros
YYACCEPT and YYERROR. YYACCEPT causes yyparse to return the value 0; YYERROR
causes the parser to behave as if the current input symbol had been a syntax error, yyerror is
called, and error recovery takes place. These mechanisms can be used to simulate parsers with
multiple endmarkers or context-sensitive syntax checking.

Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The
mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in
this case the digit may be O or negative. Consider

sent : adj noun verb adj noun
{ look at the sentence . . . }
adj : THE { $$ = THE; |}
YOUNG { $$ = YOUNG; }
noun DOG
{ $$ = DOG; }
! CRONE
{ if( $0 == YOUNG ){

printf ( "what?\n" );
)

$$ = CRONE,;

}

In the action following the word CRONE, a check is made that the preceding token shifted was
not YOUNG. Obviously, this is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can
also support values of other types, including structures. In addition, Yacc keeps track of the
types, and inserts appropriate union member names so that the resulting parser will be strictly
type checked. The Yacc value stack (see Section 4) is declared to be a union of the various
types of values desired. The user declares the union, and associates union member names to
each token and nonterminal symbol having a value. When the value is referenced through a $$
or $n construction, Yacc will automatically insert the appropriate union name, so that no
unwanted conversions will take place. In addition, type checking commands such as Linz3 will
be far more silent.
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There are three mechanisms used to provide for this typing. First, there is a way of
defining the union; this must be done by the user since other programs, notably the lexical
analyzer, must know about the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally, there is a mechanism for describ-
ing the type of those few values where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

%union {
body of union ...

This declares the Yacc value stack, and the external variables yylval and yyval, to have type
equal to this union. If Yacc was invoked with the —d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might also
have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and %]}. -

Once YYSTYPE is defined, the union member names must be associated with the various
terminal and nonterminal names. The construction

< name >

is used to indicate a union member name. If this follows one of the keywords %token, %left,
Y%right, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saying

e 7 ’

%left <optype> '+  —

will cause any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, %type, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly, reference
to left context values (such as $0 — see the previous subsection ) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on the reference by inserting a union
member name, between < and >, immediately after the first $. An example of this usage is

rule aaa { $<intval>$ = 3; } bbb
{ fun( $<intval>2, $<other>0); }
This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not
triggered until they are used: in particular, the use of %type will turn on these mechanisms.
When they are used, there is a fairly strict level of checking. For example, use of $n or $$ to
refer to something with no defined type is diagnosed. If these facilities are not triggered, the
Yacc value stack is used to hold int’s, as was true historically.




-23-

11: Acknowledgements

Yacc owes much to a most stimulating collection of users, who have goaded me beyond
my inclination, and frequently beyond my ability, in their endless search for ‘‘one more
feature’. Their irritating unwillingness to learn how to do things my way has usually led to my
doing things their way; most of the time, they have been right. B. W. Kernighan, P. J. Plauger,
S. L. Feldman, C. Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the
current version of Yacc. C. B. Haley contributed to the error recovery algorithm. D. M.
Ritchie, B. W. Kernighan, and M. O. Harris helped translate this document into English. Al
Aho also deserves special credit for bringing the mountain to Mohammed, and other favors.




-24 -

References

1. B. W. Kemnighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, New Jersey (1978).

2. A V. Ahoand S. C. Johnson, ‘““LR Parsing,”” Comp. Surveys 6(2) pp. 99-124 (June 1974).

3. A. V. Aho, S. C. Johnson, and J. D. Ullman, ‘“Deterministic Parsing of Ambiguous
Grammars,” Comm. Assoc. Comp. Mach. 18(8) pp. 441-452 (August 1975).

4. A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading,
Mass. (1977).

5. S. C. Johnson, ‘“‘Lint, a C Program Checker,”” Comp. Sci. Tech. Rep. No. 65 (December
1977).

6. S. C. Johnson, ‘““A Portable Compiler: Theory and Practice,”” Proc. 5th ACM Symp. on
Principles of Programming Languages, (January 1978).

7. B. W. Kemnighan and L. L. Cherry, ‘“A System for Typesetting Mathematics,”> Comm.
Assoc. Comp. Mach. 18 pp. 151-157 (March 1975).

8. M. E. Lesk, “Lex — A Lexical Analyzer Generator,” Comp. Sci. Tech. Rep. No. 39,

Bell Laboratories, Murray Hill, New Jersey (October 1975).




=25 -

Appendix A: A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk
calculator has 26 registers, labeled “‘a” through ‘‘z”’, and accepts arithmetic expressions made
up of the operators +, —, *, /, % (mod operator), & (bitwise and), | (bitwise or), and assign-
ment. If an expression at the top level is an assignment, the value is not printed; otherwise it
is. As in C, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is
assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of show-
ing how precedences and ambiguities are used, and demonstrating simple error recovery. The
major oversimplifications are that the lexical analysis phase is much simpler than for most appli-
cations, and the output is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%{
# include <stdio.h>
# include <ctype.h>

int regs[26];
int base;

%}
Y%start list
%token DIGIT LETTER

Y%left I

Y%left "&”

Y%left "+ "'

Yleft "+ /7 %'

%left UMINUS /+ supplies precedence for unary minus */

%% /* beginning of rules section =*/

list : /* empty =/
| list stat \n’
I list error \n’

{ yyerrok; }

stat : expr
{ printf ( "%d\n", $1); }
LETTER =" expr
{ regs[$1] = $3; }

expr “( expr )
$$ = $2; |
I expr "+  expr

$$

$1 + 83; }
I expr "=  expr
) $3

I

$1 — $3; )
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I expr "+ expr
$8 = %1 ~ $3; }
f expr '/° expr
w | $$
f expr ‘%" expr
{ $% = 81 % $3; }
! expr ‘& expr
{ $$ = $1 & $3; }
I expr ‘' expr
{ $8 = 811 83; }
I =" expr %prec UMINUS

- $1 /7 $3; }

{ $8 = — $2; }
I LETTER
{ $$ = regsi$1l; }
| number
number: DIGIT
{ $8 =81, base = (81==0) ? 8 : 10; }
| number DIGIT .
{ $8 = base ~$1 + $2; }

%% /* start of programs =/

yylex O { /* lexical analysis routine */
/* returns LETTER for a lower case letter, yylval = 0 through 25 */
/* return DIGIT for a digit, yylval = 0 through 9 +/
/+ all other characters are returned immediately */

int c;
while( (c=getchar()) == "~ ) {/* skip blanks */ }
/* ¢ is now nonblank =/

if ( islower( ¢ ) ) {
yylval = ¢ — "a’
return ( LETTER );

}

if ( isdigit( ¢ ) ) {
yylval = ¢ — 0
return( DIGIT );
}

return( ¢ );

)

i,
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Appendix B: Yacc Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Con-
text dependencies, etc., are not considered. Ironically, the Yacc input specification language is
most naturally specified as an LR(2) grammar; the sticky part comes when an identifier is seen
in a rule, immediately following an action. If this identifier is followed by a:colon, it is the start
of the next rule; otherwise it is a continuation of the current rule, which just happens to have
an action embedded in it. As implemented, the lexical analyzer looks ahead after seeing an
identifier, and decide whether the next token (skipping blanks, newlines, comments, etc.) is a
colon. If so, it returns the token C _IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (qupted strings) are also returned as IDENTIFIERS, but never as part of
C _IDENTIFIERSs.

/+ grammar for the input to Yacc */
/+ basic entities =/
%token IDENTIFIER /+ includes identifiers and literals */
%token C IDENTIFIER /+ identifier (but not literal) followed by colon */
%token NUMBER /# [0-914+ =/
/+ reserved words: %type => TYPE, %left => LEFT, etc. */
Y%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION
%token MARK /+ the %% mark */
%token LCURL /+ the %{ mark #/
%token RCURL /* the %] mark */
/+ ascii character literals stand for themselves =/
Y%start  spec
%%
spec : defs MARK rules tail

tail : MARK { In this action, eat up the rest of the file }
! /+ empty: the second MARK is optional */

defs : /* empty */
| defs def
def : START IDENTIFIER

l UNION { Copy union definition to output }
l LCURL { Copy C code to output file } RCURL
l ndefs rword tag nlist

rword : TOKEN
I LEFT
| RIGHT
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b NONASSOC
I TYPE

tag : /* empty: union tag is optional */
I "<’ IDENTIFIER ">’

nlist : nmno
! nlist nmno
I nlist °,” nmno

nmno IDENTIFIER /* NOTE: literal illegal with %type */
I IDENTIFIER NUMBER /* NOTE: illegal with %type =/

/+ rules section =/

rules C_IDENTIFIER rbody prec
[ rules rule
rule : C_IDENTIFIER rbody prec

! I’ rbody prec

rbody /* empty =/

| rbody IDENTIFIER

I rbody act
act : " { Copy action, transiate $8, etc. } Y
prec : /* empty */

I PREC IDENTIFIER
| PREC IDENTIFIER act
| prec
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Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features dis-
cussed in Section 10. The desk calculator example in Appendix A is modified to provide a desk
calculator that does floating point interval arithmetic. The calculator understands floating point
constants, the arithmetic operations +, —, *, /, unary —, and = (assignment), and has 26
floating point variables, ‘“a’” through “‘z’’. Moreover, it also understands intervals, written

(x,y)

where x is less than or equal to y. There are 26 interval valued variables ‘A’ through “‘Z”
that may also be used. The usage is similar to that in Appendix A; assignments return no
value, and print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double’s.
This structure is given a type name, INTERVAL, by using #ypedef. The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari-
able values). Notice that this entire strategy depends strongly on being able to assign structures
and unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an
interval containing 0, and an interval presented in the wrong order. In effect, the error
recovery mechanism of Yacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate
expressions. Note that a scalar can be automatically promoted to an interval if the context

demands an interval value. This causes a large number of conflicts when the grammar is run

through Yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at
the two input lines:

254 (35~4.)
and
2.5+ (3.5,4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the *“,”’ is read; by this time, 2.5 is finished, and the parser cannot
go back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there
were many kinds of expression types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming language environment to keep
the type information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating point constants. The C library routine atof’is used to do the actual conversion from a
character string to a double precision value. If the lexical analyzer detects an error, it responds
by returning a token that is illegal in the grammar, provoking a syntax error in the parser, and
thence error recovery.
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%{

# include <stdio.h>
# include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;
INTERVAL vmul(), vdivQ;
double atof();

double dreg[ 26 I;
INTERVAL vregl 26 I;

%}
%start lines

%union {
int ival;
double dval;
INTERVAL wvval;
}
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%token <ival> DREG VREG /+ indices into dreg, vreg arrays =*/

%token <dval> CONST
Y%type <dval> dexp

Y%type <vval> vexp

/* floating point constant =/
/* expression */

/* interval expression */

/= precedence information about the operators =/

Yleft "+ =’

%left UMINUS /* precedence for unary minus */

%left "« °/°
%%
lines /* empty =/
I lines line
line : dexp \n’
{
{ vexp ‘\n’

{

printf( "%15.8f\n", $1 ); }

printf( "(%15.8f , %15.8f N\n", $1.lo, $L.hi ); }

| DREG "= dexp \n’

{

dreg[$1] = $3; |}

| VREG "=" vexp "n’
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{ vreg[$1] = $3; }
error \n’
{ yyerrok; }
dexp CONST

I DREG
{ $$ = dreg[$1]; }
I dexp "+  dexp
{ $$ = $1 + $3; }
—" dexp
{ $$ = $1 — $3; }
I dexp "+ dexp
$$ = 81 = 83; }
| dexp */° dexp
{ $$ = $1 / $3; }
| "—" dexp %prec UMINUS
{ $$ = —$2; |}
I ¢ dexp Y

| dexp ’

$$ = $2; }

vexp dexp
{ $$.hi = $3lo = $1;
| ¢ dexp{ 7 dexp )

$3.1o $2;

$8.hi $4;

if( $$.Jo > $8.hi ){
printf( "interval out of order\n" );
}YYERROR;

}
I VREG
{ $$ = wvregl$1l; |}
| vexp “+  vexp
{ $3.hi
$8.1o

$1.hi + $3.hi;
$1lo + $3.1o; }

o

| dexp "+ vexp
{

$$.hi = $1 -+ $3.hi;
$$lo = $1 + $3lo; |}
! vexp ‘—  vexp
{ $$.hi = S$1.hi — $3.lo;
$$lo = S$llo — $3.hi; }
dexp "—" vexp
{ $$.hi = $1 — $3.o;
$$lo = $1 — $3.hi; |
I vexp ‘* vexp
{ $$ = vmul( $l.lo, $1.hi, $3 ); }
j dexp '*'{ vexp }
$$ = vmul( $1, $1, $3 ); 5
I vexp '/° vexp é’%"%
{ if( dcheck( $3 ) ) YYERROR;

$$ = vdiv( $llo, $l.hi, $3 ); }
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dexp /° vexp
{ if ( dcheck( $3 ) ) YYERROR;
$$ = vdiv( $1, $1, $3 ); }
I "—" vexp %prec UMINUS
{ 88.hi = —%2lo; $S.lo = —$2.hi; }
| ¢ vexp )

$$ = $2; }

%%
# define BSZ 50 /= buffer size for floating point numbers */
/+ lexical analysis */

yylex O{
register c;

while( (c=getchar()) == "~ ){ /= skip over blanks */ }

if ( isupper( ¢ ) ){
yylvalival = ¢ — "A";
return( VREG );

if ( islower( ¢ ) ){
yylvalival = ¢ — "a%
return( DREG );
}

if ( isdigit( ¢ ) Il c=="" ){
/+ gobble up digits, points, exponents */

char buf(BSZ+1], *»cp = buf;
int dot = 0, exp = 0

for( ; (cp—buf)<BSZ ; ++cp,c=getchar() ){

*p =

if ( isdigit( ¢ ) ) continue;

if( ¢ == "7 )f
if( dot++ Il exp ) return( " ); /= will cause syntax error */
continue;
}

if( ¢ == ‘e’ ){
if( exp++ ) return( ‘e’ ); /= will cause syntax error */
continue;

/* end of number =/

. break;
g2 - '\
*Cp = \0 :

if( (cp—buf) >= BSZ ) printf( "constant too long: truncated\n" );
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else ungetc( c, stdin ); /* push back last char read */
yylval.dval = atof( buf );

return( CONST );

}

return( ¢ );

}

INTERVAL hilo( a, b, ¢, d ) double a, b, ¢, d; {
/* returns the smallest interval containing a, b, ¢, and d */
/* used by *, / routines x*/
INTERVAL v;

if( a>b ) { vhi = a; vilo = b; )
else { vhi = b; vlo = a; }

if( e>d ) {

. if( ¢>v.hi ) v.hi =
if( d<vio ) vlo = d;
}

else {
if( d>v.hi ) v.hi = d;
if( c<vlo ) vlo =
J

return( v );

}

INTERVAL vmul( a, b, v ) double a, b; INTERVAL v; {
return( hilo( a*v.hi, a*v.lo, b*v.hi, b*v.lo ) );

}

dcheck( v ) INTERVAL v; {
if( vhi >= 0. && vlilo <= 0. ){
printf( "divisor interval contains 0.\n" );
return( 1 );

return( 0 );

)

INTERVAL vdiv( a, b, v ) double a, b; INTERVAL v; {
return( hilo( a/v.hi, a/v.lo, b/v.hi, b/vio ) );
}
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Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical con-

tinuity, but, for various reasons, are not encouraged.

L
2.

Literals may also be delimited by double quotes *"*’.

Literals may be more than one character long. If all the characters are alphabetic,
numeric, or _, the type number of the literal is defined, just as if the literal did not have
the quotes around it. Otherwise, it is difficult to find the value for such li_terals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

Most places where % is legal, backslash ‘‘\”’ may be used. In particular, \\ is the same as
%%, \left the same as %left, etc.

There are a number of other synonyms:
%< is the same as %left
%> is the same as Y%right
%binary and %2 are the same as %nonassoc

%0 and %term are the same as %token
%= is the same as %prec

Actions may also have the form
={...}

and the curly braces can be dropped if the action is a single C statement.

C code between %{ and %)} used to be permitted at the head of the rules section, as well-
as in the declaration section.
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1 Introduction.

Lex is a program generator designed for lexical process-
ing of character input streams. It accepts a high-level,
problem oriented specification for character string match-
ing, and produces a program in a general purpose
language which recognizes regular expressions. The regu-
lar expressions are specified by the user in the source
specifications given to Lex. The Lex written code recog-
nizes these expressions in an input stream and partitions
the input stream into strings matching the expressions.
At the boundaries between strings program sections pro-
vided by the user are executed. The Lex source file asso-

ciates the regular expressions and the program fragments.
As each expression appears in the input to the program
written by Lex, the corresponding fragment is executed.
The user supplies the additional code beyond expres-
sion matching needed to complete his tasks, possibly in-
cluding code written by other generators. The program
that recognizes the expressions is generated in the general
purpose programming language employed for the user’s
program fragments. Thus, a high level expression
language is provided to write the string expressions to be
matched while the user’s freedom to write actions is
unimpaired. This avoids forcing the user who wishes to
use a string manipulation language for input analysis to
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write processing programs in the same and often inap-
propriate string handling language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added
to different programming languages, called ‘‘host
languages.” Just as general purpose languages can pro-
duce code to run on different computer hardware, Lex
can write code in different host languages. The host
language is used for the output code generated by Lex
and also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to
different environments and different users. Each applica-
tion may be directed to the combination of hardware and
host language appropriate to the task, the user’s back-
ground, and the properties of local implementations. At
present there are only two host languages, C[1] and For-
tran (in the form of the Ratfor language[2]). “Lex itself
exists on UNIX, GCOS, and 0S/370; but the code gen-
erated by Lex may be taken anywhere the appropriate
compilers exist.

Lex turns the user’s expressions and actions (called
source in this memo) into the host general-purpose
language; the generated program is named yylex. The
yylex program will recognize expressions in a stream
(called input in this memo) and perform the specified ac-
tions for each expression as it is detected. See Figure 1.

For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

%%
(\d+$

is all that is required. The program contains a %% delim-
iter to mark the beginning of the rules, and one rule.
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This rule contains a regular expression which matches
one or more instances of the characters blank or tab
(written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The
brackets indicate the character class made of blank and
tab; the + indicates ‘‘one or more ..”"; and the $ indi-
cates “‘end of line,” as in QED. No action is specified, so
the program generated by Lex (yylex) will ignore these
characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
[\d+8 .
{\t}+ printf(" ");

The finite automaton generated for this source will scan
for both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs. ’

Lex can be used alone for simple transformations, or
for analysis and statistics gathering on a fexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Yacc [3]. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class
of context free grammars, but require a lower level
analyzer to recognize input tokens. Thus, a combination
of Lex and Yacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is used to
partition the input stream, and the parser generator as-
signs structure to the resulting pieces. The flow of con-
trol in such a case (which might be the first half of a
compiler, for example) is shown in Figure 2. Additional
programs, written by other generators or by hand, can be
added easily to programs written by Lex. Yacc users will
realize that the name yylex is what Yacc expects its lexical
analyzer to be named, so that the use of this name by
Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source [4]. The automaton is
interpreted, rather than compiled, in order to save space.
The result is still a fast analyzer. In particular, the time

lexical grammar
rules rules
l |
I Lex | l Yacc l
| |

Input~— | yylex | — L yyparse ] — Parsed input

Lex with Yacc

Figure 2

@

e



taken by a Lex program to recognize and partition an in-
put stream is proportional to the length of the input. The
number of Lex rules or the compiexity of the rules is not
important in determining speed, unless rules which in-
clude forward context require a significant amount of re-
scanning. What does increase with the number and com-
plexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user’s fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch (in
C) or branches of a computed GOTO (in Ratfor). The
automaton interpreter directs the control flow. Opportun-
ity is provided for the user to insert either declarations or
additional statements in the routine containing the ac-
tions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if
there are two rules, one looking for ab and another for
abcdefg, and the input stream is abcdefh, Lex will recog-
nize ab and leave the input pointer just before cd. . .
Such backup is more costly than the processing of simpler
languages.

2 Lex Source.
The general format of Lex source is:

{definitions}

%%

{rules}

%%

{user subroutines)

where the definitions and the user subroutines are often
omitted. The second %% is optional, but the first is re-
quired to mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions, no rules) which translates into a program
which copies the input to the output unchanged.

In the outline of Lex programs shown above, the rules
represent the user’s control decisions; they are a table, in
which the left column contains regular expressions (see
section 3) and the right column contains actions, program
fragments to be executed when the expressions are recog-
nized. Thus an individual rule might appear

integer  printf("found keyword INT");
to look for the string 4nteger in the input stream and print
the message ‘‘found keyword INT” whenever it appears.
In this example the host procedural language is C and the
C library function printf'is used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it
can just be given on the right side of the line; if it is com-
pound, or takes more than a line, it should be enclosed in
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braces. As a slightly more useful example, suppose it is
desired to change a number of words from British to
American spelling. Lex rules such as

colour printf("color");
mechanise  printf("mechanize");
petrol printf(“gas");

would be a start. These rules are not quite enough, since
the word petroleum would become gaseunr, a way of deal-
ing with this will be described later.

3 Lex Regular Expressions.

The definitions of regular-expressions are very similar
to those in QED [5]. A regular expression specifies a set
of strings to be matched. It contains text characters
(which match the corresponding characters in the strings
being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of
the alphabet and the digits are always text characters; thus
the regular expression

integer

matches the string integer wherever it appears and the ex-
pression

as57D

looks for the string a57D.
Operators. The operator characters are

NPT -2+l O)87 % < >

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indi-
cates that whatever is contained between a pair of quotes
is to be taken as text characters. Thus

xyz"+ +"

matches the string xyz+ -+ when it appears. Note that a
part of a string may be quoted. It is harmless but un-
necessary to quote an ordinary text character. the expres-
sion

"Xyz+ +"

is the same as the one above. Thus by quoting every
non-alphanumeric character being used as a text charac-
ter, the user can avoid remembering the list above of
current operator characters, and is safe should further ex-
tensions to Lex lengthen the list.

An operator character may also be turned into a text
character by preceding it with \ as in

xyz\ +\ +

which is another, less readable, equivalent of the above




expressions. Another use of the quoting mechanism is to
get a blank into an expression; normally, as explained
above, blanks or tabs end a rule. Any blank character not
contained within [] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use \\.
Since newline is illegal in an éxpression, \n must be used;
it is not required to escape tab and backspace. Every
character but blank, tab, newline and the list above is al-
ways a text character.

Character classes. Classes of characters can be
specified using the operator pair []. The construction
[ab] matches a single character, which may be a, b, or c.
Within square brackets, most operator meanings are ig-
nored. Only three characters are special: these are \ —
and °. The — character indicates ranges. For example,

[a~z0-9<> ]

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using — between
any pair of characters which are not both upper case
letters, both lower case letters, or both digits is imple-
mentation dependent and will get a warning message.
(E.g., [0-z] in ASCII is many more characters than it is in
EBCDIC). If it is desired to include the character — in a
character class, it should be first or last; thus

{—+0-9]

matches all the digits and the two signs.

In character classes, the ~ operator must appear as the
first character after the left bracket; it indicates that the
resulting string is to be complemented with respect to the
computer character set. Thus

[*abe]

matches all characters except a, b, or c, including all spe-
cial or control characters; or

["a-zA-Z]

is any character which is not a letter. The \ character pro-
vides the usual escapes within character class brackets.

Arbitrary character. To match almost any character,
the operator character

is the class of all characters except newline. Escaping into
octal is possible although non-portable:

[\40-\176]

matches all printable characters in the ASCII character
set, from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indicates an op-
tional element of an expression. Thus
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ab?c

‘matches either ac or abc.

Repeated expressions. Repetitions of classes are indicat-
ed by the operators * and +.

a*

is any number of consecutive a characters, including zero;
while

a+
is one or more instances of a. For example,
fa-z]+
is all strings of lower case letters. And
[A-Za—z][A—~Za—20-9]*

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages. ’

Alternation and Grouping. The operator | indicates
alternation:

(ablcd)

matches either ab or ¢d. Note that parentheses are used
for grouping, although they are not necessary on the out-
side level;

abled

would have sufficed. Parentheses can be used for more
complex expressions:

(ablcd+)7(ef)*

matches such strings as abefef, efefef, cdef, or cddd; but
not abc, abed, or abcdef

Context sensitivity. Lex will recognize a small amount
of surrounding context. The two simplest operators for
this are " and $. If the first character of an expression is
*, the expression will only be matched at the beginning of
a line (after a newline character, or at the beginning of
the input stream). This can never conflict with the other
meaning of ~, complementation of character classes, since
that only applies within the [] operators. If the very last
character is §, the expression will only be matched at the
end of a line (when immediately followed by newline).
The latter operator is a special case of the /operator char-
acter, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus




ab$
is the same as
ab/\n

Left context is handled in Lex by start conditions as ex-
plained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition
x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we con-
sidered ‘‘being at the beginning of a line’’ to be start con-
dition ONE, then the " operator would be equivalent to

<ONE>
Start conditions are explained more fully later.
Repetitions and Definitions. The operators {} specify ei-
ther repetitions (if they enclose numbers) or definition

expansion (if they enclose a name). For example

{digit)

LEX~—S

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions is the action
character |, which indicates that the action for this rule is
the action for the next rule. The previous example could
also have been written

"N

ll\ t"

Il\nlv

with the same result, although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to
know the actual text that matched some expression like
[a—z]+. Lex leaves this text in an external character ar-
ray named yytext. Thus, to print the name found, a rule
like -

fa-z]+  printf("%s", yytext);

will print the string in yytext. The C function printf ac-

- cepts a format argument and data to be printed; in this

looks for a predefined string named digit and inserts it at -

that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In con-
trast,

a{1,5}

looks for 1 to 5 occurrences of a.
Finally, initial % is special, being the separator for Lex
source segments.

4 Lex Actions.

When an expression written as above is matched, Lex
executes the corresponding action. This section describes
some features of Lex which aid in writing actions. Note
that there is a default action, which consists of copying
the input to the output. This is performed on all strings
not otherwise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any output,
must provide rules to match everything. When Lex is be-
ing used with Yacc, this is the normal situation. One may
consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combina-
tion which is omitted from the rules and which appears as
input is likely to be printed on the output, thus calling at-
tention to the gap in the rules.

One of the simplest things that can be done is to ignore
the input. Specifying a C null statement, ; as an action
causes this result. A frequent rule is

[\t\n] ;

case, the format is “‘print string”” (% indicating data
conversion, and s indicating string type), and the data are
the characters in yytext. So this just places the matched
string on the output. This action is so common that it
may be written as ECHO:

[a-z]+ ECHO;

is the same as the above. Since the default action is just
to print the characters found, one might ask why give a
rule, like this one, which merely specifies the default ac-
tion? Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matches read it will normally match
the instances of read contained in bread or readjust, to
avoid this, a rule of the form [a—z/+ is needed. This is
explained further below.

Sometimes it is more convenient to know the end of
what has been found; hence Lex also provides a count
yyleng of the number of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

la-zA-Z}+  {words+ +; chars + = yyleng;}
which accumulates in chars the number of characters in
the words recognized. The last character in the string
matched can be accessed by

yytext[yyleng-1]
inCor

yytext(yyleng)

in Ratfor.




Occasionally, a Lex action may decide that a rule has
not recognized the correct span of characters. Two rou-
tines are provided to aid with this situation. First,
yymore() can be called to indicate that the next input ex-
pression recognized is to be tacked on to the end of this
input. Normally, the next input string would overwrite
the current entry in yytext. Second, yyless (n) may be
called to indicate that not all the characters matched by
the currently successful expression are wanted right now.
The argument n indicates the number of characters in
yytext to be retained. Further characters previously
matched are returned to the input. This provides the
same sort of lookahead offered by the / operator, but in a
different form.

Example: Consider a language which defines a string as
a set of characters between quotation (") marks, and pro-
vides that to include a " in a string it must be preceded by
a \. The regular expression which matches that is some-
what confusing, so that it might be preferable to write

{

if (yytextlyyleng-11 == A\\)
'yymore ();

else

)

s

.. normal user processing

which will, when faced with a string such as "abc\"def"
first match the five characters "abc\; then -the call to
yymore() will cause the next part of the string, "def, to be
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled ‘‘nor-
mal processing’’.

The function yyless() might be used to reprocess text in
various circumstances. Consider the C problem of distin-
guishing the ambiguity of “=—2"", Suppose it is desired
to treat this as ‘‘=— a” but print a message. A rule
might be

{

printf ("Operator (=—) ambiguous\n");
yyless(yyleng-1);

.. action for =— .

i

=—[a-zA-Z]

which prints a message, returns the letter after the opera-
tor to the input stream, and treats the operator as G
Alternatively it might be desired to treat this as ¢ —a”.
To do this, just return the minus sign as well as the letter
to the input:

{

printf ("Operator (=—) ambiguous\n");
yyless(yyleng-2);

.. action for =

)

=—[a-zA-Z]

will perform the other interpretation. Note that the ex-
pressions for the two cases might more easily be written
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=—/[A-Za-7]
in the first case and
=/-[A-Za-z]
in the second; no backup would be required in the rule
action. It is not necessary to recognize the whole

identifier to observe the ambiguity. The possibility of
~3”, however, makes

=—/["\t\n]
a still better rule.

In addition to these routines, Lex also permits access to
the 170 routines it uses. They are:

1) input() which returns the next input character;
2)  output(c) which writes the character ¢ on the out-
put; and
3)  unput(c) pushes the character ¢ back onto the in-
put stream to be read later by input().
By default these routines are provided as macro

definitions, but the user can override them and supply
private versions. There is another important routine in
Ratfor, named lexshf, which is described below under
““Character Set”’. These routines define the relationship
between external files and internal characters, and must
all be retained or modified consistently. They may be
redefined, to cause input or output to be transmitted to or
from strange places, including other programs or internal
memory; but the character set used must be consistent in
all routines; a value of zero returned by input must mean
end of file; and the relationship between unput and input
must be retained or the Lex lookahead will not work.
Lex does not look ahead at all if it does not have to, but
every rule ending in + * ? or $ or containing /implies
lookahead. Lookahead is also necessary to match an ex-
pression that is a prefix of another expression. See below
for a discussion of the character set used by Lex. The
standard Lex library imposes a 100 character limit on
backup.

Another Lex library routine that the user will some-
times want to redefine is yywrap() which is called when-
ever Lex reaches an end-of-file. If yywrap returns a 1,
Lex continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more
input to arrive from a new source. In this case, the user
should provide a yywrap which arranges for new input
and returns 0. This instructs Lex to continue processing.
The default yywrap always returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is
not possibie to write a normal rule which recognizes end-
of-file; the only access to this condition is through
yywrap. In fact, unless a private version of input() is sup-
plied a file containing nulls cannot be handled, since a
value of 0 returned by input is taken to be end-of-file.

In Ratfor all of the standard 1/0 library routines, input,




output, unput, yywrap, and lexshf, are defined as integer
functions. This requires inpur and yywrap to be called
with arguments. One dummy argument is supplied and
ignored.

5 Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows:

1)  The longest match is preferred.

2) Among rules which matched the same number of
characters, the rule given first is preferred.
Thus, suppose the rules

integer
[a-z] +

keyword action ...;
identifier action ...;

to be given in that order. If the input is integers, it is tak-
en as an identifier, because fg-z/+ matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. int) will
not match the expression integer and so the identifier in-
terpretation is used.

The principle of preferring the longest match makes
rules containing expressions like .» dangerous. For exam-
ple,

might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first’ quoted string here, 'second’ here
the above expression will match
"first’ quoted string here, ‘second’

which is probably not what was wanted. A better rule is
of the form

""An]+’

which, on the above input, will stop after ‘first. The
consequences of errors like this are mitigated by the fact
that the . operator will not match newline. Thus expres-
sions like .* stop on the current line. Don’t try to defeat
this with expressions like [\n/+ or equivalents; the Lex
generated program will try to read the entire input file,
causing internal buffer overflows.

Note that Lex is normally partitioning the input stream,
not searching for all possible matches of each expression.
This means that each character is accounted for once and
only once. For example, suppose it is desired to count
occurrences of both she and he in an input text. Some
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Lex rules to do this might be

she s++;
he h++;

\n |

where the last two rules ignore everything besides he and
she. Remember that . does not include newline. Since
she includes he, Lex will normally not recognize the in-
stances of he included in she, since once it has passed a
she those characters are gone.

Sometimes the user would like to override this choice.
The action REJECT means ‘‘go do the next alternative.”
It causes whatever rule was second choice after the
current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really
wants to count the included instances of he:

she {s++; REJECT;}
he {h++; REJECT:}

\n |
these rules are one way of changing the previous example
to do just that. After counting each expression, it is re-
jected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user
could note that she includes he but not vice versa, and
omit the REJECT action on he, in other cases, however,
it would not be possible a priori to tell which input char-
acters were in both classes. )
Consider the two rules

albc]+
aled] +

{...: REJECT;}
{...: REJECT;}

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string acch matches
the first rule for four characters and then the second rule
for three characters. In contrast, the input accd agrees
with the second rule for four characters and then the first
rule for three.

In general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances of
these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both
th and he. Assuming a two-dimensional array named di-
gram to be incremented, the appropriate source is

%%
[a-zl[a-z]  {digram[yytext[0]]lyytext[1]]1+ +; REJECT:}
\n ;

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.




6 Lex Source Definitions.
Remember the format of the Lex source:

{definitions)}
%%

{rules)

%%

{user routines)

So far only the rules have been described. The user
needs additional options, though, to define variables for
use in his program and for use by Lex. These can go ei-
ther in the definitions section or in the rules section.
Remember that Lex is turning the rules into a program.
Any source not intercepted by Lex is copied into the gen-
erated program. There are three classes of such things.

1) Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior
to the first %% delimiter will be external to any
function in the code; if it appears immediately
after the first %%, it appears in an appropriate
place for declarations in the function written by
Lex which contains the actions. This material
must look like program fragments, and should
precede the first Lex rule.

As a side effect of the above, lines which begin
with a blank or tab, and which contain a com-
ment, are passed through to the generated pro-
gram. This can be used to include comments in
either the Lex source or the generated code. The
comments should follow the host language con-
vention.

2)  Anything included between lines containing only
%{ and %) is copied out as above. The delimiters
are discarded. This format permits entering text
like preprocessor statements that must begin in
column 1, or copying lines that do not look like

programs.

Anything after the third %% delimiter, regardless
of formats, etc., is copied out after the Lex out-
put.

Definitions intended for Lex are given before the first
%% delimiter. Any line in this section not contained
between %{ and %)}, and begining in column 1, is as-
sumed to define Lex substitution strings. The format of
such lines is

3)

name translation

and it causes the string given as a translation to be associ-
ated with the name. The name and transiation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out
by the {name} syntax in a rule. Using {D} for the digits
and {E} for an exponent field, for example, might abbre-
viate rules to recognize numbers:

LEX—8

D {0-9]
E [TEdel[-+1?{D} +
%%

D} + printf ("integer");

{
{D}+""{D}((ED)? |

(D} {D}+({ED? |

{D} +{E}

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field, but
the first requires at least one digit before the decimal
point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by
a Fortran expression such as 35.EQ.I, which does not
contain a real number, a context-sensitive rule such as

[0-9]14+/""EQ printf("integer");

could be used in addition to the normal rule for integers.

The definitions section may also contain other com-
mands, including the selection of a host language, a char-
acter set table, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger
source programs. These possibilities are discussed below
under ‘‘Summary of Source Format,’’ section 12.

7 Usage.

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a li-
brary of Lex subroutines. The generated program is on a
file named lex.yy.c for a C host language source and
lex.yy.r for a Ratfor host environment. There are two
1/0 libraries, one for C defined in terms of the C stan-
dard library [6], and the other defined in terms of Ratfor.
To indicate that a Lex source file is intended to be used
with the Ratfor host language, make the first line of the
file %R.

The C programs generated by Lex are slightly different
on 08/370, because the OS compiler is less powerful than
the UNIX or GCOS compilers, and does less at compile
time. C programs generated on GCOS and UNIX are the
same. The C host language is default, but may be expli-
citly requested by making the first line of the source file
%C.

The Ratfor generated by Lex is the same on all sys-
tems, but can not be compiled directly on TSO. See
below for instructions. The Ratfor I/0O library, however,
varies slightly because the different Fortrans disagree on
the method of indicating end-of-input and the name of
the library routine for logical AND. The Ratfor 170 li-
brary, dependent on Fortran character I/0, is quite slow.
In particular it reads all input lines as 80A1 format; this
will truncate any longer line, discarding your data, and
pads any shorter line with blanks. The library version of
input removes the padding (including any trailing blanks
from the original input) before processing. Each source




file using a Ratfor host should begin with the “%R”’ com-
mand.

UNIX. The libraries are accessed by the loader flags
-llc for C and -lIr for Ratfor; the C name may be abbrevi-
ated to -/, So an appropriate set of commands is

C Host Ratfor Host

lex source
rc -2 lex.yy.r -lir

lex source
cc lex.yy.c -1l -IS

The resulting program is placed on the usual file a.out for
later execution. To use Lex with Yacc see below.
Although the default Lex I/0 routines use the C standard
library, the Lex automata themselves do not do so; if
private versions of input, output and unput are given, the
library can be avoided. Note the ““-2”’ option in the Rat-
for compile command; this requests the larger version of
the compiler, a useful precaution.

GCOS. The Lex commands on GCOS are stored in the
¢.” library. The appropriate command sequences are:

C Host . Ratfor Host

./lex source
Jrec a= lex.yy.r ./lexrlib h=

./lex source
Jce lex.yy.c /lexclib h=

The resulting program is placed on the usual file .program
for later execution (as indicated by the ‘“h="" option); it
may be copied to a permanent file if desired. Note the
» option in the Ratfor compile command; this indi-
cates that the Fortran compiler is to run in ASCII mode.

TSO. Lex is just barely available on TSO. Restrictions
imposed by the compilers which must be used with its
output make it rather inconvenient. To use the C ver-
sion, type

=

exec 'dot.lex.clist (lex)’ 'sourcename’
exec 'dot.lex.clist(cload)’ libraryname membername’

The first command analyzes the source file and writes a C
program on file lex.yy.text. The second command runs
this file through the C compiler and links it with the Lex
C library (stored on ’hr289.Icl.load’) placing the object
program in your file libraryname.LOAD (membername) as
a completely linked load module. The compiling com-
mand uses a special version of the C compiler command
on TSO which provides an unusually large intermediate
assembler file to compensate for the unusual bulk of C-
compiled Lex programs on the OS system. Even so, al-
most any Lex source program is too big to compile, and
must be split.

The same Lex command will compile Ratfor Lex pro-
grams, leaving a file lex.yy.rat instead of lex.yy.text in
your directory. The Ratfor program must be edited, how-
ever, to compensate for peculiarities of IBM Ratfor. A
command sequence to do this, and then compile and
load, is available. The full commands are:

exec 'dot.lex.clistlex)’ 'sourcename’
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exec ‘dot.lex.clist(rload)’ libraryname membername’

with the same overall effect as the C language commands.
However, the Ratfor commands will run in a 150K byte
partition, while the C commands require 250K bytes to
operate.

The steps involved in processing the generated Ratfor
program are:

a.  Edit the Ratfor program.

1. Remove all tabs.

2.  Change all lower case letters to upper case letters.
3.  Convert the file to an 80-column card image file.
"b.  Process the Ratfor through the Ratfor preproces-

sor to get Fortran code.
c¢.  Compile the Fortran.
d. Load with the libraries 'hr289.Irl.load’ and

'sys1.fortlib’. )
The final load module will only read input in 80-character
fixed length records. Warning: Work is in progress on
the IBM C compiler, and Lex and its availability on the
IBM 370 are subject to change without notice.

8 Lex and Yacc.

If you want to use Lex with Yacc, note that what Lex
writes is a program named yylex(), the name required by
Yacc for its analyzer. Normally, the default main pro-
gram on the Lex library calls this routine, but if Yacc is
loaded, and its main program is used, Yacc will call
wlex(). In this case each Lex rule should end with

return(token);

where the appropriate token value is returned. An easy
way to get access to Yacc’s names for tokens is to compile
the Lex output file as part of the Yacc output file by plac-
ing the line

# inciude "lex.yy.c"

in the last section of Yacc input. Supposing the grammar
to be named ‘‘good’” and the lexical rules to be named
“better”’ the UNIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -1l -IS

The Yacc library (-ly) should be loaded before the Lex li-
brary, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

9 Examples.
As a trivial problem, consider copying an input file

while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program
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%%
int k;
[0-91+ |
scanf(-1, yytext, "%d", &k);
if k%7 == 0)
printf ("%d", k+3);
else
printf ("%d" k);
}

to do just that. The rule [0-9]+ recognizes strings of di-
gits; scanf converts the digits to binary and stores the
result in k. The operator % (remainder) is used to check
whether k is divisible by 7; if it is, it is incremented by 3
as it is written out. It may be objected that this program
will alter such input items as 49.63 or X7. Furthermore,
it increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
after the active one, as here:

%%
int k;

-70-9}+ .
scanf (-1, yytext, "%d", &k);
printf ("%d", k%7 == 0 ? k+3
}

-2{0-9.1+ ECHO;,

[A-Za-z][A-Za-20-91+ ECHO;

6 93

Numerical strings containing a ‘“.”” or preceded by a letter
will be picked up by one of the last two rules, and not
changed. The if-else has been replaced by a C conditional
expression to save space; the form a?b:c means ‘‘if a
then belse .

For an example of statistics gathering, here is a pro-
gram which histograms the lengths of words, where a
word is defined as a string of letters.

int lengs{100];
%%
[a-z]+ |lengs[yyleng] + 4
\n ;
%%
{ywrap 0

int i;
printf ("Length No. words\n");
for(i=0; i<100; i+ +)
if (lengsfil > 0)
printf ("%5d%10d\n",i,lengsfil);
return(1);

)

This program accumulates the histogram, while producing
no output. At the end of the input it prints the table.
The final statement return(1); indicates that Lex is to per-
form wrapup. If yywrap returns zero (false) it implies
that further input is available and the program is to con-
tinue reading and processing. To provide a yywrap that

k),

never returns true causes an infinite loop.

As a larger example, here are some parts of a program
written by N. L. Schryer to convert double precision For-
tran to single precision Fortran. Because Fortran does
not distinguish upper and lower case letters, this routine
begins by defining a set of classes including both cases of
each letter:

a  [aA]
b [bB]
¢ {cCl]
z z7]

An additional class recognizes white space:

W [\t
The first rule changes ‘‘double precision” to ‘‘real’’, or
“DOUBLE PRECISION" to “REAL”".

{d}{o}{u}{b}{tHe} {W}{p}{rHe}{c}i{sHil{o}{n} {
printf (yytext[0] =='d'? "real" : "REAL");

Care is taken throughout this program to preserve the
case (upper or lower) of the original program. The condi-
tional operator is used to select the proper form of the
keyword. The next rule copies continuation card indica-
tions to avoid confusing them with constants:
™ "[*0l ECHO;

In the regular expression, the quotes surround the blanks.
It is interpreted as ‘‘beginning of line, then five blanks,
then anything but blank or zero.”” Note the two different

meanings of *. There follow some rules to change double
precision constants to ordinary floating constants.

[0-91+{WHa} (W} +-1?2{w}{0-91+ |
[0-91+{W}"."{WHdH W] [+-12{W}[0-9]+ |
«(WHO-91+{WHaH{W) [+-]2{w}[0-9]1+ {
/+* convert constants */
for({p=yytext; «p 1= 0; pt++)

if (.)p.=="d'|*p == "D
*p= + Iel- Idl;

ECHO;

}

After the floating point constant is recognized, it is
scanned by the for loop to find the letter d or D. The
program than adds ‘e’-d’, which converts it to the next
letter of the alphabet. The modified constant, now
single-precision, is written out again. There follow a
series of names which must be respelled to remove their
initial d By using the array yytext the same action
suffices for all the names (only a sample of a rather long
list is given here).
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printf ("%s", yytext+1);

Another list of names must have initial 4 changed to ini-
tial a: |

{a}{1}{o}{g} |

{dH1}{o}{g}10 |

{d{m}{i}{n)1 |

{di{mMal{x}1 {
yytext[0] =+ "a’' - 'd",
ECHO;
}

m

And one routine must have initial d changed to initial .

{d}t{m}{a}{cHh} {yytextlO] =+ ' -'d’

To avoid such names as dsinx being detected as instances
of dsin, some final rules pick up longer words as
identifiers and copy some surviving characters:

[A-Za-z]{A-Za-20-9]+ |
[0-9] + |
\n I
. ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords as identifiers.

10 Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For ex-
ample, a compiler preprocessor might distinguish prepro-
cessor statements and analyze them differently from ordi-
nary statements. This requires sensitivity to prior con-
text, and there are several ways of handling such prob-
lems. The ~ operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as $ recognizes immediately following right context.
Adjacent left context could be extended, to produce a fa-
cility similar to that for adjacent right context, but it is
unlikely to be as useful, since often the relevant left con-
text appeared some time earlier, such as at the beginning
of a line.

This section describes three means of dealing with
different environments: a simple use of flags, when only a
few rules change from one environment to another, the
use of start conditions on rules, and the possibility of
making multiple lexical analyzers all run together. In
each case, there are rules which recognize the need to
change the environment in which the following input text

is analyzed, and set some parameter to reflect the change.
This may be a flag explicitly tested by the user’s action
code; such a flag is the simplest way of dealing with the
problem, since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as
initial conditions on the rules. Any rule may be associat-
ed with a start condition. It will only be recognized when
Lex is in that start condition. The current start condition
may be changed at any time. Finally, if the sets of rules
for the different environments are very dissimilar, clarity
may be best achieved by writing several distinct lexical
analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line
which began with the letter a, changing magic to second
on every line which began with the letter b, and changing
magic to third on every line which began with the letter c.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

int flag;
%%
"a {flag = "a"; ECHO;}
b {flag = 'b", ECHO;}
“c {flag = '¢’; ECHO:}
\n {flag = 0; ECHO:}
magic |

?witch (flag)

case 'a": printf ("first"); break;
case 'b': printf("second"); break;
case 'c”: printf("third"); break;
default: ECHO; break;

}

}

should be adequate.

To handle the same problem with start conditions, each
start condition must be introduced to Lex in the
definitions section with a line reading

%Start namel name2 ...
where the conditions may be named in any order. The
word Start may be abbreviated to s or S. The conditions
may be referenced at the head of a rule with the <>
brackets:
<namel >expression

is a rule which is only recognized when Lex is in the start
condition namel. To enter a start condition, execute the
action statement

BEGIN namel;

which changes the start condition to namel. To resume
the normal state,
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BEGIN 0;

resets the initial condition of the Lex automaton inter-
preter. A rule may be active in several start conditions:

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <>
prefix operator is always active.
The same example as before can be written:

%START AA BB CC

%%

"a {ECHO; BEGIN AA:}

“b {ECHO; BEGIN BB}

"¢ {ECHO; BEGIN CC;}
{

An ECHO; BEGIN ¢;}

< AA>magic printf ("first");
< BB>magic printf ("second");
< CC> magic printf ("third");

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work
rather than the user’s code.

11 Character Set.

The programs generated by Lex handle character I/O
only through the routines input, output, and unput. Thus
the character representation provided in these -routines is
accepted by Lex and employed to return values in yytext.
For internal use a character is represented as a small in-
teger which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. In C, the 1/0 rou-
tines are assumed to deal directly in this representation.
In Ratfor, it is anticipated that many users will prefer
left-adjusted rather than right-adjusted characters; thus
the routine lexshf is called to change the representation
delivered by input into a right-adjusted integer. If the
user changes the I/0 library, the routine lexshf should
also be changed to a compatible version. The Ratfor li-
brary I/0 system is arranged to represent the letter a as
in the Fortran value IHa while in C the letter a is
represented as the character constant ‘a’. If this interpre-
tation is changed, by providing I/O routines which
translate the characters, Lex must be told about it, by giv-
ing a translation table. This table must be in the
definitions section, and must be bracketed by lines con-
taining only “%T". The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.
Thus the next example maps the lower-and upper case
letters together into the integers 1 through 26, newline
into 27, + and - into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a table is
supplied, every character that is to appear either in the

%T
1 Aa
2 Bb
26 Zz
27 \n
28 +
29 -
30 0
31 1
. 39 9
%T

Sample character table.

rules or in any valid input must be included in the table.
No character may be assigned the number 0, and no char-
acter may be assigned a bigger number than the size of
the hardware character set.

It is not likely that C users will wish to use the charac-
ter table feature; but for Fortran portability it may be
essential.

Although the contents of the Lex Ratfor library rou-
tines for input and output run almost unmodified on
UNIX, GCOS, and 0S/370, they are not really machine
independent, and would not work with CDC or Bur-
roughs Fortran compilers. The user is of course welcome
to replace input, output, unput and lexshf but to replace
them by completely portable Fortran routines is likely to
cause a substantial decrease in the speed of Lex Ratfor
programs. A simple way to produce portable routines
would be to leave input and output as routines that read
with 80A1 format, but replace lexshf by a table lookup
routine.

12 Summary of Source Format.
The general form of a Lex source file is:

{definitions}

%%

{rules}

%%

{user subroutines)

The definitions section contains a combination of
1) Definitions, in the form ‘‘name space transla-
tion”’.
2) Included code, in the form “‘space code”.
3) Included code, in the form

%{
code
% }
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4)  Start conditions, given in the form
%S namel name?2 ...
5)  Character set tables, in the form

%T
number space character-string

%T
6) A language specifier, which must also precede any

rules or included code, in the form “%C* for C
or ““%R" for Ratfor.

7)  Changes to internal array sizes, in the form
%x nnn

where nnn is a decimal integer representing an ar-
ray size and x selects the parameter as follows:

Letter Parameter
p positions
n states
e tree nodes
a transitions
k packed character classes
0 output array size

Lines in the rules section have the form ‘‘expression ac-
tion”’ where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

X the character "x"

"x" an "x", even if x is an operator.

\x an "x", even if X is an operator.

[xyl the character x or y.

[x-z] the characters x, y or z.

["x] any character but x.

. any character but newline.

"X an x at the beginning of a line.
<y>x an x when Lex is in start condition y.
x3 an x at the end of a line.

x? an optional x.

X 0,1,2, ... instances of x.

X+ 1,2,3, ... instances of x.

xly anxoray.

x) an x.

x/y an x but only if followed by y.

{xx} the translation of xx from the definitions section.

x{m,n}  mthrough n occurrences of x

13 Caveats and Bugs.

_There are pathological expressions which produce ex-
ponential growth of the tables when converted to deter-
ministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it
remembers the results of the previous scan. This means
that if a rule with trailing context is found, and REJECT
executed, the user must not have used umput to change
the characters forthcoming from the input stream. This is
the only restriction on the user’s ability to manipulate the
not-yet-processed input.

TSO Lex is an older version. Among the non-
supported features are REJECT, start conditions, or vari-
able length trailing context, And any significant Lex
source is too big for the IBM C compiler when translated.
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A Portable Fortran 77 Compiler
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ABSTRACT

The Fortran language has just been revised. The new language, known as For-
tran 77, became an official American National Standard on April 3, 1978. We
report here on a compiler and run-time system for the new extended language.
This is believed to be the first complete Fortran 77 system to be implemented.
This compiler is designed to be portable, to be correct and complete, and to
generate code compatible with calling sequences produced by C compilers. In
particular, this Fortran is quite usable on UNIX} systems. In this paper, we
describe the language compiled, interfaces between procedures, and file formats
assumed by the I/0 system. An appendix describes the Fortran 77 language.
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A Portable Fortran 77 Compiler

S. 1. Feldman
P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

The Fortran language has just been revised. The new language, known as Fortran 77,
became an official American National Standard [1] on April 3, 1978. for the language, known
as Fortran 77, is about to be published. Fortran 77 supplants 1966 Standard Fortran [2]. We
report here on a compiler and run-time system for the new extended language. The compiler
and computation library were written by SIF, the I/0 system by PJW. We believe ours to be
the first complete Fortran 77 system to be implemented. This compiler is designed to be port-
able to a number of different machines, to be correct and complete, and to generate code com-
patible with calling sequences produced by compilers for the C language [3]. In particular, it is
in use on UNIXT systems. Two families of C compilers are in use at Bell Laboratories, those
based on D. M. Ritchie’s PDP-11 compiler[4] and those based on S. C. Johnson’s portable C
compiler [5]. This Fortran compiler can drive the second passes of either family. In this paper,
we describe the language compiled, interfaces between procedures, and file formats assumed by
the I/0 system. We will describe implementation details in companion papers.

1.1. Usage

At present, versions of the compiler run on and compile for the PDP-11, the VAX-
11/780, and the Interdata 8/32 UNIX systems. The command to run the compiler is

£77 flags file. ..

f77 is a general-purpose command for compiling and loading Fortran and Fortran-related files.
EFL [6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran
compiler. C and assembler source files will be compiled by the appropriate programs. Object
files will be loaded. (The £77 and cc commands cause slightly different loading sequences to be
generated, since Fortran programs need a few extra libraries and a different startup routine than
do C programs.) The following file name suffixes are understood:

I Fortran source file

. EFL source file

T Ratfor source file

.c C source file

.S Assembler source file
.0 Object file

The following flags are understood:
=S Generate assembler output for each source file, but do not assembie it. Assem-

tTUNIX is a Trademark of Bell Laboratories. %
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bler output for a source file x.f, x.e, x.r, or x.c is put on file x.s.

—C Compile but do not load. Output for x.f, x.e, X.r, X.c, or X.s is put on file x.o.

—m Apply the M4 macro preprocessor to each EFL or Ratfor source file before
using the appropriate compiler.

—f Apply the EFL or Ratfor processor to all relevant files, and leave the output
from x.e or x.r on x.f. Do not compile the resulting Fortran program.

—p Generate code to produce usage profiles.

-0 f Put executable module on file £ (Default is a.out).

—W Suppress all warning messages.

—~wb66 Suppress warnings about Fortran 66 features used.

-0 Invoke the C object code optimizer.

-C Compile code the checks that subscripts are within array bounds.

—onetrip Compile code that performs every do loop at least once. (see Section 2.10).

-U Do not convert upper case letters to lower case. The default is to convert For-
tran programs to lower case.

—-u Make the default type of a variable undefined. (see Section 2.3).

-12 On machines which support short integers, make the default integer constants

and variables short. (—I4 is the standard value of this option). (see Section
2.14). All logical quantities will be short.

-E The remaining characters in the argument are used as an EFL flag argument.
-R The remaining characters in the argument are used as a Ratfor flag argument.
—F Ratfor and and EFL source programs are pre-processed into Fortran files, but

those files are not compiled or removed.

Other flags, all library names (arguments beginning —1), and any names not ending with one of
the understood suffixes are passed to the loader.

1.2. Documentation Conventions

In running text, we write Fortran keywords and other literal strings in boldface lower case.
Examples will be presented in lightface lower case. Names representing a class of values will be
printed in italics.

1.3. Implementation Strategy

The compiler and library are written entirely in C. The compiler generates C compiler
intermediate code. Since there are C compilers running on a variety of machines, relatively
small changes will make this Fortran compiler generate code for any of them. Furthermore,
this approach guarantees that the resulting programs are compatible with C usage. The runtime
computational library is complete. The mathematical functions are computed to at feast 63 bit
precision. The runtime I/0 library makes use of D. M. Ritchie’s Standard C I/O package [8]
for transferring data. With the few exceptions described below, only documented calls are
used, so it should be relatively easy to modify to run on other operating systems.

2. LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences
briefly in the Appendix. The most important additions are a character string data type, file-
oriented input/output statements, and random access I/0. Also, the language has been cleaned
up considerably.

In addition to implementing the language specified in the new Standard, our compiler
implements a few extensions described in this section. Most are useful additions to the
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language. The remainder are extensions to make it easier to communicate with C procedures
or to permit compilation of old (1966 Standard) programs.

2.1.

2.2.

2.3.

24.

2.5.

2.6.

Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair of double
precision real variables. A double complex version of every complex built-in function is
provided. The specific function names begin with z instead of c.

Internal Files

The Fortran 77 standard introduces ‘‘internal files”> (memory arrays), but restricts their
use to formatted sequential I/0 statements. Our [/O system also permits internal files to
be used in direct and unformatted reads and writes.

Implicit Undefined statement

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type state-
ment is integer if its first letter is i, j, k, 1, m or n, and real otherwise. Fortran 77 has an
implicit statement for overriding this rule. As an aid to good programming practice, we
permit an additional type, undefined. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic
for each variable that is used but does not appear in a type statement. Specifying the —u
compiler flag is equivalent to beginning each procedure with this statement.

Recursion
Procedures may call themselves, directly or through a chain of other procedures.

Automatic Storage

Two new keywords are recognized, static and automatic. These keywords may appear as
“types’ in type statements and in implicit statements. Local variables are static by
default; there is exactly one copy of the datum, and its value is retained between calls.
There is one copy of each variable declared automatic for each invocation of the pro-
cedure. Automatic variables may not appear in equivalence, data, or save statements.

Source Input Format

The Standard expects input to the compiler to be in 72 column format: except in com-
ment lines, the first five characters are the statement number, the next is the continuation
character, and the next sixty-six are the body of the line. (If there are fewer than
seventy-two characters on a line, the compiler pads it with blanks; characters after the
seventy-second are ignored).

In order to make it easier to type Fortran programs, our compiler also accepts input in
variable length lines. An ampersand (*‘&’’) in the first position of a line indicates a con-
tinuation line; the remaining characters form the body of the line. A tab character in one
of the first six positions of a line signals the end of the statement number and continua-
tion part of the line; the remaining characters form the body of the line. A tab elsewhere
on the line is treated as another kind of blank by the compiler.

In the Standard, there are only 26 letters — Fortran is a one-case language. Consistent
with ordinary UNIX system usage, our compiler expects lower case input. By default, the
compiler converts all upper case characters to lower case except those inside character
constants. However, if the —U compiler flag is specified, upper case letters are not
transformed. In this mode, it is possible to specify external names with upper case letters
in them, and to have distinct variables differing only in case. Regardless of the setting of
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2.8.

2.9.

2.10.

2.11.
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the flag, keywords will only be recognized in lower case.

Include Statement
The statement

include ‘stuff’

is replaced by the contents of the file stuff. includes may be nested to a reasonable
depth, currently ten.

Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement by a binary con-
stant, denoted by a letter followed by a quoted string. If the letter is b, the string is
binary, and only zeroes and ones are permitted. If the letter is o, the string is octal, with
digits 0—7. If the letter is z or x, the string is hexadecimal, with digits 0—9, a—f. Thus,
the statements

integer a(3)
data a / b'1010’, 0'12', Z'a’' /

initialize all three elements of a to ten.

Character Strings

For compatibility with C usage, the following backslash escapes are recognized:
\n newline )
\t tab

\b backspace
\f form feed

\0 null

\' apostrophe (does not terminate a string)

\" quotation mark (does not terminate a string)
\W\ \

\x X, where x is any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and I/O system
recognize both the apostrophe (') and the double-quote (" ). If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated
quote or backslash escapes.

Every unequivalenced scalar local character variable and every character string constant is
aligned on an integer word boundary. Each character string constant appearing outside a
data statement is followed by a null character to ease communication with C routines.

Hollerith

Fortran 77 does not have the old Hollerith (#h) notation, though the new Standard
recommends implementing the old Hollerith feature in order to improve compatibility
with old programs. In our compiler, Hollerith data may be used in place of character
string constants, and may also be used to initialize non-character variables in data state-
ments.

Equivalence Statements

As a very special and peculiar case, Fortran 66 permits an element of a multiply-
dimensioned array to be represented by a singly-subscripted reference in equivalence
statements. Fortran 77 does not permit this usage, since subscript lower bounds may now
be different from 1. Our compiler permits single subscripts in equivalence statements,
under the interpretation that all missing subscripts are equal to 1. A warning message is
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printed for each such incomplete subscript.

2.12. One-Trip DO Loops

The Fortran 77 Standard requires that the range of a do loop not be performed if the ini-
tial value is already past the limit value, as in

dol10i=2,1

The 1966 Standard stated that the effect of such a statement was undefined, but it was
common practice that the range of a do loop would be performed at least once. In order
to accommodate old programs, though they were in violation of the 1966 Standard, the
—onetrip compiler flag causes non-standard loops to be generated.

2.13. Commas in Formatted Input

The 1/0 system attempts to be more lenient than the Standard when it seems worthwhile.
When doing a formatted read of non-character variables, commas may be used as value
separators in the input record, overriding the field lengths given in the format statement.
Thus, the format

(i10, £20.10, i4)
will read the record
—-345,.05¢-3,12

correctly.

2.14. Short Integers

On machines that support halfword integers, the compiler accepts declarations of type
integer=2. (Ordinary integers follow the Fortran rules about occupying the same space as
a REAL variable; they are assumed to be of C type long int, halfword integers are of C
type short int.) An expression involving only objects of type integer*2 is of that type.
Generic functions return short or long integers depending on the actual types of their
arguments. If a procedure is compiled using the —I2 flag, all small integer constants will
be of type integer2. If the precision of an integer-valued intrinsic function is not deter-
mined by the generic function rules, one will be chosen that returns the prevailing length
(integer*2 when the —12 command flag is in effect). When the —I2 option is in effect, all
quantities of type logical will be short. Note that these short integer and logical quantities
do not obey the standard rules for storage association.

2.15. Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard.
In addition, there are functions for performing bitwise Boolean operations ( or, and, xor,
and net) and for accessing the UNIX command arguments ( getarg and iarge ).

3. VIOLATIONS OF THE STANDARD
We know only thre ways in which our Fortran system violates the new standard:

3.1. Double Precision Alignment

The Fortran standards (both 1966 and 1977) permit commen or equivalence statements to
force a double precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,¢

equivalence (a(1),b), (a(4),c) -
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Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities
be on double word boundaries; other machines (e.g., IBM 370), run inefficiently if this
alignment rule is not observed. It is possible to tell which equivalenced and common
variables suffer from a forced odd alignment, but every double precision argument would
have to be assumed on a bad boundary. To load such a quantity on some machines, it
would be necessary to use separate operations to move the upper and lower halves into
the halves of an aligned temporary, then to load that double precision temporary; the
reverse would be needed to store a result. We have chosen to require that all double pre-
cision real and complex quantities fall on even word boundaries on machines with
corresponding hardware requirements, and to issue a diagnostic if the source code
demands a violation of the rule.

Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of
that procedure must be declared in an external statement. This requirement arises as a
subtle corollary of the way we represent character string arguments and of the one-pass
nature of the compiler. A warning is printed if a dummy procedure is not declared exter-
nal. Code is correct if there are no character arguments.

T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective.
These codes allow rereading or rewriting part of the record which has already been pro-
cessed. (Section 6.3.2 in the Appendix.) The implementation uses seeks, so if the unit is
not one which allows seeks, such as a terminal, the program is in error. (People who can
make a case for using tl should let us know.) A benefit of the implementation chosen is
that there is no upper limit on the length of a record, nor is it necessary to predeclare any
record lengths except where specifically required by Fortran or the operating system.

4. INTER-PROCEDURE INTERFACE

To be able to write C procedures that call or are called by Fortran procedures, it is neces-

sary to know the conventions for procedure names, data representation, return values, and
argument lists that the compiled code obeys.

4.1.

Procedure Names
On UNIX systems, the name of a common block or a Fortran procedure has an underscore

appended to it by the compiler to distinguish it from a C procedure or external variable with the
same user-assigned name. Fortran library procédure names have embedded underscores to
avoid clashes with user-assigned subroutine names.

4.2.

Data Representations
The following is a table of corresponding Fortran and C declarations:

Fortran C
integer*2 x short int x;
integer x long int x;
logical x long int x;
real x float x;
double precision X  double x;
complex x struct { floatr, i; } x;
double complex x  struct { double dr, di; } x;
character=6 x char x{6];

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory).




4.3. Return Values

A function of type integer, logical, real, or double precision declared as a C function that
returns the corresponding type. A complex or double complex function is equivalent to a C
routine with an additional initial argument that points to the place where the return value is to
be stored. Thus,

complex function (. ..)
is equivalent to

f (temp, ...)
struct { float r, i; } *temp;

A character-valued function is equivalent to a C routine with two extra initial arguments: a data
address and a length. Thus,

character*15 function g( . . .)
is equivalent to

g_(result, length, . . .)
char result [;
long int length;

and could be invoked in C by
char chars[15];

g._.(chars, 150, ...);

Subroutines are invoked as if they were integer-valued functions whose value specifies which
alternate return to use. Alternate return arguments (statement labels) are not passed to the
function, but are used to do an indexed branch in the calling procedure. (If the subroutine has
no entry points with alternate return arguments, the returned value is undefined.) The state-
ment

call nret(*1, =2, *3)
is treated exactly as if it were the computed goto

goto (1, 2, 3), nret()

4.4. Argument Lists

All Fortran arguments are passed by address. In addition, for every argument that is of
type character or that is a dummy procedure, an argument giving the length of the value is
passed. (The string lengths are long int quantities passed by value). The order of arguments is
then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in




external f
character*7 s
integer b(3)

call sam(f, b(2), s)
is equivalent to that in

int fO;
char s[7];
long int b{3];

sam_(f, &bl1], s, OL, 7L);

Note that the first element of a C array always has subscript zero, but Fortran arrays begin at 1;,
by default. Fortran arrays are stored in column-major order, C arrays are stored in row-major ™~
order.

5. FILE FORMATS

5.1. Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and
direct formatted and unformatted. On UNIX systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

Fortran 1/0 is based on ‘“‘records”. When a direct file is opened in a Fortran program,
the record length of the records must be given, and this is used by the Fortran 1/O system to
make the file look as if it is made up of records of the given length. In the special case that the
record length is given as 1, the files are not considered to be divided into records, but are
treated as byte-addressable byte strings; that is, as ordinary UNIX file system files. (A read or
write request on such a file keeps consuming bytes until satisfied, rather than being restricted to
a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will
ever be read or written by any means except Fortran I/0 statements. Each record is preceded
and followed by an integer containing the record’s length in bytes.
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The Fortran I/0 system breaks sequential formatted files into records while reading by
using each newline as a record separator. The result of reading off the end of a record is
undefined according to the Standard. The I/O system is permissive and treats the record as
being extended by blanks. On output, the I/O system will write a newline at the end of each
record. It is also possible for programs to write newlines for themselves. This is an error, but
the only effect will be that the single record the user thought he wrote will be treated as more
than one record when being read or backspaced over.

5.2. Portability Considerations

The Fortran [/0 system uses only the facilities of the standard C 1/0 library, a widely
available and fairly portable package, with the following two nonstandard features: The 170 sys-
tem needs to know whether a file can be used for direct I/0, and whether or not it is possible
to backspace. Both of these facilities are implemented using the fseek routine, so there is a
routine canseek which determines if fseek will have the desired effect. Also, the inquire state-
ment provides the user with the ability to find out if two files are the same, and to get the name
of an already opened file in a form which would enable the program to reopen it. (The UNIX
operating system implementation attempts to determine the full pathname.) Therefore there are
two routines which depend on facilities of the operating system to provide these two services.
In any case, the I/0 system runs on the PDP-11, VAX-11/780, and Interdata 8/32 UNIX sys-
tems.




- 10 -

APPENDIX. Differences Between Fortran 66 and Fortran 77

- The following is a very brief description of the differences between the 1966 [2] and the
1977 [1] Standard languages. We assume that the reader is familiar with Fortran 66. We do
not pretend to be compliete, precise, or unbiased, but plan to describe what we feel are the most
important aspects of the new language. At present the only current information on the 1977
Standard is in publications of the X3J3 Subcommittee of the American National Standards
Institute. The following information is from the /92 document. This draft Standard is writ-
ten in English rather than a meta-language, but it is forbidding and legalistic. No tutorials or
textbooks are available yet.

1. Features Deleted from Fortran 66

1.1. Hollerith

All notions of ““Hollerith> (#h) as data have been officially removed, although our com-
piler, like almost all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is per-
missible to jump out of the range of a do loop, then jump back into it. Extended range
has been removed in the Fortran 77 language. The restrictions are so special, and the
implementation of extended range is so unreliable in many compilers, that this change
really counts as no loss.

2. Program Form

2.1. Blank Lines
Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements

A main program may now begin with a statement that gives that program an external
name:

program work
Block data procedures may also have names.
block data stuff

There is now a rule that only one unnamed block data procedure may appear in a pro-
gram. (This rule is not enforced by our system.) The Standard does not specify the effect
of the program and block data names, but they are clearly intended to aid conventional
loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have addi-
tional entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, ¢)

Execution begins at the first statement following the entry line. All variable declarations
must precede all executable statements in the procedure. If the procedure begins with a
subroutine statement, all entry points are subroutine names. If it begins with a function
statement, each entry is a function entry point, with type determined by the type declared
for the entry name. If any entry is a character-valued function, then all entries must be.
In a function, an entry name of the same type as that where control entered must be
assigned a value. Arguments do not retain their values between calls. (The ancient trick
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of calling one entry point with a large number of arguments to cause the procedure to
“remember’’ the locations of those arguments, then invoking an entry with just a few
arguments for later calculation, is stiil illegal. Furthermore, the trick doesn’t work in our
implementation, since arguments are not kept in static storage.)

DO Loops

do variables and range parameters may now be of integer, real, or double precision types.
(The use of floating point do variables is very dangerous because of the possibility of
unexpected roundoff, and we strongly recommend against their use). The action of the
de statement is now defined for all values of the do parameters. The statement

dol0i=1u,d

performs max(0, [(u—/)/d]) iterations. The do variable has a predictable value when
exiting a loop: the value at the time a goto or return terminates the loop; otherwise the
value that failed the limit test.

Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments may be noted by
an asterisk, as in

subroutine s(a, *, b, *)

The meaning of the ‘‘alternate returns” is described in section 5.2 of the Appendix.

3. Declarations

3.1.

3.2.

CHARACTER Data Type

One of the biggest improvements to the language is the addition of a character-string data
type. Local and common character variables must have a length denoted by a constant
expression: :

character=17 a, b(3,4)
character*(6+3) c

If the length is omitted entirely, it is assumed equal to 1. A character string argument
may have a constant length, or the length may be declared to be the same as that of the
corresponding actual argument at run time by a statement like

character*(*) a

(There is an intrinsic function len that returns the actual length of a character string).
Character arrays and common blocks containing character variables must be packed: in an
array of character variables, the first character of one element must follow the last charac-
ter of the preceding element, without holes.

IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with i, j,
k, I, m, or n is of type integer, other variables are of type real, unless otherwise declared.
This general rule may be overridden with an implicit statement:

implicit real(a-c,g), complex(w-z), character=(17) (s)

declares that variables whose name begins with an a ,b, ¢, or g are real, those beginning
with w, x, y, or z are assumed complex, and so on. It is still poor practice to depend on
implicit typing, but this statement is an industry standard.
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PARAMETER Statement
It is now possible to give a constant a symbolic name, as in
parameter (x=17, y=x/3, pi=3.14159d0, s="hello’)

The type of each parameter name is governed by the same implicit and explicit rules as
for a variable. The right side of each equal sign must be a constant expression (an
expression made up of constants, operators, and already defined parameters).

3.4. Array Declarations

3.5.

3.6.

Arrays may now have as many as seven dimensions. (Only three were permitted in
1966). The lower bound of each dimension niay be declared to be other than 1 by using a
colon. Furthermore, an adjustable array bound may be an integer expression involving
constants, arguments, and variables in common.

real a(—5:3, 7, m:n), b(n+1:2*n)

The upper bound on the last dimension of an array argument may be denoted by an aster-
isk to indicate that the upper bound is not specified:

integer a(5, *), b(+), c(0:1, —2:%)

SAVE Statement

A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily
retain their values between invocations of that procedure. At any instant in the execution
of a program, if a common block is declared neither in the currently executing procedure
nor in any of the procedures in the chain of callers, all of the variables in that common
block also become undefined., (The only exceptions are variables that have been defined
in a data statement and never changed). These rules permit overlay and stack implemen-
tations for the affected variables. Fortran 77 permits one to specify that certain variables
and common blocks are to retain their values between invocations. The declaration

save a, /b/, ¢

leaves the values of the variables a and ¢ and all of the contents of common block b
unaffected by a return. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block
must be saved in every procedure in which it is declared if the desired effect is to occur.

INTRINSIC Statement

All of the functions specified in the Standard are in a single category, ‘“‘intrinsic func-
tions™, rather than being divided into ‘‘intrinsic’’ and ‘‘basic external’’ functions. If an
intrinsic function is to be passed to another procedure, it must be declared intrinsic.
Declaring it external (as in Fortran 66) causes a function other than the built-in one to be
passed.

4. Expressions

4.1.

Character Constants

Character string constants are marked by strings surrounded by apostrophes. If an apos-
trophe is to be included in a constant, it is repeated:
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There are no null (zero-length) character strings in Fortran 77. Our compiler has two
different quotation marks, ' *>> and * " . (See Section 2.9 in the main text.)

Concatenation

One new operator has been added, character string concatenation, marked by a double
slash (‘//>*). The result of a concatenation is the string containing the characters of the
left operand followed by the characters of the right operand. The strings

‘ab' // 'ed’

'abed’
are equal. The strings being concatenated must be of constant length in all concatenations
that are not the right sides of assignments. (The only concatenation expressions in which

a character string declared adjustable with a “*(x)’’ modifier or a substring denotation
with nonconstant position values may appear are the right sides of assignments).

Character String Assignment

The left and right sides of a character assignment may not share storage. (The assumed
implementation of character assignment is to copy characters from the right to the left
side.) If the left side is longer than the right, it is padded with blanks. If the left side is
shorter than the right, trailing characters are discarded.

Substrings

It is possible to extract a substring of a character variable or character array element, using
the colon notation:

a(i,j) (m:n)

is the string of (n—m+1) characters beginning at the m' character of the character array
element a,. Results are undefined unless m<n. Substrings may be used on the left
sides of assignments and as procedure actual arguments.

Exponentiation

It is now permissible to raise real quantities to complex powers, or complex quantities to
real or complex powers. (The principal part of the logarithm is used). Also, multiple
exponentiation is now defined: :

a*xrb*xc = g #* (b*xc)

Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, it is permissible to combine
integer and complex quantities in an expression.)

Constant expressions are permitted where a constant is allowed, except in data state-
ments. (A constant expression is made up of explicit constants and parameters and the
Fortran operators, except for exponentiation to a floating-point power). An adjustable
dimension may now be an integer expression involving constants, arguments, and vari-
ables in B common..

Subscripts may now be general integer expressions; the old cv=c¢’ rules have been
removed. do loop bounds may be general integer, real, or double precision expressions.
Computed goto expressions and 1/O unit numbers may be general integer expressions.
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5. Executable Statements

5.1. IF-THEN-ELSE

5.2.

At last, the if-then-else branching structure has been added to Fortran. It is called a
“Block If”. A Block If begins with a statement of the form

if (...) then
and ends with an
end if
statement. Two other new statements may appear in a Block If. There may be several
else if(. . .) then
statements, followed by at most one
else

statement. If the logical expression in the Block If statement is true, the statements fol-
lowing it up to the next elseif, else, or endif are executed. Otherwise, the next elseif
statement in the group is executed. If none of the elseif conditions are true, control
passes to the statements following the else statement, if any. (The else must follow all
elseifs in a Block If. Of course, there may be Block Ifs embedded inside of other Block If
structures). A case construct may be rendered

if (s .eq. 'ab’) then
else if (s .eq. 'cd’) then
else
end if

Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an aster-
isk, as in

call joe(j, *10, m, *2)
A return statement may have an integer expression, such as
return k

If the entry point has » alternate return (asterisk) arguments and if 1<k < n, the return
is followed by a branch to the corresponding statement label; otherwise the usual return to
the statement following the call is executed.

6. Input/Output

6.1. Format Variables
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A format may be the value of a character expression (constant or otherwise), or be stored
in a character array, as in

write (6, '(i5)) x
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6.2. END=, ERR=, and IOSTAT= Clauses
A read or write statement may contain end=, err=, and iostat= clauses, as in

write (6, 101, err=20, iostat=a(4))
read(5, 101, err=20, end=130, iostat=x)

Here 5 and 6 are the units on which the I/0 is done, 101 is the statement number of the
associated format, 20 and 30 are statement numbers, and a and x are integers. If an error
occurs during I/0, control returns to the program at statement 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable
referred to in the iostat= clause is given a value when the I/O statement finishes. (Yes,
the value is assigned to the name on the right side of the equal sign.) This value is zero if
all went well, negative for end of file, and some positive value for errors.

6.3. Formatted 1/0

6.3.1. Character Constants

Character constants in formats are copied literally to the output. Character constants can-
not be read into.

write(6,'(i2,” isn""t ",i1)") 7, 4
produces
7 isn't 4
Here the format is the character constant
(i2," isn"t ',i1) ‘

and the character constant

isn't
is copied into the output.

6.3.2. Positional Editing Codes

t, tl, tr, and x codes control where the next character is in the record. trnor nx specifies
that the next character is n to the right of the current position. tln specifies that the next
character is n to the left of the current position, allowing parts of the record to be recon-
sidered. tn says that the next character is to be character number » in the record. (See
section 3.4 in the main text.)

6.3.3. Colon

A colon in the format terminates the 1/0 oper#tion if there are no more data items in the
1/0 list, otherwise it has no effect. In the fragment

x="("hello", :, " there", i4)’
write (6, x) 12
write (6, x)

the first write statement prints hello there 12, while the second only prints hello.

6.3.4. Optional Plus Signs

According to the Standard, each implementation has the option of putting plus signs in
front of non-negative numeric output. The sp format code may be used to make the
optional plus signs actually appear for all subsequent items while the format is active. The
ss format code guarantees that the I/O system will not insert the optional plus signs, and
the s format code restores the default behavior of the 1/0 system. (Since we never put
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out optional plus signs, ss and s codes have the same effect in our implementation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks will be ignored following a bn
code in a format statement, and will be treated as zeros following a bz code in a format
statement. The default for a unit may be changed by using the open statement. (Blanks
are ignored by default.)

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required
by a format code, the output field must be filled with asterisks. (We think this should
have been an option.)

6.3.7. Iw.m

There is a new integer output code, iw.m. It is the same as iw, except that there will be at
least m digits in the output field, including, if necessary, leading zeros. The case iw.0 is
special, in that if the value being printed is 0, the output field is entirely blank. iw.1 is
the same as iw.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning.
On output we always use e. The e and d format codes also have identical meanings. A
leading zero before the decimal point in e output without a scale factor is optional with

“the implementation. (We do not print it.) There is a gw.d format code which is the same

as ew.d and fw.d on input, but which chooses.f or e formats for output depending. on the
size of the number and of 4.

6.3.9. “A” Format Code

6.4.

6.5.

A codes are used for character values. aw use a field width of w, while a plain a uses the
length of the character item.
Standard Units
There are default formatted input and output units. The statement
read 10, a, b

reads from the standard unit using format statement 10. The default unit may be expli-
citly specified by an asterisk, as in

read(*, 10) a,b
Similarly, the standard output units is specified by a print statement or an asterisk unit:

print 10
write (*, 10)

List-Directed Formatting

List-directed [/O is a kind of free form input for sequential [/O. It is invoked by using an
asterisk as the format identifier, as in

read(6, *) a,b,c
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On input, values are separated by strings of blanks and possibly a comma. Values,. except
for character strings, cannot contain blanks. End of record counts as a blank, except in
character strings, where it is ignored. Complex constants are given as two real constants
separated by a comma and enclosed in parentheses. A null input field, such as between
two consecutive commas, means the corresponding variable in the 1/0 list is not changed.
Values may be preceded by repetition counts, as in

4x(3.,2.) 2%, 4x'nello’
which stands for 4 complex constants, 2 null values, and 4 string constants.

For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes, so they cannot be read back using list-directed
input.

6.6. Direct I/0
A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access 1/0 statements.
Direct access read and write statements have an extra argument, rec=, which gives the
record number to be read or written. .
read(2, rec=13, err=20) (a(i), i=1, 203)
reads the thirteenth record into the array a.
The size of the records must be given by an open statement (see below). Direct access
files may be connected for either formatted or unformatted I/0.
6.7. Internal Files
Internal files are character string objects, such as variables or substrings, or arrays of type
character. In the former cases there is only a single record in the file, in the latter case
each array element is a record. The Standard includes only sequential formatted I/0O on
internal files. (I/O is not a very precise term to use here, but internal files are dealt with
using read and write). There is no list-directed I/0 on internal files. Internal files are
used by giving the name of the character object in place of the unit number, as in
character*80 x
read(5,"(a)") x
read(x,"(i3,i4)") nl,n2
which reads a card image into x and then reads two integers from the front of it. A
sequential read or write always starts at the beginning of an internal file.
(We also support a compatible extension, direct I/O on internal files. This is like direct
[/0 on external files, except that the number of records in the file cannot be changed.)
6.8. OPEN, CLOSE, and INQUIRE Statements
These statements are used to connect and disconnect units and files, and to gather infor-
mation about units and files.
6.8.1, OPEN

The open statement is used to connect a file with a unit, or to alter some properties of the
connection. The following is a minimal example.

open(1, file="fort.junk’)

open takes a variety of arguments with meanings described below.
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out optional plus signs, ss and s codes have the same effect in our implementation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks will be ignored following a bn
code in a format statement, and will be treated as zeros following a bz code in a format
statement. The default for a unit may be changed by using the open statement. (Blanks
are ignored by default.)

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required
by a format code, the output field must be filled with asterisks. (We think this should
have been an option.)

6.3.7. Iw.m

There is a new integer output code, iw.m. It is the same as iw, except that there will be at
least m digits in the output field, including, if necessary, leading zeros. The case iw.0 is
special, in that if the value being printed is 0, the output field is entirely blank. iw.1 is
the same as iw.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning.
On output we always use e. The e and d format codes also have identical meanings. A
leading zero before the decimal point in e output without a scale factor is optional with
the implementation. (We do not print it.) There is a gw.d format code which is the same
as ew.d and fw.d on input, but which chooses.f or e formats for output depending. on the
size of the number and of 4.

6.3.9. “A” Format Code
A codes are used for character values. aw use a field width of w, while a plain a uses the

length of the character item. '

6.4. Standard Units
There are default formatted input and output units. The statement

read 10, a, b

reads from the standard unit using format statement 10. The default unit may be expli-
citly specified by an asterisk, as in

read(+, 10) a,b
Similarly, the standard output units is specified by a print statement or an asterisk unit:

print 10
write(*, 10)

6.5. List-Directed Formatting

List-directed I/0 is a kind of free form input for sequential [/O. It is invoked by using an
asterisk as the format identifier, as in

read(6, *) a,b,c
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On input, values are separated by strings of blanks and possibly a comma. Values, except
for character strings, cannot contain blanks. End of record counts as a blank, except in
character strings, where it is ignored. Complex constants are given as two real constants
separated by a comma,and enclosed in parentheses. A null input field, such as between
two consecutive commas, means the corresponding variable in the I/0 list is not changed.
Values may be preceded by repetition counts, as in

4x(3.,2.) 2%, 4+'hello’
which stands for 4 complex constants, 2 null values, and 4 string constants.

For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes, so they cannot be read back using list-directed
input.

6.6. Direct 170
A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access I/0 statements.
Direct access read and write statements have an extra argument, rec=, which gives the
record number to be read or written.
read(2, rec=13, err=20) (a(i), i=1, 203)
reads the thirteenth record into the array a.
The size of the records must be given by an open statement (see below). Direct access
files may be connected for either formatted or unformatted /0.
6.7. Internal Files
Internal files are character string objects, such as variables or substrings, or arrays of type
character. In the former cases there is only a single record in the file, in the latter case
each array element is a record. The Standard includes only sequential formatted 1/0 on
internal files. (I/0 is not a very precise term to use here, but internal files are dealt with
using read and write). There is no list-directed I/O on internal files. Internal files are
used by giving the name of the character object in place of the unit number, as in
character*80 x
read(5,"(@)") x
read(x,"(i3,i4)") nl,n2
which reads a card image into x and then reads two integers from the front of it. A
sequential read or write always starts at the beginning of an internal file.
(We also support a compatible extension, direct I/O on internal files. This is like direct
I/0 on external files, except that the number of records in the file cannot be changed.)
6.8. OPEN, CLOSE, and INQUIRE Statements
These statements are used to connect and disconnect units and files, and to gather infor-
mation about units and files.
6.8.1. OPEN

The open statement is used to connect a file with a unit, or to alter some properties of the
connection. The following is a minimal example.

open(1, file="fort.junk")

open takes a variety of arguments with meanings described below.
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unit= a small non-negative integer which is the unit to which the file is to be connected.
We allow, at the time of this writing, O through 9. If this parameter is the first one
in the open statement, the unit= can be omitted.

iostat= is the same as in read or write.
err= is the same as in read or write.

file= a character expression, which when stripped of trailing blanks, is the name of the
file to be connected to the unit. The filename should not be given if the
status=scratch.

status= one of old, new, scratch, or unknown. If this parameter is not given, unknown
is assumed. If scratch is given, a temporary file will be created. Temporary files are
destroyed at the end of execution. If new is given, the file will be created if it
doesn’t exist, or truncated if it does. The meaning of unknown is processor depen-
dent; our system treats it as synonymous with old.

access= sequential or direct, depending on whether the file is to be opened for sequen-
tial or direct 1/0.

form= formatted or unformatted.

recl= a positive integer specifying the record length of the direct access file being opened.
We measure all record lengths in bytes. On UNIX systems a record length of 1 has
the special meaning explained in section 5.1 of the text.

blank= null or zero. This parameter has meaning only for formatted [/O. The default
value is null. zero means that blanks, other than leading blanks, in numeric input
fields are to be treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the
old file.
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6.8.2. CLOSE

close severs the connection between a unit and a file. The unit number must be given.
The optional parameters are iostat= and err= with their usual meanings, and status=
either keep or delete. Scratch files cannot be kept, otherwise keep is the default. delete
means the file will be removed. A simpie example is

close(3, err=17)

6.8.3. INQUIRE
The inquire statement gives information about a unit (‘“‘inquire by unit’’) or a file
(““inquire by file’’). Simple examples are:

inquire (unit=3, namexx)
inquire(file="junk’, number=n, exist=1)

file= a character variable specifies the file the inquire is about. Trailing blanks in the file
name are ignored.

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or
unit= must be used.

iostat=, err= are as before.

exist= a logical variable. The logical variable is set to .true. if the file or unit exists and
is set to .false. otherwise.

opened= a logical variable. The logical variable is set to .true. if the file is connected to
a unit or if the unit is connected to a file, and it is set to .false. otherwise.
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number== an integer variable to which is assigned the number of the unit connected to
the file, if any.

named= a logical variable to which is assigned .true. if the file has a name, or .false.
otherwise.

name= a character variable to which is assigned the name of the file (inquire by file) or
the name of the file connected to the unit (inquire by unit). The name will be the
full name of the file.

access= a character variable to which will be assigned the value 'sequential’ if the con-
nection is for sequential I/0, 'direct’ if the connection is for direct I/0. The value
becomes undefined if there is no connection.

sequential= a character variable to which is assigned the value ‘yes’ if the file could be
connected for sequential 1/0, ‘no’ if the file could not be connected for sequential
1/0, and 'unknown'’ if we can’t tell.

direct= a character variable to which is assigned the value 'yes’ if the file could be con-
nected for direct I/0, 'no’ if the file could not be connected for direct I/0, and 'unk-
nown’ if we can’t tell.

form= a character variable to which is assigned the value 'formatted’ if the file is con-
nected for formatted I/0, or 'unformatted’ if the file is connected for unformatted
I/0. ‘

formatted= a character variable to which is assigned the value 'yes' if the file could be
connected for formatted 1/0, 'no’ if the file could not be connected for formatted
170, and 'unknown' if we can’t tell.

unformatted= a character variable to which is assigned the value 'yes' if the file could be
connected for unformatted I/Q, no’ if the file could not be connected for unformat-
ted I/0, and 'unknown’ if we can’t tell.

recl= an integer variable to which is assigned the record length of the records in the file
if the file is connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the
last record read from a file connected for direct access.

blank= a character variable to which is assigned the value ‘null’ if null blank control is in
effect for the file connected for formatted 1/0, ‘zero’ if blanks are being converted to
zeros and the file is connected for formatted 1/0.

The gentle reader will remember that the people who wrote the standard probably weren’t
thinking of his needs. Here is an example. The declarations are omitted.

open(1, file="/dev/console")

On a UNIX system this statement opens the console for formatted sequential I/0. An inquire
statement for either unit 1 or file "/dev/console” would reveal that the file exists, is connected
to unit 1, has a name, namely "/dev/console", is opened for sequential 1/0, could be connected
for sequential I/0, could not be connected for direct [/O (can’t seek), is connected for format-
ted 1/0, could be connected for formatted 1/0, could not be connected for unformatted 1/0
(can’t seek), has neither a record length nor a next record number, and is ignoring blanks in
numeric fields.

In the UNIX system environment, the only way to discover what permissions you have for
a file is to open it and try to read and write it. The err= parameter will return system error
numbers. The inquire statement does not give a way of determining permissions.




The C version of Ratfor is used on UNIX
and on the Honeywell Gcos systems. C com-
pilers are not as widely available as Fortran,
however, so there is also a Ratfor written in
itself and originally bootstrapped with the C ver-
sion. The Ratfor version was written so as to
translate into the portable subset of Fortran
described in [1], so it is portable, having been
run essentially without change on at least twelve
distinct machines. (The main restrictions of the
portable subset are: only one character per
machine word; subscripts in the form c*vtc;
avoiding expressions in places like DO loops; con-
sistency in subroutine argument usage, and in
COMMON declarations. Ratfor itself will not gra-
tuitously generate non-standard Fortran.)

The Ratfor version is about 1500 lines of
Ratfor (compared to about 1000 lines of C): this
compiles into 2500 lines of Fortran. This expan-
sion ratio is somewhat higher than average, since
the compiled code contains unnecessary
occurrences of COMMON declarations. The exe-
cution time of the Ratfor version is dominated
by two routines that read and write cards.
Clearly these routines could be replaced by
machine coded local versions; unless this is
done. the efficiency of other parts of the transla-
tion process is largely irrelevant.

4. EXPERIENCE

Good Things

“It’s so much better than Fortran™ is the
most common response of users when asked
how well Ratfor meets their needs. Although
cynics might consider this to be vacuous, it does
seem to be true that decent control flow and
cosmetics converts Fortran from a bad language
into quite a reasonable one, assuming that For-
tran data structures are adequate for the task at
hand.

Alfthough there are no quantitative results,
users feel that coding in Ratfor is at least twice
as fast as in Fortran. More important, debugging
and subsequent revision are much faster than in
Fortran. Partly this is simplv because the code
can be read. The looping statements which test
at the top instead of the bottom seem 1o elim-

inate or at least reduce the occurrence of a wide
class of boundary errors. And of course it is
easy to do structured programming in Ratfor;
this self-discipline also contributes markedly to
reliability.

One interesting and encouraging fact is
that programs written in Ratfor tend to be as
readable as programs written in more  modern
languages like Pascal. Once one is freed from
the shackles of Fortran's clerical detail and rigid
input format, it is easy to write code that is read-
able, even esthetically pleasing. For example,
here is a Ratfor implementation of the linear
table search discussed by Knuth [7]:

Alm+1) = x
for(i=1; Al !'=x:i=i+1)
if (i > m) {
m = i
B(i) =1
} .
else
B(i) = B(i) + 1

A large corpus (5400 lines) of Ratfor, including
a subset of the Ratfor preprocessor itself, can be
found in [8].

Bad Things

The biggest single problem is that many
Fortran syntax errors are not detected by Ratfor
but by the local Fortran compiler. The compiler
then prints a message in terms of the generated
Fortran. and in a few cases this may be difficult
to relate back to the offending Ratfor line, espe-
cially if the implementation conceals the gen-
erated Fortran. This problem could be dealt with
by tagging each generated line with some indica-
tion of the source line that created it. but this is
inherently implementation-dependent. so no
action has yet been taken. Error message
interpretation is actually not so arduous as might
be thought. Since Ratfor generates no variables.
only a simple pattern of IF's and GOTO's. data-
related errors like missing DIMENSION statements
are easy to find in the Fortran. Furthermore.
there has been a steady improvement in Ratfor's
ability to catch trivial syntactic errors like unbal-
anced parentheses and quotes.

There are a number of implementation
weaknesses that are a nuisance. especially to new
users. For example. kevwords are reserved.
This rarely makes any difference, except tor
those hardy souls who want to use an Arithmetic
IF. A few standard Fortran constructions are not
accepted by Ratfor, and this is perceived as a
problem by users with a large corpus of existing
Fortran programs. Protecting every line with a
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‘%" is not really a complete solution, although it
serves as a stop-gap. The best long-term solu-
tion is provided by the program Struct [9], which
converts arbitrary Fortran programs into Ratfor.

Users who export programs often complain
that the generated Fortran is ‘‘unreadable”
because it is not tastefully formatted and con-
tains extraneous CONTINUE statements. To some
extent this can be ameliorated (Ratfor now has
an option to copy Ratfor comments into the gen-
erated Fortran), but it has always seemed that
effort is better spent on the input language than
on the output esthetics.

One final problem is partly attributable to
success — since Ratfor is relatively easy to
modify, there are now several dialects of Ratfor.
Fortunately, so far most of the differences are in
character set, or in invisible aspects like code
generation,

5. CONCLUSIONS

Ratfor demonstrates that with modest
effort it is possible to convert Fortran from a bad
language into quite a good one. A preprocessor
is clearly a useful way to extend or ameliorate
the facilities of a base language.

When designing a language, it is important
to concentrate on the essential requirement of
providing the user with the best language possi-
ble for a given effort. One must avoid throwing
in “*features™ — things which the user may trivi-
ally construct within the existing framework.

One must also avoid getting sidetracked on
irrelevancies. For instance it seems pointless for
Ratfor to prepare a neatly formatted listing of
either its input or its output. The user is
presumably capable of the self-discipline required
to prepare neat input that reflects his thoughts.
It is much more important that the language pro-
vide free-form input so he can format it neatly.
No one should read the output anyway except in
the most dire circumstances.
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ABSTRACT .

M4 is a macro processor available on UNIXT and GCOS. Its primary use
has been as a front end for Ratfor for those cases where parameterless macros
are not adequately powerful. It has also been used for languages as disparate as
C and Cobol. M4 is particularly suited for functional languages like Fortran,
PL/I and C ssince macros are specified in a functional notation.

M4 provides features seldom found even in much larger macro proces-
sors, including

arguments
condition testing
arithmetic capabilities

string and substring functions

file manipulation

This paper is a user’s manual for M4.
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Brian W. Kernighan
Dennis M. Ritchie
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Introduction

A macro processor is a useful way to
enhance a programming language, to make
it more palatable or more readable, or to
tailor it to a particular application. The
#define statement in C and the analogous
define in Ratfor are examples of the basic
facility provided by any macro processor —
replacement of text by other text.

The M4 macro processor is an exten-
sion of a macro processor called M3 which
was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in turn based on a
macro processor implemented for [1].
Readers unfamiliar with the basic ideas of
macro processing may wish to read some of
the discussion there.

M4 is a suitable front end for Ratfor
and C, and has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by
another, it provides macros with arguments,
conditional macro expansion, arithmetic, file
manipulation, and some specialized string
processing functions.

The basic operation of M4 is to copy
its input to its output. As the input is read,
however, each alphanumeric ‘‘token’’ (that
is, string of letters and digits) is checked. If
it is the name of a macro, then the name of
the macro is replaced by its defining text,
and the resulting string is pushed back onto
the input to be rescanned. Macros may be
called with arguments, in which case the
arguments are collected and substituted into
the right places in the defining text before it
is rescanned.

M4 provides a collection of about
twenty built-in macros which perform vari-
ous useful operations; in addition, the user

can define new macros. Buiit-ins and user-
defined macros work exactly the same way,
except that some of the built-in macros have
side effects on the state of the process.

Usage
On UNIX, use

m4 [files]

Each argument file is processed in order; if
there are no arguments, or if an argument is
‘—". the standard input is read at that point.
The processed text is written on the stan-
dard output, which may be captured for sub-
sequent processing with

m4 [files] > outputfile

On GCOS, usage is identical, but the pro-
gram is called ./m4.

Defining Macros

The primary built-in function of M4 is
define, which is used to define new macros.
The input

define (name, stuff)

causes the string name to be defined as
stuff. All subsequent occurrences of name
will be replaced by stuff name must be
alphanumeric and must begin with a letter
(the underscore _ counts as a letter). stuff
is any text that contains balanced
parentheses; it may stretch over multiple
lines.

Thus, as a typical example,
define(N, 100)

if G > N)
defines N to be 100, and uses this “symbolic

-




constant’ in a later if statement.

The left parenthesis must immediately
follow the word define, to signal that define
has arguments. If a macro or built-in name
is not followed immediately by ‘(, it is
assumed to have no arguments. This is the
situation for N above; it is actually a macro
with no arguments, and thus when it is used
there need be no (...) following it.

You should also notice that a macro
name is only recognized as such if it appears
surrounded by non-alphanumerics. For
example, in

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to
the defined macro N, even though it con-
tains a lot of N’s.

Things may be defined in terms of
other things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or,
to say it another way, is M defined as N or
as 100? In M4, the latter is true — M is
100, so even if N subsequently changes, M
does not.

This behavior arises because M4
expands macro names into their defining
text as soon as it possibly can. Here, that
means that when the string N is seen as the
arguments of define are being collected, it is
immediately replaced by 100; it’s just as if
you had said

deﬁne(M, 100)

in the first place.

If this isn’t what you really want, there
are two ways out of it. The first, which is
specific to this situation, is to interchange
the order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the .string N, so
when you ask for M later, you’ll always get
the value of N at that time (because the M
will be replaced by N which will be replaced
by 100).

Quoting

The more general solution is to delay
the expansion of the arguments of define by
quoting them. Any text surrounded by the
single quotes and is not expanded
immediately, but has the quotes stripped off.
If you say

define(N, 100)
define(M, 'N")

the quotes around the N are stripped off as
the argument is being collected, but they
have served their purpose, and M is defined
as the string N, not 100. The general rule is
that M4 always strips off one level of single
quotes whenever it evaluates something.
This is true even outside of macros. If you
want the word define to appear in the out-
put, you have to quote it in the input, as in

‘define’ = 1;

As another instance of the same thing,
which is a bit more surprising, consider
redefining N:

define(N, 100)

define (N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it’s seen;
that is, it is replaced by 100, so it’s as if you
had written

define (100, 200)

This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn’t have the effect you
wanted. To really redefine N, you must
delay the evaluation by quoting:

define (N, 100)
define(C'N’, 200)
In M4, it is often wise to quote the first

argument of a macro.

If " and " are not convenient for some
reason, the quote characters can be changed
with the built-in changequote:

changequote(l, 1)

makes the new quote characters the left and
right brackets. You can restore the original
characters with just




changequote

There are two additional built-ins
related to define.

definition of some macro or built-in:
undefine('N")

removes the definition of N. (Why are the
quotes absolutely necessary?) Built-ins can
be removed with undefine, as in

undefine (define’)

but once you remove one, you can never
get it back.

The built-in ifdef provides a way to
determine if a macro is currently defined.
In particular, M4 has pre-defined the names
unix and gcos on the corresponding sys-
tems, so you can tell which one you're
using:

ifdef Cunix’, ‘define(wordsize,16)" )
ifdefCgcos’, ‘define (wordsize,36)" )

makes a definition appropriate for the partic-
ular machine. Don’t forget the quotes!

ifdef actually permits three arguments;
if the name is undefined, the value of ifdef
is then the third argument, as in

ifdefCunix’, on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest
form of macro processing — replacing one
string by another (fixed) string. User-
defined macros may also have arguments, so
different invocations can have different
results. Within the replacement text for a
macro (the second argument of its define)
any occurrence of $n will be replaced by the
nth argument when the macro is actually
used. Thus, the macro bump, defined as

define (bump, $1 = $1 + 1)
generates code to increment its argument by
1:

bump(x)
is

x=x+1

A macro can have as many arguments
as you want, but only the first nine are
accessible, through $1 to $9. (The macro

undefine removes the

name itself is $0, although that is less com-
monly used.) Arguments that are not sup-
plied are replaced by null strings, so we can
define a macro cat which simply concaten-
ates its arguments, like this: i

define(cat, $1$233$4$53687$8%9)
Thus
cat(x, y, z)
is equivalent to
Xyz
$4 through $9 are null, since no correspond-

ing arguments were provided.

Leading unquoted blanks, tabs, or
newlines that occur during argument collec-
tion are discarded. All other white space is
retained. Thus

b ¢

defines atobe b c.

Arguments are separated by commas,
but parentheses are counted properly, so a
comma “protected’’ by parentheses does not
terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is
literally (b,c). And of course a bare comma
or parenthesis can be inserted by quoting it.

define(a,

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only). The
simplest is iner, which increments its
numeric argument by 1. Thus to handle the
common programming situation where you
want a variable to be defined as “one more
than N”°, write

define(N, 100)
define(N1, ‘iner(N)")

Then N1 is defined as one more than the
current value of N.

The more general mechanism for
arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers.
It provides the operators (in decreasing
order of precedence)




unary + and —
** Or " (exponentiation)
* / % (modulus)

= l= < <= > >=
! (not)
(logical and)
lorll (logical or)

Parentheses may be used to group opera-
tions where needed. All the operands of an
expression given to eval must ultimately be
numeric. The numeric value of a true rela-
tion (like 1>0) is 1, and false is 0. The
precision in eval is 32 bits on UNIX and 36
bits on GCOS.

As a simple example, suppose we want
Mto be 2«xN+1. Then

define(N, 3)
define(M, ‘eval (2++N +1)")

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number); it
usually gives the result you want, and is a
good habit to get into.

File Manipulation

You can include a new file in the input
at any time by the built-in function include:

include(filename)

inserts the contents of filename in place of
the include command. The contents of the
file is often a set of definitions. The value
of include (that is, its replacement text) is
the contents of the file; this can be captured
in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate
form sinclude can be used; sinclude (“'silent
include’’) says nothing and continues if it
can’t access the file.

It is also possible to divert the output
of M4 to temporary files during processing,
and output the collected material upon com-
mand. M4 maintains nine of these diver-
sions, numbered 1 through 9. If you say

divert(n)

all subsequent output is put onto the end of
a temporary file referred to as n. Diverting
to this file is stopped by another divert com-

mand; in particular, divert or divert(0)
resumes the normal output process.

Diverted text is normally output all at
once at the end of processing, with the
diversions output in numeric order. It is
possible, however, to bring back diversions
at any time, that is, to append them to the
current diversion.

undivert

brings back all diversions in numeric order,
and undivert with arguments brings back
the selected diversions in the order given.
The act of undiverting discards the diverted
stuff, as does diverting into a diversion
whose number is not between 0 and 9
inclusive.

The wvalue of undivert is nor the
diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in  divhum returns the
number of the currently active diversion.
This is zero during normal processing.

System Command

You can run any program in the local
operating system with the sysemd built-in.
For example,

sysemd (date)

on UNIX runs the date command. Normally
sysemd would be used to create a file for a
subsequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system func-
tion mkiemp: a string of XXXXX in the
argument is replaced by the process id of the
current process.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, ¢, d)

compares the two strings a and b. If these
are identical, ifelse returns the string ¢, oth-
erwise it returns d. Thus we might define a
macro called compare which compares two
strings and returns “yes’ or "no” if they
are the same or different.




define(compare, ‘ifelse($1, $2, yes, no)’)

Note the quotes, which prevent too-early
evaluation of ifelse.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form
of multi-way decision capability. In the
input

ifelse(a, b, ¢, d, e, f, g)

if the string a matches the string b, the
result is c. Otherwise, if d.is the same as e,
the result is f. Otherwise the result is g. If

the final argument is omitted, the result is
null, so

ifelse(a, b, ¢)

is ¢ if a matches b, and null otherwise.

String Manipulation

The built-in len returns the length of
the string that makes up its argument. Thus

len (abedef)

is 6, and len((a,b)) is 5.

The built-in substr can be used to pro-
duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the
ith position (origin zero), and is n charac-
ters long. If n is omitted, the rest of the
string is returned, so

substr('now is the time’, 1)

ow is the time

If i or n are out of range, various sensible
things happen.

index(s1, s2) returns the index (posi-
tion) in sl where the string s2 occurs, or
—1 if it doesn’t occur. As with substr, the
origin for strings is 0.

The built-in translit performs charac-
ter transliteration.

translit(s, f, t)

modifies s by replacing any character found
in f by the corresponding character of t.
That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding
digits. If t is shorter than f, characters
which don’t have an entry in t are deleted;
as a limiting case, if t is not present at all,
characters from f are deleted from s. So

translit (s, aeiou)

deletes vowels from s.

There is also a built-in called dnl
which deletes all characters that follow it up
to and including the next newline; it is use-
ful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output.
For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not
part of the definition, so it is copied into the
output, where it may not be wanted. If you
add dnl to each of these lines, the newlines
will disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert(—1)
define(...)

divert

Printing

The built-in errprint writes its argu-
ments out on the standard error file. Thus
you can say

errprint (fatal error’)

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments, you get
everything; otherwise you get the ones you
name as arguments. Don’t forget to quote
the names!

Summary of Built-ins

Each entry is preceded by the page
number where it is described.

i



changequote(L, R)

define (name, replacement)
divert (number)

divnum

dnl

dumpdef(‘'name’, 'name’, ...)
errprint(s, s, ...)

eval (numeric expression)
ifdef ("name’, this if true, this if false)
ifelse(a, b, c, d)

include (file)

incr (number)

index(s1, s2)

len(string)

maketemp (... XXXXX...)
sinclude (file)

substr(string, position, number)
syscmd(s)

translit (str, from, to)
undefine (name”)

undivert (number,number,...)
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ABSTRACT

Sed is a non-interactive context editor that runs on the UNIXT operating
system. Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;

2) To edit any size file when the sequence of editing commands is too
complicated to be comfortably typed in interactive mode.

3) To perform multiple ‘global’ editing functions efficiently in one pass
through- the input.

This memorandum constitutes a manual for users of sed.
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Introduction
Sed is a non-interactive context editor designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing; i

2) To edit any size file when the sequence of editing commands is too complicated to
be comfortably typed in interactive mode;

3) To perform multiple ‘global’ editing functions efficiently in one pass through the
input.

Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that 2 command
has done what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac-
tive and non-interactive operation, considerable changes -have been made between ed and sed;
even confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly
use sed without reading Sections 2 and 3 of this document. The most striking family resem-
blance between the two editors is in the class of patterns (‘regular expressions’) they recognize;
the code for matching patterns is copied almost verbatim from the code for ed, and the descrip-
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX
Programmer’s Manual[1]. (Both code and description were written by Dennis M. Ritchie.)

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line; see Section 1.1 below.

The general format of an editing command is:
laddress1,address2] [function] [arguments]

One or both addresses may be omitted; the format of addresses is given in Section 2. Any
number of blanks or tabs may separate the addresses from the function. The function must be
present; the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given; again, they are discussed in Section 3 under each
individual function.

Tab characters and spaces at the beginning of lines are ignored.
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1.1. Command-line Flags

Three flags are recognized on the command line:
-n: tells sed not to copy all lines, but only those specified by p functions or p flags after
s furictions (see Section 3.3);
-e: tells sed to take the next argument as an editing command;
-f: tells sed to take the next argument as a file name; the file should contain editing
commands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the editing com-
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com-
piled in the order in which they are encountered; this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time; the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the flow-of-
control commands, rand b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ-
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:
The command
2q -
will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces (‘{ }*)(Sec. 3.6.).




2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented; a line-number address matches (selects) the input line which causes the inter-
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern (‘regular expression’) enclosed in slashes (‘/’). The regular
expressions recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex ‘> at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign ‘$’ at the end of a regular expression matches the null character at the
end of a line.

4) The characters ‘\n" match an imbedded newline character, but not the newline at the
end of the pattern space.

5) A period ‘." matches any character except the terminal newline of the pattern space.

6) A regular expression followed by an asterisk ‘** matches any number (including 0)
of adjacent-occurrences of the regular expression it follows.

7) A string of characters in square brackets ‘[ ]’ matches any character in the string,
and no others. If, however, the first character of the string is circumflex ¢,
the regular expression matches any character except the characters in the string
and the terminal newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences ‘\(’ and ‘\)’ is identical in effect to the
unadorned regular expression, but has side-effects which are described under
the s command below and specification 10) immediately below.

10) The expression ‘\d’ means the same string of characters matched by an expression
enclosed in ‘\(" and ‘\)’ earlier in the same pattern. Here dis a single digit; the
string specified is that beginning with the dth occurrence of \(’ counting from
the left. For example, the expression ‘"\((*\)\1’ matches a line beginning with
two repeated occurrences of the same string.

11) The null regular expression standing alone (e.g., *//’) is equivalent to the last reg-
ular expression compiled.

To use one of the special characters (" $ . * [ ]\ /) as a literal (to match an occurrence of itself
in the input), precede the special character by a backslash *\’.

For a context address to ‘match’ the input requires that the whole pattern within the address
match some portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command to have more addresses than
the maximum allowed is considered an error.

If a command has no addresses, it is applied to every line in the input.
If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,




and the process is repeated.

Two addresses are separated by a comma.

Examples:
/an/ matches lines 1, 3, 4 in our sample text
/an.*an/ matches line 1
/"an/ matches no lines
/./ matches all lines
AW/ matches line 5
/t*an/ matches lines 1,3, 4 (number = zero!)

Aan\).*\1/  matches line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func-
tion name, possible arguments enclosed in angles (< >), an expanded English translation of
the single-character name, and finally a description of what each function does. The angles
around the arguments are not part of the argument, and should not be typed in actual editing

commands.

3.1. Whole-line Oriented Functions
(2)d -- delete lines

The d function deletes from the file (does not write to the output) all those
lines matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the 4 function is executed. a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2)n -- next line

(1)a\

The # function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the # command.

<text> -- append lines

(Di\

The a function causes the argument <text> to be written to the output after
the line matched by its address. The a command is inherently multi-line; a
must appear at the end of a line, and <text> may contain any number of
lines. To preserve the one-command-to-a-line fiction, the interior newlines
must be hidden by a backslash character (*\') immediately preceding the new-
line. The <text> argument is terminated by the first unhidden newline (the
first one not immediately preceded by backslash).

Once an a function is successfully executed, <text> will be written to the out-
put regardless of what later commands do to the line which triggered it. The
triggering line may be deleted entirely; <text> will still be written to the out-
put.

The <text> is not scanned for address matches, and no editing commands are
attempted on it. [t does not cause any change in the line-number counter.

<text> -- insert lines
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The j function behaves identically to the @ function, except that <text> is
written to the output before the matched line. All other comments about the a
function apply to the /function as well.

(2)c\

<text> -- change lines

The ¢ function deletes the lines selected by its address(es), and replaces them
with the lines in <text>. Like a and i ¢ must be followed by a newline hid-
den by a backslash; and interior new lines in <text> must be hidden by
backslashes.

The ¢ command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range are deleted, but only one copy of <text> is
written to the output, nor one copy per line deleted. As with @ and / <text>
is not scanned for address matches, and no editing commands are attempted on
it. It does not change the line-number counter.

After a line has been deleted by a ¢ function, no further commands are
attempted on the corpse.

If text is appended after a line by @ or r functions, and the line is subsequently
changed, the text inserted by the ¢ function will be placed before the text of the
aor rfunctions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap-
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash; the backslash will not appear in the output.

Example:
The list of editing commands:
n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX

Where Alph, the sacred river, ran
XXXX

Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following com-
mand lists:

n n
i\ c\
XXXX XXXX
d

3.2. Substitute Function
One very important function changes parts of lines selected by a context search within the line.

(2)s<pattern> <replacement> <flags> -- substitute

The s function replaces parr of a line (selected by <pattern>) with <replace-
ment>. It can best be read:

Substitute for <pattern>, <replacement>
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The <pattern> argument contains a pattern, exactly like the patterns in
addresses (see 2.2 above). The only difference between <pattern> and a con-
text address is that the context address must be delimited by slash (‘/°) charac-
ters; <pattern> may be delimited by any character other than space or new-
line.

By default, only the first string matched by <pattern> is replaced, but see the
g flag below.

The <replacement> argument begins immediately after the second delimiting
character of <pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly rhree instances of the
delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in <replacement>. Instead, other char-
acters are special:

& is replaced by the string matched by <pattern>

\d (where d is a single digit) is replaced by the ath substring matched
by parts of <pattern> enclosed in \(’ and \)’. If nested sub-
strings occur in <pattern>, the dth is determined by counting
opening delimiters (\(*).

As in patterns, special characters may be made literal by
preceding them with backslash (*\").

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of
<pattern> in the line. After a successful substitution, the
scan for the next instance of <pattern> begins just after the
end of the inserted characters; characters put into the line from
<replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub-
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub-
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

w <filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the s function to be written to a file named by <filename>. If
<filename> exists before sed is run, it is overwritten: if not, it
is created.

A single space must separate wand <filename>.

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below), combined.




Examples:

The following command, applied to our standard input,
s/to/by/w changes
produces, on the standard output:

In Xanadu did Kubhla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file ‘changes’:

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:
s/L.,;2:1/*P&*/gp
produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:
/X/s/an/AN/p
produces (assuming nocopy mode):
In XANadu did Kubhla Khan
and the command:
/X/s/an/AN/gp
produces:
In XANadu did Kubhla KhAN

3.3. Input-output Functions
(2)p -- print

The print function writes the addressed lines to the standard output file. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the file named by <filename>.
If the file previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the w and <filename>.

A maximum of ten different files may be mentioned in write functions and w
flags after s functions, combined.

(Dr <filename> -- read the contents of a file

The read function reads the contents of <filename>, and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the a
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functions and the r functions is written to the output in the order that the func-
tions are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by
a r function cannot be opened, it is considered a null file, not an error, and no
diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags; that number
is reduced by one if any r functions are present. (Only one read file is open at one time.)

Examples
Assume that the file ‘notel’ has the foilowing contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

Then the following command:
/Kubla/r notel
produces: v
In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.
A stately pleasure dome decreé:
Where Alph, the sacred river, ran

Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing
imbedded newlines; they are intended principally to provide pattern matches across lines in the -
input.

(2)N -- Next line

The next input line is appended to the current line in the pattern space; the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2)D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern
space. If the pattern space becomes empty (the only newline was the terminal
newline), read another line from the input. In any case, begin the list of edit-
ing commands again from its beginning.

(2)P -- Print first part of the pattern space
Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pattern space.




3.5. Hold and Get Functions
Four functions save and retrieve part of the input for possible later use.

(2)h -- hold pattern space

The # functions copies the contents of the pattern space into 4 hold area (des-
troying the previous contents of the hold area).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the contents of the hold area into the pattern space (des-
troying the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

(2)x -- exchange
The exchange command interchanges the contents of the pattern space and the
hold area. ‘

Example
The commands

ih

is/ did.*//
1x

G

s/\n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu

A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions

These functions do no editing on the input lines, but control the application of functions to the
lines selected by the address part.

(2)! -- Don’t

The Don’t command causes the next command (written on the same line), to
be applied to all and only those input lines not selected by the adress part.

(2){ -- Grouping

The grouping command ‘{" causes the next set of commands to be applied (or
not applied) as a block to the input lines selected by the addresses of the group-
ing command. The first of the commands under control of the grouping may
appear on the same line as the ‘{’ or on the next line.
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The group of commands is terminated by a matching ‘}’ standing on a line by
itself.

Groups can be nested.
(0):<1abel> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by b and rfunctions. The <label> may be any sequence of eight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

(2)b<label> -- branch to label

The branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after the place where a colon
function with the same <label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com-
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no <label> is taken to be a branch to the end of the list of
editing commands; whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2)t<label> -- test substitutions

The r function tests whether any successful substitutions have been made on
the current input line; if so, it branches to <label>; if not, it does nothing.
The flag which indicates that a successful substitution has been executed is
reset by:

1) reading a new input line, or
2) executing a function.

3.7. Miscellaneous Functions
(1) = -- equals

The = function writes to the standard output the line number of the line
matched by its address.

(1q -~ quit

The g function causes the current line to be written to the output (if it should
be), any appended or read text to be written, and execution to be terminated.

Reference

[1] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer’s Manual. Bell Labora-
tories, 1978.
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ABSTRACT

Awk is a programming language whose basic operation is to search a set

of files for patterns, and to perform specified actions upon lines or fields of

. lines which contain instances of those patterns. Awk makes certain data selec-

tion and transformation operations easy lo express; for example, the awk pro-
gram

length > 72

prints all input lines whose length exceeds 72 characters; the program
NF%2==20
prints all lines with an even number of fields; and the program
{ $1 = log($1); print |

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean combinations of regular
expressions and of relational operators on strings, numbers, fields, variables,
and array elements. Actions may include the same patlern-matching construc-
tions as in patterns, as well as arithmetic and string expressions and assign-
ments, if-eise, while, for statements, and multiple outpul streams.

This report contains a user’s guide, a discussion of the design and imple-
mentation of awk, and some timing statistics.

September 1, 1978
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1. Introduction

Awk is a programming language designed
to make many common information retrieval and
text manipulation tasks easy to state and to per-
form.

The basic operation of awk is to scan a set
of input lines in order, searching for lines which
match any of a set of patterns which the user has
specified. For each pattern, an action can be
specified; this action will be performed on each
line that matches the pattern.

Readers familiar with the UNIXt program
grep! will recognize the approach, although in
awk the patterns may be more general than in
grep, and the actions allowed are more involved
than merely printing the matching line. For
example, the awk program

lprint $3, $2}

prints the third and second columns of a tabie in
that order. The program

$2 — /AIBIC/

prints all input lines with an A, B; or C in the
second field. The program

$1 != prev { print; prev = $1 |

prints all lines in which the first field is different
from the previous first field.

1.1. Usage
The command

awk program [files]

executes the awk commands in the string pro-
gram on the set of named files, or on the stan-
dard input if there are no files. The statements
can also be placed in a file pfile, and executed by
the command

TUNIX is a Trademark of Beil Laboratories.

awk —f pfile [files]

1.2. Program Structure

An awk program is a sequence of state-
ments of the form:

pattern { action }
pattern  { action |

Each line of input is matched against each of the
patterns in turn. For each pattern that matches,
the associated action is executed. When all the
patterns have been tested, the next line is
fetched and the matching starts over.

Either the pattern or the action may be left
out. but not both. If there is no action for a pat-
tern, the matching line is simply copied to the
output. (Thus a line which matches several pat-
terns can be printed several times.) If there is no
pattern for an action, then the action is per-
formed for every input line. A line which
matches no pattern is ignored.

Since patterns and actions are both
optional, actions must be enclosed in braces to
distinguish them from patterns.

1.3. Records and Fields

Awk input is divided into ‘‘records’’ ter-
minated by a record separator. The default
record separator is a newline, so by defauit awk
processes its input a line at a time. The number
of the current record is available in a variable
named NR.

Each input record is considered to be
divided into ‘‘fields.”” Fields are normally
separated by white space — blanks or tabs — but
the input field separator may be changed, as
described below. Fields are referred to as $1,
$2, and so forth, where $1 is the first field, and
$0 is the whole input record itself. Fields may




be assigned to. The number of fields in the
current record is available in a variable named
NF.

The variables FS and RS refer to the input
field and record separators; they may be changed
at any time to any single character. The optional
command-line argument —Fc¢ may also be used
to set FS to the character c.

If the record separator is empty, an empty
input line is taken as the record separator, and
blanks, tabs and newlines are treated as field
separators.

The variable FILENAME contains
name of the current input file.

the

1.4. Printing

An action may have no pattern, in which
case the action is executed for all lines. The
simplest action is to print some or all of a record;
this is accomplished by the awk command print.
The awk program

{ print |

prints each record, thus copying the input to the
output intact. More useful is to print a field or
fields from each record. For instance,

print $21 $1

prints the first two fields in reverse order. ltems
separated by a comma in the print statement will
be separated by the current output field separator
when output. ltems not separated by commas
will be concatenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can
be used; for example

{ print NR, NF, $0 )

prints each record preceded by the record

number and the number of fields.
Output may be diverted to multiple files;
the program
{ print $1 >"foo1"; print $2 >"foo2" |

writes the first field, $1, on the file foot, and
the second field on file foo2. The > > notation
can also be used:

print $1 > >"foo"

appends the output to” the file foo. (In each
case, the output files are created if necessary.)
The file name can be a variable or a field as well
as a constant; for example,

print $1 >$2

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of
output files; currently it is 10.

Similarly, output can be piped into another
process {on UNIX only); for instance,

print | "mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used
to change the current output field separator and
output record separator. The output record
separator is appended to the output of the print
statement.

Awk also provides the printf statement for
output formatting:

printf format expr, expr, ..

formats the expressions in the list according to
the specification in format and prints them. For
example,

printf "%8.2f %10ld\n", $1, $2

prints $1 as a floating poinf number 8 digits
wide, with two after the decimal point, and $2 as
a 10-digit long decimal number, followed by a
newline. No output separators are produced
automatically; you must add them yourself, as in
this example. The version of printf is identical
to that used with C.2

2. Patterns

A pattern in front of an action acts as a
selector that determines whether the action is to
be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions,
and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the
beginning of the input, before the first record is
read. The pattern END matches the end of the
input, after the last record has been processed.
BEGIN and END thus provide a way to gain con-
trol before and after processing, for initialization
and wrapup.

As an example, the field separator can be
set to a colon by

BEGIN {FS = ""}
. rest of program ...

Or the input lines may be counted by
END { print NR }

If BEGIN is present, it must be the first pattern;
END must be the last if used.




2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which
will print all lines which contain any occurrence
of the name *‘smith’. If a line contains *‘smith”’
as part of a larger word, it will also be printed, as
in

biacksmithing

Awk regular expressions include the regu-
lar expression forms found in the UNIX text edi-
tor ed! and grep (without back-referencing). In
addition, awk allows parentheses for grouping, |
for alternatives, + for ‘‘one or more’’, and ? for
*“zero or one’’, all as in lex. Character classes
may be abbreviated: [a—zA—~20—9] is the set
of all letters and digits. As an example, the awk
program

/{Aalho |{Wwleinbergeri[Kklernighan/

will print all lines which contain any of the
names ‘‘Aho.” ‘“Weinberger’” or ‘‘Kernighan,”
whether capitalized or not.

Regular expressions (with the extensions
listed above) must be enclosed in slashes, just as
in ed and sed. Within a regular expression,
blanks and the regular expression metacharacters
are significant. To turn of the magic meaning of
one of the regular expression characters, precede
it with a backslash. An example is the pattern

INF NI

which matches any string of characters enclosed
in slashes.

One can also specify that any field or vari-
able maiches a regular expression (or does not
match it) with the operators — and !~. The
program

$1 ~ /ljJlohn/

prints all lines where the first field matches
“john’" or *‘John.”” Notice that this will aiso
match “*Johnson™’, *‘St. Johnsbury™, and so on.
To restrict it to exactly {jJlohn, use

$1 ~ /" [jJlohn$/

The caret ~ refers to the beginning of a line or
field: the dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expres-
sion involving the usual relational operators <,
<=, == |= >=_and >. An example is

$2 > $1 + 100

which selects lines where the second field is at
least 100 greater than the first field. Similarly,

NF % 2 ==
prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, a string comparison is made; otherwise
it is numeric. Thus,

$1 >="s"

selects lines that begin with an s, t, u, etc. In
the absence of any other information, fields are
treated as strings, so the program

$1 > $2
will perform a string comparison.

2.4. Combinations of Patterns
A pattern can be any boolean combination

of patterns, using the operators 1l (or), &&
(and), and ! (not). For example,
$1 >= "s" && $1 < "t" && $1 != "smith"

(SRR}

selects lines where the first field begins with *'s’",
but is not ‘‘smith>’. && and || guarantee that
their operands will be evaluated from left to
right: evaluation stops as soon as the truth or
falsehood is determined.

2.5. Pattern Ranges

The *‘pattern’ that selects an action may
also consist of two patterns separated by a
comma, as in

pat1, pat2 { .}

In this case, the action is performed for each line
between an occurrence of patl and the next
occurrence of pat2 (inclusive). For example,

/start/, /stop/
prints all lines between start and stop, while
NR == 100, NR == 200 { .. |

does the action for lines 100 through 200 of the
input.

3. Actions

An awk action is a sequence of action
statements terminated by newlines or semi-
colons. These action statements can be used to
do a variety of bookkeeping and string manipu-
lating tasks.




3.1. Built-in Functions

Awk provides a “‘length’’ function to com-
pute the length of a string of characters. This
program prints each record, preceded by its
length:

{print length, $0)

length by itself is a ‘‘pseudo-variable’® which
yields the length of the current record;
length(argument) is a function which yields the
length of its argument, as in the equivalent

{print length($0), $0}

The argument may be any expression.

Awk also provides the arithmetic functions
sqart, log, exp, and int, for square root, base e
logarithm, exponential, and integer part of their
respective arguments.

The name of one of these built-in func-
tions, without argument or parentheses, stands
for the vaiue of the function on the whole
record. The program

length < 10 it length > 20

prints lines whose length is less than 10 or
greater than 20,

The function substr(s, m, n) produces the
substring of s that begins at position m (origin
1) and is at most n characters long. If n is omit-
ted, the substring goes to the end of s. The
function index(s1, s2) returns the position
where the string s2 occurs in s1, or zero if it
does not.

The function sprintf(f, e1, €2, ...) produces
the value of the expressions e1, e2, etc., in the
printf format specified by f. Thus, for example,

sprintf("%8.2f %10ld", $1, $2)

sets X to the string produced by formatting the
values of $1 and $2.

X =

3.2,
ments

Variables, Expressions, and Assign-

Awk variables take on numeric (floating
point) or string values according to context. For
example, in

x =1
x is clearly a number, while in
x = "smith"

it is clearly a string. Strings are converted to
numbers and vice versa whenever context
demands it. For instance,

X = "3" + "4"

assigns 7 to x. Strings which cannot be inter-

preted as numbers in a numerical context will
generally have numeric value zero, but it is
unwise to count on this behavior.

By default, variables (other than built-ins)
are initialized to the null string, which has
numerical value zero; this eliminates the need
for most BEGIN sections. For example, the
sums of the first two fields can be computed by

{81 += $1; 82 += $2 }
END { print s1, s2 |

Arithmetic is done internally in floating
point. The arithmetic operators are +, —, =, /,
and % (mod). The C increment + -+ and decre-
ment — — operators are also available, and so
are the assignment operators + =, —=,6 #=
/=, and %=. These operators may all be used
in expressions.

3.3. Field Variables

Fields in awk share essentially all of the
properties of variables — they may be used in
arithmetic or string operations, and may be
assigned to. Thus one can replace the first field
with a sequence number like this:

{ $1 = NR; print |

or accumulate two fields into a third, like this:
{ $1 = $2 + $3; print $0 )

or assign a string to a field:

{ if (33 > 1000)
$3 = "too big"
print
}

which replaces the third field by “‘too big’ when
it is, and in any case prints the record.

Field references may be numerical expres-
sions, as in

{ print $i, $(i+1), ${i+n) )

Whether a field is deemed numeric or string
depends on context; in ambiguous cases like

if ($1 == $2) ..
fields are treated as strings.

Each input line is split into fields automati-
cally as necessary. It is also possible to split any
variable or string into fields:

n = split{s, array, sep)

splits the the string s into array[1], ..., array[n].
The number of elements found is returned. If
the sep argument is provided, it is used as the
field separator; otherwise FS is used as the
separator.




3.4. String Concatenation
Strings may be concatenated. For example
length($1 $2 $3)

returns the length of the first three fields. Or in
a print statement,
print $1 " is " $2

prints the two fields separated by ** is Vari-
ables and numeric expressions may also appear
in concatenations.

LR

3.5. Arrays

Array elements are not declared; they
spring into existence by being mentioned. Sub-
scripts may have any non-null value, including
non-numeric strings.
ventional numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th ele-
ment of the array x. In fact, it is possible in
principle (though perhaps slow) to process the
entire input in a random order with the awk pro-
gram

{ xINR] = $0 |
END/{ ... program ...}

The first action merely records each input line in
the array x.

Array elements may be named by-non-
numeric values, which gives awk a capability
rather like the associative memory of Snobol

tables. Suppose the input contains fields with
values like apple, orange, etc. Then the pro-
gram

/apple/ | x["apple"]l+ + |

/orange/ { x["orange"]+ + }
END { print x["apple"]l, x["orange"] |

increments counts for the named array elements,
and prints them at the end of the input.

3.6. Flgw-of-Control Statements

Awk provides the basic flow-of-control
statements if-else, while, for, and statement
grouping with braces, as in C. We showed the if
statement in section 3.3 without describing it.
The condition in parentheses is evaluated; if it is
true, the statement following the if is done. The
else part is optional.

The while statement is exactly like that of
C. For example, to print all input fields one per
line,

As an example of a con-

=1

while (i <= NF) |
print $i
++i

The for statement is also exactly that of C:

= 1; 1 <= NF; i++)
print $i

for (i

does the same job as the while statement above.

There is an alternate form of the for state-
ment which is suited for accessing the elements
of an associative array:

for (i in array)
Statement

does statement with i set in turn to each element
of array. The elements are accessed in an
apparently random order. Chaos will ensue if i is
altered, or if any new elements are accessed dur-
ing the loop.

The expression in the condition part of an
if, while or for can include relational operators

like <, <=, >, >=, == (‘“is equal t0”’), and
I= (‘*not equal t0""); regular expression matches
with the match operators — and +—; the logical
operators Il, &&, and !; and of course

parentheses for grouping.

The break statement causes an immediate
exit from an enclosing while or for; the con-
tinue statement causes the next iteration to
begin.

The statement next causes awk to skip
immediately to the next record and begin scan-
ning the patterns from the top. The statement
exit causes the program to behave as if the end
of the input had occurred.

Comments may be placed in awk pro-
grams: they begin with the character # and end
with the end of the line, as in

print x, y # this is a comment

4. Design

The uNIX system already provides several
programs that operate by passing input through a
selection mechanism. Grep, the first and sim-
plest, merely prints all lines which match a single
specified pattern. Egrep provides more general
patterns, i.e., regular expressions in full general-
ity; fgrep searches for a set of keywords with a
particularly fast algorithm. Sed! provides most
of the editing facilities of the editor ed, applied
10 a stream of input. None of these programs
provides numeric capabilities, logical relations, or
variables.




Lex3 provides general regular expression
recognition capabilities, and, by serving as a C
program generator, is essentially open-ended in
its capabilities. The use of /ex, however,
requires a knowledge of C programming, and a
lex program must be compiled and loaded before
use, which discourages its use for one-shot appli-
cations.

Awk is an attempt to fill in another part of
the matrix of possibilities. It provides general
regular expression capabilities and an implicit
input/output loop. But it also provides con-
venient numeric processing, variables, more gen-
eral selection, and control flow in the actions. It
does not require compilation or a knowledge of
C. Finally, awk provides a convenient way to
access fields within lines; it is unique in this
respect.

Awk also tries to integrate strings and
numbers completely, by treating all quantities as
both string and numeric, deciding which
representation is appropriate as late as possible.
In most cases the user can simply ignore the
differences.

Most of the effort in developing awk went
into deciding what awk should or should not do
(for instance, it doesn’t do string substitution)
and what the syntax should be (no explicit
operator for concatenation) rather than on writ-
ing or debugging the code. We -have tried to
make the syntax powerful but easy to use and
well adapted to scanning files. For example, the
absence of declarations and implicit initializa-
tions, while probably a bad idea for a general-
purpose programming language, is desirable in a
language that is meant to be used for tiny pro-
grams that may even be composed on the com-
mand line.

In practice, awk usage seems to fall into
two broad categories. One is what might be
called ‘‘report generation’ — processing an input
to extract counts, sums, sub-totals, etc. This
also includes the writing of trivial data validation
programs, such as verifying that a field contains
only numeric information or that certain delim-
iters are properly balanced. The combination of
textual and numeric processing is invaluable
here.

A second area of use is as a data
transformer, converting data from the form pro-
duced by one program into that expected by
another. The simplest examples merely select
fields, perhaps with rearrangements.

5. Implementation

The actual implementation of awk uses the
language development tools available on the
UNIX operating system. The grammar is
specified with pacc:* the lexical analysis is done
by lex; the regular expression recognizers are
deterministic finite automata constructed directly
from the expressions. An awk program is
translated into a parse tree which is then directly
executed by a simple interpreter.

Awk was designed for ease of use rather
than processing speed; the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve
in any case. Nonetheless, the program has not
proven to be unworkably slow.

Table 1 below shows the execution (user
+ system) time on a PDP-11/70 of the UNIX
programs wc, grep, egrep, jgrep, sed, lex, and
awk on the following simple tasks:

1. count the number of lines.
2. print all lines containing *‘doug”’.

3. print all lines containing ‘‘doug’, ‘‘ken”
or “‘dmr™. .

4. print the third field of each line.

5. print the third and second fields of each
line, in that order.

6. append all lines containing ‘‘doug”,
“ken”, and ‘‘dmr” to files ‘‘jdoug’,
“jken’’, and ““jdmr™’, respectively.

7. print each line prefixed by ‘‘line-
number : .

8. sum the fourth column of a table.

The program we merely counts words, lines and
characters in its input; we have already men-
tioned the others. In all cases the input was a
file containing 10,000 lines as created by the
command /s —/; each line has the form

—rw—rw—rw— 1 ava 123 Oct 15 17:05

The total tength of this input is 452,960 charac-
ters. Times for /ex do not include compile or
load.

As might be expected, awk is not as fast
as the specialized tools wc, sed, or the programs
in the grep family, but is faster than the more
general tool flex. In all cases, the tasks were
about as easy to express as awk programs as pro-
grams in these other languages: tasks involving
fields were considerably easier to express as awk
programs. Some of the test programs are shown
in awk, sed and lex.

XXX
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Task
Program 1 2 3 4 6 7 8
we 8.6
grep 11.7 13.1
egrep 6.2 1.5 11.6
Sferep 7.7 13.8 16.1
sed 10.2 11.6 15.8 | 29.0 | 30.5 16.1
lex 65.1 | 150.1 | 144.2 | 67.7 | 70.3 | 104.0 | 81.7 | 92.8
awk 15.0 25.6 299 | 333 | 389 464 | 71.4 | 31.1

Table 1. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are LEX:

shown below. The lex programs are generally
too long to show.

AWK:
1.

2.

END {print NR}
/doug/
/kenidougldmr/

{print $3}

{print $3, $2) 2.

/ken/ {print >"jken"}
/doug/ {print >"jdoug"}
/dmr/ {print >"jdmr"}

{print NR ": " $0)

{sum = sum + $4}
END {print sum]

$=
/doug/p

/doug/p
/doug/d
/ken/p
/ken/d
/dmr/p
/dmr/d

P2 S A S5 A O O AN G AV IREVZ-VAAN W/
0 1 DI 1) [ I I0\) #/s/A2 \1/p
/ken/w jken

/doug/w jdoug
/dmr/w jdmr

%

int i;

%}

%%

\n i+ +;

%%

yywrap{() {
printf("%d\n", i);

)

%%
“+doug.+$

\n

printf("%s\n", yytext);



DC = An Interactive Desk Calculator

Robert Morris
Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the UNIX?
time-sharing system to do arbitrary-precision integer arithmetic. It has provi-
sion for manipulating scaled fixed-point numbers and for input and output in .
bases other than decimal.

The size of numbers that can be manipulated is limited only by available
core storage. On typical implementations of UNIX, the size of numbers that can
be handled varies from several hundred digits on the smallest systems to
several thousand on the largest.
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DC — An Interactive Desk Calculator

Robert Morris
Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

DC is an arbitrary precision arithmetic package implemented on the UNIX} time-sharing
system in the form of an interactive desk calculator. It works like a stacking calculator using
reverse Polish notation. Ordinarily DC operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the fami-
liar style of higher-level programming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two off the stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional
commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string
of the digits 0-9 and the capital letters A—F which are treated as digits with values 10—15
respectively. The number may be preceded by an underscore to input a negative
number. Numbers may contain decimal points.

o ko0 7

The top two values on the stack are added (+), subtracted (=), multiplied (*), divided
(/), remaindered (%), or exponentiated (*). The two entries are popped off the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun-
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

tUNIX is a Trademark of Bell Laboratories.




SX

Ix

The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto
it. Any character, even blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the 1 is
capitalized, register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command 1 and is treated
as an error by the command L.

d

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and
executes it as a string of DC commands.

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is capi-
talized, the top value on the stack is popped and the string execution level is popped by
that value.

>x =x I<x I>x I=x

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root. The square root of an integer is
truncated to an integer. For the treatment of numbers with decimal points, see the
detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX
command terminates.

All values on the stack are popped; the stack becomes empty.




The top value on the stack is popped and used as the number radix for further input: If i
is capitalized, the value of the input base is pushed onto the stack. No mechanism has
been provided for the input of arbitrary numbers in bases less than 1 or greater than 16.

0
The top value on the stack is popped and used as the number radix for further output. If
o is capitalized, the value of the output base is pushed onto the stack.

k 3
The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and
exponentiation. The scale factor must be greater than or equal to zero and less than 100.
If k is capitalized, the value of the scale factor is pushed onto the stack.

z
The value of the stack level is pushed onto the stack.

?

A line of input is taken from the input source (usually the console) and executed.
DETAILED DESCRIPTION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the
form of a string of digits to the base 100 stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic operation on a number, care is taken that all
digits are in the range 0—99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represented in the 100’s complement notation, which is analogous
to two’s complement notation for binary numbers. The high order digit of a negative number
is always —1 and all other digits are in the range 0—99. The digit preceding the high order —1
digit is never a 99. The representation of —157 is 43,98,—1. We shall call this the canonical
form of a number. The advantage of this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the result is formally correct. The result
need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addi-
tion can be carried out and the handling of carries done later when that is convenient, as it
sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,3
where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this extra byte is called the scale factor of the number.

The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and
writing of numbers internally is done through the allocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string, the end of the
string, the next place to write, and the next place to read. Communication between the alloca-
tor and DC is done via pointers to these headers.
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The allocator initially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power of 2. When a request for a
string is made, the allocator first checks the free list to see if there is a string of the desired
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until
it has a string of the right size. Left-over strings are put on the free list. If there are no larger
strings, the allocator tries to coalesce smaller free strings into larger ones. Since all strings are
the result of splitting large strings, each string has a neighbor that is next to it in core and, if
free, can be combined with it to make a string twice as long. This is an implementation of the
‘buddy system’ of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system
for more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca-
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward-
spacing, and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a series of read or write calls. The
write pointer is interpreted as the end of the information-containing portion of a string and a
call to read beyond that point returns an end-of-string indication. An attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy the old string
into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the
operation are popped from the main stack and their scale factors stripped off. Zeros are added
or digits removed as necessary to get a properly scaled result from the internal arithmetic rou-
tine. For example, if the scale of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the smaller scale. After performing
the required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is
the bound on the number of decimal places retained in arithmetic computations. scale may be
set to the number on the top of the stack truncated to an integer with the k command. K may
be used to push the value of scale on the stack. scale must be greater than or equal to 0 and
less than 100. The descriptions of the individual arithmetic operations will mclude the exact
effect of scale on the computations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceedmg as in
addition.

Finally, the addition is performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99,—1 by the digit —1. In any case, digits which are not in the range
0-—99 must be brought into that range, propagating any carries or borrows that result.




Multiplication

The scales are removed from the two operands and saved. The operands are both made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied by each digit of the second
number, beginning with its low order digit. The intermediate products are accumulated into a
partial sum which becomes the final product. The product is put into the canonical form and its
sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register scale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

Division
The scales are removed from the two operands. Zeros are appended or digits removed

from the dividend to make the scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, but if it is, the next trial quotient will be larger than 99 and this will be adjusted at the end -
of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining divi-
dend is smaller than the divisor. At the end, the digits of the quotient are put into the canoni-
cal form, with propagation of carry as needed. The sign is set from the sign of the operands.

Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division trun-
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale
of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer
result have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton’s method with successive approximations
by the rule

Xy+1 = = (X +-‘“)

n

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the
result is 1. If the exponent is negative, then it is made positive and the base is divided into
one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the positions
of the one-bits in the binary representation of the exponent. Enough digits of the result are
removed to make the scale of the result the same as if the 1nd1cated multiplication had been
performed.




Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a _. The hexadecimal digits A—F correspond to the
numbers 10—15 regardless of input base. The i command can be used to change the base of
the input numbers. This command pops the stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command I will push the value of the input base on the stack.

Output Commands

The command p causes the top of the stack to be printed.. It does not remove the top of
the stack. All of the stack and internal registers can be output by typing the command f. The o
command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.
It will work correctly for any base. The command O pushes the value of the output base on the
stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output;
they have no effect on arithmetic computations. Large numbers are output with 70 charactérs
per line; a \ indicates a continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal-
hexadecimal conversions.

Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from regis-
ters with the commands s and 1. The command sx pops the top of the stack and stores the
result in register X. x can be any character. lx puts the contents of register x on the top of the
stack. The 1 command has no effect on the contents of register x. The s command, however,
is destructive.

Stack Commands

The command c clears the stack. The command d pushes a duplicate of the number on
the top of the stack on the stack. The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

Subroutine Definitions and Calls

Enclosing a string in [l pushes the ascii string on the stack. The q command quits or in
executing a string, pops the recursion levels by two.

Internal Registers — Programming DC

The load and store commands together with [l to store strings, x to execute and the test-
ing commands ‘<’, ‘>, ‘=", ‘I’ “I>’ ‘=" can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com-
mands compare the top two elements on the stack and if the relation holds, execute the register
that follows the relation. For example, to print the numbers 0-9,

llipl+ si lil0>alsa
Osi lax




Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on, DC can be
thought of as having individual stacks for each register. These registers are operated on by the
commands S and L. Sx pushes the top value of the main stack onto the stack for the register
x. Lx pops the stack for register x and puts the result on the main stack. The commands s and
1 also work on registers but not as push-down stacks. 1 doesn’t effect the top of the register
stack, and s destroys what was there before.

The commands to work on arrays are : and ;. :x pops the stack and uses this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the stack is the index into ‘the array x of the
value to be loaded.

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX
command and passes it to UNIX to execute. One other compiler command is Q. This com-
mand uses the top of the stack as the number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose pro-
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some
value for input and for compiling (i.e. the bracket [...] commands) where it cannot be known
in advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan-
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in
space, debugging was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addi-
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com-
munication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith-
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the resuits of arithmetic were that in
no case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable
to give him the result 5.017 without requiring him to unnecessarily specify his rather obvious
requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more
digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user
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asked for them by specifying a value for scale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and there
is simply no way to guess how many places the user wants. In this case only, the user must
specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the
quotient and remainder. This is easy to implement; no digits are thrown away.

References
{11 L. L. Cherry, R. Morris, BC — An Arbitrary Precision Desk-Calculator Language.
[2] K. C. Knowlton, 4 Fast Storage Allocator, Comm. ACM 8, pp. 623-625 (Oct. 1965).




BC — An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry
Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic on
the PDP-11 under the UNIXT time-sharing system. The output of the compiler
is interpreted and executed by a collection of routines which can input, output,
and do arithmetic on indefinitely large integers and on scaled fixed-point
numbers.

These routines are themselves based on a dynamic storage allocator.
Overflow does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundréd-digit numbers can be multiplied to give a thousand digit
result in about ten Seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Some of the uses of this compiler are
— to do computation with large integers,
—  to do computation accurate to many decimal places,
— conversion of numbers from one base to another base.

November 12, 1978
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#
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Introduction

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIXT
time-sharing system [1]. The compiler was written to make conveniently available a collection
of routines (called DC [5]) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minimal language facility. '

There is a scaling provision that permits the use of decimal point notation. Provision is
made for input and output in bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language
[2]. Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type in the line:

142857 + 285714
the program responds immediately with the line
428571

The operators —, *, /, %, and " can also be used; they indicate subtraction, multiplication, divi-
sion, remaindering, and exponentiation, respectively. Division of integers produces an .integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be
negated (the ‘unary’ minus sign). The expression

7+ -3
is interpreted to mean that —3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just
as in Fortran, with ~ having the greatest binding power, then * and % and /, and finally + and
—. Contents of parentheses are evaluated before material outside the parentheses. Exponen-
tiations are performed from right to left and the other operators from left to right. The two
expressions

+UNIX is a Trademark of Bell Laboratories.




a’b’c and a"(b’c)
are equivalent, as are the two expressions
a*b*c and (a*b)*c
BC shares with Fortran and C the undesirable convention that

a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression c¢an be assigned to a register in the usual way. The statement

X=X+ 3

has the effect of increasing by three the value of the contents of the register named x. When,
as in this case, the outermost operator is an =, the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below). The lines

x = sqrt(191)
X

produce the printed resuit
13

Bases

There are special internal quantities, called ‘ibase’ and ‘obase’. The contents of ‘ibase’,
initially set to 10, determines the base used for interpreting numbers read in. For example, the
lines

ibase = §
11

will produce the output line
9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those
who deal in hexadecimal notation, the characters A—F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10—15 respectively. The
statement

ibase = A
will change you back to decimal input base no matter what the current input base is. Negative

and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents of ‘obase’, initially set to 10, are used as the base for output numbers. The
lines

obase = 16
1000

will produce the output line
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which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permit-
ted, and they are sometimes useful. For example, large numbers can be output in groups of
five digits by setting ‘obase’ to 100000. Strange (i.e. 1, 0, or negative) output bases are han-
dled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are con-
tinued end with \. Decimal output conversion is practically instantaneous, but output of very
large numbers (i.e., more than 100 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that ‘ibase’ and ‘obase’ have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

Scaling

A third special internal quantity called ‘scale’ is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtraction, the scale
of the result is the larger of the scales of the two operands. In this case, there is never any
truncation of the result. For multiplications, the scale of the result is never less than the max-
imum of the two scales of the operands, never more than the sum of the scales of the operands
and, subject to those two restrictions, the scale of the result is set equal to the contents of the
internal quantity ‘scale’. The seale of a quotient is the contents of the internal quantity ‘scale’.
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of
an exponentiation is scaled as if the implied multiplications were performed. An exponent
must be an integer. The scale of a square root is set to the maximum of the scale of the argu-
ment and the contents of ‘scale’.

All of the internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed.

The contents of ‘scale’ must be no greater than 99 and no less than 0. It is initially set to
0. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities ‘scale’, ‘ibase’, and ‘obase’ can be used in expressions just like
other variables. The line

scale = scale + 1
increases the value of ‘scale’ by one, and the line
scale

causes the current value of ‘scale’ to be printed.

The value of ‘scale’ retains its meaning as a number of decimal digits to be retained in
internal computation even when ‘ibase’ or ‘obase’ are not equal to 10. The internal computa-
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any other kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are permitted to col-
lide with simple variable names. Twenty-six different defined functions are permitted in addi-
tion to the twenty-six variable names. The line

% gzt’ﬁ




define a(x){

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace }. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

return
return (x)

In the first case, the value of the function is 0, and in the second, the value of the expression
in parentheses. -

Variables used in the function can be declared as automatic by a statement of the form
auto x.y,z

There can be only one ‘auto’ statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they are
given a-value on entry to the function. An example of a function definition is

define a(x.y){
auto z
z = x*y
return(z)

)

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments
enclosed in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them: b().

If the function a above has been defined, then the line
a(7,3.14)
would cause the result 21.98 to be printed and the line
x = a(a(3,4).5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions. in function calls, and in return
statements.

&
b

An array name may be used as an argument to a function, or may be declared as
automatic in a function definition by the use of empty brackets:




f(al])
define f(all)
auto af]

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

Control Statements

The ‘if’, the ‘while’, and the ‘for’ statements may be used to alter the flow within pro-
grams or to cause iteration. The range of each of them is a statement or a compound statement
consisting of a collection of statements enclosed in braces. They are written in the following
way :

if (relation) statement
while (relation) statement
for(expressionl; relation; expression2) statement

or

if (relation) {statements}
while (relation) {statements} ) )
for(expressionl; relation; expression2) |statements}

A relation in one of the control statements is an expression of the form

x>y
where two expressions are related by one of the six relational operators <, >, <=, > =,
==_or !=. The relation == stands for ‘equal to’ and != stands for ‘not equal to’. The
meaning of the remaining relational operators is clear.
BEWARE of using = instead of == in a relational. Unfortunately, both of them are

legal, so you will not get a diagnostic message, but = really will not do a comparison.

The ‘if’ statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

The ‘while’ statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is false, con-
trol passes to the next statement beyond the range of the while.

The ‘for’ statement begins by executing ‘expressionl’. Then the relation is tested and, if
true, the statements in the range of the ‘for’ are executed. Then ‘expression2’ is executed.
The relation is tested, and so on. The typical use of the ‘for’ statement is for a controlled itera-
tion, as in the statement

fori=1;i<=10; i=i+1) i

which will print the integers from 1 to 10. Here are some examples of the use of the control
statements.

define f(n){

auto i, x

x=1

fori=1; i< =n; i=i+1) x=x%
return(x)

}
The line

f(a)
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will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient {m and n are assumed to be positive integers).

define b(n,m){

auto X, j

x=1

for(=1; j<=m; j=j+1) x=x*(n—j+1)/j
return (x)

)

The following function computes values of the exponential function by summing the appropri-
ate series without regard for possible truncation errors:

scale = 20
define e(x){
auto a, b, ¢, d, n
a=1
b=1
c=1
d=20
n =1
while (1==1){
a = a*x
b = b*n
¢ =¢ + a/b
n=n-+1
if(c==d) return(c)
d=c

Some Details

There are some language features that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several state-
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any-
where that an expression can. For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

X = ali=i+1]
causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manuals [2] for their exact workings.
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Xx=y=z is the same as x=(y=z)

X =+y X = X+y

X ==y X = X—y

X =*y X = x*y

X =/y X = x/y

x =%y X = x%y

X ="y X =Xy
++ x=x+1)—1
X—— x=x—1+1
+ +x X = x+1
——X X = x—]

Even if you don’t intend to use the constructs, if you type one inadvertently, something correct
but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x=—y and x= —y. The first replaces x by x—y and the second by —y.

Three Important Things
l. To exit a BC program, type ‘quit’.

2. There is a comment convention identical to that of C and of PL/I. Comments begin
with ‘/* and end with ‘*/°.

3. There is a library of math functions which may be obtained by typing at command level
bc —1i

This command will load a set of library functions which, at the time of writing, consists of sine
(named ‘s’), cosine (‘c’), arctangent (‘a’), natural logarithm (‘I’), exponential (‘e’) and Bessel
functions of integer order (‘j(n,x)’). Doubtless more functions will be added in time. The
library sets the scale to 20. You can reset it to something else if you like. The design of these
mathematical library routines is discussed elsewhere [3].

If you type
be file ...

BC will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions.

Acknowledgement
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Appendix

1. Notation

In the following pages syntactic categories are in italics; literals are in bold; material in
brackets [] is optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs or comments. Newline characters or semicolons separate state-
ments.

2.1. Comments
Comments are introduced by the characters /* and terminated by */.

2.2. Identifiers

There are three kinds of identifiers — ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of identifiers do not conflict; a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexade-
cimal digits A— F are also recognized as digits with values 10—15, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Pre-
cedence is the same as the order of presentation here, with highest appearing first. Left or right
associativity, where applicable, is discussed with each operator.




3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions
are legal on the left side of an assignment. The value of a named expression is the value stored
in the place named.

3.1.1.1. identifiers
Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name lexpression |
Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the
number of digits after the decimal point to be retained in arithmetic operations. scale has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10. ’

3.1.2. Function calls

3.1.2.1. function-name (expression [,expression...11)

A function call consists of a function name followed by parentheses containing a comma-
separated list of expressions, which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu-
ments are passed by value. As a result, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return statement, the value
of the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt (expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3.1.2.3. length (expression)

The result is the total number of significant decimal digits in the expression. The scale of
the result is zero.

3.1.2.4. scale (expression)
The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants
Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.
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3.2. Unary operators
The unary operators bind right to left.

3.2.1. — expression
The result is the negative of the expression.

3.2.2. + + named-expression

The named expression is incremented by one. The result is the value of the named
expression after incrementing.

3.2.3. — — named-expression

The named expression is decremented by one. The result is the value of the named
expression after decrementing.

3.2.4. named-expression + +

The named expression is incremented by one. The result is the value of the named
expression before incrementing.

3.2.5. named-expression — —

The named expression is decremented by one. The result is the value of the named
expression before decrementing.

3.3. -Exponentiation operator
The exponentiation operator binds right to left.

3.3.1. expression = expression

The result is the first expression raised to the power of the second expression. The
second expression must be an integer. If a is the scale of the left expression and b is the abso-
lute value of the right expression, then the scale of the result is:

min (axb, max ( scale, a))

3.4. Multiplicative operators
The operators *, /, % bind left to right.

3.4.1. expression * expression

The result is the product of the two expressions. If a and b are the scales of the two
expressions, then the scale of the result is:

min { a +6, max ( scale, a, b))

3.4.2. expression / expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More pre-
cisely, a%b is a—a/b*b.

The scale of the result is the sum of the scale of the divisor and the value of scale
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3.5. Additive operators
The additive operators bind left to right.

3.5.1. expression + expression

The result is the sum of the two expressions. The scale of the result is the maximun of
the scales of the expressions.

3.5.2. expression — expression

The result is the difference of the two expressions. The scale of the result is the max-
imum of the scales of the expressions.

3.6. assignment operators
The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named
expression on the left.

3.6.2. nained-exp(ession = 4 expression
3.6.3. named-expression = — expression
3.6.4. named-expression =* expression
3.6.5. named-expression =/ expression
3.6.6. named-expression =% expression

3.6.7. named-expression =" expression

The result of the above expressions is equivalent to ‘“‘named expression = named expres-
. sion OP expression’’, where OP is the operator after the = sign.

4. Relations

Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

4.1. expression < expression
4.2. expression > expression
4.3. expression < = expression
4.4. expression > = expression
4.5. expression = = expression

4.6. expression != expression




-12-

5. Storage classes

There are only two storage classes in BC, global and automatic (local). Only identifiers
that are to be local to a function need be declared with the auto command. The arguments to a
function are local to the function. All other identifiers are assumed to be global and available
to all functions. All identifiers, global and local, have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from the function.
They therefore do not retain values between function calls. auto arrays are specified by the
array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PL/IL
On entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value
of the expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by sur-
rounding them with { }.

6.3. Quoted string statements
"any string"

This statement prints the string inside the quotes.

6.4. If statements

if (relation ) statement
The substatement is executed if the relation is true.

6.5. While statements

while (relation ) statement

The statement is executed while the relation is true. The test occurs before each execu-
tion of the statement. ’

6.6. For statements

for (expression; relation; expression ) statement

The for statement is the same as
first-expression
while (relation ) {

statement

last-expression

}

All three expressions must be present.
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6.7. Break statements

break
break causes termination of a for or while statement.

6.8. Auto statements
auto idennﬁe_r[ Jidentifier]

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol-
lowing the array name by empty square brackets. The auto statement must be the first state-
ment in a function definition.

6.9. Define statements

define([parameter | ,parameter...1]) {
statements }

The define statement defines a function. The parameters may be ordinary identifiers or
array names. Array names must be followed by empty square brackets.

6.10. Return statements
return

return (expression )

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return(0). The result of the
function is the result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when it
is first encountered. Because it is not treated as an executable statement, it cannot be used in a
function definition or in an if, for, or while statement.
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0. Introduction

This document describes the usage and input syntax of the UNIX PDP-11 assembler as.
The details of the ppP-11 are not described.

The input syntax of the UNIX assembler is generally similar to that of the DEC assembler
PAL-11R, although its internal workings and output format are unrelated. It may be useful to
read the publication DEC-11-ASDB-D, which describes PAL-11R, although naturally one must use
care in assuming that its rules apply to as.

As is a rather ordinary assembler without macro capabilities. It produces an output file
that contains relocation information and a complete symbol table; thus the output is acceptable
to the UNIX link-editor /d, which may be used to combine the outputs of several assembler runs
and to obtain object programs from libraries. The output format has been designed so that if a
program contains no unresolved references to external symbols, it is executable without further
processing,

1. Usage
as is used as follows:

as [ —ul [ —oouput] file, ...

If the optional *“—u’ argument is given, all undefined symbols in the current assembly will be
made undefined-external. See the .globl directive below.

The other arguments name files which are concatenated and assembled. Thus programs
may be written in several pieces and assembled together.

The output of the assembler is by default placed on the file a.our in the current directory;
the **—o’" flag causes the output to be placed on the named file. If there were no unresolved
external references, and no errors detected, the output file is marked executable; otherwise, if
it is produced at all, it is made non-executable.

2. Lexical conventions

Assembler tokens include identifiers (alternatively, “‘symbols™ or ‘‘names™), temporary
symbols, constants, and operators.

2.1 Identifiers

An identifier consists of a sequence of alphanumeric characters (including period ‘.,
underscore *‘_*’, and tilde ““™ as alphanumeric) of which the first may not be numeric. Only
the first eight characters are significant. When a name begins with a tilde, the tilde is discarded
and that occurrence of the identifier generates a unique entry in the symbol table which can
match no other occurrence of the identifier. This feature is used by the C compiler to place

+ UNIX is a Trademark of Bell Laboratories.
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names of local variables in the output symbol table without having to worry about making them
unique. :

2.2 Temporary symbols

A temporary symbol consists of a digit followed by ‘“f>* or *‘b>>. Temporary symbols are
discussed fully in §5.1.

2.3 Constants

An octal constant consists of a sequence of digits; “‘8”° and ‘9’ are taken to have octal
value 10 and 11. The constant is truncated to 16 bits and interpreted in two’s compiement
notation.

A decimal constant consists of a sequence of digits terminated by a decimal point “*.”’.
The magnitude of the constant should be representable in 15 bits; i.e., be less than 32,768.

A single-character constant consists of a single quote *“’”’ followed by an ASCII character
not a new-line. Certain dual-character escape sequences are acceptable in place of the ASCII
character to represent new-line and other non-graphics (see String statements, §5.5). The
constant’s value has the code for the given character in the least significant byte of the word
and is null-padded on the left.

A double-character constant consists of a double quote *‘"”’ followed by a pair.of Ascl
characters not including new-line. Certain dual-character escape sequences are acceptable in
place of either of the ASCIl characters to represent new-line and other non-graphics (see String
statements, §5.5). The constant’s value has the code for the first given character in the least
significant byte and that for the second character in the most significant byte.

2.4 Operators
There are several single- and double-character operators; see $6.

2.5 Blanks

Blank and tab characters may be interspersed freely between tokens, but may not be used
within tokens (except character constants). A blank or tab is required to separate adjacent
identifiers or constants not otherwise separated.

2.6 Comments .

The character **/”’ introduces a comment, which extends through the end of the line on
which it appears. Comments are ignored by the assembler.

3. Segments

Assembled code and data fall into three segments: the text segment, the data segment,
and the bss segment. The text segment is the one in which the assembler begins, and it is the
one into which instructions are typically placed. The UNIX system will, if desired, enforce the
purity of the text segment of programs by trapping write operations into it. Object programs
produced by the assembler must be processed by the link-editor /d (using its ““~n"" flag) if the
text segment is to be write-protected. A single copy of the text segment is shared among all
processes executing such a program.

The data segment is available for placing data or instructions which will be modified dur-
ing execution. Anything which may go in the text segment may be put into the data segmernt.
In programs with write-protected, sharable text segments, data segment contains the initialized
but variable parts of a program. If the text segment is not pure, the data segment begins
immediately after the text segment; if the text segment is pure, the data segment begins at the
lowest 8K byte boundary after the text segment.

The bss segment may not contain any explicitly initialized code or data. The length of the
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bss segment (like that. of text or data) is determined by the high-water mark of the location
counter within it. The bss segment is actually an extension of the data segment and begins
immediately after it. At the start of execution of a program, the bss segment is set to 0. Typi-
cally the bss segment is set up by statements exemplified by

lab: . = .+10

The advantage in using the bss segment for storage that starts off empty is that the initialization
information need not be stored in the output file. See also Location counter and Assignment
statements below.

4. The location counter

XA

One special symbol, , is the location counter. Its value at any time is the offset
within the appropriate segment of the start of the statement in which it appears. The location
counter may be assigned to, with the restriction that the current segment may not change;
furthermore, the value of ““.”’ may not decrease. If the effect of the assignment is to increase
the value of ““.”, the required number of null bytes are generated (but see Segments above).

5. Statements

A source program is composed of a sequence of starements. Statements are separated
either by new-lines or by semicolons. There are five kinds of statements: null statements,
expression statements, assignment statements, string statements, and keyword statements.

Any kind of statement may be preceded by one or more labels.

5.1 Labels

There are two kinds of label: name labels and numeric labels. A name label consists of a
name followed by a colon (:). The effect of a name label is to assign the current value and
type of the location counter ‘.’ to the name. An error is indicated in pass 1 if the name is
already defined; an error is indicated in pass 2 if the *‘.”" value assigned changes the definition

of the label.

A numeric label consists of a digit 0 to 9 followed by a colon (:). Such a label serves to
define temporary symbols of the form “‘#b’’ and ““nf’’, where » is the digit of the label. As in
the case of name labels, a numeric label assigns the current value and type of *“.”" to the tem-
porary symbol. However, several numeric labels with the same digit may be used within the
same assembly. References of the form ““nf’’ refer to the first numeric label “*»#:>’ forward
from the reference; ‘“‘nb’’ symbols refer to the first “‘# > label backward from the reference.
This sort of temporary label was introduced by Knuth [The Arr of Computer Programming, Vol [:
Fundamental Algorithms]. Such labels tend to conserve both the symbol table space of the
assembler and the inventive powers of the programmer.

5.2 Null statements

A null statement is an empty statement (which may, however, have labels). A null state-
ment is ignored by the assembler. Common examples of nulil statements are empty lines or
lines containing only a label.

5.3 Expression statements

An expression statement consists of an arithmetic expression not beginning with a key-
word. The assembler computes its (16-bit) value and places it in the output stream, together
with the appropriate relocation bits.
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5.4 Assignment statements

An assignment statement consists of an identifier, an equals sign ( =), and an expression.
The value and type of the expression are assigned to the identifier. It is not required that the
type or value be the same in pass 2 as in pass 1, nor is it an error to redefine any symbol by
assignment. »

Any external attribute of the expression is lost across an assignment. This means that it
is not possible to declare a global symbol by assigning to it, and that it is impossible to define a
symbol to be offset from a non-locally defined global symbol.

LR

As mentioned, it is permissible to assign to the location counter *“.”". It is required, how-

ever, that the type of the expression assigned be of the same type as ‘“.”’, and it is forbidden
to decrease the value of ““.”’. In practice, the most common assignment to ““.”’ has the form
. =.+ n” for some number #; this has the effect of generating » null bytes.

5.5 String statements

A string statement generates a sequence of bytes containing ASCII characters. A string
statement consists of a left string quote ‘‘ <’ followed by a sequence of ASCII characters not
including newline, followed by a right string quote ‘‘>"’. Any of the ASCII characters may be
replaced by a two-character escape sequence to represent certain non-graphic characters, as fol-
lows:

\n NL (012)
\s SP (040)
At HT (011)
\e goT  (004)
\0 ~NurL  (000)
\r CR (015)
\a ACK  (006)
\p pFXx  (033)
W\

\> >

The last two are included so that the escape character and the right string quote may be
represented. The same escape sequences may also be used within single- and double-character
constants (see §2.3 above).

5.6 Keyword statements

Keyword statements are numerically the most common type, since most machine instruc-
tions are of this sort. A keyword statement begins with one of the many predefined keywords
of the assembler; the syntax of the remainder depends on the keyword. All the keywords are
listed below with the syntax they require.

6. Expressions -

An expression is a sequence of symbols representing a value. Its constituents are
identifiers, constants, temporary symbols, operators, and brackets. Each expression has a type.

All operators in expressions are fundamentally binary in nature; if an operand is mjssing
on the left, a 0 of absolite type is assumed. Arithmetic is two’s complement and has 16 bits of
precision. All operators have equal precedence, and expressions are evaluated strictly left to
right except for the effect of brackets.




6.1 Expression operators
The operators are:

(blank) when there is no operand between operands, the effect is exactly the same as if a ““+’
had appeared.

+ addition

- subtraction

* multiplication

\/ division (note that plain *“/* starts a comment)
8 bitwise and

| bitwise or

\> logical right shift

\< logical left shift

% modulo

! albis a or (not b); i.e., the or of the first operand and the one’s complement of the
second; most common use is as a unary.

result has the value of first operand and the type of the second; most often used to
define new machine instructions with syntax identical to existing instructions.

Expressions may be grouped by use of square brackets *“[]”’. (Round parentheses are
reserved for address modes.)

6.2 Types

The assembler deals with a number of types of expressions. Most types are attached to
keywords and used to select the routine which treats that keyword. The types likely to be met
explicitly are:
undefined

Upon first encounter, each symbol is undefined. It may become undefined if it is
assigned an undefined expression. It is an error to attempt to assemble an undefined
expression in pass 2; in pass 1, it is not (except that certain keywords require operands
which are not undefined).

undefined external
A symbol which is declared .globl but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor /¢ must be used to
load the assembler’s output with another routine that defines the undefined reference.

absolute An absolute symbol is defined ultimately from a constant. Its value is unaffected by
any possible future applications of the link-editor to the output file.

text The value of a text symbol is measured with respect to the beginning of the text seg-
ment of the program. If the assembler output is link-edited, its text symbols may
change in value since the program need not be the first in the link editor’s output.
Most text symbols are defined by appearing as labels. At the start of an assembly, the
value of ““.” is text 0.

data The value of a data symbol is measured with respect to the origin of the data segment
of a program. Like text symbols, the value of a data symbol may change during a sub-
sequent link-editor run since previously loaded programs may have data segments.
After the first .data statement, the value of “*.”" is data 0.

bss The value of a bss symbol is measured from the beginning of the bss segment of a
program. Like text and data symbols, the value of a bss symbol may change during a
subsequent link-editor run, since previously loaded programs may have bss segments.
After the first .bss statement, the value of **." is_bss 0.




external absolute, text, data, or bss '
symbols declared .globl but defined within an assembly as absolute, text, data, or bss
symbols may be used exactly as if they were not declared .globl; however, their value
and type are available to the link editor so that the program may be loaded with others
that reference these symbols.

register
The symbols
r0 ... 15
fr0 ... fr5
sp
pc

are predefined as register symbols. Either they or symbols defined from them must be
used to refer to the six general-purpose, six floating-point, and the 2 special-purpose
machine registers. The behavior of the floating register names is identical to that of
the corresponding general register names; the former are provided as a mnemonic aid.

other types
Each keyvword known to the assembler has a type which is used to select the routine
which processes the associated keyword statement. The behavior of such symbols
when not used as keywords is the same as if they were absolute.

6.3 Type propagation in expressions

When operands are combined by expression operators, the result has a type which
depends on the types of the operands and on the operator. The rules involved are complex to
state but were intended to be sensible and predictable. For purposes of expression evaluation
the important types are

undefined
absolute

text

data

bss

undefined external
other

The combination rules are then: If one of the operands is undefined, the result is undefined. If
both operands are absolute, the result is absolute. If an absolute is combined with one of the
‘“‘other types’’ mentioned above, or with a register expression, the result has the register or
other type. As a consequence, one can refer to r3 as ‘‘r0+3". If two operands of ‘‘other
type’’ are combined, the result has the numerically larger type An ‘‘other type’” combined with
an explicitly discussed type other than absolute acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-, or bss-segment relocatable, or is an undefined external, the
result has the postulated type and the other operand must be absolute.

— If the first operand is a relocatabie text-, data-, or bss-segment symbol, the second
operand may be absolute (in which case the result has the type of the first operand); or
the second operand may have the same type as the first (in which case the result is abso-
lute). If the first operand is external undefined, the second must be absolute. All other
combinations are illegal.

This operator follows no other rule than that the result has the value of the first operand
and the type of the second.




others
It is illegal to apply these operators to any but absolute symbols.

7. Pseudo-operations

The keywords listed below introduce statements that generate data in unusual forms or
influence the later operations of the assembler. The metanotation

[stuff]...

means that 0 or more instances of the given stuff may appear. Also, boldface tokens are
literals, italic words are substitutable.

7.1 .byte expression [ , expression] ...

The expressions in the comma-separated list are truncated to 8 bits and assembled in suc-
cessive bytes. The expressions must be absolute. This statement and the string statement
above are the only ones that assemble data one byte at at time.

7.2 .even

LX)

If the location counter ‘.
assembled at a word boundary.

is odd, it is advanced by one so the next statement will be

7.3 .if expression

The expression must be absolute and defined in pass 1. If its value is nonzero, the .if is
ignored; if zero, the statements between the .if and the matching .endif (below) are ignored.
.if may be nested. The effect of .if cannot extend beyond the end of the input file in which it
appears. (The statements are not totally ignored, in the following sense: .ifs and .endifs are
scanned for, and moreover all names are entered in the symbol table. Thus names occurring
only inside an .if will show up as undefined if the symbol table is listed.)

7.4 .endif
This statement marks the end of a conditionally-assembled section of code. See .if above.

7.5 .globl name [ , name |

This statement makes the names external. If they are otherwise defined (by assignment or
appearance as a label) they act within the assembly exactly as if the .globl statement were not
given; however, the link editor /7 may be used to combine this routine with other routines that
refer these symbols.

Conversely, if the given symbols are not defined within the current assembly, the link
editor can combine the output of this assembly with that of others which define the symbols.
As discussed in 81, it is possible to force the assembler to make all otherwise undefined sym-
bols external. :

7.6 .text
7.7 .data

7.8 .bss

These three pseudo-operations cause the assembler to begin assembling into the text,
data, or bss segment respectively. Assembly starts in the text segment. [t is forbidden to
assemble any code or data into the bss segment, but symbols may be defined and ** .’ moved
about by assignment.




7.9 .comm name , expression
Provided the name is not defined elsewhere, this statement is equivalent to

.globl name
name = expression ~ name

That is, the type of name is ‘‘undefined external”’, and its value is expression. In fact the name
behaves in the current assembly just like an undefined external. However, the link-editor /d
has been special-cased so that all external symbols which are not otherwise defined, and which
have a non-zero value, are defined to lie in the bss segment, and enough space is left after the
symbol to hold expression bytes. All symbols which become defined in this way are located
before all the explicitly defined bss-segment locations.

8. Machine instructions

Because of the rather complicated instruction and addressing structure of the pDp-11, the
syntax of machine instruction statements is varied. Although the following sections give the
syntax in detail, the machine handbooks should be consulted on the semantics.

8.1 Sources and Destinations

The syntax of general source and destination addresses is the same. Each must have one
of the following forms, where reg is a register symbol, and expr is any sort of expression:

syntax words mode

reg 0 00+ reg
(reg) + 0 20+ reg
— (reg) 0 40+ reg
expr (reg) 1 60+ reg
{reg) 0 10+ reg
*reg 0 10+ reg
*(reg) + 0 30+ reg
* — (reg) 0 50+ reg
* (reg) 1 70+reg
*oxpr (reg) 1 70+ reg
expr i 67

Sexpr 1 27

* expr 1 77

*$expr 1 37

The words column gives the number of address words generated; the mode column gives the
octal address-mode number. The syntax of the address forms is identical to that in DEC assem-
blers, except that ““*’” has been substituted for “@" and ‘‘$’* for *“#”’; the UNIX typing con-
ventions make “@”’ and ‘‘#”’ rather inconvenient.

Notice that mode ‘‘*reg”’ is identical to *“(reg)’’; that ““*(reg)’’ generates an index word
(namely, 0); and that addresses consisting of an unadorned expression are assembled as pc-
relative references independent of the type of the expression. To force a non-relative refer-
ence, the form ““*$expr’’ can be used, but notice that further indirection is impossible.

8.3 Simple machine instructions
The following instructions are defined as absolute symbols:




clc
clv
clz
cln
sec
sev
sez
sen

They therefore require no special syntax. The PDP-11 hardware allows more than one of the
““clear’ class, or alternatively more than one of the ‘‘set’ class to be or-ed together; this may
be expressed as follows: :

cle | clv

8.4 Branch

The following instructions take an expression as operand. The expression must lie in the
same segment as the reference, cannot be undefined-external, and its value cannot differ from
the current location of *“.’” by more than 254 bytes:

br blos

bne bve

beq bvs

bge bhis

bit bec (= bee)
bgt bee

ble blo

bpl bes

bmi bes = bes)
bhi

bes (“‘branch on error set’’) and bec (‘‘branch on error clear’’) are intended to test the error bit
returned by system calls (which is the c-bit).

8.5 Extended branch instructions
The following symbols are followed by an expression representing an address in the same

‘e 1

segment as **.”". If the target address is close enough, a branch-type instruction is generated; if
the address is too far away, a jmp will be used.

jbr jlos
jne jve

ieq jvs

jge jhis
jlt jec

jet ice

jle jlo

inl jes

jmi jes

jhi

jbr turns into a plain jmp if its target is too remote; the others (whose names are contructed by
replacing the “‘b” in the branch instruction’s name by *‘j”’) turn into the converse branch over
a jmp to the target address.
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8.6 Single operand instructions

The following symbols are names of single-operand machine instructions. The form of
address expected is discussed in §8.1 above.

clr
clrb
com
comb
inc
incb
dec
decb
neg
negb
adc
adcb
sbc

sbcb
ror
rorb
rol
rolb
asr
asrb
asl
asib
jmp
swab
tst
tstb

8.7 Double operand instructions

The following instructions take a general source and destination (§8.1), separated by a
comma, as operands. :

mov
movb
cmp
cmpb
bit
bith
bic
bich
bis
bisb
add
sub

8.8 Miscellaneous instructions

The following instructions have more specialized syntax. Here reg is a register name, src
and dsr a general source or destination (§8.1), and expr is an expression:

jsr
rts
Sys
ash
ashc
mul
div
xor
sxt
mark
sob

reg,dst
reg
expr
sre, reg
src, reg
src, reg
src, reg
reg, dst
dst
expr
reg, expr

(or, als)

(or, alse)
(or, mpy)
(or, dvd)

sys is another name for the trap instruction. It is used to code system calls. Its operand is
required to be expressible in 6 bits. The expression in mark must be expressible in six bits,

and the expression in sob must be in the same segment as ‘.
undefined, must be less than “.

R

, must not be external-

LR}

, and must be within 510 bytes of **."".

"
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8.9 Floating-point unit instructions
The following floating-point operations are defined, with syntax as indicated:

cfee

setf

setd

seti

setl

cirf fdst

negf  fdst

absf  fdst

tstf fsre

movf  fsre, freg (= Idf)
movf freg, fdst (= stf)
movif src, freg (= Idcif)
movfi freg, dst (= stcfi)
movof frc, freg (= ldcdf)
movfo freg, fdst (= stcfd)
movie src, freg (= ldexp)
movei freg, dst (= stexp)

addf  fsrc, freg
subf  fsrc, freg
mulf  fsre, freg
divf  fsre, freg
cmpf  fsre, freg
modf fsrc, freg

ldfps src
stfps  dst
stst dst

Sfsre, fdst, and freg mean floating-point source, destination, and register respectively. Their syn-
tax is identical to that for their non-floating counterparts, but note that only floating registers
0-3 can be a freg.

Theé names of several of the operations have been changed to bring out an analogy with
certain fixed-point instructions. The only strange case is movf, which turns into either stf or
1df depending respectively on whether its first operand is or is not a register. Warning: ldf sets
the floating condition codes, stf does not.

9. Other symbols

9.1

LX)

The symbol “*..” is the relocarion counter. Just before each assembled word is placed in
the output stream, the current value of this symbol is added to the word if the word refers to a
text, data or bss segment location. If the output word is a pc-relative address word that refers
to an absolute location, the value of **.." is subtracted.

Thus the value of ““..”" can be taken to mean the starting memory location of the pro-
gram. The initial value of **..” is 0.

The value of ‘“..”" may be changed by assignment. Such a course of action is sometimes
necessary, but the consequences should be carefully thought out. It is particularly ticklish to
change ‘“..”" midway in an assembly or to do so in a program which will be treated by the
loader, which has its own notions of **..”’
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9.2 System calls

System call names are not predefined. They may be found in the file /usr/includelsys.s

10. Diagnostics

When an input file cannot be read, its name followed by a question mark is typed and
assembly ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed
out together with the line number and the file name in which it occurred. Errors in pass 1
cause cancellation of pass 2. The possible errors are:

) parentheses error

| parentheses error

>  string not terminated properly
indirection (*) used illegally

illegal assignment to *“.”’

error in address

branch address is odd or too remote
error in expression

error in local (“‘f”” or “‘b”’) type symbol
garbage (unknown) character

end of file inside an .if

multiply defined symbol as label

word quantity assembled at odd address
phase error— *‘.”” different in pass 1 and 2
relocation error

undefined symbol

syntax error
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Setting Up Unix — Seventh Edition

Charles B. Haley
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

The distribution tape can be used only on a DEC PDP11/45 or PDP11/70 with RP03,
RP04, RP0S, RP06 disks and with a TU10, TU16, or TE16 tape drive. It consists of some prel-
iminary bootstrapping programs followed by two file system images; if needed, after the initial
construction of the file systems individual files can be extracted. (See restor(1))

~ If you are set up to do it, it might be a good idea immediately to make a copy of the tape
to guard against disaster. The tape is 9-track 800 BPI and contains some 512-byte records fol-
lowed by many 10240-byte records. There are interspersed tapemarks.

The system as distributed contains binary images of the system and all the user level pro-
grams, along with source and manual sections for them-—about 2100 files altogether. The
binary images, along with other things needed to flesh out the file system enough so UNIX will
run, are to be put on one file system called the ‘root file system’. The file system size required
is about 5000 blocks. The file second system has all of the source and documentation. Alto-
gether it amounts to more than 18,000 512-byte blocks.

Making a Disk From Tape
Perform the following bootstrap procedure to obtain a disk with a root file system on it.
Mount the magtape on drive 0 at load point.

2. Mount a formatted disk pack on drive 0.
Key in and execute at 100000

TU10 TU16/TE16

012700 Use the DEC ROM or other
172526 means to load block 1

010040 (i.e. second block) at 800 BPI
012740 into location 0 and transfer
060003 to 0.

000777

The tape should move and the CPU loop. (The TU10 code is not the DEC bulk ROM for
tape; it reads block 0, not block 1.)

4. If you used the above TU10 code, halt and restart the CPU at 0, otherwise continue to
the next step.

5. The console should type
Boot

Copy the magtape to disk by the following procedure. The machine’s printouts are shown
in italic, explanatory comments are within ( ). Terminate each line you type by carriage
return or line-feed. There are two classes of tape drives: the name ‘tm’ is used for the
TU10, and ‘ht’ is used for the TU16 or TE16. There are also two classes of disks: ‘rp’ is
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used for the RP03, and ‘hp’ is used for the RP04/5/6.

If you should make a mistake while typing, the character *#° erases the last character
typed up to the beginning of the line, and the character *@° erases the entire line typed. Some
consoles cannot print lower case letters, adjust the instructions accordingly.

(bring in the program mkfs)

:tm(0,3) (use “ht(0,3)’ for the TU16/TE16)
file system size: 5000

file system: rp(0,0) (use ‘hp(0,0)° for RP04/5/6)

isize = XX

min = XX

(after a while)

exit called

Boot

This step makes an empty file system.

6.  The next thing to do is to restore the data onto the new empty file system. To do this you
respond to the ‘. printed in the last step with

(bring in the program restor)

:tm(0.,4) (‘ht(0,4)° for TU16/TE16)
tape? tm(0,5) (use “ht(0,5)’ for TU16/TE16)
disk? rp(0,0) . (use ‘hp(0,0)° for RP04/5/6)

Last chance before scribbling on disk. (you type return)
(the tape moves, perhaps 5-10 minutes pass)

end of tape

Boot

You now have a UNIX root file system.

Booting UNIX

You probably have the bootstrap running, left over from the last step above; if not, repeat
the boot process (step 3) again. Then use one of the following:

:rp(0,0) rptmunix (for RP03 and TU10)

:1p(0,0) rphtunix (for RP03 and TU16/TE16)

+hp(0,0) hptmunix (for RP04/5/6 and TU10)

>hp(0,0) hphtunix (for RP04/5/6 and TU16/TE16)
The machine should type the following:

mem = xxx

#

The mem message gives the memory available to user programs in bytes.

UNIX is now running, and the ‘UNIX Programmer’s manual’ applies; references below of
the form X(Y) mean the subsection named X in section Y of the manual. The ‘# is the
prompt from the Shell, and indicates you are the super-user. The user name of the super-user
is ‘root’ if you should find yourself in multi-user mode and need to log in; the password is also
‘root’.

To simplify your life later, rename the appropriate version of the system as specified
above plain ‘unix.” For example, use mv (1) as follows if you have an RP04/5/6 and a TU16
tape:

myv hphtunix unix
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In the future, when you reboot, you can type just
hp(0,0) unix

to the *’ prompt. (Choose appropriately among ‘hp’, ‘rp’, ‘ht’, ‘tm’ according to your
configuration). :

You now need to make some special file entries in the dev directory. These specify what
sort of disk you are running on, what sort of tape drive you have, and where the file systems
are. For simplicity, this recipe creates fixed device names. These names will be used below,
and some of them are built into various programs. so they are most convenient. However, the
names do not always represent the actual major and minor device in the manner suggested in
section 4 of the Programmer’s Manual. For example, ‘rp3’ will be used for the name of the file
system on which the user file system is put, even though it might be on an RP06 and is not
logical device 3. Also, this sequence will put the user file system on the same disk drive as the
root, which is not the best place if you have more than one drive. Thus the prescription below
should be taken only as one example of where to put things. See also the section on ‘Disk lay-
out’ below.

In any event, change to the dev directory (cd(1)) and, if you like. examine and perhaps
change the makefile there (make (1)).

cd /dev
cat makefile

Then, use one of

make rp03
make rp04
make rp05
make rp06

depending on which disk you have. Then, use one of

make tm
make ht

depending on which tape you have. The file ‘rp0’ refers to the root file system; ‘swap’ to the
swap-space file system; ‘rp3’ to the user file system. The devices ‘rrp0’ and ‘rrp3’ are the ‘raw’
versions of the disks. Also, ‘mt0’ is tape drive 0, at 800 BPI; ‘rmt0’ is the raw tape, on which
large records can be read and written; ‘nrmt0’ is raw tape with the quirk that it does not rewind
on close, which is a subterfuge that permits multifile tapes to be handled.

The next thing to do is to extract the rest of the data from the tape. Comments are
enclosed in ( ): don’t type these. The number in the first command is the size of the file sys-
tem; it differs between RP03, RP04/5, and RP06.

/etc/mkfs /dev/rp3 74000 (153406 if on RP04/5, 322278 on RP06)

(The above command takes about 2-3 minutes on an RP03)

dd if=/dev/nrmt0 of=/dev/null bs=20b files=6 (skip 6 files on the tape)
restor rf /dev/rmt0 /dev/rp3  (restore the file system)

(Reply with a ‘return’ (CR) to the ‘Last chance’ message)

(The restor takes about 20-30 minutes)

All of the data on the tape has been extracted.

You may at this point mount the source file system (mount(1)). To do this type the fol-
lowing:

/etc/mount /dev/rp3 /usr

The source and manual pages are now available in subdirectories of /usr.
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The above mount command is only needed if you intend to play around with source on a
single user system, which you are going to do next. The file system is mounted automatically
when multi-user mode is entered, by a command in the file /etc/rc. (See ‘Disk Layout’ below).

Before anything further is done the bootstrap block on the disk (block 0) should be filled
in. This is done using the command

dd if=/usr/mdec/rpuboot of =/dev/rp0 count=1
if you have the RP03, or
dd if=/usr/mdec/hpuboot of =/dev/rp0 count=1

if you have an RP04/5/6. Now the DEC disk bootstraps are usable. See Boot Procedures(8)
for further information.

Before UNIX is turned up completely, a few configuration dependent exercises must be
performed. At this point, it would be wise to read all of the manuals (especiaily ‘Regenerating
System Software’) and to augment this reading with hand to hand combat.

Reconfiguration

The UNIX system running is configured to run with the given disk and tape, a console,
and no other device. This is certainly not the correct configuration. You will have to correct
the configuration tabie to reflect the true state of your machine.

It is wise at this point to know how to recompile the system. Print (cat(1)) the file
/usr/sys/conf/makefile. This file is input to the program ‘make(1)’ which if invoked with
‘make all’ will recompile all of the system source and install it in the correct libraries.

The program mkconf(1) prepares files that describe a given configuration (See
mkconf(1)). In the /usr/sys/conf directory, the four files xyconf were input to mkconf to pro-
duce the four versions of the system xyunix. Pick the appropriate one, and edit it to add lines
describing your own configuration. (Remember the console typewriter is automatically
included; don’t count it in the kI specification.) Then run mkconf; it will generate the files L.s
(trap vectors) c.c (configuration table), and mchO.s. Take a careful look at 1.s to make sure that
all the devices that you have are assembled in the correct interrupt vectors. If your
configuration is non-standard, you will have to modify 1.s to fit your configuration.

There are certain magic numbers and configuration parameters imbedded in various dev-
ice drivers that you may want to change. The device addresses of each device are defined in
each driver. In case you have any non-standard device addresses, just change the address and
recompile. (The device drivers are in the directory /usr/sys/dev.)

The DCI11 driver is set to run 4 lines. This can be changed in dc.c.

The DHI11 driver is set to handle 3 DH11’s with a full complement of 48 lines. If you
have less, or more, you may want to edit dh.c.

The DN11 driver will handle 4 DN’s. Edit dn.c.
The DU11 driver can only handle a single DU. This cannot be easily changed.

The KL/DL driver is set up to run a single DL11-A, -B, or -C (the console) and no
DL11-E’s. To change this, edit kl.c to have NKL11 reflect the total number of DL11-ABC’s
and NDLI11 to reflect the number of DLI1-E’s. So far as the driver is concerned, the
difference between the devices is their address.

All of the disk and tape drivers (rf.c, rk.c, rp.c, tm.c, tc.c, hp.c, ht.c) are set up to run 8
drives and should not need to be changed. The big disk drivers (rp.c and hp.c) have partition
tables in them which you may want to experiment with.

After all the corrections have been made, use ‘make(1)’ to recompile the system (or
recompile individually if you wish: use the makefile as a guide). If you compiled individually,
say ‘make unix’ in the directory /usr/sys/conf. The final object file (unix) should be moved to
the root, and then booted to try it out. It is best to name it /nunix so as not to destroy the




-5.

working system until you’re sure it does work. See Boot Procedures(8) for a discussion of
booting. Note: before taking the system down, always (!!) perform a sync(1) to force delayed
output to the disk.

Special Files

Next you must put in special files for the new devices in the directory /dev using
mknod(1). Print the configuration file c.c created above. This is the major device switch of
each device class (block and character). There is one line for each device configured in your
system and a null line for place holding for those devices not configured. The essential block
special files were installed above; for any new devices, the major device number is selected by
counting the line number (from zero) of the device’s entry in the block configuration table.
Thus the first entry in the table bdevsw would be major device zero. This number is also
printed in the table along the right margin.

The minor device is the drive number, unit number or partition as described under each
device in section 4 of the manual. For tapes where the unit is dial selectable, a special file may
be made for each possible selection. You can also add entries for other disk drives.

In reality, device names are arbitrary. It is usually convenient to have a system for deriv-
ing names, but it doesn’t have to be the one presented above.

Some further notes on minor device numbers. The hp driver uses the 0100 bit of the
minor device number to indicate whether or not to interleave a file system across more than
one physical device. See hp(4) for more detail. The tm and ht drivers use the 0200 bit to indi-
cate whether or not to rewind the tape when it is closed. The 0100 bit indicates the density of
the tape on TU16 drives. By convention, tape special files with the 0200 bit on have an ‘n’
prepended to their name, as in /dev/nmt0 or /dev/nrmtl. Again, see tm(4) or ht(4).

The naming of character devices is similar to block devices. Here the names are even
more arbitrary except that devices meant to be used for teletype access should (to avoid confu-
sion, no other reason) be named /dev/ttyX, where X is some string (as in ‘00" or ‘library’).
The files console, mem, kmem, and null are already correctly configured.

The disk and magtape drivers provide a ‘raw’ interface to the device which provides direct
transmission between the user’s core and the device and allows reading or writing large records.
The raw device counts as a character device, and should have the name of the corresponding
standard block special file with ‘r’ prepended. (The ‘n’ for no rewind tapes violates this rule.)
Thus the raw magtape files would be called /dev/rmtX. These special files should be made.

When all the special files have been created, care should be taken to change the access
modes (chmod(1)) on these files to appropriate values (probably 600 or 644).

Floating Point

UNIX only supports (and really expects to have) the FP11-B/C floating point unit. For
machines without this hardware, there is a user subroutine available that will catch illegal
instruction traps and interpret floating point operations. (See fptrap(3).) To install this subrou-
tine in the library, change to /usr/src/libfpsim and execute the shell files

compall
mklib

The system as delivered does not have this code included in any command, although the
operating system adapts automatically to the presence or absence of the FP11.

Next. a floating-point version of the C compiler in /usr/src/cmd/c should be compiled
using the commands:
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cd /usr/src/cmd/c
make fcl
myv fcl /lib/fcl

This allows programs with floating point constants to be compiled. To compile floating point
programs use the ‘—f" flag to cc(1). This flag ensures that the floating point interpreter is
loaded with the program and that the floating point version of ‘cc’ is used.

Time Conversion

If your machine is not in the Eastern time zone, you must edit (ed(1)) the file
/usr/sys/h/param.h to reflect your local time. The manifest “TIMEZONE’ should be changed
to reflect the time difference between local time and GMT in minutes. For EST, this is 5*60;
for PST it would be 8*60. Finally, there is a ‘DSTFLAG’ manifest; when it is 1 it causes the
time to shift to Daylight Savings automatically between the last Sundays in April and October
(or other algorithms in 1974 and 1975). Normally this will not have to be reset. When the
needed changes are done, recompile and load the system using make(1l) and install it. (As a
general rule, when a system header file is changed, the entire system should be recompiled. As
it happens, the only uses of these flags are in /usr/sys/sys/sys4.c, so if this is all that was
changed it alone needs to be recompiled.)

You may also want to look at timezone(3) (/usr/src/libc/gen/timezone.c) to see if the
name of your timezone is in its internal table. If needed, edit the changes in. After timezone.c
has been edited it should be compiled and installed in its library. (See /usr/src/libc/(mklib and
compall)) Then you should (at your leisure) recompile and reinstall all programs that use it
(such as date(1)).

Disk Layout

If there are to be more file systems mounted than just the root and /usr, use mkfs(1) to
create any new file system and put its mounting in the file /etc/rc (see init(8) and mount(1)).
(You might look at /etc/rc anyway to see what has been provided for you.)

There are two considerations in deciding how to adjust the arrangement of things on your
disks: the most important is making sure there is adequate space for what is required; secon-
darily, throughput should be maximized. Swap space is a critical parameter. The system as dis-
tributed has 8778 (hpunix) or 2000 (rpunix) blocks for swap space. This should be large
enough so running out of swap space never occurs. You may want to change these if local wis-
dom indicates otherwise.

The system as distributed has all of the binaries in /bin. Most of them should be moved
to /usr/bin, leaving only the ones required for system maintenance (such as icheck, dcheck, cc,
ed, restor, etc.) and the most heavily used in /bin. This will speed things up a bit if you have
only one disk, and also free up space on the root file system for temporary files. (See below).

Many common system programs (C, the editor, the assembler etc.) create intermediate
files in the /tmp directory, so the file system where this is stored also should be made large
enough to accommodate most high-water marks. If you leave the root file system as distributed
(except as discussed above) there should be no problem. All the programs that create files in
/tmp take care to delete them, but most are not immune to events like being hung up upon,
and can leave dregs. The directory should be examined every so often and the old files deleted.

Exhaustion of user-file space is certain to occur now and then; the only mechanisms for
controlling this phenomenon are occasional use of du(1), df(1), quot(1), threatening messages
of the day, and personal letters.

The efficiency with which UNIX is able to use the CPU is largely dictated by the
configuration of disk controllers. For general time-sharing applications, the best strategy is to
try to split user files, the root directory (including the /tmp directory) and the swap area among
three controllers.
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Once you have decided how to make best use of your hardware, the question is how to
initialize it. If you have the equipment, the best way to move a file system is to dump it
(dump(1)) to magtape, use mkfs(1) to create the new file system, and restore (restor(1)) the
tape. If for some reason you don’t want to use magtape, dump accepts an argument telling
where to put the dump; you might use another disk. Sometimes a file system has to be
increased in logical size without copying. The super-block of the device has a word giving the
highest address which can be allocated. For relatively small increases, this word can be patched
using the debugger (adb(1)) and the free list reconstructed using icheck(1). The size should
not be increased very greatly by this technique, however, since although the allocatable space
will increase the maximum number of files will not (that is, the i-list size can’t be changed).
Read and understand the description given in file system(5) before playing around in this way.
You may want to see section-rp(4) for some suggestions on how to lay out the information on
RP disks.

If you have to merge a file system into another, existing one, the best bet is to use tar(1).
If you must shrink a file system, the best bet is to dump the original and restor it onto the new
filesystem. However, this might not work if the i-list on the smaller filesystem is smaller than
the maximum allocated inode on the larger. If this is the case, reconstruct the filesystem from
scratch on another filesystem (perhaps using tar(1)) and then dump it. If you are playing with
the root file system and only have one drive the procedure is more complicated. What you do is
the following:

1. GET A SECOND PACK!!!

2 Dump the current root filesystem (or the reconstructed one) using dump(1).
3. Bring the system down and mount the new pack.
4

Retrieve the WECo distribution tape and perform steps 1 through 5 at the beginning of
this document, substituting the desired file system size instead of 5000 when asked for
‘file system size’.

5. Perform step 6 above up to the point where the ‘tape’ question is asked. At this point
mount the tape you made just a few minutes ago. Continue with step 6 above substituting
a 0 (zero) for the 5.

New Users

Install new users by editing the password file /etc/passwd (passwd(5)). This procedure
should be done once multi-user mode is entered (see init(8)). You'll have to make a current
directory for each new user and change its owner to the newly installed name. Login as each
user to make sure the password file is correctly edited. For example:

ed /etc/passwd

$a
joe::10:1::/usr/joe:
w

q

mkdir /usr/joe
chown joe /usr/joe
login joe

Is —la

login root

This will make a new login entry for joe, who should be encouraged to use passwd(1) to give
himself a password. His default current directory is /usr/joe which has been created. The
delivered password file has the user binin it to be used as a prototype.
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Multiple Users

If UNIX is to support simultaneous access from more than just the console terminal, the
file /etc/ttys (ttys(5)) has to be edited. To add a new terminal be sure the device is configured
and the special file exists, then set the first character of the appropriate line of /etc/ttys to 1 (or
add a new line). Note that init.c will have to be recompiled if there are to be more than 100
terminals. Also note that if the special file is inaccessible when init tries to create a process for
it, the system will thrash trying and retrying to open it.

File System Health

Periodically (say every day or so) and always after a crash, you should check all the file
systems for consistency (icheck, dcheck(1)). It is quite important to execute sync (8) before
rebooting or taking the machine down. This is done automatically every 30 seconds by the
update program (8) when a multiple-user system is running, but you should do it anyway to
make sure.

Dumping of the file system should be done regularly, since once the system is going it is
very easy to become complacent. Complete and incremental dumps are easily done with
dump(1). Dumping of files by name is best done by tar(1) but the number of files is some-
what limited. Finally if there are enough drives entire disks can be copied using cp(l), or
preferably with dd(1) using the raw special files and an appropriate block size.

Converting Sixth Edition Filesystems

The best way to convert file systems from 6th edition (V6) to 7th edition (V7) format is
to use tar(1). However, a special version of tar must be prepared to run on V6. The following
steps will do this:

1.  change directories to /usr/src/cmd/tar
2. At the shell prompt respond
make vétar
This will leave an executable binary named ‘vétar’.
Mount a scratch tape.

Use tp(1) to put ‘vétar’ on the scratch tape.
Bring down V7 and bring up V6.

N e W

Use tp (on V6) to read in ‘vétar’. Put it in /bin or /usr/bin (or perhaps some other pre-
ferred location).

7.  Use vé6tar to make tapes of all that you wish to convert. You may want to read the
manual section on tar(1) to see whether you want to use blocking or not. Try to avoid
using full pathnames when making the tapes. This will simplify moving the hierarchy to
some other place on V7 if desired. For example

chdir /usr/ken
vétar ¢ .

is preferable to

vbtar ¢ /usr/ken

8.  After all of the desired tapes are madeA, bring down V6 and reboot V7. Use tar(1) to read '

in the tapes just made.

re?;}‘



Odds and Ends

The programs dump, icheck, quot, dcheck, ncheck, and df (source in /usr/source/cmd)
should be changed to reflect your default mounted file system devices. Print the first few lines
of these programs and the changes will be obvious. Tar should be changed to reflect your
desired default tape drive.

Good Luck

Charles B. Haley
Dennis M. Ritchie
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REGENERATING SYSTEM SOFTWARE

Charles B. Haley

Dennis. M. Ritchie
Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

This document discusses how to assemble or compile various parts of the UNIXt system
software. This may be necessary because a command or library is accidentally deleted or other-
wise destroyed; also, it may be desirable to install a modified version of some command or
library routine. A few commands depend to some degree on the current configuration of the
system; thus in any new system modifications to some commands are advisable. Most of the
likely modifications relate to the standard disk devices contained in the system. For example,
the df(1) (‘disk free’) command has built into it the names of the standardly present disk
storage drives (e.g. ‘/dev/rf0’, ‘/dev/rp0’). Df(1) takes an argument to indicate which disk to
examine, but it is convenient if its default argument is adjusted to reflect the ordinarily present
devices. The companion document ‘Setting up UNIX’ discusses which commands are likely to
" require changes.

Where Commands and Subroutines Live

The source files for commands and subroutines reside in several subdirectories of the
directory /usr/src. These subdirectories, and a general description of their contents, are

cmd Source files for commands.

libc/stdio  Source files making up the ‘standard i/o package’.

libc/sys Source files for the C system call interfaces.

libc/gen Source files for most of the remaining routines described in section 3 of the
manual.

libe/crt Source files making up the C runtime support package, as in call save-return and
long arithmetic.

libc/csu Source for the C startup routines.

games Source for (some of) the games. No great care has been taken to try to make it
obvious how to compile these; treat it as a game.

libF77 Source for the Fortran 77 runtime library, exclusive of 10.

1ibl77 Source for the Fortran 77 10 runtime routines.

libdbm Source for the ‘data-base manager’ package dbm (3).

libfpsim Source for the floating-point simulator routine.

libm Source for the mathematical library.

+UNIX is a Trademark of Bell Laboratories.
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libplot Source for plotting routines.

Commands

The regeneration of most commands is straightforward. The ‘cmd’ directory will contain
either a source file for the command or a subdirectory containing the set of files that make up
the command. If it is a single file the command

cd /usr/src/cmd
cmake cmd_name

suffices. (Cmd_name is the name of the command you are playing with.) The result of the
cmake command will be an executable version. If you type

cmake —cp cmd_name

the result will be copied to /bin (or perhaps /etc or other places if appropriate).

If the source files are in a subdirectory there will be a ‘makefile’ (see make(1)) to control
the regeneration. After changing to the proper directory (cd(1)) you type one of the following:

make all The program is compiled and loaded; the executable is left in the current direc-
tory.

make c¢p The program is compiled .and loaded, and the executable is installed. Everything
is cleaned up afterwards; for example .o files are deleted.

make cmp The program is compiled and loaded, and the executable is compared against the
one in /bin.

Some of the makefiles have other options. Print (cat(1)) the ones you are interested in to
find out.

The Assembler

The assembler consists of two executable files: /bin/as and /lib/as2. The first is the 0-th
pass: it reads the source program, converts it to an intermediate form in a temporary file
‘/tmp/atm0?’, and estimates the final locations of symbols. It also makes two or three other
temporary files which contain the ordinary symbol table, a table of temporary symbols (like 1:)
and possibly an overflow intermediate file. The program /lib/as2 acts as an ordinary multiple
pass assembler with input taken from the files produced by /bin/as.

The source files for /bin/as are named ‘/usr/src/cmd/as/as1?.s’ (there are 9 of them);
/lib/as2 is produced from the source files ‘/usr/src/cmd/as/as2?.s’; they likewise are 9 in
number. Considerable care should be exercised in replacing either component of the assem-
bler. Remember that if the assembler is lost, the only recourse is to replace it from some
backup storage; a broken assembler cannot assemble itself.

The C Compiler

The C compiler consists of seven routines: ‘/bin/cc’, which calls the phases of the com-
piler proper, the compiler control line expander ‘/lib/cpp’, the assembler (‘as’), and the loader
(‘1d’). The phases of the C compiler are ‘/lib/c0’, which is the first phase of the compiler;
‘/lib/c1’, which is the second phase of the compiler; and ‘/1ib/c2’, which is the optional third
phase optimizer. The loss of the C compiler is as serious as that of the assembler.

The source for /bin/cc resides in ‘/usr/src/cmd/cc.c’. Its loss alone (or that of ¢2) is not
fatal. If needed, prog.c can be compiled by




/lib/cpp prog.c >temp0
/1ib/c0 tempO temp!l temp?2
/lib/cl templ temp2 temp3
as — temp3

Id —n /lib/crt0.0 a.out —lc

The source for the compiler proper is in the directory /usr/src/cmd/c. The first phase
(/1ib/c0) is generated from the files c00.c, ..., c05.c, which must be compiled by the C com-
piler. There is also c0.h, a header file included by the C programs of the first phase. To make a
new /lib/c0 use

make c0

Before installing the new c0, it is prudent to save the old one someplace.

The second phase of C (/lib/cl) is generated from the source files cl0.c, ..., c13.c, the
include-file ¢l.h, and a set of object-code tables combined into table.o. To generate a new
second phase use

make cl

It is likewise prudent to save cl before installing a new version. Ip fact in general it is wise to
save the object files for the C compiler so that if disaster strikes C can be reconstituted without
a working version of the compiler.

In a similar manner, the third phase of the C compiler (/lib/c2) is made up from the files
c20.c and c21.¢ together with c2.h. Its loss is not critical since it is completely optional.

The set of tables mentioned above is generated from the file table.s. This *.s’ file is not in
fact assembler source; it must be converted by use of the cvopt program, whose source and
object are located in the C directory. Normally this is taken care of by make(1). You might
want to look at the makefile to see what it does.

UNIX

The source and object programs for UNIX are kept in four subdirectories of /usr/sys. In
the subdirectory. 4 there are several files ending in ‘.h’; these are header files which are picked
up (via ‘#include ...") as required by each system module. The subdirectory dev consists
mostly of the device drivers together with a few other things. The subdirectory sys is the rest
of the system. There are files of the form LIBx in the directories sys and dev. These are
archives (ar(1)) which contain the object versions of the routines in the directory.

Subdirectory conf contains the files which control device configuration of the system. L.s
specifies the contents of the interrupt vectors; c.c contains the tables which relate device
numbers to handler routines. A third file, mch.s, contains all the machine-language code in the
system. A fourth file, mch0.s, is generated by mkconf(1) and contains flags indicating what
sort of tape drive is available for taking crash dumps.

There are two ways to recreate the system. Use

cd /usr/sys/conf
make unix

if the libraries /usr/sys/dev/LIB2 and /usr/sys/sys/LIB1, and also c.o and l.o, are correct. Use

cd /usr/sys/conf
make all

to recompile everything and recreate the libraries from scratch. This is needed, for example,
when a header included in several source files is changed. See ‘Setting Up UNIX’ for other
information about configuration and such.
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When the make is done, the new system is present in the current directory as ‘unix’. It
should be tested before destroying the currently running ‘/unix’, this is best done by doing
something like

mv /unix /ounix
mv unix /unix

If the new system doesn’t work, you can still boot. ‘ounix’ and come up (see boot(8)). When
you have satisfied yourself that the new system works, remove /ounix.

To install a new device driver, compile it and put it into its library. The best way to put it
into the library is to use the command

ar uv LIB2 x.0

where X is the routine you just compiled. (All the device drivers distributed with the system
are already in the library.)

Next, the device’s interrupt vector must be entered in 1.s. This is probably already done
by the routine mkconf(1), but if the device is esoteric or nonstandard you will have to massage
Ls by hand. This involves placing a pointer to a callout routine .and the device’s priority level
in the vector. Use some other device (like the console) as a guide. Notice that the entries in
l.s must be in order as the assembler does not permit moving the location counter °. back-
wards. The assembler also does not permit assignation of an absolute number to ‘., which is
the reason for the ‘. = ZERO+100’ subterfuge. If a constant smaller than 16(10) is added to
the priority level, this number will be available as the first argument of the interrupt routine.
This stratagem is used when several similar devices share the same interrupt routine (as in
di11’s).

If you have to massage l.s, be sure to add the code to actually transfer to the interrupt
routine. Again use the console as a guide. The apparent strangeness of this code is due to run-
ning the kernel in separate 1&D space. The call routine saves registers as required and prepares
a C-style call on the actual interrupt routine named after the ‘ymp’ instruction. When the rou-
tine returns, call restores the registers and performs an rti instruction. As an aside, note that
external names in C programs have an underscore (‘_’) prepended to them.

The second step which must be performed to add a device unknown to mkconf is to add
it to the configuration table /usr/sys/conf/c.c. This file contains two subtables, one for block-
type devices, and one for character-type devices. Block devices include disks, DECtape, and
magtape. All other devices are character devices. A line in each of these tables gives all the
information the system needs to know about the device handler; the ordinal position of the line
in the table implies its major device number, starting at 0.

There are four subentries per line in the block device table, which give its open routine,
close routine, strategy routine, and device table. The open and close routines may be nonex-
istent, in which case the name ‘nulldev’ is given; this routine merely returns. The strategy rou-
tine is called to do any 1/0, and the device table contains status information for the device.

For character devices, each line in the table specifies a routine for open, close, read, and
write, and one which sets and returns device-specific status (used, for example, for stty and gtty
on typewriters). If there is no open or close routine, ‘nulldev’ may be given; if there is no
read, write, or status routine, ‘nodev’ may be given. Nodev sets an error flag and returns.

The final step which must be taken to install a device is to make a special file for it. This
is done by mknod(1), to which you must specify the device class (block or character), major
device number (relative line in the configuration table) and minor device number (which is
made available to the driver at appropriate times).

The documents ‘Setting up Unix’ and ‘The Unix IO system’ may aid in comprehending
these steps. .




The Library libc.a

The library /lib/libc.a is where most of the subroutines described in sections 2 and 3 of
the manual are kept. This library can be remade using the following commands:

cd /usr/src/libc

sh compall

sh mklib

mv libc.a /lib/libc.a

If single routines need to be recompiled and replaced, use

cc —¢c —0 x.c
ar vr /lib/libc.a x.0
rm X.0

The above can also be used to put new items into the library. See ar(1), lorder(1), and
tsort(1).

The routines in /usr/src/cmd/libc/csu (C start up) are not in libc.a. These are separately
assembled and put into /lib. The commands to do this are

¢d /usr/src/libe/csu
as — X.§
mv a.out /lib/x

where x is the routine you want.

Other Librarijes

Likewise, the directories containing the source for the other libraries have files compall
(that recompiles everything) and mklib (that recreates the library).

System Tuning

There are several tunable parameters in the system. These set the size of various tables
and limits. They are found in the file /usr/sys/h/param.h as manifests (‘#define’s). Their
values are rather generous in the system as distributed. Our typical maximum number of users
is about 20, but there are many daemon processes.

When any parameter is changed, it is prudent to recompile the entire system, as discussed
above. A brief discussion of each follows:

NBUF This sets the size of the disk buffer cache. Each buffer is 512 bytes. This number
should be around 25 plus NMOUNT, or as big as can be if the above number of
buffers cause the system to not fit in memory.

NFILE This sets the maximum number of open files. An entry is made in this table every
time a file is ‘opened’ (see open(2), creat(2)). Processes share these table entries
across forks (fork(2)). This number should be about the same size as NINODE
below. (It can be a bit smaller.)

NMOUNT This indicates the maximum number of mounted file systems. Make it big enough
that you don’t run out at inconvenient times.

MAXMEM This sets an administrative limit on the amount of memory a process may have.
It is set automatically if the amount of physical memory is small, and thus should
not need to be changed.

MAXUPRC This sets the maximum number of processes that any one user can be running at
any one time. This should be set just large enough that people can get work done
but not so large that a user can hog all the processes available (usually by
accident!).
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NPROC

NINODE

SSIZE
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This sets the maximum number of processes that can be active. It depends on the
demand pattern of the typical user; we seem to need about 8 times the number of
terminals.

This sets the size of the inode table. There is one entry in the inode tabie for
every open device, current working directory, sticky text segment, open file, and
mounted device. Note that if two users have a file open there is still only one
entry in the inode table. A reasonable rule of thumb for the size of this table is

NPROC + NMOUNT + (number of terminals)

The initial size of a process stack. This may be made bigger if commonly run

. processes have large data areas on the stack.

SINCR
NOFILE

CANBSIZ

CMAPSIZ

SMAPSIZ
NCALL

NTEXT

NCLIST

TIMEZONE
DSTFLAG
MSGBUFS

NCARGS

HZ

The size of the stack growth increment.

This sets the maximum number of files that any one process can have open. 20 is
plenty.

This is the size of the typewriter canonicalization buffer. It is in this buffer that
erase and kill processing is done. Thus this is the maximum size of an input type-
writer line. 256 is usually plenty.

The number of fragments that memory can be broken into. This should be big
enough that it never runs out. The theoretical maximum is twice the number of
processes, but this is a vast overestimate in practice. 50 seems enough.

Same as CMAPSIZ except for secondary (swap) memory.

This is the size of the callout table. Callouts are entered in this table when some
sort of internal system timing must be done, as in carriage return delays for termi-
nals. The number must be big enough to handle all such requests.

The maximum number of simultaneously executing pure programs. This should
be big enough so as to not run out of space under heavy load. A reasonable rule
of thumb is about

(number of terminals) + (number of sticky programs)

The number of clist segments. A clist segment is 6 characters. NCLIST should be
big enough so that the list doesn’t become exhausted when the machine is busy.
The characters that have arrived from a terminal and are waiting to be given to a
process live here. Thus enough space should be left so that every terminal can
have at least one average line pending (about 30 or 40 characters).

The number of minutes westward from Greenwich. See ‘Setting Up UNIX.
See ‘Setting Up UNIX’ section on time conversion.

The maximum number of characters of system error messages saved. This is used
as a circular buffer.

The maximum number of characters in an exec(2) arglist. This number controls
how many arguments can be passed into a process. 5120 is practically infinite.

Set to the frequency of the system clock (e.g., 50 for a 50 Hz. clock).




UNIX Implementation

K. Thompson
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Murray Hill, New Jersey 07974

ABSTRACT

This paper describes in high-level terms the implementation of the
resident UNIXT kernel. This discussion is broken into three parts. The first part
describes how the UNIX system views processes, users, and programs. The
second part describes the I/0 system. The last part describes the UNIX file sys-
tem.

1. INTRODUCTION

The UNIX kernel consists of about 10,000 lines of C code and about 1,000 lines of assem-
bly code. The assembly code can be further broken down into 200 lines included for the sake
of efficiency (they could have been written in C) and 800 lines to perform hardware functions
not possible in C.

This code represents 5 to 10 percent of what has been lumped into the broad expression
‘‘the UNIX operating system.’” The kernel is the only UNIX code that cannot be substituted by a
user to his own liking. For this reason, the kernel should make as few real decisions as possi-
ble. This does not mean to allow the user a million options to do the same thing. Rather, it
means to allow only one way to do one thing, but have that way be the least-common divisor of
all the options that might have been provided.

What is or is not implemented in the kernel represents both a great responsibility and a
great power. It is a soap-box platform on ‘‘the way things should be done.”” Even so, if ‘‘the
way'’ is too radical, no one will follow it. Every important decision was weighed carefully.
Throughout, simplicity has been substituted for efficiency. Complex algorithms are used only if
their complexity can be localized.

2. PROCESS CONTROL

In the UNIX system, a user executes programs in an environment called a user process.
When a system function is required, the user process calls the system as a subroutine. At some
point in this call, there is a distinct switch of environments. After this, the process is said to be
a system process. In the normal definition of processes, the user and system processes are
different phases of the same process (they never execute simultaneously). For protection, each
system process has its own stack.

The user process may execute from a read-only text segment, which is shared by all
processes executing the same code. There is no functional benefit from shared-text segments.
An efficiency benefit comes from the fact that there is no need to swap read-only segments out
because the original copy on secondary memory is still current. This is a great benefit to
interactive programs that tend to be swapped while waiting for terminal input. Furthermore, if
two processes are executing simultaneously from the same copy of a read-only segment, only
one copy needs to reside in primary memory. This is a secondary effect, because simultaneous

tUNIX is a Trademark of Bell Laboratories.
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execution of a program is not common. It is ironic that this effect, which reduces the use of
primary memory, only comes into play when there is an overabundance of primary memory,
that is, when there is enough memory to keep waiting processes loaded.

All current read-only text segments in the system are maintained from the rext table. A
text table entry holds the location of the text segment on secondary memory. If the segment is
loaded, that table also holds the primary memory location and the count of the number of
processes sharing this entry. When this count is reduced to zero, the entry is freed along with
any primary and secondary memory holding the segment. When a process first executes a
shared-text segment, a text table entry is allocated and the segment is loaded onto secondary
memory. If a second process executes a text segment that is already allocated, the entry refer-
ence count is simply incremented.

A user process has some strictly private read-write data contained in its data segment. As
far as possible, the system does not use the user’s data segment to hold system data. In partic-
ular, there are no I/0 buffers in the user address space.

The user data segment has two growing boundaries. One, increased automatically by the
system as a result of memory faults, is used for a stack. The second boundary is only grown
(or shrunk) by explicit requests. The contents of newly allocated primary memory is initialized
to zero.

Also associated and swapped- with a process is a small fixed-size system data segment.
This segment contains all the data about the process that the system needs only when the pro-
cess is active. Examples of the kind of data contained in the system data segment are: saved
central processor registers, open file descriptors, accounting information, scratch data area, and
the stack for the system phase of the process. The system data segment is not addressable from
the user process and is therefore protected.

Last, there is a process table with one entry per process. This entry contains all the data
needed by the system when the process is nor active. Examples are the process’s name, the
location of the other segments, and scheduling information. The process table entry is allo-
cated when the process is created, and freed when the process terminates. This process entry is
always directly addressable by the kernel.

Figure 1 shows the relationships between the various process control data. In a sense, the
process table is the definition of all processes, because all the data associated with a process may
be accessed starting from the process table entry.

Il T .
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ENTRY L :
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Fig. 1 —Process control data structure.




-3.-

2.1. Process creation and program execution

Processes are created by the system primitive fork. The newly created process (child) is a
copy of the original process (parent). There is no detectable sharing of primary memory
between the two processes. (Of course, if the parent process was executing from a read-only
text segment, the child will share the text segment.) Copies of all writable data segments are
made for the child process. Files that were open before the fork are truly shared after the fork.
The processes are informed as to their part in the relationship to allow them to select their own
(usually non-identical) destiny. The parent may wait for the termination of any of its children.

A process may exec a file. This consists of exchanging the current text and data segments
of the process for new text and data segments specified in the file. The old segments are lost.
Doing an exec does not change processes; the process that did the exec persists, but after the
exec it is executing a different program. Files that were open before the exec remain open after
the exec.

If a program, say the first pass of a compiler, wishes to overlay itself with another pro-
gram, say the second pass, then it simply execs the second program. This is analogous to a
“‘goto.”” If a program wishes to regain control after execing a second program, it should fork a
child process, have the child exec the second program, and have the parent wait for the child.
This is analogous to a ““call.”” Breaking up the call into a binding followed by a transfer is simi-
lar to the subroutine linkage in SL-5.1

2.2. Swapping

The major data associated with a process (the user data segment, thé system data seg-
ment, and the text segment) are swapped to and from secondary memory, as needed. The user
data segment and the system data segment are Kept in contiguous primary memory to reduce
swapping latency. (When low-latency devices, such as bubbles, CCDs, or scatter/gather
devices, are used, this decision will have to be reconsidered.) Allocation of both primary and
secondary memory is performed by the same simple first-fit algorithm. When a process grows,
a new piece of primary memory is allocated. The contents of the old memory is copied to the
new memory. The old memory is freed and the tables are updated. If there is not enough pri-
mary memory, secondary memory is allocated instead. The process is swapped out onto the
secondary memory, ready to be swapped in with its new size.

One separate process in the kernel, the swapping process, simply swaps the other
processes in and out of primary memory. It examines the process table looking for a process
that is swapped out and is ready to run. It allocates primary memory for that process and reads
its segments into primary memory, where that process competes for the central processor with
other loaded processes. If no primary memory is available, the swapping process makes
memory available by examining the process table for processes that can be swapped out. It
selects a process to swap out, writes it to secondary memory, frees the primary memory, and
then goes back to look for a process to swap in.

Thus there are two specific algorithms to the swapping process. Which of the possibly
many processes that are swapped out is to be swapped in? This is decided by secondary storage
residence time. The one with the longest time out is swapped in first. There is a slight penalty
for larger processes. Which of the possibly many processes that are loaded is to be swapped
out? Processes that are waiting for slow events (i.e., not currently running or waiting for disk
1/0) are picked first, by age in primary memory, again with size penalties. The other processes
are examined by the same age algorithm, but are not taken out unless they are at least of some
age. This adds hysteresis to the swapping and prevents total thrashing.

These swapping algorithms are the most suspect in the system. With limited primary
memory, these algorithms cause total swapping. This is not bad in itself, because the swapping
does not impact the execution of the resident processes. However, if the swapping device must
also be used for file storage, the swapping traffic severely impacts the file system traffic. It is
exactly these small systems that tend to double usage of limited disk resources.




2.3. Synchronization and scheduling

Process synchronization is. accomplished by having processes wait for events. Events are
represented by arbitrary integers. By convention, events are chosen to be addresses of tables
associated with those events. For example, a process that is waiting for any of its children to
terminate will wait for an event that is the address of its own process table entry. When a pro-
cess terminates, it signails the event represented by its parent’s process table entry. Signaling an
event on which no process is waiting has no effect. Similarly, signaling an event on which
many processes are waiting will wake all of them up. This differs considerably from Dijkstra’s
P and V synchronization operations,? in that no memory is associated with events. Thus there
need be no allocation of events prior to their use. Events exist simply by being used.

On the negative side, because there is no memory associated with events, no notion of
“how much’ can be signaled via the event mechanism. For example, processes that want
memory might wait on an event associated with memory allocation. When any amount of
memory becomes available, the event would be signaled. All the competing processes would
then wake up to fight over the new memory. (In reality, the swapping process is the only pro-
cess that waits for primary memory to become available.)

If an event occurs between the time a process decides to wait for that event and the time
that process enters the wait state, then the process will wait on an event that has already hap-
pened (and may never happen again). This race condition happens because there is no memory
associated with the event to indicate that the event has occurred; the only action of an event is
to change a set of processes from wait state to run state. This problem is relieved largely by the
fact that process switching can only occur in the kernel by explicit calls to the event-wait
mechanism. If the event in question is signaled by another process, then there is no problem.
But if the event is signaled by a hardware interrupt, then special care must be taken. These
synchronization races pose the biggest problem when UNIX is adapted to multiple-processor
configurations.3

The event-wait code in the kernel is like a co-routine linkage. At any time, all but one of
the processes has called event-wait. The remaining process is the one currently executing.
When it calls event-wait, a process whose event has been signaled is selected and that process
returns from its call to event-wait.

Which of the runable processes is to run next? Associated with each process is a priority.
The priority of a system process is assigned by the code issuing the wait on an event. This is
roughly equivalent to the response that one would expect on such an event. Disk events have
high priority, teletype events are low, and time-of-day events are very low. (From observation,
the difference in system process priorities has little or no performance impact.) All user-process
priorities are lower than the lowest system priority. User-process priorities are assigned by an
algorithm based on the recent ratio of the amount of compute time to real time consumed by
the process. A process that has used a lot of compute time in the last real-time unit is assigned
a low user priority. Because interactive processes are characterized by low ratios of compute to
real time, interactive response is maintained without any special arrangements.

The scheduling algorithm simply picks the process with the highest priority, thus picking
all system processes first and user processes second. The compute-to-real-time ratio is updated
every second. Thus, all other things being equal, looping user processes will be scheduled
round-robin with a 1-second quantum. A high-priority process waking up will preempt a run-
ning, low-priority process. The scheduling algorithm has a very desirable negative feedback
character. If a process uses its high priority to hog the computer, its priority will drop. At the
same time, if a low-priority process is ignored for a long time, its priority will rise.

3. I/0 SYSTEM

The 1/0 system is broken into two completely separate systems: the block 1/0 sys‘tem and
the character 1/O system. In retrospect, the names should have been ‘‘structured 1/0 and
“‘unstructured I/0,” respectively; while the term ‘‘block /0’ has some meaning, ‘‘character




170" is a complete misnomer.

Devices are characterized by a major device number, a minor device number, and a class
(block or character). For each class, there is an array of entry points into the device drivers.
The major device number is used to index the array when calling the code for a particular
device driver. The minor device number is passed to the device driver as an argument. The
minor number has no significance other than that attributed to it by the driver. Usually, the
driver uses the minor number to access one of several identical physical devices.

The use of the array of entry points (configuration table) as the only connection between
the system code and the device drivers is very important. Early versions of the system had a
much less formal connection with the drivers, so that it was extremely hard to handcraft
differently configured systems. Now it is possible to create new device drivers in an average of
a few hours. The configuration table in most cases is created automatically by a program that
reads the system’s parts list.

3.1. Block I/0 system

The model block 1/0 device consists of randomly addressed, secondary memory blocks of
512 bytes each. The blocks are uniformly addressed 0, 1, ... up to the size of the device. The
block device driver has the job of emulating this model on a physical device.

The block I/0 devices are accessed through a layer of buffering software. The system
maintains a list of buffers (typically between 10 and 70) each assigned a’device name and a
device address. This buffer pool constitutes a data cache for the block devices. On a read
request, the cache is searched for the desired block. If the block is found, the data are made
available to the requester without any physical 1/0. If the block is not in the cache, the least
recently used block in the cache is renamed, the correct device driver is called to fill up the
renamed buffer, and then the data are made available. Write requests are handied in an analo-
gous manner. The correct buffer is found and relabeled if necessary. The write is performed
simply by marking the buffer as ‘‘dirty.”” The physical 1/0 is then deferred until the buffer is
renamed.

The benefits in reduction of physical I/0 of this scheme are substantial, especially consid-
ering the file system implementation. There are, however, some drawbacks. The asynchronous
nature of the algorithm makes error reporting and meaningful user error handling almost
impossible. The cavalier approach to 1/0 error handling in the UNIX system is partly due to the
asynchronous nature of the block I/0 system. A second problem is in the delayed writes. If
the system stops unexpectedly, it is almost certain that there is a lot of logically complete, but
physically incomplete, I/0 in the buffers. There is a system primitive to flush all outstanding
1/0 activity from the buffers. Periodic use of this primitive helps, but does not solve, the prob-
lem. Finally, the associativity in the buffers can alter the physical I/0 sequence from that of
the logical I/0 sequence. This means that there are times when data structures on disk are
inconsistent, even though the software is careful to perform I/0 in the correct order. On non-
random devices, notably magnetic tape, the inversions of writes can be disastrous. The prob-
lem with magnetic tapes is ‘“‘cured” by allowing only one outstanding write request per drive.

3.2. Character 1I/0 system

The character 1/0 system consists of all devices that do not fall into the block I/0 model.
This includes the ‘““classical’” character devices such as communications lines, paper tape, and
line printers. It also includes magnetic tape and disks when they are not used in a stereotyped
way, for example, 80-byte physical records on tape and track-at-a-time disk copies. In short,
the character 1/O interface means ‘‘everything other than block.” I/0 requests from the user
are sent to the device driver essentially unaltered. The implementation of these requests is, of
course, up to the device driver. There are guidelines and conventions to help the implementa-
tion of certain types of device drivers.
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3.2.1. Disk drivers

Disk drivers are implemented with a queue of transaction records. Each record holds a
read/write flag, a primary memory address, a secondary memory address, and a transfer byte
count. Swapping is accomplished by passing such a record to the swapping device driver. The
block I/0 interface is implemented by passing such records with requests to fill and empty sys-
tem buffers. The character I/0 interface to the disk drivers create a transaction record that
points directly into the user area. The routine that creates this record also insures that the user
is not swapped during this I/O transaction. Thus by implementing the general disk driver, it is
possible to use the disk as a block device, a character device, and a swap device. The only
really disk-specific code in normal disk drivers is the pre-sort of transactions to minimize
latency for a particular device, and the actual issuing of the 1/0 request.

3.2.2. Character lists

Real character-oriented devices may be implemented using the common code to handle
character lists. A character list is a queue of characters. One routine puts a character on a
queue. Another gets a character from a queue. It is also possible to ask how many characters
are currently on a queue. Storage for all queues in the system comes from a single common
pool. Putting a character on a queue will allocate space from the common pool and link the
character onto the data structure defining the queue. Getting a character from a queue returns
the corresponding space to the pool.

A typical character-output device (paper tape punch, for example) is implemented by
passing characters from the user onto a character queue until some maximum number of char-
acters is on the queue. The I/0 is prodded to start as soon as there is anything on the queue
and, once started, it is sustained by hardware completion interrupts. Each time there is a com-
pletion interrupt, the driver gets the next character from the queue and sends it to the
hardware. The number of characters on the queue is checked and, as the count falls through
some intermediate level, an event (the queue address) is signaled. The process that is passing
characters from the user to the queue can be waiting on the event, and refill the queue to its
maximum when the event occurs.

A typical character input device (for example, a paper tape reader) is handled in a very
similar manner.

Another class of character devices is the terminals. A terminal is represented by three
character queues. There are two input queues (raw and canonical) and an output queue. Char-
acters going to the output of a terminal are handled by common code exactly as described
above. The main difference is that there is also code to interpret the output stream as ASCII
characters and to perform some translations, e.g., escapes for deficient terminals. Another
common aspect of terminals is code to insert real-time delay after certain control characters.

Input on terminals is a little different. Characters are collected from the terminal and
placed on a raw input queue. Some device-dependent code conversion and escape interpreta-
tion is handled here. When a line is complete in the raw queue, an event is signaled. The code
catching this signal then copies a line from the raw queue to a canonical queue performing the
character erase and line kill editing. User read requests on terminals can be directed at either
the raw or canonical queues.

3.2.3. Other character devices

Finally, there are devices that fit no general category. These devices are set up as charac-
ter 1/0 drivers. An example is a driver that reads and writes unmapped primary memory as an
1/0 device. Some devices are too fast to be treated a character at time, but do not fit the disk
I/0 mold. Examples are fast communications lines and fast line printers. These devices either
have their own buffers or “‘borrow’’ block I/0 buffers for a while and then give them back.




4. THE FILE SYSTEM

In the UNIX system, a file is a (one-dimensional) array of bytes. No other structure of
files is implied by the system. Files are attached anywhere (and possibly multiply) onto a
hierarchy of directories. Directories are simply files that users cannot write. For a further dis-
cussion of the external view of files and directories, see Ref. 4.

The UNIX file system is a disk data structure accessed completely through the block 1/0
system. As stated before, the canonical view of a ‘‘disk’ is a randomly addressable array of
512-byte blocks. A file system breaks the disk into four self-identifying regions. The first
block (address 0) is unused by the file system. It is left aside for booting procedures. The
second block (address 1) contains the so-called ‘‘super-block.”” This block, among other things,
contains the size of the disk and the boundaries of the other regions. Next comes the i-list, a
list of file definitions. Each file definition is a 64-byte structure, called an i-node. The offset of
a particular i-node within the i-list is called its i-number. The combination of device name
(major and minor numbers) and i-number serves to uniquely name a particular file. After the
i-list, and to the end of the disk, come free storage blocks that are available for the contents of
files.

The free space on a disk is maintained by a linked list of available disk blocks. Every
block in this chain contains a disk address of the next block in the chain. The remaining space
contains the address of up to 50 disk blocks that are also free. Thus with one I/0 operation,
the system obtains 50 free blocks and a pointer where to find more. The disk allocation algo-
rithms are very straightforward. Since all allocation is in fixed-size blocks and there is strict
accounting of space, there is no need to compact or garbage collect. However, as disk space
becomes dispersed, latency gradually increases. Some installations choose to occasionally com-
pact disk space to reduce latency.

An i-node contains 13 disk addresses. The first 10 of these addresses point directly at the
first 10 blocks of a file. If a file is larger than 10 blocks (5,120 bytes), then the eleventh
address points at a block that contains the addresses of the next 128 blocks of the file. If the
file is still larger than this (70,656 bytes), then the twelfth block points at up to 128 blocks,
each pointing to 128 blocks of the file. Files yet larger (8,459,264 bytes) use the thirteenth
address for a ‘“‘triple indirect’’ address. The algorithm ends here with the maximum file size of
1,082,201,087 bytes.

A logical directory hierarchy is added to this flat physical structure simply by adding a new
type of file, the directory. A directory is accessed exactly as an ordinary file. It contains 16-
byte entries consisting of a 14-byte name and an i-number. The root of the hierarchy is at a
known i-number (viz.,, 2). The file system structure allows an arbitrary, directed graph of direc-
tories with regular files linked in at arbitrary places in this graph. In fact, very early UNIX sys-
tems used such a structure. Administration of such a structure became so chaotic that later sys-
tems were restricted to a directory tree. Even now, with regular files linked multiply into arbi-
trary places in the tree, accounting for space has become a problem. It may become necessary
to restrict the entire structure to a tree, and allow a new form of linking that is subservient to
the tree structure.

The file system allows easy creation, easy removal, easy random accessing, and very easy
space allocation. With most physical addresses confined to a small contiguous section of disk, it
is also easy to dump, restore, and check the consistency of the file system. Large files suffer
from indirect addressing, but the cache prevents most of the implied physical I/0 without
adding much execution. The space overhead properties of this scheme are quite good. For
example, on one particular file system, there are 25,000 files containing 130M bytes of data-file
content. The overhead (i-node, indirect blocks, and last block breakage) is about 11.5M bytes.
The directory structure to support these files has about 1,500 directories containing 0.6M bytes
of directory content and about 0.5M bytes of overhead in accessing the directories. Added up
any way, this comes out to less than a 10 percent overhead for actual stored data. Most sys-
tems have this much overhead in padded trailing blanks alone.
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4.1. File system implementation

Because the i-node defines a file, the implementation of the file system centers around
access to the i-node. The system maintains a table of all active i-nodes. As a new file is
accessed, the system locates the corresponding i-node, ailocates an i-node table entry, and reads
the i-node into primary memory. As in the buffer cache, the table entry is considered to be the
current version of the i-node. Modifications to the i-node are made to the table entry. When
the last access to the i-node goes away, the table entry is copied back to the secondary store i-
list and the table entry is freed. :

All I/0 operations on files are carried out with the aid of the corresponding i-node table
entry. The accessing of a file is a straightforward implementation of the algorithms mentioned
previously. The user is not aware of i-nodes and i-numbers. References to the file system are
made in terms of path names of the directory tree. Converting a path name into an i-node
table entry is also straightforward. Starting at some known i-node (the root or the current
directory of some process), the next component of the path name is searched by reading the
directory. This gives an i-number and an implied device (that of the directory). Thus the next
i-node table entiy can be accessed. If that was the last component of the path name, then this
i-node is the result. If not, this i-node is the directory needed to look up the next component
of the path name, and the algorithm is repeated.

The user process accesses the file system with certain primitives. The most common of
these are open, create, read, write, seek, and close. The data structures maintained are shown
in Fig. 2.

PER-USER QPEN
FILE TABLE

/1/

SWAPPED

"—‘1 PER/USER
.._/]/-—L- .

OPEN FiLE ACTIVE I-NODE
TABLE TABLE

) 4

RESIDENT

"T PER/SYSTEM

¢ 1

I:NODE SECONDARY
STORAGE
FILE Fire sysTem
FILE —a( MAPPING -
ALGORITHMS

/‘/

Fig. 2—File system data structure.

In the system data segment associated with a user, there is room for some (usually between 10
and 50) open files. This open file table consists of pointers that can be used to access
corresponding i-node table entries. Associated with each of these open files is a current I/0
pointer. This is a byte offset of the next read/write operation on the file. The system treats
each read/write request as random with an implied seek to the I/O pointer. The user usually
thinks of the file as sequential with the I/O pointer automatically counting the number of bytes
that have been read/written from the file. The user may, of course, perform random 1/0 by
setting the 1/0 pointer before reads/writes.

With file sharing, it is necessary to allow related processes to share a common I/O pointer
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and yet have separate 1/0 pointers for independent processes that access the same file. With
these two conditions, the I/0 pointer cannot reside in the i-node table nor can it reside in the
list of open files for the process. A new table (the open file table) was invented for the sole
purpose of holding the I/O pointer. Processes that share the same open file (the result of
forks) share a common open file table entry. A separate open of the same file will only share
the i-node table entry, but will have distinct open file table entries.

The main file system primitives are implemented as follows. open converts a file system
path name into an i-node table entry. A pointer to the i-node table entry is placed in a newly
created open file table entry. A pointer to the file table entry is placed in the system data seg-
ment for the process. create first creates a new i-node entry, writes the i-number into a direc-
- tory, and then builds the same structure as for an open. read and write just access the i-node
entry as described above. seek simply manipulates the I/O pointer. No physical seeking is
done. close just frees the structures built by open and create. Reference counts are kept on
the open file table entries and the i-node table entries to free these structures after the last
reference goes away. unlink simply decrements the count of the number of directories point-
ing at the given i-node. When the last reference to an i-node table entry goes away, if the i-
node has no directories pointing to it, then the file is removed and the i-node is freed. This
delayed removal of files prevents problems arising from removing active files. A file may be
removed while still open. The resulting unnamed file vanishes when the file is closed. This is
a method of obtaining temporary files.

There is a type of unnamed FIFO file called a pipe. Implementation of pipes consists of
implied seeks before each read or write in order to implement first-in-first-out. There are also
checks and synchronization to prevent the writer from grossly outproducing the reader and to
prevent the reader from overtaking the writer.

4.2. Mounted file systems.

The file system of a UNIX system starts with some designated block device formatted as
described above to contain a hierarchy. The root of this structure is the root of the UNIX file
system. A second formatted block device may be mounted at any leaf of the current hierarchy.
This logically extends the current hierarchy. The implementation of mounting is trivial. A
mount table is maintained containing pairs of designated leaf i-nodes and block devices. When
converting a path name into an i-node, a check is made to see if the new i-node is a designated
leaf. If it is, the i-node of the root of the block device replaces it.

Allocation of space for a file is taken from the free pool on the device on which the file
lives. Thus a file system consisting of many mounted devices does not have a common pool of
free secondary storage space. This separation of space on different devices is necessary to allow
easy unmounting of a device.

4.3. Other system functions

There are some other things that the system does for the user—a little accounting, a little
tracing/debugging, and a little access protection. Most of these things are not very well
developed because our use of the system in computing science research does not need them.
There are some features that are missed in some applications, for example, better inter-process
communication.

The UNIX kernel is an I/O muiltiplexer more than a complete operating system. This is as
it should be. Because of this outlook, many features are found in most other operating systems
that are missing from the UNIX kernel. For example, the UNIX kernel does not support file
access methods, file disposition, file formats, file maximum size, spooling, command language,
logical records, physical records, assignment of logical file names, logical file names, more than
one character set, an operator’s console, an operator, log-in, or log-out. Many of these things
are symptoms rather than features. Many of these things are implemented in user software
using the kernel as a tool. A good example of this is the command language.5 Each user may
have his own command language. Maintenance of such code is as easy as maintaining user
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code. The idea of implementing ‘‘system’ code with general user primitives comes directly
from MULTICS.® ‘
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The UNIX I/0O System

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

This paper gives an overview of the workings of the UNIXT I/0 system. It was written
with an eye toward providing guidance to writers of device driver routines, and is oriented more
toward describing the environment and nature of device drivers than the implementation of
that part of the file system which deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file Sys-
tem as discussed in the paper ‘““The UNIX Time-sharing System.’” A more detailed discussion
appears in “UNIX Implementation;’’ the current document restates parts of that one, but is
still more detailed. It is most useful in conjunction with a copy of the system code, since it is
basically an exegesis of that code. %

Device Classes

There are two classes of device: block and character. The block interface is suitable for
devices like disks, tapes, and DECtape which work, or can work, with addressible 512-byte
blocks. Ordinary magnetic tape just barely fits in this category, since by use of forward and
backward spacing any block cah be read, even though blocks can be written only at the end of
the tape. Block devices can at least potentially contain a mounted file system. The interface to
block devices is very highly structured; the drivers for these devices share a great many rou-
tines as well as a pool of buffers.

Character-type devices have a much more straightforward interface, although more work
must be done by the driver itself.

Devices of both types are named by a major and a minor device number. These numbers
are generally stored as an integer with the minor device number in the low-order 8 bits and the
major device number in the next-higher 8 bits; macros major and minor are available to access
these numbers. The major device number selects which driver will deal with the device; the
minor device number is not used by the rest of the system but is passed to the driver at
appropriate times. Typically the minor number selects a subdevice attached to a given con-
troller, or one of several similar hardware interfaces.

The major device numbers for block and character devices are used as indices in separate
tables; they both start at 0 and therefore overlap.

Overview of 1/0

The purpose of the open and crear system calls is to set up entries in three separate system
tables. The first of these is the u_ofile table, which is stored in the system’s per-process data
area u. This table is indexed by the file descriptor returned by the open or creat, and is accessed
during a read, write, or other operation on the open file. An entry contains only a pointer to the
corresponding entry of the file table, which is a per-system data base. There is one entry in the
Jfile table for each instance of open or creat. This table is per-system because the same instance
of an open file must be shared among the several processes which can result from Jorks after

TUNIX is a Trademark of Bell Laboratories.

Lo
g
"
s
- Q
sl
ey
i €D
=




-2

the file is opened. A file table entry contains flags which indicate whether the file was open for
reading or writing or is a pipe, and a count which is used to decide when all processes using the
entry have terminated or closed the file (so the entry can be abandoned). There is also a 32-bit
file offset which is used to indicate where in the file the next read or write will take place.
Finally, there is a pointer to the entry for the file in the inode table, which contains a copy of
the file’s i-node.

Certain open files can be designated ‘‘multiplexed” files, and several other flags apply to
such channels. In such a case, instead of an offset, there is a pointer to an associated multiplex
channel table. Muitiplex channels will not be discussed here.

An entry in the file table corresponds precisely to an instance of open or creat; if the same
file is opened several times, it will have several entries in this table. However, there is at most
one entry in the inode table for a given file. Also, a file may enter the inode table not only
because it is open, but also because it is the current directory of some process or because it is a
special file containing a currently-mounted file system.

An entry in the inode table differs somewhat from the corresponding i-node as stored on
the disk; the modified and accessed times are not stored, and the entry is augmented by a flag
word containing information about the entry, a count used to determine when it may be
allowed to disappear, and the device and i-number whence the entry came. Also, the several
block numbers that give addressing information for the file are expanded from the 3-byte,
compressed format used on the disk to ffill /ong quantities.

During the processing of an-open or creat call for a special file, the system always calls the
device’s open routine to allow for any special processing required (rewinding a tape, turning on
the data-terminal-ready lead of a modem, etc.). However, the close routine is called only when
the last process closes a file, that is, when the i-node table entry is being deallocated. Thus it is
not feasible for a device to maintain, or depend on, a count of its users, although it is quite
possible to implement an exclusive-use device which cannot be reopened until it has been
closed.

When a read or write takes place, the user’s arguments and the file table entry are used to
set up the variables w.u_base, u.u_count, and u.u_offset which respectively contain the (user)
address of the [/0 target area, the byte-count for the transfer, and the current location in the
file. If the file referred to is a character-type special file, the appropriate read or write routine is
called; it is responsible for transferring data and updating the count and current location
appropriately as discussed below. Otherwise, the current location is used to calculate a logical
block number in the file. If the file is an ordinary file the logical block number must be
mapped (possibly using indirect blocks) to a physical block number; a block-type special file
need not be mapped. This mapping is performed by the bmap routine. In any event, the
resulting physical block number is used, as discussed below, to read or write the appropriate
device.

Character Device Drivers

The cdevsw table specifies the interface routines present for character devices. Each dev-
ice provides five routines: open, close, read, write, and special-function (to implement the ioci/
system call). Any of these may be missing. If a call on the routine should be ignored, (e.g.
open on non-exclusive devices that require no setup) the cdevsw entry can be given as nulldev; if
it should be considered an error, (e.g. write on read-only devices) nodev is used. For terminals,
the cdevsw structure also contains a pointer to the rry structure associated with the terminal.

The open routine is called each time the file is opened with the full device number as
argument. The second argument is a flag which is non-zero only if the device is to be written
upon,

The close routine is called only when the file is closed for the last time, that is when the
very last process in which the file is open closes it. This means it is not possible for the driver
to maintain its own count of its users. The first argument is the device number; the second is a
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flag which is non-zero if the file was open for writing in the process which performs the final
close.

When write is called, it is supplied the device as argument. The per-user variable
u.u_count has been set to the number of characters indicated by the user; for character devices,
this number may be 0 initially. w.u_base is the address supplied by the user from which to start
taking characters. The system may call the routine internally, so the flag u.u_segflg is supplied
that indicates, if on, that u.u_base refers to the system address space instead of the user’s.

The write routine should copy up to w.u_count characters from the user’s buffer to the
device, decrementing w.u_count for each character passed. For most drivers, which work one
character at a time, the routine cpass( ) is used to pick up characters from the user’s buffer.
Successive calls on it return the characters to be written until u.u_count goes to 0 or an error
occurs, when it returis —1. Cpass takes care of interrogating u.u_segflg and updating u. u_count,

Write routines which want to transfer a probably large number of characters into an inter-
nal buffer may also use the routine iomove(buffer, offset, count, flag) which is faster when many
characters must be moved. Jomove transfers up to count characters into the buffer starting offset
bytes from the start of the buffer; flag should be B WRITE (which is 0) in the write case. Cau-
tion: the caller is responsible for making sure the count is not too large and is non-zero. As an
efficiency note, iomove is much slower if any of buffer +offset, count or u.u_base is odd.

The device’s read routine is called under conditions similar to write, except that w.u_count
is guaranteed to be non-zero. To return characters to the user, the routine passc(c) is available;
it takes care of housekeeping like cpass and returns —1 as the last character specified by
u.u_count is returned to the user; before that time, 0 is returned. fomove is also usable as with
write; the flag should be B_READ but the same cautions apply.

The “‘special-functions’ routine is invoked by the sty and grry system calls as follows: ( *n)
(dev, v) where p is a pointer to the device’s routine, dev is the device number, and v is a vector.
In the gy case, the device is supposed to place up to 3 words of status information into the
vector; this will be returned to the caller. In the sty case, vis 0; the device should take upto 3
words of control information from the array w.u_arg/0...2].

Finally, each device should have appropriate interrupt-time routines. When an interrupt
occurs, it is turned into a C-compatible call on the devices’s interrupt routine. The interrupt-
catching mechanism makes the low-order four bits of the “‘new PS” word in the trap vector for
the interrupt available to the interrupt handler. This is conventionally used by drivers which
deal with multiple similar devices to encode the minor device number. After the interrupt has
been processed, a return from the interrupt handler will return from the interrupt itself.

A number of subroutines are available which are useful to character device drivers. Most
of these handlers, for example, need a place to buffer characters in the internal interface
between their “top half’’ (read/write) and “‘bottom half”’ (interrupt) routines. For relatively
low data-rate devices, the best mechanism is the character queue maintained by the routines
getc and putc. A queue header has the structure

struct {
int c_cc; /* character count */
char  *c_cf; /* first character */
char  *c_cl; /* last character */

} queue;

A character is placed on the end of a queue by purc(c, &queue) where c is the character and
queue is the queue header. The routine returns —1 if there is no space to put the character, 0
otherwise. The first character on the queue may be retrieved by gerc(&queue) which returns
either the (non-negative) character or —1 if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the system
and in the standard system there are only some 600 character slots available. Thus device
handlers, especially write routines, must take care to avoid gobbling up excessive numbers of
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characters.

The other major help available to device handiers is the sleep-wakeup mechanism. The
call sleep(event, priority) causes the process to wait (allowing other processes to run) until the
event occurs;, at that time, the process is marked ready-to-run and the call will return when
there is no process with higher priority.

The call wakeup(event) indicates that the event has happened, that is, causes processes
sleeping on the event to be awakened. The event is an arbitrary quantity agreed upon by the
sleeper and the waker-up. By convention, it is the address of some data area used by the
driver, which guarantees that events are unique.

Processes sleeping on an event should not assume that the event has really happened;
they should check that the conditions which caused them to sleep no longer hold.

Priorities can range from 0 to 127, a higher numerical value indicates a less-favored
scheduling situation. A distinction is made between processes sleeping at priority less than the
parameter PZERO and those at numerically larger priorities. The former cannot be interrupted
by signals, although it is conceivable that it may be swapped out. Thus it is a bad idea to sleep
with priority less than PZERO on an event which might never occur. On the other hand, calls
to sieep with larger priority may never return if the process is terminated by some signal in the
meantime. Incidentally, it is a gross error to cail sleep in a routine called at interrupt time,
since the process which is running is almost certainly not the process which should go to sleep.
Likewise, none of the variables in the user area ‘‘u.”’ should be touched, let alone changed, by
an interrupt routine.

If a device driver wishes to wait for some event for which it is inconvenient or impossible
to supply a wakeup, (for example, a device going on-line, which does not generally cause an
interrupt), the call sleep(&lbolr, priority) may be given. Lbolt is an external cell whose address is
- awakened once every 4 seconds by the clock interrupt routine.

The routines spl4( ), spi5( ), spl6( ), spl7( ) are available to set the processor priority level
as indicated to avoid inconvenient interrupts from the device.

If a device needs to know about real-time intervals, then timeout(func, arg, interval) will be
useful. This routine arranges that after interval sixtieths of a second, the func will be called with
arg as argument, in the style (*func)(arg). Timeouts are used, for example, to provide real-
time delays after function characters like new-line and tab in typewriter output, and to ter-
minate an attempt to read the 201 Dataphone dp if there is no response within a specified
number of seconds. Notice that the number of sixtieths of a second is limited to 32767, since
it must appear to be positive, and that only a bounded number of timeouts can be going on at
once. Also, the specified func is called at clock-interrupt time, so it should conform to the
requirements of interrupt routines in general.

The Block-device Interface

Handling of block devices is mediated by a collection of routines that manage a set of
buffers containing the images of blocks of data on the various devices. The most important
purpose of these routines is to assure that several processes that access the same block of the
same device in multiprogrammed fashion maintain a consistent view of the data in the block.
A secondary but still important purpose is to increase the efficiency of the system by keeping
in-core copies of blocks that are being accessed frequently. The main data base for this
mechanism is the table of buffers buf. Each buffer header contains a pair of pointers (b_forw,
b_back) which maintain a doubly-linked list of the buffers associated with a particular block
device, and a pair of pointers (av_forw, av_back) which generally maintain a doubly-linked list
of blocks which are ‘‘free,” that is, eligible to be reallocated for another transaction. Buffers
that have I/O in progress or are busy for other purposes do not appear in this list. The buffer
header also contains the device and block number to which the buffer refers, and a pointer to
the actual storage associated with the buffer. There is a word count which is the negative of the
number of words to be transferred to or from the but’fer; there is also an error byte and a
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residual word count used to communicate information from an I/O routine to its caller.
Finally, there is a flag word with bits indicating the status of the buffer. These flags will be dis-
cussed below.

Seven routines constitute the most important part of the interface with the rest of the sys-
tem. Given a device and block number, both bread and getblk return a pointer to a buffer
header for the block; the difference is that bread is guaranteed to return a buffer actually con-
taining the current data for the block, while gerbik returns a buffer which contains the data in
the block only if it is already in core (whether it is or not is indicated by the B.DONE bit; see
below). In either case the buffer, and the corresponding device block, is made ‘‘busy,” so that
other processes referring to it are obliged to wait until it becomes free. Gerblk is used, for
example, when a block is about to be totally rewritten, so that its previous contents are not use-
ful; still, no other process can be allowed to refer to the block until the new data is placed into
it.

The breada routine is used to implement read-ahead. it is logically similar to bread, but
takes as an additional argument the number of a block (on the same device) to be read asyn-
chronously after the specifically requested block is available.

Given a pointer to a buffer, the brelse routine makes the buffer again available to other
processes. It is called, for example, after data has been extracted following a bread. There are
three subtly-different write routines, all of which take a buffer pointer as argument, and all of
which logically release the buffer for use by others and place it on the free list. Bwrite puts the
buffer on the appropriate device queue, waits for the write to be done, and sets the user’s error
flag if required. Bawrite places the buffer on the device’s queue, but does not wait for cém'ple-
tion, so that errors cannot be reflected directly to the user. Bdwrite does not start any 1/0
operation at all, but merely marks the buffer so that if it happens to be grabbed from the free
list to contain data from some other block, the data in it will first be written out.

Bwrite is used when one wants to be sure that I/0 takes place correctly, and that errors are
reflected to the proper user; it is used, for example, when updating i-nodes. Bawrite is useful
when more overlap is desired (because no wait is required for I/0 to finish) but when it is rea-
sonably certain that the write is really required. Bdwrite is used when there is doubt that the
write is needed at the moment. For example, bdwrite is called when the last byte of a write sys-
tem call falls short of the end of a block, on the assumption that another write will be given
soon which will re-use the same block. On the other hand, as the end of a block is passed,
bawrite is called, since probably the block will not be accessed again soon and one might as well
start the writing process as soon as possible.

In any event, notice that the routines getblk and bread dedicate the given block exclusively
to the use of the caller, and make others wait, while one of brelse, bwrite, bawrite, or bdwrite
must eventually be called to free the block for use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the
buffer. Since they provide one important channel for information between the drivers and the
block 1/0 system, it is important to understand these flags. The following names are manifest
constants which select the associated flag bits.

B_READ This bit is set when the buffer is handed to the device strategy routine (see below)
to indicate a read operation. The symbol B_WRITE is defined as 0 and does not
define a flag; it is provided as a mnemonic convenience to callers of routines like
swap which have a separate argument which indicates read or write.

B_DONE This bit is set to 0 when a block is handed to the the device strategy routine and is
' turned on when the operation completes, whether normally as the result of an error.
It is also used as part of the return argument of gerblk to indicate if 1 that the

returned buffer actually contains the data in the requested block.
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B_ERROR This bit may be set to 1 when B_DONE is set to indicate that an 1/0 or other error
occurred. If it is set the b_error byte of the buffer header may contain an error code
if it is non-zero. If b_error is O the nature of the error is not specified. Actually no
driver at present sets b _error; the latter is provided for a future improvement
whereby a more detailed error-reporting scheme may be implemented.

B BUSY This bit indicates that the buffer header is not on the free list, i.e. is dedicated to
someone’s exclusive use. The buffer still remains attached to the list of blocks asso-
ciated with its device, however. When getblk (or bread, which calls it) searches the
buffer list for a given device and finds the requested block with this bit on, it sleeps
until the bit clears.

B PHYS This bit is set for raw I/O transactions that need to allocate the Unibus map on an
11/70.

B_MAP This bit is set on buffers that have the Unibus map allocated, so that the iodone rou-
tine knows to deallocate the map.

B_WANTEDThis flag is used in conjunction with the B_BUSY bit. Before sleeping as described
just above, getblk sets this flag. Conversely, when the block is freed and the busy bit
goes down (in brelse) a wakeup is given for the block header whenever B WANTED
is on. This strategem avoids the overhead of having to call wakeup every time a
buffer is freed on the chance that someone might want it.

B_AGE ' This bit may be set on buffers just before releasing them; if it is on, the buffer is
placed at the head of the free list, rather than at the tail. It is a performance heuris-
tic used when the caller judges that the same block will not soon be used again.

B_ASYNC This bit is set by bawrite to indicate to the appropriate device driver that the buffer
should be released when the write has been finished, usually at interrupt time. The
difference between bwrite and bawrite is that the former starts I/O, waits until it is
done, and frees the buffer. The latter merely sets this bit and starts I/O. The bit
indicates that relse should be called for the buffer on completion.

B_DELWRIThis bit is set by bdwrite before releasing the buffer. When gerblk, while searching
for a free block, discovers the bit is 1 in a buffer it would otherwise grab, it causes
the block to be written out before reusing it.

Block Device Drivers

The bdevsw table contains the names of the interface routines and that of a table for each
block device.

Just as for character devices, block device drivers may supply an open and a close routine
called respectively on each open and on the final close of the device. Instead of separate read
and write routines, each block device driver has a strategy routine which is called with a pointer
to a buffer header as argument. As discussed, the buffer header contains a read/write flag, the
core address, the block number, a (negative) word count, and the major and minor device
number. The role of the strategy routine is to carry out the operation as requested by the
information in the buffer header. When the transaction is complete the B_DONE (and possibly
the B_ERROR) bits should be set. Then if the B_ASYNC bit is set, brelse should be called,
otherwise, wakeup. In cases where the device is capable, under error-free operation, of
transferring fewer words than requested, the device’s word-count register should be placed in
the residual count slot of the buffer header; otherwise, the residual count should be set to 0.
This particular mechanism is really for the benefit of the magtape driver; when reading this
device records shorter than requested are quite normal, and the user should be told the actual
length of the record.

Although the most usual argument to the strategy routines is a genuine buffer header
allocated as discussed above, all that is actually required is that the argument be a pointer to a
place containing the appropriate information. For example the swap routine, which manages
movement of core images to and from the swapping device, uses the strategy routine for this
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device. Care has to be taken that no extraneous bits get turned on in the flag word.

The device’s table specified by bdevsw has a byte to contain an active flag and an error
count, a pair of links which constitute the head of the chain of buffers for the device (b_forw,
b_back), and a first and last pointer for a device queue. Of these things, all are used solely by
the device driver itself except for the buffer-chain pointers. Typically the flag encodes the state
of the device, and is used at a minimum to indicate that the device is currently engaged in
transferring information and no new command should be issued. The error count is useful for
counting retries when errors occur. The device queue is used to remember stacked requests; in
the simplest case it may be maintained as a first-in first-out list. Since buffers which have been
handed over to the strategy routines are never on the list of free buffers, the pointers in the
buffer which maintain the free list (av_forw, av_back) are also used to contain the pointers
which maintain the device queues.

A couple of routines are provided which are useful to block device drivers. iodone(bp)
arranges that the buffer to which bp points be released or awakened, as appropriate, when the
strategy module has finished with the buffer, either normally or after an error. (In the latter
case the B_ERROR bit has presumably been set.)

The routine geterror(bp) can be used to examine the error bit in a buffer header and
arrange that any error indication found therein is reflected to the user. It may be called only in
the non-interrupt part of a driver when 1/0 has completed (B_DONE has been set).

Raw Block-device 1/0

A scheme has been set up whereby block device drivers may provide the ability to
transfer information directly between the user’s core image and the device without the use of
buffers and in blocks as large as the caller requests. The method involves setting up a
character-type special file corresponding to the raw device and providing read and write routines
which set up what is usually a private, non-shared buffer header with the appropriate informa-
tion and call the device’s strategy routine. If desired, separate open and close routines may be
provided but this is usually unnecessary. A special-function routine might come in handy,
especially for magtape.

# A great deal of work has to be done to generate the ‘‘appropriate information’’ to put in -

the argument buffer for the strategy module; the worst part is to map relocated user addresses
to physical addresses. Most of this work is done by physio(strar, bp, dev, rw) whose arguments
are the name of the strategy routine sirar, the buffer pointer bp, the device number dev, and a
read-write flag rw whose value is either B READ or B_WRITE. Physio makes sure that the
user’s base address and count are even (because most devices work in words) and that the core
area affected is contiguous in physical space; it delays until the buffer is not busy, and makes it
busy while the operation is in progress; and it sets up user error return information.
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A Tour through the UNIXt C Compiler

D. M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

The Intermediate Language

Communication between the two phases of the compiler proper is carried out by means of
a pair of intermediate files. These files are treated as having identical structure, although the
second file contains only the code generated for strings. It is convenient to write strings out
separately to reduce the need for multiple location counters in a later assembly phase.

The intermediate language is not machine-independent; its structure in a number of ways
reflects the fact that C was originally a one-pass compiler chopped in two to reduce the max-
imum memory requirement. In fact, only the latest version of the compiler has a complete
intermediate language at all. Until recently, the first phase of the compiler generated assembly
code for those constructions it could deal with, and passed expression parse trees, in absolute
binary form, to the second phase for code generation. Now, at least, all inter-phase informa-
tion is passed in a describable form, and there are no absolute pointers involved, so the cou-
pling between the phases is not so strong.

The areas in which the machine (and system) dependencies are most noticeable are

1. Storage allocation for automatic variables and arguments has already been performed, and
nodes for such variables refer to them by offset from a display pointer. Type conversion
(for example, from integer to pointer) has already occurred using the assumption of byte
addressing and 2-byte words. :

2. Data representations suitable to the PDP-11 are assumed; in particular, floating point con-
stants are passed as four words in the machine representation.

As it happens, each intermediate file is represented as a sequence of binary numbers
without any explicit demarcations. It consists of a sequence of conceptual lines, each headed by
an operator, and possibly containing various operands. The operators are small numbers; to
assist in recognizing failure in synchronization, the high-order byte of each operator word is
always the octal number 376. Operands are either 16-bit binary numbers or strings of charac-
ters representing names. Each name is terminated by a null character. There is no alignment
requirement for numerical operands and so there is no padding after a name string.

The binary representation was chosen to avoid the necessity of converting to and from
character form and to minimize the size of the files. It would be very easy to make each
operator-operand ‘line’ in the file be a genuine, printable line, with the numbers in octal or
decimal; this in fact was the representation originally used.

The operators fall naturally into two classes: those which represent part of an expression,
and all others. Expressions are transmitted in a reverse-Polish notation; as they are being read,
a tree is built which is isomorphic to the tree constructed in the first phase. Expressions are
passed as a whole, with no non-expression operators intervening. The reader maintains a stack;
each leaf of the expression tree (name, constant) is pushed on the stack; each unary operator
replaces the top of the stack by a node whose operand is the old top-of-stack; each binary

+UNIX is a Trademark of Bell Laboratories.
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operator replaces the top pair on the stack with a single entry. When the expression is com-
plete there is exactly one item on the stack. Following each expression is a special operator
which passes the unique previous expression to the ‘optimizer’ described below and then to the
code generator.

Here is the list of operators not themselves part of expressions.

EOF
marks the end of an input file.

BDATA flag data ...

specifies a sequence of bytes to be assembled as static data. It is followed by pairs of
words; the first member of the pair is non-zero to indicate that the data continue; a zero
flag is not followed by data and terminates the operator. The data bytes occupy the low-
order part of a word.

WDATA flag data ...

specifies a sequence of words to be assembled as static data; it is identical to the BDATA
operator except that entire words, not just bytes, are passed.

PROG
means that subsequent information is to be compiled as program text.

DATA
means that subsequent information is to be compiled as static data.

BSS
means that subsequent information is to be compiled as unitialized static data.

SYMDEF name

means that the symbol name is an external name defined in the current program. It is
produced for each external data or function definition.

CSPACE name size

indicates that the name refers to a data area whose size is the specified number of bytes.
It is produced for external data definitions without explicit initialization.

SSPACE size

indicates that size bytes should be set aside for data storage. It is used to pad out short
initializations of external data and to reserve space for static (internal) data. It will be
preceded by an appropriate label.

EVEN

is produced after each external data definition whose size is not an integral number of
words. It is not produced after strings except when they initialize a character array.

NLABEL name

is produced just before a BDATA or WDATA initializing external data, and serves as a
label for the data.




RLABEL name
is produced just before each function definition, and labels its entry point.

SNAME name number

is produced at the start of each function for each static variable or label declared therein.
Subsequent uses of the variable will be in terms of the given number. The code genera-
tor uses this only to produce a debugging symbol table.

ANAME name number

Likewise, each automatic variable’s name and stack offset is specified by this operator.
Arguments count as automatics.

RNAME name number
Each register variable is similarly named, with its register number.

SAVE number

produces a register-save sequence at the start of each function, just after its label (RLA-
BEL).

SETREG number

is used to indicate the number of registers used for register variables. It actually gives the
register number of the lowest free register; it is redundant because the RNAME operators
could be counted instead.

PROFIL

is produced before the save sequence for functions when the profile option is turned on.
It produces code to count the number of times the function is called.

SWIT deflab line label value ...

is produced for switches. When control flows into it, the value being switched on is in the
register forced by RFORCE (below). The switch statement occurred on the indicated line
of the source, and the label number of the default location is defiab. Then the operator is
followed by a sequence of label-number and value pairs; the list is terminated by a 0 label.

LABEL number
generates an internal label. It is referred to elsewhere using the given number.

BRANCH number
indicates an unconditional transfer to the internal label number given.

RETRN

produces the return sequence for a function. It occurs only once, at the end of each func-
tion.

EXPR line

causes the expression just preceding to be compiled. The argument is the line number in
the source where the expression occurred.
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NAME class type name

NAME class type number

indicates a name occurring in an expression. The first form is used when the name is
external; the second when the name is automatic, static, or a register. Then the number
indicates the stack offset, the label number, or the register number as appropriate. Class
and type encoding is described elsewhere.

CON yype value

transmits an integer constant. This and the next two operators occur as part of expres-
sions. :

FCON 1ype 4-word-value
transmits a floating constant as four words in PDP-11 notation.

SFCON uwpe value

transmits a floating-point constant whose value is correctly represented by its high-order
word in PDP-11 notation.

NULL

indicates a null argument list of a function call in an expression; call is a binary operator
whose second operand is the argument list.

CBRANCH label cond

produces a conditional branch.. It is an expression operator, and will be followed by an
EXPR. The branch to the label number takes place if the expression’s truth value is the
same as that of cond. That is, if cond=1 and the expression evaluates to true, the branch
is taken.

binary-operator 1ype

There are binary operators corresponding to each such source-language operator; the type
of the result of each is passed as well. Some perhaps-unexpected ones are: COMMA,
which is a right-associative operator designed to simplify right-to-left evaluation of func-
tion arguments; prefix and postfix ++ and ——, whose second operand is the increment
amount, as a CON; QUEST and COLON, to express the conditional expression as
‘a?(b:c)’; and a sequence of special operators for expressing relations between pointers, in
case pointer comparison is different from integer comparison (e.g. unsigned).

unary-operator fype

There are also numerous unary operators. These include ITOF, FTOI, FTOL, LTOF,
ITOL, LTOI which convert among floating, long, and integer; JUMP which branches
indirectly through a label expression; INIT, which compiles the value of a constant
expression used as an initializer; RFORCE, which is used before a return sequence or a
switch to place a value in an agreed-upon register.

Expression Optimization

Each expression tree, as it is read in, is subjected to a fairly comprehensive analysis. This
is performed by the optim routine and a number of subroutines; the major things done are
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1.  Modifications and simplifications of the tree so its value may be computed more efficiently
and conveniently by the code generator.

2.  Marking each interior node with an estimate of the number of registers:required to evalu-
ate it. This register count is needed to guide the code generation algorithm.

One thing that is definitely not done is disco_very or exploitation of common subexpres-
sions, nor is this done anywhere in the compiler.

The basic organization is simple: a depth-first scan of the tree. Optim does nothing for
leaf nodes (except for automatics; see below), and calls unoptim to handle unary operators. For
binary operators, it calls itself to process the operands, then treats each operator separately.
One important case is commutative and associative operators, which are handled by acommute.

Here is a brief catalog of the transformations carried out by by oprim itself. It is not
intended to be complete. Some of the transformations are machine-dependent, although they
may well be useful on machines other than the PDP-11.

1.  As indicated in the discussion of unoptim below, the optimizer can create a node type
corresponding to the location addressed by a register plus a constant offset. Since this is
precisely the implementation of automatic variables and arguments, where the register is
fixed by convention, such variables are changed to the new form to simplify later process-
ing. o

Associative and commutative operators are processed by the special routine acommute.

After processing by acommute, the bitwise & operator is turned into a new andn operator;
‘a & b’ becomes ‘a andn "b’. This is done because the PDP-11 provides no and operator,
but only andn. A similar transformation takes place for ‘=&’.

4.  Relationals are turned around so the more complicated expression is on the left. (So that
‘2 > f(x)” becomes ‘f(x) < 2’). This improves code generation since the algorithm
prefers to have the right operand require fewer registers than the left.

5. An expression minus a constant is turned into the expression plus the negative constant,
and the acommute routine is called to take advantage of the properties of addition.

6.  Operators with constant operands are evaluated.

7.  Right shifts (unless by 1) are turned into left shifts with a negated right operand, since
the PDP-11 lacks a general right-shift operator.

8. A number of special cases are simplified, such as division or multiplication by 1, and
shifts by 0.

The unoptim routine performs the same sort of processing for unary operators.

1. “*&x’ and ‘&*x’ are simplified to ‘x’.

2. If r is a register and c is a constant or the address of a static or external variable, the
expressions ‘“*(r-+c¢)’ and “*r’ are turned into a special kind of name node which expresses

the name itself and the offset. This simplifies subsequent processing because such con-
structions can appear as the the address of a PDP-11 instruction.

3.  When the unary ‘&’ operator is applied to a name node of the special kind just discussed,
it is reworked to make the addition explicit again; this is done because the PDP-11 has no
‘load address’ instruction.

4.  Constructions like “*r++’ and ‘*——r’ where r is a register are discovered and marked as
being implementable using the PDP-11 auto-increment and -decrement modes.

5. If V" is applied to a relational, the ‘I
reversed.

is discarded and the sense of the relational is

6.  Special cases involving reflexive use of negation and complementation are discovered.
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7.  Operations applying to constants are evaluated.

The acommute routine, called for associative and commutative operators, discovers clus-
ters of the same operator at the top levels of the current tree, and arranges them in a list: for
‘a4 ((b+c)+(d+1))’ the list would be‘a,b,c,d,e.f’. After each subtree is optimized, the list is
sorted in decreasing difficulty of computation; as mentioned above, the code generation algo-
rithm works best when left operands are the difficult ones. The ‘degree of difficulty’ computed
is actually finer than the mere number of registers required; a constant is considered simpler
than the address of a static or external, which is simpler than reference to a variable. This
makes it easy to fold all the constants together, and also to merge together the sum of a con-
stant and the address of a static or external (since in such nodes there is space for an ‘offset’
value). There are also special cases, like multiplication by 1 and addition of 0.

A special routine is invoked to handle sums of products. Distrib is based on the fact that it is
better to compute ‘cl1*c2*x + cl*y’ as ‘c1*(c2*x + y)’ and makes the divisibility tests required
to assure the correctness of the transformation. This transformation is rarely possible with code
directly written by the user, but it invariably occurs as a result of the implementation of multi-
dimensional arrays.

Finally, acommute reconstructs a tree from the list of expressions which result.

Code Generation

The grand plan for code-generation is independent of any particular machine; it depends
largely on a set of tables. But this fact does not necessarily make it very easy to modify the
compiler to produce code for other machines, both because there is a good deal of machine-
dependent structure in the tables, and because in any event such tables are non-trivial to
prepare.

The arguments to the basic code generation routine rcexpr are a pointer to a tree
representing an expression, the name of a code-generation table, and the number of a register
in which the value of the expression should be placed. Rcexpr returns the number of the regis-
ter in which the value actually ended up; its caller may need to produce a mov instruction if the
value really needs to be in the given register. There are four code generation tables.

Regtab is the basic one, which actually does the job described above: namely, compile
code which places the value represented by the expression tree in a register.

Cctab is used when the value of the expression is not actually needed, but instead the
value of the condition codes resulting from evaluation of the expression. This table is used, for
example, to evaluate the expression after i/ It is clearly silly to calculate the value (0 or 1) of
the expression ‘a==b’ in the context ‘if (a==b) ...’

The sprab table is used when the value of an expression is to be pushed on the stack, for
example when it is an actual argument. For example in the function call ‘f(a)’ it is a bad idea
to load a into a register which is then pushed on the stack, when there is a single instruction
which does the job.

The effiab table is used when an expression is to be evaluated for its side effects, not its
value. This occurs mostly for expressions which are statements, which have no value. Thus
the code for the statement ‘a = b’ need produce only the approoriate mov instruction, and need
not leave the value of b in a register, while in the expression ‘a + (b = ¢)’ the value of ‘b =
¢’ will appear in a register.

All of the tables besides regrab are rather small, and handle only a relatively few special
cases. If one of these subsidiary tables does not contain an entry applicable to the given expres-
sion tree, rcexpr uses regtab to put the value of the expression into a register and then fixes
things up; nothing need be done when the table was effiab, but a rst instruction is produced
when the table called for was cctab, and a mov instruction, pushing the register on the stack,
when the table was sprab.
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The rcexpr routine itself picks off some special cases, then calls cexpr to do the real work.
Cexpr tries to find an entry applicable to the given tree in the given table, and returns —1 if no
such entry is found, letting rcexpr try again with a different table. A successful match yields a
string containing both literal characters which are written out and pseudo-operations, or macros,
which are expanded. Before studying the contents of these strings we will consider how table
entries are matched against trees.

Recall that most non-leaf nodes in an expression tree contain the name of the operator,
the type of the value represented, and pointers to the subtrees (operands). They also contain
an estimate of the number of registers required to evaluate the expression, placed there by the
expression-optimizer routines. The register counts are used to guide the code generation pro-
cess, which is based on the Sethi-Ullman algorithm.

The main code generation tables consist of entries each _containing an operator number
and a pointer to a subtable for the corresponding operator. A subtable consists of a sequence of
entries, each with a key describing certain properties of the operands of the operator involved;
associated with the key is a code string. Once the subtable corresponding to the operator is
found, the subtablie is searched linearly until a key is found such that the properties demanded
by the key are compatible with the operands of the tree node. A successful match returns the
code string; an unsuccessful search, either for the operator in the main table or a compatble key
in the subtable, returns a failure indication.

The tables are all contained in a file which must be processed to obtain an assembly
language program. Thus they are written in a special-purpose language. To provided
definiteness to the following discussion, here is an example of a subtable entry.

%n,aw
F
add A2, R

The ‘%’ indicates the key; the information following (up to a blank line) specifies the code
string. Very briefly, this entry is in the subtable for ‘4’ of regrab; the key specifies that the left
operand is any integer, character, or pointer expression, and the right operand is any word
quantity which is directly addressible (e.g. a variable or constant). The code string calls for the
generation of the code to compile the left (first) operand into the current register (‘F’) and
then to produce an ‘add’ instruction which adds the second operand (‘A2’) to the register
(‘R’). All of the notation will be explained below.

Only three features of the operands are used in deciding whether a match has occurred.
They are:

1.  Is the type of the operand compatible with that demanded?
2. Is the ‘degree of difficulty’ (in a sense described below) compatible?

3. The table may demand that the operand have a ‘* (indirection operator) as its highest
operator.

As suggested above, the key for a subtable entry is indicated by a ‘%.,” and a comma-
separated pair of specifications for the operands. (The second specification is ignored for unary
operators). A specification indicates a type requirement by including one of the following
letters. If no type letter is present, any integer, character, or pointer operand will satisfy the
requirement (not float, double, or long).

b A byte (character) operand is required.

w. A word (integer or pointer) operand is required.
f A float or double operand is required.

d A double operand is required.
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1 A long (32-bit integer) operand is required.

Before discussing the ‘degree of difficulty’ specification, the algorithm has to be explained
more completely. Rcexpr (and cexpr) are called with a register number in which to place their
result. Registers 0, 1, ... are used during evaluation of expressions; the maximum register
which can be used in this way depends on the number of register variables, but in any event
only registers 0 through 4 are available since r5 is used as a stack frame header and r6 (sp) and
r7 (pc) have special hardware properties. The code generation routines assume that when
called with register n as argument, they may use n+1/, ... (up to the first register variable) as
temporaries. Consider the expression ‘X+Y’, where both X and Y are expressions. As a first
approximation, there are three ways of compiling code to put this expression in register ».

1. If Y is an addressible cell, (recursively) put X into register # and add Y to it.

2. If Y is an expression that can be calculated in & registers, where k smaller than the
number of registers available, compile X into register n, Y into register n+/, and add
register n+1 to n.

3.  Otherwise, compile Y into reglster n, save the result in a temporary (actually, on the
stack) compile X into register #, then add in the temporary.

The distinction between cases 2 and 3 therefore depends on whether the right operand can
be compiled in fewer than k registers, where & is the number of free registers left after registers
0 through n are taken: 0 through »n—/ are presumed to contain already computed temporary
results; n will, in case 2, contain the value of the left operand while the right is being evaluated.

These considerations should make clear the specification codes for the degree of difficulty,
bearing in mind that a number of special cases are also present:

z is satisfied when the operand is zero, so that special code can be produced for expressions
like ‘x = 0’.

1 is satisfied when the operand is the constant 1, to optimize cases like left and right shift
by 1, which can be done efficiently on the PDP-11.

c is satisfied when the operand is a positive (16-bit) constant; this takes care of some special
cases in long arithmetic. .

a is satisfied when the operand is addressible; this occurs not only for variables and con-
stants, but also for some more complicated constructions, such as indirection through a
simple variable, “*p++’ where p is a register variable (because of the PDP-11’s auto-
increment address mode), and ‘*(p+c)’ where p is a register and c is a constant. Pre-
cisely, the requirement is that the operand refers to a cell whose address can be written as
a source or destination of a PDP-11 instruction.

e is satisfied by an operand whose value can be generated in a register using no more than &
registers, where k is the number of registers left (not counting the current register). The
e’ stands for ‘easy.’

n is satisfied by any operand. The ‘n’ stands for ‘anything.’

These degrees of difficulty are considered to lie in a linear ordering and any operand
which satisfies an earlier-mentioned requirement will satisfy a later one. Since the subtables are
searched linearly, if a ‘1’ specification is included, almost certainly a ‘2’ must be written first to
prevent expressions containing the constant 0 to be compiled as if the 0 were 1.

(% 3

Finally, a key specification may contain a which requires the operand to have an
indirection as its leading operator. Examples below should clarify the utility of this
specification.

Now let us consider the contents of the code string associated with each subtable entry.
Conventionally, lower-case lettets in this string represent literal information which is copied
directly to the output. Upper-case letters generally introduce specific macro-operations, some
of which may be followed by modifying information. The code strings in the tables are written
with tabs and new-lines used freely to suggest instructions which will be generated; the table-
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compiling program compresses tabs (using the 0200 bit of the next character) and throws away
-some of the new-lines. For example the macro ‘F’ is ordinarily written on a line by itself: but
since its expansion will end with a new-line, the new-line after ‘F’ itself is dispensable. This is
all to reduce the size of the stored tables.

The first set of macro-operations is concerned with compiling subtrees. Recall that this is
done by the cexpr routine. In the following discussion the ‘current register’ is generally the
argument register to cexpr; that is, the place where the result is desired. The ‘next register’ is
numbered one higher than the current register. (This explanation isn’t fully true because of
complications, described below, involving operations which require even-odd register pairs.)

F causes a recursive call to the rcexpr routine to compile code which places the value of the
first (left) operand of the operator in the current register.

F1 generates code which places the value of the first operand in the next register. It is
incorrectly used if there might be no next register; that is, if the degree of difficulty of the
first operand is not ‘easy;’ if not, another register might not be available.

FS generates code which pushes the value of the first operand on the stack, by calling rcexpr
specifying sprab as the table.

Analogously,

S, S1, SScompile the second (right) operand into the current register, the next register, or onto
the stack. }

To deal with registers, there are
R which expands into the name of the current register.
R1 which expands into the name of the next register.

R+ which expands into the the name of the current register plus 1. It was suggested above
that this is the same as the next register, except for complications; here is one of them.
Long integer variables have 32 bits and require 2 registers; in such cases the next register
is the current register plus 2. The code would like to talk about both halves of the long
quantity, so R refers to the register with the high-order part and R+ to the low-order
part.

R— This is another complication, involving division and mod. These operations involve a pair
of registers of which the odd-numbered contains the left operand. Cexpr arranges that the
current register is odd; the R— notation allows the code to refer to the next lower, even-
numbered register. -

To refer to addressible quantities, there are the notations:

Al causes generation of the address specified by the first operand. For this to be legal, the
operand must be addressible; its key must contain an ‘a’ or a more restrictive
specification.

A2 correspondingly generates the address of the second operand providing it has one.

We now have enough mechanism to show a complete, if suboptimal, table for the +
operator on word or byte operands.
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%n,z

F
%n,1

F

inc R
%n,aw

F

add A2,R
%n,e

F

S1

add R1,R
%n,n

SS

F

add (sp)+,R

The first two sequences handle some special cases. Actually it turns out that handling a right
operand of 0 is unnecessary since the expression-optimizer throws out adds of 0. Adding 1 by
using the ‘increment’ instruction is done next, and then the case where the right operand is
addressible. It must be a word quantity, since the PDP-11 lacks an ‘add byte’ instruction.
Finally the cases where the right operand either can, or cannot, be done in the available regis-
ters are treated.

The next macro-instructions are conveniently introduced by noticing that the above table
is suitable for subtraction as well as addition, since no use is made of the commutativity of
addition. All that is needed is substitution of ‘sub’ for ‘add’ and ‘dec’ for ’inc.” Considerable
saving of space is achieved by factoring out several similar operations.

I is replaced by a string from another table indexed by the operator in the node being
expanded. This secondary table actually contains two strings per operator.

I is replaced by the second string in the side table entry for the current operator.

Thus, given that the entries for ‘+” and ‘—" in the side table (which is called instab) are
‘add’ and ‘inc,” ‘sub’ and ‘dec’ respectively, the middle of of the above addition table can be
written

%n,1

F

I R
%n,aw

F

I A2.R

and it will be suitable for subtraction, and several other operators, as well.
Next, there is the question of character and floating-point operations.

Bl generates the letter ‘b’ if the first operand is a character, ‘f* if it is float or double, and
nothing otherwise. It is used in a context like ‘movB1’ which generates a ‘mov’, ‘movb’,
or ‘movf” instruction according to the type of the operand.
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B2 is just like Bl but applies to the second operand.

BE generates ‘b’ if either operand is a character and null otherwise.

BF generates ‘f* if the type of the operator node itself is float or double, otherwise null.
For example, there is an entry in effiab for the ‘=" operator

Y%a,aw
%ab,a
IBE A2,Al

Note first that two key specifications can be applied to the same code string. Next, observe that
when a word is assigned to a byte or to a word, or a word is assigned to a byte, a single instruc-
tion, a mov or movb as appropriate, does the job. However, when a byte is assigned to a word,
it must pass through a register to implement the sign-extension rules:

%a,n
S
1B1 R,Al

Next, there is the question of handling indirection properly. Consider the expression ‘X
+ *Y’, where X and Y are expressions, Assuming that Y is more complicated than just a vari-
able, but on the other hand qualifies as ‘easy’ in the context, the expression would be compiled
by placing the value of X in a register, that of *Y in the next register, and adding the registers.
It is easy to see that a better job can be done by compiling X, then Y (into the next register),
and producing the instruction symbolized by ‘add (R1),R’. This scheme avoids generating the
instruction ‘mov (R1),R1’ required actually to place the value of *Y in a register. A related
situation occurs with the expression ‘X + *(p+6)°, which exemplifies a construction frequent
in structure and array references. The addition table shown above would produce

[put X in register R]

mov  p,R1
add $6.R1
mov  (R1),Rl
add R1,R
when the best code is
[put X in R]
mov  p,R1

add 6(RD,R

As we said above, a key specification for a code table entry may require an operand to have an
indirection as its highest operator. To make use of the requirement, the following macros are
provided.

F* the first operand must have the form *X. If in particular it has the form *(Y + ¢), for
some constant c, then code is produced which places the. value of Y in the current regis-
ter. Otherwise, code is produced which loads X into the current register.

F1* resembles F* except that the next register is loaded.

S*  resembles F* except that the second operand is loaded.

S1* resembles S* except that the next register is loaded.

FS* The first operand must have the form ‘*X’. Push the value of X on the stack.

SS* resembles FS* except that it applies to the second operand.

To capture the constant that may have been skipped over in the above macros, there are
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#1 The first operand must have the form *X; if in particular it has the form *(Y + ¢) forca
constant, then the constant is written out, otherwise a null string.

#2 is the same as #1 except that the second operand is used.
Now we can improve the addition table above. Just before the ‘%n,.e’ entry, put

%n,ew*
F
S1*
add #2(R1),R

and just before the ‘%n,n’ put

%n,nw*
SS*
F
add *(sp)+.,R

When using the stacking macros there is no place to use the constant as an index word, so that
particular special case doesn’t occur. »

The constant mentioned above can actually be more general than a number. Any quantity
acceptable to the assembler as an expression will do, in particular the address of a static cell,
perhaps with a numeric offset. If x is an external character array, the expression ‘x[i+35] = @’
will generate the code

mov  i,r0
clrtb  x+5(0)

via the table entry (in the ‘=" part of effiab)

%e*,z
F
I'Bl  #1(R)

Some machine operations place restrictions on the registers used. The divide instruction, used
to implement the divide and mod operations, requires the dividend to be placed in the odd
member of an even-odd pair; other peculiarities of multiplication make it simplest to put the
multiplicand in an odd-numbered register. There is no theory which optimally accounts for this
kind of requirement. Cexpr handles it by checking for a multiply, divide, or mod operation; in
these cases, its argument register number is incremented by one or two so that it is odd, and if
the operation was divide or mod, so that it is a member of a free even-odd pair. The routine
which determines the number of registers required estimates, conservatively, that at least two
registers are required for a multiplication and three for the other peculiar operators. After the
expression is compiled, the register where the result actually ended up is returned. (Divide and
mod are actually the same operation except for the location of the result).

These operations are the ones which cause resuits to end up in unexpected places, and
this possibility adds a further level of complexity. The simplest way of handling the problem is
always to move the result to the place where the caller expected it, but this will produce
unnecessary register moves in many simple cases; ‘a = b*c’ would generate

mov  b,rl
mul c,rl
mov  rl,r0
mov r0,a

The next thought is used the passed-back information as to where the result landed to change

the notion of the current register. While compiling the ‘=" operation above, which comes
from a table entry like
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%a,e
S
mov R,Al

it is sufficient to redefine the meaning of ‘R’ after processing the ‘S’ which does the multiply.
This technique is in fact used; the tables are written in such a way that correct code is pro-
duced. The trouble is that the technique cannot be used in general, because it invalidates the
count of the number of registers required for an expression. Consider just ‘a*b + X’ where X
is some expression. The algorithm assumes that the value of a*b, once computed, requires just
one register. If there are three registers available, and X requires two registers to compute,
then this expression will match a key specifying ‘%n.e’. If a*b is computed and left in register
1, then there are, contrary to expectations, no longer two registers available to compute X, but
only one, and bad code will be produced. To guard against this possibility, cexpr checks the
result returned by recursive calls which implement F, S and their relatives. If the result is not
in the expected register, then the number of registers required by the other operand is checked;
if it can be done using those registers which remain even after making unavailable the
unexpectedly-occupied register, then the notions of the ‘next register’ and possibly the ‘current
register’ are redefined. Otherwise a register-copy instruction is produced. A register-copy is
also always produced when the current operator is one of those which have odd-even require-
ments.

Finally, there are a few loose-end macro operations and facts about the tables. The opera-
tors:

V  is used for long operations. It is written with an address like a machine instruction; it
expands into ‘adc’ (add carry) if the operation is an additive operator, ‘sbc’ (subtract
carry) if the operation is a subtractive operator, and disappears, along with the rest of the
line, otherwise. Its purpose is to allow common treatment of logical operations, which
have no carries, and additive and subtractive operations, which generate carries.

T generates a ‘tst’ instruction if the first operand of the tree does not set the condition codes
correctly. It is used with divide and mod operations, which require a sign-extended 32-bit
operand. The code table for the operations contains an ‘sxt’ (sign-extend) instruction to
generate the high-order part of the dividend.

H is analogous to the ‘F’ and ‘S’ macros, except that it calls for the generation of code for

the current tree (not one of its operands) using regrab. It is used in cctab for all the

“operators which, when executed normally, set the condition codes properly according to

the result. It prevents a ‘tst’ instruction from being generated for constructions like “if

(a+b) ..." since after calculation of the value of ‘a+b’ a conditional branch can be written
immediately.

All of the discussion above is in terms of operators with operands. Leaves of the expres-
sion tree (variables and constants), however, are peculiar in that they have no operands. In
order to regularize the matching process, cexpr examines its operand to determine if it is-a leaf’
if so, it creates a special ‘load’ operator whose operand is the leaf, and substitutes it for the
argument tree; this allows the table entry for the created operator to use the ‘Al’ notation to
load the leaf into a register.

Purely to save space in the tables, pieces of subtables can be labelled and referred to later.

It turns out, for example, that rather large portions of the the effiab table for the ‘=" and ‘=+"
operators are identical. Thus ‘=’ has an entry

%[move3:]

%a,aw

%ab,a

IBE A2,Al
while part of the ‘= +" table is
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Obaw,aw
% [move3]

Labels are written as ‘%[ ... : ]’, before the key specifications; references are written with ‘% |
... ]’ after the key. Peculiarities in the implementation make it necessary that labels appear
before references to them.

The example illustrates the utility of allowing separate keys to point to the same code
string. The assignment code works properly if either the right operand is a word, or the left
operand is a byte; but since there is no ‘add byte’ instruction the addition code has to be res-
tricted to word operands.

Delaying and reordering

Intertwined with the code generation routines are two other, interrelated processes. The
first, implemented by a routine called delay, is based on the observation that naive code genera-
tion for the expression ‘a = b+ +’ would produce

mov  b,r0
inc b
mov r0,a

The point is that the table for postfix + -+ has to preserve the value of b before incrementing
it; the general way to do this is to preserve.its value in a register. A cleverer scheme would
generate

mov b,a
inc b

Delay is called for each expression input to rcexpr, and it searches for postfix ++ and ——
operators. If one is found applied to a variable, the tree is patched to bypass the operator and
compiled as it stands; then the increment or decrement itself is done. The effect is as if ‘a =
b; b+ +’ had been written. In this example, of course, the user himself could have done the
same job, but more complicated examples are easily constructed, for example ‘switch (x++)’.
An essential restriction is that the condition codes not be required. It would be incorrect to
compile ‘if (a++) ...’ as

tst a
inc a
beq

because the ‘inc’ destroys the required setting of the condition codes.

Reordering is a similar sort of optimization. Many cases which it detects are useful
mainly with register variables. If r is a register variable, the expression ‘r = x+y’ is best com-
piled as

mov  X,r
add y.r

but the codes tables would produce
mov  x,r0
add y,r0
mov r0r

which is in fact preferred if r is not a register. (If r is not a register, the two sequences are the
same size, but the second is slightly faster.) The scheme is to compile the expression as if it
had been written ‘r = x; r =+ y’. The reorder routine is called with a pointer to each tree that
reexpr is about to compile; if it has the right characteristics, the ‘r = x’ tree is constructed and
passed recursively to rcexpr; then the original tree is modified to read ‘r =+ y’ and the calling
instance of rcexpr compiles that instead. Of course the whole business is itself recursive so that
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more extended forms of the same phenomenon are handled, like ‘r = x + y|z’.
Care does have to be taken to avoid ‘optimizing’ an expression like ‘r = x + r’into ‘r =

x; t =+ r’. It is required that the right operand of the expression on the right of the ‘=" be a

’, distinct from the register variable.

The second case that reorder handles is expressions of the form ‘r = X’ used as a subex-
pression. Again, the code out of the tables for “x = r = y’ would be

mov  y,r0
mov  r0,r
mov  r0,x

whereas if r were a register it would be better to produce

mov y,r
mov  I,X

When reorder discovers that a register variable is being assigned to in a subexpression, it calls
rcexpr recursively to compile the subexpression, then fiddles the tree passed to it so that the
register variable itself appears as the operand instead of the whole subexpression. Here care
has to be taken to avoid an infinite regress, with rcexpr and reorder calling each other forever to
handle assignrpents to registers.

A third set of cases treated by reorder comes up when any name, not necessarily a regis-
ter, occurs as a left operand of an assignment operator other than ‘=’ or as an operand of
prefix ‘++’ or ‘——". Unless condition-code tests are involved, when a subexpression like ‘(a
=+ b)’ is seen, the assignment is performed and the argument tree modified so that a is its
operand; effectively ‘’x + (y =+ z)’ is compiled as ‘y =+ z; x + y’. Similarly, prefix incre-
ment and decrement are puiled out and performed first, then the remainder of the expression.

Throughout code generation, the expression optimizer is called whenever delay or reorder
change the expression tree. This allows some special cases to be found that otherwise would
not be seen.
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A Tour Through the Portable C Compiler

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

A C compiler has been implemented that has proved to be quite portable, serving as the
basis for C compilers on roughly a dozen machines, including the Honeywell 6000, IBM 370,
and Interdata 8/32. The compiler is highly compatible with the C language standard.!

Among the goals of this compiler are portability, high reliability, and the use of state-of-
the-art techniques and tools wherever practical. Although the efficiency of the compiling pro-
cess is not a primary goal, the compiler is efficient enough, and produces good enough code, to
serve as a production compiler.

The language implemented is highly compatible with the current PDP-11 version of C.
Moreover, roughly 75% of the compiler, including nearly all the syntactic ahd semantic rou-
tines, is machine independent. The compiler also serves as the major portion of the program
lint, described elsewhere.2

A number of earlier attempts to make portable compilers are worth noting. While on
CO-OP assignment to Bell Labs in 1973, Alan Snyder wrote a portable C compiler which was
the basis of his Master’s Thesis at M.I.T.3 This compiler was very slow and complicated, and
contained a number of rather serious implementation difficulties; nevertheless, a number of
Snyder’s ideas appear in this work.

Most earlier portable compilers, including Snyder’s, have proceeded by defining an inter-
mediate language, perhaps based on three-address code or code for a stack machine, and writing
a machine independent program to translate from the source code to this intermediate code.
The intermediate code is then read by a second pass, and interpreted or compiled. This
approach is elegant, and has a number of advantages, especially if the target machine is far
removed from the host. It suffers from some disadvantages as well. Some constructions, like
initialization and subroutine prologs, are difficult or expensive to express in a machine indepen-
dent way that still allows them to be easily adapted to the target assemblers. Most of these
approaches require a symbol fable to be constructed in the second (machine dependent) pass,
and/or require powerful target assemblers. Also, many conversion operators may be generated
that have no effect on a given machine, but may be needed on others (for example, pointer to
pointer conversions usually do nothing in C, but must be generated because there are some
machines where they are significant).

For these reasons, the first pass of the portable compiler is not entirely machine indepen-
dent. It contains some machine dependent features, such as initialization, subroutine prolog
and epilog, certain storage allocation functions, code for the switch statement, and code to
throw out unneeded conversion operators.

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C
compiler has roughly 600 machine dependent lines of source out of 4600 in Pass 1, and 1000
out of 3400 in Pass 2. In total, 1600 out of 8000, or 20%, of the total source is machine depen-
dent (12% in Pass 1, 30% in Pass 2). These percentages can be expected to rise slightly as the
compiler is tuned. The percentage of machine-dependent code for the IBM is 22%, for the
Honeywell 25%. If the assembler format and structure were the same for all these machines,
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perhaps another 5-10% of the code would become machine independent.

These figures are sufficiently misleading as to be almost meaningless. A large fraction of
the machine dependent code can be converted in a straightforward, almost mechanical way. On
the other hand, a certain amount of the code requres hard intellectual effort to convert, since
the algorithms embodied in this part of the code are typically complicated and machine depen-
dent.

To summarize, however, if you need a C compiler written for a machine with a reason-
able architecture, the compiler is already three quarters finished!

Overview

This paper discusses the structure and organization of the portable compiler. The intent is
to give the big picture, rather than discussing the details of a particular machine implementa-
tion. After a brief overview and a discussion of the source file structure, the paper describes
the major data structures, and then delves more closely into the two passes. Some of the
theoretical work on which the compiler is based, and its application to the compiler, is discussed
elsewhere.* One of the major design issues in any C compiler, the design of the calling
sequence and stack frame, is the subject of a separate memorandum.’

The compiler consists of two passes, pass/ and pass2, that together turn C source code
into assembler code for the target machine. The two passes are preceded by a preprocessor,
that handles the #define and #include statements, and related features (e.g., #ifdef, etc.). It
is a nearly machine independent program, and will not be further discussed here.

The output of the preprocessor is a text file that is read as the standard input of the first
pass. This produces as standard output another text file that becomes the standard input of the
second pass. The second pass produces, as standard output, the desired assembler language
source code. The preprocessor and the two passes all write error messages on the standard
error file. Thus the compiler itself makes few demands on the I/0 library support, aiding in the
bootstrapping process.

Although the compiler is divided into two passes, this represents historical accident more
than deep necessity. In fact, the compiler can optionally be loaded so that both passes operate
in the same program. This ‘“‘one pass’ operation eliminates the overhead of reading and writ-
ing the intermediate file, so the compiler operates about 30% faster in this mode. It also occu-
pies about 30% more space than the larger of the two component passes.

Because the compiler is fundamentally structured as two passes, even when loaded as one,
this document primarily describes the two pass version.

The first pass does the lexical analysis, parsing, and symbol table maintenance. It also
constructs parse trees for expressions, and keeps track of the types of the nodes in these trees.
Additional code is devoted to initialization. Machine dependent portions of the first pass serve
to generate subroutine prologs and epilogs, code for switches, and code for branches, label
definitions, alignment operations, changes of location counter, etc.

The intermediate file is a text file organized into lines. Lines beginning with a right
parenthesis are copied by the second pass directly to its output file, with the parenthesis
stripped off. Thus, when the first pass produces assembly code, such as subroutine prologs,
etc., each line is prefaced with a right parenthesis; the second pass passes these lines to through
to the assembiler.

The major job done by the second pass is generation of code for expressions. The expres-
sion parse trees produced in the first pass are written onto the intermediate file in Polish Prefix
form: first, there is a line beginning with a period, followed by the source file line number and
name on which the expression appeared (for debugging purposes). The successive lines
represent the nodes of the parse tree, one node per line. Each line contains the node number,
type, and any values (e.g., values of constants) that may appear in the node. Lines represent-
ing nodes with descendants are immediately followed by the left subtree of descendants, then
the right. Since the number of descendants of any node is completely determined by the node
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number, there is no need to mark the end of the tree.

There are only two other line types in the intermediate file. Lines beginning with a left
square bracket (‘[’) represent the beginning of blocks (delimited by { ... } in the C source);
lines beginning with right square brackets (‘]’) represent the end of blocks. The remainder of
these lines tell how much stack space, and how many register variables, are currently in use.

Thus, the second pass reads the intermediate files, copies the *)’ lines, makes note of the
information in the ‘[* and ‘]’ lines, and devotes most of its effort to the *.’ lines and their asso-
ciated expression trees, turning them turns into assembly code to evaluate the expressions.

In the one pass version of the compiler, the expression trees that are built by the first pass
have been declared to have room for the second pass information as well. Instead of writing
the trees onto an intermediate file, each tree is transformed in place into an acceptable form for
the code generator. The code generator then writes the result of compiling this tree onto the
standard output. Instead of ‘[’ and ‘I’ lines in the intermediate file, the information is passed
directly to the second pass routines. Assembly code produced by the first pass is simply written
out, without the need for *)’ at the head of each line.

The Source Files

The compiler source consists of 22 source files. Two files, manifest and macdefs, are
header files included with all other files. Manifest has declarations for the node numbers, types,
storage classes, and other global data definitions. Macdefs has machine-dependent definitions,
such as the size and alignment of the various data representations. Two machine «independent
header files, mfilel and mfile2, contain the data structure and manifest definitions for the first
and second’ passes, respectively. In the second pass, a machine dependent header file,
mac2defs, contains declarations of register names, etc.

There is a file, common, containing (machine independent) routines used in both passes.
These include routines for allocating and freeing trees, walking over trees, printing debugging
information, and printing error messages. There are two dummy files, comml.c and comm2.c,
that simply include common within the scope of the appropriate passl or pass2 header files.
When the compiler is loaded as a single pass, common only needs to be included once: comm..c
is not needed.

Entire sections of this document are devoted to the detailed structure of the passes. For
the moment, we just give a brief description of the files. The first pass is obtained by compiling
and loading scan.c, cgram.c, xdefs.c, pfin.c, trees.c, optim.c, local.c, code.c, and comml.c. Scan.cis
the lexical analyzer, which is used by cgram.c, the result of applying Yacd to the input grammar
cgram.y. Xdefs.c is a short file of external definitions. Pfin.c maintains the symbol table, and
does initialization. Trees.c builds the expression trees, and computes the node types. Optim.c
does some machine independent optimizations on the expression trees. Comml.c includes com-
mon, that contains service routines common to the two passes of the compiler. All the above
files are machine independent. The files local.c and code.c contain machine dependent code for
generating subroutine prologs, switch code, and the like.

The second pass is produced by compiling and loading reader.c, allo.c, match.c, comml.c,
order.c, local.c, and table.c. Reader.c reads the intermediate file, and controls the major logic of
the code generation. Allo.c keeps track of busy and free registers. Match.c controls the match-
ing of code templates to subtrees of the expression tree to be compiled. Comm2.c includes the
file common, as in the first pass. The above files are machine independent. Order.c controls the
machine dependent details of the code generation strategy. Local2.c has many small machine
dependent routines, and tables of opcodes, register types, etc. Table.c has the code template
tables, which are also clearly machine dependent.
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Data Structure Considerations.

This section discusses the node numbers, type words, and expression trees, used
throughout both passes of the compiler.

The file manifest defines those symbols used throughout both passes. The intent is to use
the same symbol name (e.g., MINUS) for the given operator throughout the lexical analysis,
parsing, tree building, and code generation phases; this requires some synchronization with the
Yacc input file, cgram.y, as well.

A token like MINUS may be seen in the lexical analyzer before it is known whether it is a
unary or binary operator; clearly, it is necessary to know this by the time the parse tree is con-
structed. Thus, an operator (really a macro) called UNARY is provided, so that MINUS and
UNARY MINUS are both distinct node numbers. Similarly, many binary operators exist in an
assignment form (for example, —=), and the operator ASG may be applied to such node
names to generate new ones, €.g. ASG MINUS.

It is frequently desirable to know if a node represents a leaf (no descendants), a unary
operator (one descendant) or a binary operator (two descendants). The macro opwype(o) returns
one of the manifest constants LTYPE, UTYPE, or BITYPE, respectively, depending on the
node number o. Similarly, asgop(o) returns true if o is an assignment operator number (=,

=, etc. ), and logop(o) returns true if o is a relational or logical (&&, II, or !) operator.

C has a rich typing structure, with a potentially infinite number of types. To begin with,
there are the basic types: CHAR, SHORT, INT, LONG, the unsigned versions known as
UCHAR, USHORT, UNSIGNED, ULONG, and FLOAT, DOUBLE, and finally STRTY (a
structure), UNIONTY, and ENUMTY. Then, there are three operators that can be applied to
types to make others: if ris a type, we may potentially have types pointer to t, function returning
t, and array of t's generated from + Thus, an arbitrary type in C consists of a basic type, and
zero or more of these operators.

In the compiler, a type is represented by an unsigned integer; the rightmost four bits hold
the basic type, and the remaining bits are divided into two-bit fields, containing 0 (no opera-
tor), or one of the three operators described above. The modifiers are read right to left in the.
word, starting with the two-bit field adjacent to the basic type, until a field with 0 in it is
reached. The macros PTR, FTN, and ARY represent the pointer to, function returning, and array
of operators. The macro values are shifted so that they align with the first two-bit field; thus
PTR+INT represents the type for an integer pointer, and

ARY + (PTR<<2) + (FIN<<4) + DOUBLE

represents the type of an array of pointers to functions returning doubles.

The type words are ordinarily manipulated by macros. If tis a type word, BTYPE(?) gives
the basic type. ISPTR(1), ISARY(1), and ISFTN(v ask if an object of this type is a pointer,
array, or a function, respectively. MODTYPE(:b) sets the basic type of ¢t to b DECREF(t)
gives the type resulting from removing the first operator from + Thus, if is a pointer to ¢} a
function returning ), or an array of ¢’ then DECREF (1) would equal ¢. INCREF(1) gives the
type representing a pointer to + Finally, there are operators for dealing with the unsigned
types. ISUNSIGNED(y) returns true if ¢ is one of the four basic unsigned types; in this case,
DEUNSIGN(1) gives the associated ‘signed’ type. Similarly, UNSIGNABLE () returns true if ¢is
one of the four basic types that could become unsigned, and ENUNSIGN(Y returns the
unsigned analogue of ¢in this case.

The other important global data structure is that of expression trees. The actual shapes of
the nodes are given in mfile/ and mfile2. They are not the same in the two passes; the first pass
nodes contain dimension and size information, while the second pass nodes contain register
allocation information. Nevertheless, all nodes contain fields called op, containing the node
number, and fype, containing the type word. A function called ralloc() returns a pointer to a
new tree node. To free a node, its op field need merely be set to FREE. The other fields in
the node will remain intact at least until the next allocation.
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Nodes representing binary operators contain fields, left and right, that contain pointers to
the left and right descendants. Unary operator nodes have the /eft field, and a value field called
rval. Leaf nodes, with no descendants, have two value fields: /valand rval

At appropriate times, the function tcheck() can be called, to check that there are no busy
nodes remaining. This is used as a compiler consistency check. The function wcopy(p) takes a
pointer p that points to an expression tree, and returns a pointer to a disjoint copy of the tree.
The function walkf(p.f) performs a postorder walk of the tree pointed to by p, and applies the
function fto each node. The function fwalk(p,fd) does a preorder walk of the tree pointed to
by p. At each node, it calls a function f, passing to it the node pointer, a value passed down
from its ancestor, and two pointers to values to be passed down to the left and right descen-
dants (if any). The value d is the value passed down to the root. Fwalk is used for a number
of tree labeling and debugging activities.

The other major data structure, the symbol table, exists only in pass one, and will be dis-
cussed later.

Pass One

The first pass does lexical analysis, parsing, symbol table maintenance, tree building,
optimization, and a number of machine dependent things. This pass is largely machine

independent, and the machine independent sections can be pretty successfully ignored. Thus, -

they will be only sketched here.

Lexical Analysis

The lexical analyzer is a conceptually simple routine that reads the input and returns the
tokens of the C language as it encounters them: names, constants, operators, and keywords.
The conceptual simplicity of this job is confounded a bit by several other simple jobs that
unfortunately must go on simultaneously. These include

° Keeping track of the current filename and line number, and occasionally setting this infor-
mation as the result of preprocessor control lines.

Skipping comments.

Properly dealing with octal, decimal, hex, floating point, and character constants, as well
as character strings.

To achieve speed, the program maintains several tables that are indexed into by character
value, to tell the lexical analyzer what to-do next. To achieve portability, these tables must be
initialized each time the compiler is run, in order that the table entries reflect the local charac-
ter set values.

Parsing

As mentioned above, the parser is generated by Yacc from the grammar on file cgram.y.
The grammar is relatively readable, but contains some unusual features that are worth com-
ment.

Perhaps the strangest feature of the grammar is the treatment of declarations. The prob-
lem is to keep track of the basic type and the storage class while interpreting the various stars,
brackets, and parentheses that may surround a given name. The entire declaration mechanism
must be recursive, since declarations may appear within declarations of structures and unions,
or even within a sizeof construction inside a dimension in another declaration!

There are some difficulties in using a bottom-up parser, such as produced by Yacc, to han-
dle constructions where a lot of left context information must be kept around. The problem is
that the original PDP-11 compiler is top-down in implementation, and some of the semantics of
C reflect this. In a top-down parser, the input rules are restricted somewhat, but one can natur-
ally associate temporary storage with a rule at a very early stage in the recognition of that rule.
In a bottom-up parser, there is more freedom in the specification of rules, but it is more
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difficult to know what rule is being matched until the entire rule is seen. The parser described
by cgram.c makes effective use of the bottom-up parsing mechanism in some places (notably
the treatment of expressions), but struggles against the restrictions in others. The usual result
is that it is necessary to run a stack of values ‘“‘on the side’’, independent of the Yacc value
stack, in order to be able to store and access information deep within inner constructions,
where the relationship of the rules being recognized to the total picture is not yet clear.

In the case of declarations, the attribute information (type, etc.) for a declaration is care-
fully kept immediately to the left of the declarator (that part of the declaration involving the
name). In this way, when it is time to declare the name, the name and the type information
can be quickly brought together. The ‘30" mechanism of Yacc is used to accomplish this.
The result is not pretty, but it works. The storage class information changes more slowly, so it
is kept in an external variable, and stacked if necessary. Some of the grammar could be consid-
erably cleaned up by using some more recent features of Yacc, notably actions within rules and
the ability to return multiple values for actions.

A stack is also used to keep track of the current location to be branched to when a break
or continue statement is processed.

This use of external stacks dates from the time when Yacc did not permit values to be
structures. Some, or most, of this use of external stacks could be eliminated by redoing the
grammar to use the mechanisms now provided. There are some areas, however, particularly
the processing of structure, union, and enum declarations, function prologs, and switch state-
ment processing, when having all the affected data together in an array speeds later processing;
in this case, use of external storage seems essential.

The cgram.y file also contains some small functions used as utility functions in the parser.
These include routines for saving case values and labels in processing switches, and stacking
and popping values on the external stack described above.

Storage Classes

C has a finite, but fairly extensive, number of storage classes available. One of the com-
piler design decisions was to process the storage class information totally in the first pass; by the
second pass, this information must have been totally dealt with. This means that all of the
storage allocation must take place in the first pass, so that references to automatics and parame-
ters can be turned into references to cells lying a certain number of bytes offset from certain
machine registers. Much of this transformation is machine dependent, and strongly depends on
the storage class.

The classes include EXTERN (for externally declared, but not defined variables),
EXTDEF (for external definitions), and similar distinctions for USTATIC and STATIC,
UFORTRAN and FORTRAN (for fortran functions) and ULABEL and LABEL. The storage
classes REGISTER and AUTO are obvious, as are STNAME, UNAME, and ENAME (for
structure, union, and enumeration tags), and the associated MOS, MOU, and MOE (for the
members). TYPEDEF is treated as a storage class as well. There are two special storage
classes: PARAM and SNULL. SNULL is used to distinguish the case where no explicit storage
class has been given; before an entry is made in the symbol table the true storage class is
discovered. Similarly, PARAM is used for the temporary entry in the symbol table made
before the declaration of function parameters is completed.

The most complexity in the storage class process comes from bit fields. A separate
storage class is kept for each width bit field; a & bit bit field has storage class & plus FIELD.
This enables the size to be quickly recovered from the storage class.




Symbol Tablé Maintenance.

The symbol table routines do far more than simply enter names into the symbol table;
considerable semantic processing and checking is done as well. For example, if a new declara-
tion comes in, it must be checked to see if there is a previous declaration of the same symbol.
If there is, there are many cases. The declarations may agree and be compatible (for example,
an extern declaration can appear twice) in which case the new declaration is ignored. The new
declaration may add information (such as an explicit array dimension) to an already present
declaration. The new declaration may be different, but still correct (for example, an extern
declaration of something may be entered, and then later the definition may be seen). The new
declaration may be incompatible, but appear in an inner block; in this case, the old declaration
is carefully hidden away, and the new one comes into force until the block is left. Finally, the
declarations may be incompatible, and an error message must be produced.

A number of other factors make for additional complexity. The type declared by the user
is not always the type entered into the symbol table (for example, if an formal parameter to a
function is declared to be an array, C requires that this be changed into a pointer before entry
in the symbol table). Moreover, there are various kinds of illegal types that may be declared
which are difficult to check for syntactically (for example, a function returning an array).
Finally, there is a strange feature in C that requires structure tag names and member names for
structures and unions to be taken from a different logical symbol table than ordinary identifiers.
Keeping track of which kind of name is involved is a bit of struggle (consider typedef names
used within structure declarations, for example).
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The symbol table handling routines have been rewritten a number of times to extend
features, improve performance, and fix bugs. They address the above problems with reasonable
effectiveness but a singular lack of grace.

When a name is read in the input, it is hashed, and the routine lookup is called, together
with a flag which tells which symbol table should be searched (actually, both symbol tables are
stored in one, and a flag is used to distinguish individual entries). If the name is found, lookup
returns the index to the entry found; otherwise, it makes a new entry, marks it UNDEF
(undefined), and returns the index of the new entry. This index is stored in the rvalfield of a
NAME node.

When a declaration is being parsed, this NAME node is made part of a tree with UNARY
MUL nodes for each *, LB nodes for each array descriptor (the right descendant has the dimen-
sion), and UNARY CALL nodes for each function descriptor. This tree is passed to the rou-
tine wmerge, along with the attribute type of the whole declaration; this routine collapses the
tree to a single node, by calling wreduce, and then modifies the type to reflect the overall type
of the declaration. '

Dimension and size information is stored in a table called dimtab. To properly describe a
type in C, one needs not just the type information but also size information (for structures and
enums) and dimension information (for arrays). Sizes and offsets are dealt with in the com-
piler by giving the associated indices into dimrab. Tymerge and preduce call dstash to put the
discovered dimensions away into the dimrab array. Tvmerge returns a pointer to a single node
that contains the symbol table index in its rva/field, and the size and dimension indices in fields
csiz and cdim, respectively. This information is properly considered part of the type in the first
pass, and is carried around at all times.

To enter an element into the symbol table, the routine defid is called; it is handed a
storage class, and a pointer to the node produced by wmerge. Defid calls fixtvpe, which adjusts
and checks the given type depending on the storage class, and converts null types appropriately.
It then calls fixclass, which does a similar job for the storage class; it is here, for example, that
register declarations are either allowed or changed to auto.

The new declaration is now compared against an older one, if present, and several pages
of validity checks performed. If the definitions are compatible, with possibly some added infor-
mation, the processing is straightforward. If the definitions differ, the block levels of the
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current and the old declaration are compared. The current block level is kept in blevel, an
external variable; the old declaration level is kept in the symbol table. Block level 0 is for
external declarations, 1 is for arguments to functions, and 2 and above are blocks within a func-
tion. If the current block level is the same as the old declaration, an error results. If the
current block level is higher, the new declaration overrides the old. This is done by marking
the old symbol table entry ‘‘hidden’’, and making a new entry, marked ‘‘hiding’. Lookup will
skip over hidden entries. When a block is left, the symbol table is searched, and any entries
defined in that block are destroyed; if they hid other entries, the old entries are ‘‘unhidden’.

This nice block structure is warped a bit because labels do not follow the block structure
rules (one can do a goto into a block, for example); default definitions of functions in inner
blocks also persist clear out to the outermost scope. This implies that cleaning up the symbol
table after block exit is more subtle than it might first seem.

For successful new definitions, defid also initializes a ‘‘general purpose’ field, offset, in the
symbol table. It contains the stack offset for automatics and parameters, the register number
for register variables, the bit offset into the structure for structure members, and the internal
label number for static variables and labels. The offset field is set by falloc for bit fields, and
delstruct for structures and unions.

The symbol table entry itself thus contains the name, type word, size and dimension
offsets, offset value, and declaration block level. It also has a field of flags, describing what
symbol table the name is in, and whether the entry is hidden, or hides another. Finally, a field
gives the line number of the last use, or of the definition, of the name. This is used mainly for
diagnostics, but is useful to /int as well.

In some special cases, there is more than the above amount of information kept for the
use of the compiler. This is especially true with structures; for use in initialization, structure
declarations must have access to a list of the members of the structure. This list is also kept in
dimtab. Because a structure can be mentioned long before the members are known, it is neces-
sary to have another level of indirection in the table. The two words following the csiz entry in
dimrab are used to hold the alignment of the structure, and the index in dimtab of the list of
members. This list contains the symbol table indices for the structure members, terminated by
a—1l.

Tree Building

The portable compiler transforms expressions into expression trees. As the parser recog-
nizes each rule making up an expression, it calls buildiree which is given an operator number,
and pointers to the left and right descendants. Buildtree first examines the left and right des-
cendants, and, if they are both constants, and the operator is appropriate, simply does the con-
stant computation at compile time, and returns the result as a constant. Otherwise, buildtree
allocates a node for the head of the tree, attaches the descendants to it, and ensures that
conversion operators are generated if needed, and that the type of the new node is consistent
with the types of the operands. There is also a considerable amount of semantic complexity
here; many combinations of types ase illegal, and the portable compiler makes a strong effort to
check the legality of expression types completely. This is done both for /int purposes, and to
prevent such semantic errors from being passed through to the code generator.

The heart of buildiree is a large table, accessed by the routine opact This routine maps
the types of the left and right operands into a rather smaller set of descriptors, and then
accesses a table (actually encoded in a switch statement) which for each operator and pair of
types causes an action to be returned. The actions are logical or’s of a number of separate
actions, which may be carried out by buildiree. These component actions may include checking
the left side to ensure that it is an lvalue (can e stored into), applying a type conversion to the
left or right operand, setting the type of the new node to the type of the left or right operand,
calling various routines to balance the types of the left and right operands, and suppressing the
ordinary conversion of arrays and function operands to pointers. An important operation is
OTHER, which causes some special code to be invoked in buildiree, to handle issues which are
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unique to a particular operator. Examples of this are structure and union reference (actually
handled by the routine stref), the building of NAME, ICON, STRING and FCON (floating
point constant) nodes, unary * and &, structure assignment, and calls. In the case of unary *
and &, buildiree will cancel a * applied to a tree, the top node of which is &, and conversely.

Another special operation is PUN; this causes the compiler to check for type mismatches,
such as intermixing pointers and integers.

The treatment of conversion operators is still a rather strange area of the compiler (and of
C!). The recent introduction of type casts has only confounded this situation. Most of the
conversion operators are generated by calls to wmaich and ptmarch, both of which are given a
tree, and asked to make the operands agree in type. Prmatch treats the case where one of the
operands is a pointer; tymatch treats all other cases. Where these routines have decided on the
proper type for an operand, they call makety, which is handed a tree, and a type word, dimen-
sion offset, and size offset. If necessary, it inserts a conversion operation to make the types
correct. Conversion operations are never inserted on the left side of assignment operators,
however. There are two conversion operators used; PCONV, if the conversion is to a non-basic
type (usually a pointer), and SCONV, if the conversion is to a basic type (scalar).

To allow for maximum flexibility, every node produced by buildtree is given to a machine
dependent routine, clocal, immediately after it is produced. This is to allow more or less
immediate rewriting of those nodes which must be adapted for the local machine. The conver-
sion operations are given to clocal as well; on most machines, many of these conversions do
nothing, and should be thrown away (being careful to retain the type). If this operation is done
too early, however, later calls to buildtree may get confused about correct type of the subtrees:
thus clocal is given the conversion ops only after the entire tree is built. This topic will be dealt
with in more detail later. ’

Initialization

Initialization is one of the messier areas in the portable compiler. The only consolation is
that most of the mess takes place in the machine independent part, where it is may be safely
ignored by the implementor of the compiler for a particular machine.

The basic problem is that the semantics of initialization really calls for a co-routine struc-
ture; one collection of programs reading constants from the input stream, while another,
independent set of programs places these constants into the appropriate spots in memory. The
dramatic differences in the local assemblers also come to the fore here. The parsing problems
are dealt with by keeping a rather extensive stack containing the current state of the initializa-
tion; the assembler problems are dealt with by having a fair number of machine dependent rou-
tines.

The stack contains the symbol table number, type, dimension index, and size index for
the current identifier being initialized. Another entry has the offset, in bits, of the beginning of
the current identifier. Another entry keeps track of how many elements have been seen, if the
current identifier is an array. Still another entry keeps track of the current member of a struc-
ture being initialized. Finally, there isan entry containing flags which keep track of the current
state of the initialization process (e.g., tell if a } has been seen for the current identifier.)

When an initialization begins, the routine beginit is called; it handles the alignment restric-
tions, if any, and calls instk to create the stack entry. This is done by first making an entry on
the top of the stack for the item being initialized. If the top entry is an array, another entry is
made on the stack for the first element. If the top entry is a structure, another entry is made
on the stack for the first member of the structure. This continues until the top element of the
stack is a scalar. Instk then returns, and the parser begins collecting initializers.

When a constant is obtained, the routine doinir is called: it examines the stack, and does
whatever is necessary to assign the current constant to the scalar on the top of the stack. gors-
cal is then called, which rearranges the stack so that the next scalar to be initialized gets placed
on top of the stack. This process continues until the end of the initializers; endinir cleans up. If
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a { or } is encountered in the string of initializers, it is handled by calling ilbrace or irbrace,
respectively.

A central issue is the treatment of the ‘‘holes” that arise as a result of alignment restric-
tions or explicit requests for holes in bit fields. There is a global variable, inoff; which contains
the current offset in the initialization (all offsets in the first pass of the compiler are in bits).
Doinit figures out from the top entry on the stack the expected bit offset of the next identifier;
it calls the machine dependent routine inforce which, in a machine dependent way, forces the
assembler to set aside space if need be so that the next scalar seen will go into the appropriate
bit offset position. The scalar itself is passed to one of the machine dependent routines fincode
(for floating point initialization), incode (for fields, and other initializations less than an int in
size), and cinit (for all other initializations). The size is passed to all these routines, and it is up
to the machine dependent routines to ensure that the initializer occupies exactly.the right size.

Character strings represent a bit of an exception. If a character string is seen as the ini-
tializer for a pointer, the characters making up the string must be put out under a different
location counter. When the lexical analyzer sees the quote at the head of a character string, it
returns the token STRING, but does not do anything with the contents. The parser calls gerstr,
which sets up the appropriate location counters and flags, and calls Ixstr to read and process the
contents of the string.

If the string is being used to initialize a character array, Ixstr calls putbyte, which in effect
simulates doinit for each character read. If the string is used to initialize a character pointer,
Iestr calls a machine dependent routine, bycode, which stashes away each character. The pointer
to this string is then returned, and processed normally by doinit.

The null at the end of the string is treated as if it were read explicitly by Istr.

Statements

The first pass addresses four main areas; declarations, expressions, initialization, and
statements. The statement processing is relatively simple; most of it is carried out in the parser
directly. Most of the logic is concerned with. allocating label numbers, defining the labels, and
branching appropriately. An external symbol, reached, is 1 if a statement can be reached, 0
otherwise; this is used té do a bit of simple flow analysis as the program is being parsed, and
also to avoid generating the subroutine return sequence if the subroutine cannot ‘‘fall through”
the last statement.

Conditional branches are handled by generating an expression node, CBRANCH, whose
left descendant is the conditional expression and the right descendant is an ICON node contain-
ing the internal label number to be branched to. For efficiency, the semantics are that the label
is gone to if the condition is false.

The switch statement is compiled by collecting the case entries, and an indication as to
whether there is a default case; an internal label number is generated for each of these, and
remembered in a big array. The expression comprising the value to be switched on is compiled
when the switch keyword is encountered, but the expression tree is headed by a special node,
FORCE, which tells the code generator to put the expression value into a special distinguished
register (this same mechanism is used for processing the return statement). When the end of
the switch block is reached, the array containing the case values is sorted, and checked for
duplicate entries (an error); if all is correct, the machine dependent routine genswitch is called,
with this array of labels and values in increasing order. Genswitch can assume that the value to
be tested is already in the register which is the usual integer return value register.

Optimization

There is a machine independent file, optim.c, which contains a relatively short optimiza-
tion routine, optim. Actually the word optimization is something of a misnomer; the results are
not optimum, only improved, and the routine is in fact not optional; it must be called for
proper operation of the compiler.
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Optim is called after an expression tree is built, but before the code generator is called.
The essential part of its job is to call clocal on the conversion operators. On most machines,
the treatment of & is also essential: by this time in the processing, the only node which is a
legal descendant of & is NAME. (Possible descendants of * have been eliminated by buildtree.)
The address of a static name is, almost by definition, a constant, and can be represented by an
ICON node on most machines (provided that the loader has enough power). Unfortunately,
this is not universally true; on some machine, such as the IBM 370, the issue of addressability
rears its ugly head; thus, before turning a NAME node into an ICON node, the machine depen-
dent function andable is called.

The optimization attempts of optim are currently quite limited. It is primarily concerned
with improving the behavior of the compiler with operations one of whose arguments is a con-
stant. In the simplest case, the constant is placed on the right if the operation is commutative.
The compiler also makes a limited search for expressions such as

(x+a)+b

where g and b are constants, and attempts to combine a and b at compile time. A number of
special cases are also examined; additions of 0 and multiplications by 1 are removed, although
the correct processing of these cases to get the type of the resulting tree correct is decidedly
nontrivial. In some cases, the addition or multiplication must be replaced by a conversion op to
keep the types from becoming fouled up. Finally, in cases where a relational operation is being
done, and one operand is a constant, the operands are permuted, and the operator altered, if
necessary, to put the constant on the right. Finally, multiplications by a power of 2 are changed
to shifts.

There are dozens of similar optimizations that can be, and should be, done. It seems
likely that this routine will be expanded in the relatively near future.

Machine Dependent Stuff

A number of the first pass machine dependent routines have been discussed above. In
general, the routines are short, and easy to adapt from machine to machine. The two excep-
tions to this general rule are clocal and the function prolog and epilog generation routines,
bfcode and efcode.

Clocal has the job of rewriting, if appropriate and desirable, the nodes constructed by
buildiree. There are two major areas where this is important; NAME nodes and conversion
operations. In the case of NAME nodes, clocal must rewrite the NAME node to reflect the
actual physical location of the name in the machine. In effect, the NAME node must be exam-
ined, the symbol table entry found (through the rva/ field of the node), and, based on the
storage class of the node, the tree must be rewritten. Automatic variables and parameters are
typically rewritten by treating the reference to the variable as a structure reference, off the
register which holds the stack or argument pointer; the swefroutine is set up to be called in this
way, and to build the appropriate tree. In the most general case, the tree consists of a unary *
node, whose descendant is a + node, with the stack or argument register as left operand, and a
constant offset as right opefand. In the case of LABEL and internal static nodes, the rval/ field
is rewritten to be the negative of the internal label number; a negative rva/ field is taken to be
an internal label number. Finally, a name of class REGISTER must be converted into a REG
node, and the rvalfield replaced by the register number. In fact, this part of the clocal routine
is nearly machine independent; only for machines with addressability problems (IBM 370
again!) does it have to be noticeably different,

The conversion operator treatment is rather tricky. It is necessary to handle the applica-
tion of conversion operators to constants in clocal, in order that all constant expressions can
have their values known at compile time. In extreme cases, this may mean that some simula-
tion of the arithmetic of the target machine might have to be done in a cross-compiler. In the
most common case, conversions from pointer to pointer do nothing. For some machines, how-
ever, conversion from byte pointer to short or long pointer might require a shift or rotate
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operation, which would have to be generated here.

The extension of the portable compiler to machines where the size of a pointer depends
on its type would be straightforward, but has not yet been done.

The other major machine dependent issue involves the subroutine prolog and epilog gen-
eration. The hard part here is the design of the stack frame and calling sequence; this design
issue is discussed elsewhere.’ The routine bftode is called with the number of arguments the
function is defined with, and an array containing the symbol table indices of the declared
parameters. Bfcode must generate the code to establish the new stack frame, save the return
address and previous stack pointer value on the stack, and save whatever registers are to be
used for register variables. The stack size and the number of register variables is not known
when bfcode is called, so these numbers must be referred to by assembler constants, which are
defined when they are known (usually in the second pass, after all register variables, automat-
ics, and temporaries have been seen). The final job is to find those parameters which may have
been declared register, and generate the code to initialize the register with the value passed on
the stack. Once again, for most machines, the general logic of bftode remains the same, but the
contents of the primtfcalls in it will change from machine to machine. efcode is rather simpler,
having just to generate the default return at the end of a function. This may be nontrivial in
the case of a function returning a structure or union, however.

There seems to be no really good place to discuss structures and unions, but this is as
good a place as any. The C language now supports structure assignment, and the passing of
structures as arguments to functions, and the receiving of structures back from functions. This
was added rather late to C, and thus to the portable compiler. Consequently, it fits in less well
than the older features. Moreover, most of the burden of making these features work is placed
on the machine dependent code.

There are both conceptual and practical problems. Conceptually, the compiler is struc-
tured around the idea that to compute something, you put it into a register and work on it.
This notion causes a bit of trouble on some machines (e.g., machines with 3-address opcodes),
but matches many machines quite well. Unfortunately, this notion breaks down with struc-
tures. The closest that one can come -is to keep the addresses of the structures in registers.
The actual code sequences used to move structures vary from the trivial (a multiple byte move)
to the horrible (a function call), and are very machine dependent.

The practical problem is more painful. When a function returning a structure is called,
this function has to have some place to put the structure value. If it places it on the stack, it
has difficulty popping its stack frame. If it places the value in a static temporary, the routine
fails to be reentrant. The most logically consistent way of implementing this is for the caller to
pass in a pointer to a spot where the called function should put the value before returning.
This is relatively straightforward, although a bit tedious, to implement, but means that the
caller must have properly declared the function type, even if the value is never used. On some
machines, such as the Interdata 8/32, the return value simply overlays the argument region
(which on the 8/32 is part of the caller’s stack frame). The caller takes care of leaving enough
room if the returned value is larger than the arguments. This also assumes that the caller know
and declares the function properly.

The PDP-11 and the VAX have stack hardware which is used in function calls and
returns; this makes it very inconvenient to use either of the above mechanisms. In these
machines, a static area within the called functionis allocated, and the function return value is
copied into it on return; the function returns the address of that region. This is simple to
implement, but is non-reentrant. However, the function can now be called as a subroutine
without being properly declared, without the disaster which would otherwise ensue. No matter
what choice is taken, the convention is that the function actually returns the address of the
return structure value.

In building expression trees, the portable compiler takes a bit for granted about structures.
It assumes that functions returning structures actually return a pointer to the structure, and it
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assumes that a reference to a structure is actually a reference to its address. The structure
assignment operator is rebuilt so that the left operand is the structure being assigned to, but the
right operand is the address of the structure being assigned; this makes it easier to deal with
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and similar constructions.

There are four special tree nodes associated with these operations: STASG (structure
assignment), STARG (structure argument to a function call), and STCALL and UNARY
STCALL (calls of a function with nonzero and zero arguments, respectively). These four
nodes are unique in that the size and alignment information, which can be determined by the
type for all other objects in C, must be known to carry out these operations; special fields are®
set aside in these nodes to contain this information, and special intermediate code is used to
transmit this information.

First Pass Summary

There are may other issues which have been ignored here, partly to justify the title
“‘tour”, and partially because they have seemed to cause little trouble. There are some debug-
ging flags which may be turned on, by giving the compiler’s first pass the argument

— X [flags]

Some of the more interesting flags are —Xd for the defining and freeing of symbols, —Xi for
initialization comments, and —Xb for various comments about the building of trees. In many
cases, repeating the flag more than once gives more information; thus, —Xddd gives more
information than —Xd. In the two pass version of the compiler, the flags should not be set
when the output is sent to the second pass, since the debugging output and the intermediate
code both go onto the standard output.

We turn now to consideration of the second pass.

Pass Two

Code generation is far less well understood than parsing or lexical analysis, and for this
reason the second pass is far harder to discuss in a file by file manner. A great deal of the
difficulty is in understanding the issues and the strategies employed to meet them. Any particu-
lar function is likely to be reasonably straightforward.

Thus, this part of the paper will concentrate a good deal on the broader aspects of strategy
in the code generator, and will not get too intimate with the details.

Overview.

It is difficult to organize a code generator to be flexible enough to generate code for a
large number of machines, and still be efficient for any one of them. Flexibility is also impor-
tant when it comes time to tune the code generator to improve the output code quality. On the
other hand, too much flexibility can lead to semantically incorrect code, and potentially a com-
binatorial explosion in the number of cases to be considered in the compiler.

One goal of the code generator is to have a high degree of correctness. It is very desirable
to have the compiler detect its own inability to generate correct code, rather than to produce
incorrect code. This goal is achieved by having a simple model of the job to be done (e.g., an
expression tree) and a simple model of the machine state (e.g., which registers are free). The
act of generating an instruction performs a transformation on the tree and the machine state;
hopefully, the tree eventually gets reduced to a single node. If each of these
instruction/transformation pairs is correct, and if the machine state model really represents the

%gf, actual machine, and if the transformations reduce the input tree to the desired single node,

2 .
. then the output code will be correct.
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For most real machines, there is no definitive theory of code generation that encompasses
all the C operators. Thus the selection of which instruction/transformations to generate, and in
what order, will have a heuristic flavor. If, for some expression tree, no transformation applies,
or, more seriously, if the heuristics select a sequence of instruction/transformations that do not
in fact reduce the tree, the compiler will report its inability to generate code, and abort.

A major part of the code generator is concerned with the model and the transformations,
— most of this is machine independent, or depends only on simple tables. The flexibility
comes from the heuristics that guide the transformations of the trees, the selection of subgoals,
and the ordering of the computation.

¥he Machine Model

The machine is assumed to have a number of registers, of at most two different types: 4
and B. Within each register class, there may be scratch (temporary) registers and dedicated
registers (e.g., register variables, the stack pointer, etc.). Requests to allocate and free registers
involve only the temporary registers.

Each of the registers in the machine is given a name and a number in the mac2defs file;
the numbers are used as indices into various tables that describe the registers, so they should
be kept small. One such table is the rswarus table on file local2.c. This table is indexed by regis-
ter number, and contains expressions made up from manifest constants describing the register
types. SAREG for dedicated AREG’s, SAREGISTAREG for scratch AREGS’s, and SBREG
and SBREGISTBREG similarly for BREG’s. There are macros that access this information:
isbreg(r) returns true if register number r is a BREG, and istreg(r) returns true if register
number r is a temporary AREG or BREG. Another table, rnames, contains the register names;
this is used when putting out assembler code and diagnostics.

The usage of registers is kept track of by an array called busy. Busylr] is the number of
uses of register r in the current tree being processed. The allocation and freeing of registers
will be discussed later as part of the code generation algorithm.

General Organization

As mentioned above, the second pass reads lines from the intermediate file, copying
through to the output unchanged any lines that begin with a *)°, and making note of the infor-
mation about stack usage and register allocation contained on lines beginning with ‘]’ and ‘[’
The expression trees, whose beginning is indicated by a line beginning with *.”, are read and
rebuilt into trees. If the compiler is loaded as one pass, the expression trees are immediately
available to the code generator.

The actual code generation is done by a hierarchy of routines. The routine delay is first
given the tree; it attempts to delay some postfix ++ and —— computations that might reason-
ably be done after the smoke clears. It also attempts to handle comma (,) operators by com-
puting the left side expression first, and then rewriting the tree to eliminate the operator. Delay
calls codgen to control the actual code generation process. Codgen takes as arguments a pointer
to the expression tree, and a second argument that, for socio-historical reasons, is called a
cookie. The cookie describes a set of goals that would be acceptable for the code generation:
these are assigned to individual bits, so they may be logically or’ed together to form a large
number of possible goals. Among the possible goals are FOREFF (compute for side effects
only; don’t worry about the value), INTEMP (compute and store value into a temporary loca-
tion in memory), INAREG (compute into an A register), INTAREG - (compute into a scratch
A register), INBREG and INTBREG similarly, FORCC (compute for condition codes), and
FORARG (compute it as a function argument; e.g., stack it if appropriate).

Codgen first canonicalizes the tree by calling canon. This routine looks for certain
transformations that might now be applicable to the tree. One, which is very common and very
powerful, is to fold together an indirection operator (UNARY MUL) and a register (REG); in
most machines, this combination is addressable directly, and so is similar to a NAME in its
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behavior. The UNARY MUL and REG are folded together to make another node type called
OREG. In fact, in many machines it is possible to directly address not just the cell pointed to
by a register, but also cells differing by a constant offset from the cell pointed to by the register.
Canon also looks for such cases, calling the machine dependent routine noroff to decide if the
offset is acceptable (for example, in the IBM 370 the offset must be between 0 and 4095 bytes).
Another optimization is to replace bit field operations by shifts and masks if the operation
involves extracting the field. Finally, a machine dependent routine, sucomp, is called that com-
putes the Sethi-Ullman numbers for the tree (see below).

After the tree is canonicalized, codgen calls the routine store whose job is to select a sub-
tree of the tree to be computed and (usuaily) stored before beginning the computation of the
full tree. Store must return a tree that can be computed without need for any temporary storage
locations. In effect, the only store operations generated while processing the subtree must be as
a response to explicit assignment operators in the tree. This division of the job marks one of
the more significant, and successful, departures from most other compilers. It means that the
code generator can operate under the assumption that there are enough registers to do its job,
without worrying about temporary storage. If a store into a temporary appears in the output, it
is always as a direct result of logic in the store routine; this makes debugging easier.

One consequence of this organization is that code is not generated by a treewalk. There
are theoretical results that support this decision.” It may be desirable to compute several sub-
trees and store them before tackling the whole tree; if a subtree is to be stored, this is known
before the code generation for the subtree is begun, and the subtree is computed when all
scratch registers are available.

The srore routine decides what subtrees, if any, should be stored by making use of
numbers, called Sethi-Ullman numbers, that give, for each subtree of an expression tree, the
minimum number of scratch registers required to compile the subtree, without any stores into
temporaries.8 These numbers are computed by the machine-dependent routine sucomp, called
by canon. The basic notion is that, knowing the Sethi-Ullman numbers for the descendants of a
node, and knowing the operator of the node and some information about the machine, the
Sethi-Ullman number of the node itself can be computed. If the Sethi-Ullman number for a
tree exceeds the number of scratch registers available, some subtree must be stored. Unfor-
tunately, the theory behind the Sethi-Ullman numbers applies only to uselessly simple
machines and operators. For the rich set of C operators, and for machines with asymmetric
registers, register pairs, different kinds of registers, and exceptional forms of addressing, the
theory cannot be applied directly. The basic idea of estimation is a good one, however, and
well worth applying; the application, especially when the compiler comes to be tuned for high
code quality, goes beyond the park of theory into the swamp of heuristics. This topic will be
taken up again later, when more of the compiler structure has been described.

After examining the Sethi-Ullman numbers, store selects a subtree, if any, to be stored,
and returns the subtree and the associated cookie in the external variables srotree and stocook.
If a subtree has been selected, or if the whole tree is ready to be processed, the routine order is
called, with a tree and cookie. Order generates code for trees that do not require temporary
locations. Order may make recursive calls on itself, and, in some cases, on codgen;, for exam-
ple, when processing the operators &&, Il, and comma (‘,’), that have a left to right evaluation,
it is incorrect for store examine the right operand for subtrees to be stored. In these cases,
order will call codgen recursively when it is permissible to work on the right operand. A similar
issue arises with the ? : operator.

The order routine works by matching the current tree with a set of code templates. If a
template is discovered that -will match the current tree and cookie, the associated assembly
language statement or statements are generated. The tree is then rewritten, as specified by the
template, to represent the effect of the output instruction(s). If no template match is found,
first an attempt is made to find a match with a different cookie; for example, in order to com-
pute an expression with cookie INTEMP (store into a temporary storage location), it is usually
necessary to compute the expression into a scratch register first. If all attempts to match the
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tree fail, the heuristic part of the algorithm becomes dominant. Control is typically given to
one of a number of machine-dependent routines that may in turn recursively call order to
achieve a subgoal of the computation (for example, one of the arguments may be computed
into a temporary register). After this subgoal has been achieved, the process begins again with
the modified tree. If the machine-dependent heuristics are unable to reduce the tree further, a
number of default rewriting rules may be considered appropriate. For example, if the left
operand of a + is a scratch register, the + can be replaced by a + = operator; the tree may
then match a template.

To close this introduction, we will discuss the steps in compiling code for the expression
a+=b
where ¢ and b are static variables.

To begin with, the whole expression tree is examined with cookie FOREFF, and no match
is found. Search with other cookies is equally fruitless, so an attempt at rewriting is made.
Suppose we are dealing with the Interdata 8/32 for the moment. It is recognized that the left
hand and right hand sides of the + = operator are addressable, and in particular the left hand
side has no side effects, so it is permissible to rewrite this as

a=a+ b

and this is done. No match is found on this tree either, so a machine dependent rewrite is
done; it is recognized that the left hand side -of the assignment is addressable, but the right
hand side is not in a register, so order is called recursively, being asked to put the right hand
side of the assignment into a register. This invocation of order searches the tree for a match,
and fails. The machine dependent rule for + notices that the right hand operand is address-
able; it decides to put the left operand into a scratch register. Another recursive call to order is
made, with the tree consisting solely of the leaf a, and the cookie asking that the value be
placed into a scratch register. This now matches a template, and a load instruction is emitted.
The node consisting of a4 is rewritten in place to represent the register into which a is loaded,
and this third call to order returns. The second call to order now finds that it has the tree

reg + b

to consider. Once again, there is no match, but the default rewriting rule rewrites the + as a
+ = operator, since the left operand is a scratch register. When this is done, there is a match:
in fact,

reg += 5

simply describes the effect of the add instruction on a typical machine. After the add is emit-
ted, the tree is rewritten to consist merely of the register node, since the result of the add is
now in the register. This agrees with the cookie passed to the second invocation of order, so
this invocation terminates, returning to the first level. The original tree has now become

a = reg

which matches a template for the store instruction. The store is output, and the tree rewritten
to become just a single register node. At this point, since the top level call to order was
interested only in side effects, the call to order returns, and the code generation is completed:;
we have generated a load, add, and store, as might have been expected.

The effect of machine architecture on this is considerable. For example, on the
Honeywell 6000, the machine dependent heuristics recognize that there is an ‘‘add to storage’
instruction, so the strategy is quite different; & is loaded in to a register, and then an add to
storage instruction generated to add this register in to a. The transformations, involving as
they do the semantics of C, are largely machine independent. The decisions as to when to use
them, however, are almost totally machine dependent.

Having given a broad outline of the code generation process, we shall next consider the
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heart of it: the templates. This leads naturally into discussions of template matching and regis-
ter allocation, and finally a discussion of the machine dependent interfaces and strategies.

The Templates
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The templates describe the effect of the target machine instructions on the model of com-
putation around which the compiler is organized. In effect, each template has five logical sec-
tions, and represents an assertion of the form:

If we have a subtree of a given shape (1), and we have a goal (cookie) or goals to achieve
(2), and we have sufficient free resources (3), then we may emit an instruction or
instructions (4), and rewrite the subtree in a particular manner (5), and the rewritten tree
will achieve the desired goals.

These five sections will be discussed in more detail later. First, we give an example of a

template:
ASG PLUS, INAREG,
SAREG, TINT,
SNAME, TINT,
0, RLEFT,

[} add AL,AR\H",

- The top line specifies the operator (+=) and the cookie (compute the value of the subtree into
an AREG). The second and third lines specify the left and right descendants, respectively, of
the + = operator. The left descendant must be a REG node, representing an A register, and
have integer type, while the right side must be a NAME node, and also have integer type. The
fourth line contains the resource requirements (no scratch registers or temporaries needed),
and the rewriting rule (replace the subtree by the left descendant). Finally, the quoted string
on the last line represents the output to the assembler: lower case letters, tabs, spaces, etc. are
copied verbatim. to the output; upper case letters trigger various macro-like expansions. Thus,
AL would expand into the Address form of the Left operand — presumably the register
number. Similarly, AR would expand into the name of the right operand. The add instruction
of the last section might well be emitted by this template.

In principle, it would be possible to make separate templates for all legal combinations of
operators, cookies, types, and shapes. In practice, the number of combinations is very large.
Thus, a considerable amount of mechanism is present to permit a large number of subtrees to
be matched by a single template. Most of the shape and type specifiers are individual bits, and
can be logically or’ed together. There are a number of special descriptors for matching classes
of operators. The cookies can also be combined. As an example of the kind of template that
really arises in practice, the actual template for the Interdata 8/32 that subsumes the above
example is:

ASG OPSIMP, INAREGIFORCC,
SAREG, TINTITUNSIGNEDITPOINT,
SAREGISNAMEISOREGISCON, TINTITUNSIGNEDITPOINT,
0, RLEFTIRESCC,
" Ol AL,AR\n",

Here, OPSIMP represents the operators +, —, |, &, and *. The OI macro in the output string
expands into the appropriate Integer Opcode for the operator. The left and right sides can be
integers, unsigned, or pointer types. The right side can be, in addition to a name, a register, a
memory location whose address is given by a register and displacement (OREG), or a constant.
Finally, these instructions set the condition codes, and so can be used in condition contexts: the

5%% cookie and rewriting rules reflect this.
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The Template Matching Algorithm.

The heart of the second pass is the template matching algorithm, in the routine march.
March is called with a tree and a cookie; it attempts to match the given tree against some tem-
plate that will transform it according to one of the goals given in the cookie. If a match is suc-
cessful, the transformation is applied; expand is called to generate the assembly code, and then
reclaim rewrites the tree, and reclaims the resources, such as registers, that might have become
free as a result of the generated code.

This part of the compiler is among the most time critical. There is a spectrum of imple-
mentation techniques available for doing this matching. The most naive algorithm simply looks
at the templates one by one. This can be considerably improved upon by restricting the search
for an acceptable template. It would be possible to do better than this if the templates were
given to a separate program that ate them and generated a template matching subroutine. This
would make maintenance of the compiler much more complicated, however, so this has not
been done.

The matching algorithm is actually carried out by restricting the range in the table that
must be searched for each opcode. This introduces a number of complications, however, and
needs a bit of sympathetic help by the person constructing the compiler in order to obtain best
results. The exact tuning of this algorithm continues; it is best to consult the code and com-
ments in match for the latest version. ’

In order to match a template to a tree, it is necessary to match not only the cookie and
the op of the root, but also the types and shapes of the left and right descendants (if any) of
the tree. A convention is established here that is carried out throughout the second pass of the
compiler. If a node represents a unary operator, the single descendant is always the ‘‘left’” des-
cendant. If a node represents a unary operator or a leaf node (no descendants) the ‘‘right”
descendant is taken by convention to be the node itself. This enables templates to easily match
leaves and conversion operators, for example, without any additional mechanism in the match-
ing program.

The type matching is straightforward; it is possible to specify any combination of basic
types, general pointers, and pointers to one or more of the basic types. The shape matching is
somewhat more complicated, but still pretty simple. Templates have a collection of possible
operand shapes on which the opcode might match. In the simplest case, an add operation
might be able to add to either a register variable or a scratch register, and might be able (with
appropriate help from the assembler) to add an integer constant (ICON), a static memory cell
(NAME), or a stack location (OREG). ’

It is usually attractive to specify a number of such shapes, and distinguish between them
when the assembler output is produced. It is possible to describe the union of many elemen-
tary shapes such as ICON, NAME, OREG, AREG or BREG (both scratch and register forms),
etc. To handle at least the simple forms of indirection, one can also match some more compli-
cated forms of trees; STARNM and STARREG can match more complicated trees headed by
an indirection operator, and SFLD can match certain trees headed by a FLD operator: these
patterns call machine dependent routines that match the patterns of interest on a given
machine. The shape SWADD may be used to recognize NAME or OREG nodes that lie on
word boundaries: this may be of some importance on word—addressed machines. Finally,
there are some special shapes: these may not be used in conjunction with the other shapes, but
may be defined and extended in machine dependent ways. The special shapes SZERO, SONE,
and SMONE are predefined and match constants 0, 1, and —1, respectively; others are easy to
add and match by using the machine dependent routine special

When a template has been found that matches the root of the tree, the cookie, and the
shapes and types of the descendants, there is still one bar to a total match: the template may
call for some resources (for example, a scratch register). The routine allo is called, and it
attempts to allocate the resources. If it cannot, the match fails; no resources are allocated. If
successful, the allocated resources are given numbers 1, 2, etc. for later reference when the
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assembly code is generated. The routines expand and reclaim are then called. The match rou-
tine then returns a special value, MDONE. If no match was found, the value MNOPE is
returned; this is a signal to the caller to try more cookie values, or attempt a rewriting rule.
Match is also used to select rewriting rules, although the way of doing this is pretty straightfor-
ward. A special cookie, FORREW, is used to ask march to search for a rewriting rule. The
rewriting rules are keyed to various opcodes; most are carried out in order. Since the question
of when to rewrite is one of the key issues in code generation, it will be taken up again later.

Register Allocation.

The register allocation routines, and the allocation strategy, play a central role in the
correctness of the code generation algorithm. If there are bugs in the Sethi-Ullman computa-
tion that cause the number of needed registers to be underestimated, the compiler may run out
of scratch registers; it is essential that the allocator keep track of those registers that are free
and busy, in order to detect such conditions.

Allocation of registers takes place as the result of a template match; the routine allo is
called with a word describing the number of A registers, B registers, and temporary locations
needed. The allocation of temporary locations on the stack is relatively straightforward, and
will not be further covered; the bookkeeping is a bit tricky, but conceptually trivial, and
requests for temporary space on the stack will never fail.

Register allocation is less straightforward. The two major complications are pairing and
sharing. In many machines, some operations (such as multiplication and division), and/or
some types (such as longs or double precision) require even/odd pairs of registers. Operations
of the first type are exceptionally difficult to deal with in the compiler; in fact, their theoretical
properties are rather bad as well. The second issue is dealt with rather more successfully; a
machine dependent function called szp(¢) is called that returns 1 or 2, depending on the
number of A registers required to hold an object of type « If szty returns 2, an even/odd pair
of A registers is allocated for each request.

The other issue, sharing, is more subtle, but important for good code quality. When
registers are allocated, it is possible to reuse registers that hold address information, and use
them to contain the values computed or accessed. For example, on the IBM 360, if register 2
has a pointer to an integer in it, we may load the integer into register 2 itself by saying:

L 2,002)

If register 2 had a byte pointer, however, the sequence for loading a character involves clearing
the target register first, and then inserting the desired character:

SR 3,3
IC 3,002)

In the first case, if register 3 were used as the target, it would lead to a larger number of regis-
ters used for the expression than were required; the compiler would generate inefficient code.
On the other hand, if register 2 were used as the target in the second case, the code would sim-
ply be wrong. In the first case, register 2 can be shared while in the second, it cannot.

In the specification of the register needs in the templates, it is possible to indicate whether
required scratch registers may be shared with possible registers on the left or the right of the
input tree. In order that a register be shared, it must be scratch, and it must be used only
once, on the appropriate side of the tree being compiled.

The allo routine thus has a bit more to do than meets the eye; it calls freereg to obtain a
free register for each A and B register request. Freereg makes multiple calls on the routine
usable to decide if a given register can be used to satisfy a given need. Usable calls shareit if the
register is busy, but might be shared. Finally, skareir calls ushare to decide 1f the desired regis-
ter is actually in the appropriate subtree, and can be shared.

Just to add additional complexity, on some machines (such as the IBM 370) it is possible
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to have ‘‘double indexing’ forms of addressing; these are represented by OREGS’s with the
base and index registers encoded into the register field. While the register allocation and deal-
location per se is not made more difficult by this phenomenon, the code itself is somewhat more
complex.

Having allocated the registers and expanded the assembly language, it is time to reclaim
the resources; the routine reclaim does this. Many operations produce more than one result.
For example, many arithmetic operations may produce a value in a register, and also set the
condition codes. Assignment operations may leave results both in a register and in memory.
Reclaim is passed three parameters; the tree and cookie that were matched, and the rewriting
field of the template. The rewriting field allows the specification of possible results; the tree is
rewritten to reflect the results of the operation. If the tree was computed for side effects only
(FOREFF), the tree is freed, and all resources in it reclaimed. If the tree was computed for
condition codes, the resources are also freed, and the tree replaced by a special node type,
FORCC. Otherwise, the value may be found in the left argument of the root, the right argu-
ment of the root, or one of the temporary resources allocated. In these cases, first the
resources of the tree, and the newly allocated resources, are freed; then the resources needed
by the result are made busy again. The final result must always match the shape of the input
cookie; otherwise, the compiler error ‘‘cannot reclaim’’ is generated. There are some machine
dependent ways of preferring results in registers or memory when there are multiple results
matching multiple goals in the cookie.

The Machine Dependent Interface

The files order.c, local2.c, and table.c, as well as the header file mac2defs, represent the
machine dependent portion of the second pass. The machine dependent portion can be roughly
divided into two: the easy portion and the hard portion. The easy portion tells the compiler the
names of the registers, and arranges that the compiler generate the proper assembler formats,
opcode names, location counters, etc. The hard portion involves the Sethi— Ullman computa-
tion, the rewriting rules, and, to some extent, the templates. It is hard because there are no
real algorithms that apply; most of this portion is based on heuristics. This section discusses
the easy portion; the next several sections will discuss the hard portion.

If the compiler is adapted from a compiler for a machine of similar architecture, the easy
part is indeed easy. In mac2defs, the register numbers are defined, as well as various parame-
ters for the stack frame, and various macros that describe the machine architecture. If double
indexing is to be permitted, for example, the symbol R2REGS is defined. Also, a number of
macros that are involved in function call processing, especially for unusual function call
mechanisms, are defined here.

In locall.c, a large number of simple functions are defined. These do things such as write
out opcodes, register names, and address forms for the assembler. Part of the function call
code is defined here; that is nontrivial to design, but typically rather straightforward to imple-
ment. Among the easy routines in order.c are routines for generating a created label, defining a
label, and generating the arguments of a function call.

These routines tend to have a local effect, and depend on a fairly straightforward way on
the target assembler and the design decisions already made about the compiler. Thus they will
not be further treated here.

The Rewriting Rules

When a tree fails to match any template, it becomes a candidate for rewriting. Before the
tree is rewritten, the machine dependent routine rexicook is called with the tree and the cookie;
it suggests another cookie that might be a better candidate for the matching of the tree. If all
else fails, the templates are searched with the cookie FORREW, to look for a rewriting rule.
The rewriting rules are of two kinds; for most of the common operators, there are machine
dependent rewriting rules that may be applied; these are handied by machine dependent func-
tions that are called and given the tree to be computed. These routines may recursively call
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order or codgen to cause certain subgoals to be achieved; if they actually call for some alteration
of the tree, they return 1, and the code generation algorithm recanonicalizes and tries again. If
these routines choose not to deal with the tree, the default rewriting rules are applied.

The assignment ops, when rewritten, call the routine setasg. This is assumed to rewrite
the tree at least to the point where there are no side effects in the left hand side. If there is
still no template match, a default rewriting is done that causes an expression such as

a+=2p
to be rewritten as
a=a+b

This is a useful default for certain mixtures of strange types (for example, when a is a bit field
and b an character) that otherwise might need separate table entries.

Simple assignment, structure assignment, and all forms of calls are handled completely by
the machine dependent routines. For historical reasons, the routines generating the calls return
1 on failure, 0 on success, unlike the other routines.

The machine dependent routine setbin handles binary operators; it too must do most of
the job. In particular, when it returns 0, it must do so with the left hand side in a temporary
register. The default rewriting rule in this case is to convert the binary operator into the associ-
ated assignment operator; since the left hand side is assumed to be a temporary register, this
preserves the semantics and often allows a considerable saving in the template table.

The increment and decrement operators may be dealt with with the machine dependent
routine setincr. If this routinechooses not to deal with the tree, the rewriting rule replaces

x ++
by
((x+=1)—1)

which preserves the semantics. Once again, this is not too attractive for the most common
cases, but can generate close to optimal code when the type of x is unusual.

Finally, the indirection (UNARY MUL) operator is also handled in a special way. The
machine dependent routine offstar is extremely important for the efficient generation of code.
Offstar is called with a tree that is the direct descendant of a UNARY MUL node; its job is to
transform this tree so that the combination of UNARY MUL with the transformed tree
becomes addressable. On most machines, offstar can simply compute the tree into an A or B
register, depending on the architecture, and then canon will make the resulting tree into an
OREG. On many machines, offstar can profitably choose to do less work than computing its
entire argument into a register. For example, if the target machine supports OREGS with a
constant offset from a register, and offsar is called with a tree of the form

expr + const

where const is a constant, then offsrar need only compute expr into the appropriate form of
register. On machines that support double indexing, offsrar may have even more choice as to
how to proceed. The proper tuning of offsrar, which is not typically too difficult, should be one
of the first tries at optimization attempted by the compiler writer.

The Sethi-Ullman Computation

The heart of the -heuristics is the computation of the Sethi-Ullman numbers. This compu-
tation is closely linked with the rewriting rules and the templates. As mentioned before, the
Sethi-Ullman numbers are expected to estimate the number of scratch registers needed to com-
pute the subtrees without using any stores. However, the original theory does not apply to real
machines. For one thing, the theory assumes that all registers are interchangeable. Real
machines have general purpose, floating point, and index registers, register pairs, etc. The
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theory also does not account for side effects; this rules out various forms of pathology that arise
from assignment and assignment ops. Condition codes are also undreamed of. Finally, the
influence of types, conversions, and the various addressability restrictions and extensions of
real machines are also ignored. ’

Nevertheless, for a ‘‘useless’ theory, the basic insight of Sethi and Uliman is amazingly
useful in a real compiler. The notion that one should attempt to estimate the resource needs of
trees before starting the code generation provides a natural means of splitting the code genera-
tion problem, and provides a bit of redundancy and self checking in the compiler. Moreover, if
writing the Sethi-Ullman routines is hard, describing, writing, and debugging the alternative
(routines that attempt to free up registers by stores into temporaries ‘“‘on the fly”) is even
worse. Nevertheless, it should be clearly understood that these routines exist in a realm where
there is no ‘‘right” way to write them; it is an art, the realm of heuristics, and, consequently, a
major source of bugs in the compiler. Often, the early, crude versions of these routines give
little trouble; only after the compiler is actually working and the code quality is being improved
do serious problem have to be faced. Having a simple, regular machine architecture is worth
quite a lot at this time.

The major problems arise from asymmetries in the registers: register pairs, having
different kinds of registers, and the related problem of needing more than one register (fre-
quently a pair) to store certain data types (such as longs or doubles). There appears to be no
general way of treating this problem; solutions have to be fudged for each machine where the
problem arises. On the Honeywell 66, for example, there are only two general purpose regis-
ters, so a need for a pair is the same as the need for two registers. On the IBM 370, the regis-
ter pair (0,1) is used to do multiplications and divisions; registers 0 and 1 are not generally con-
sidered part of the scratch registers, and so do not require -allocation explicitly. On the Inter-
data 8/32, after much consideration, the decision was made not to ‘try to deal with the register
pair issue; operations such as multiplication and division that required pairs were simply
assumed to take all of the scratch registers. Several weeks of effort had failed to produce an
algorithm that seemed to have much chance of running successfully without inordinate debug- -
ging effort. The difficuity of this issue should not be minimized; it represents one of the main
intellectual efforts in porting the compiler. Nevertheless, this problem has been fudged with a
degree of success on nearly a dozen machines, so the compiler writer should not abandon hope.

The Sethi-Uliman computations interact with the rest of the compiler in a number of
rather subtle ways. As already discussed, the srore routine uses the Sethi-Ullman numbers to
decide which subtrees are too difficult to compute in registers, and must be stored. There are
also subtle interactions between the rewriting routines and the Sethi-Ullman numbers. Suppose
we have a tree such as

A—B

where 4 and B are expressions; suppose further that B takes two registers, and 4 one. It is
possible to compute the full expression in two registers by first computing B, and then, using
the scratch register used by B, but not containing the answer, compute 4. The subtraction can
then be done, computing the expression. (Note that this assumes a number of things, not the
least of which are register-to-register subtraction operators and symmetric registers.) If the
machine dependent routine setbin, however, is not prepared to recognize this case and compute
the more difficult side of the expression first, the Sethi-Uliman number must be set to three.
Thus, the Sethi-Ullman number for a tree should represent the code that the machine depen-
dent routines are actually willing to generate.

The interaction can go the other way. If we take an expression such as
*(p+i)

where p is a pointer and / an integer, this can probably be done in one register on most
machines. Thus, its Sethi-Ullman number would probably be set to one. If double indexing is
possible in the machine, a possible way of computing the expression is to load both p and /into
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registers, and then use double indexing. This would use two scratch registers; in such a case, it
is possible that the scratch registers might be unobtainable, or might make some other part of
the computation run out of registers. The usual solution is to cause offszar to ignore opportuni-
ties for double indexing that would tie up more scratch registers than the Sethi-Ullman number
"had reserved.

In summary, the Sethi-Uliman computation represents much of the craftsmanship and
artistry in any application of the portable compiler. It is also a frequent source of bugs. Algo-
rithms are available that will produce nearly optimal code for specialized machines, but unfor-
tunately most existing machines are far removed from these ideals. The best way of proceeding
in practice is to start with a compiler for a similar machine to the target, and proceed very care-
fully.

Register Allocation

After the Sethi-Ullman numbers are computed, order calls a routine, rallo, that does regis-
ter allocation, if appropriate. This routine does relatively little, in general; this is especially true
if the target machine is fairly regular. There are a few cases where it is assumed that the result
of a computation takes place in a particular register; switch and function return are the two
major places. The expression tree has a field, rall, that may be filled with a register number;
this is taken to be a preferred register, and the first temporary register allocated by a template
match will be this preferred one, if it is free. If not, no particular action is taken; this is just a
heuristic. If no register preference is present, the field contains NOPREF. In some cases, the
result must be placed in a given register, no matter what. The register number is placed in rall,
and the mask MUSTDO is logically or’ed in with it. In this case, if the subtree is requested in
a register, and comes back in a register other than the demanded one, it is moved by calling the
routine rmove. If the target register for this move is busy, it is a compiler error.

Note that this mechanism is the only one that will ever cause a register-to-register move
between scratch registers (unless such a move is buried in the depths of some template). This
simplifies debugging. In some cases, there is a rather strange interaction between the register
allocation and the Sethi-Ullman number; if there is an operator or situation requiring a particu-
lar register, the allocator and the Sethi-Ullman computation must conspire to ensure that the
target register is not being used by some intermediate result of some far-removed computation.
This is most easily done by making the special operation take all of the free registers, prevent-
ing any other partially-computed results from cluttering up the works.

Compiler Bugs

The portable compiler has an excellent record of generating correct code. The require-
ment for reasonable cooperation between the register allocation, Sethi-Ullman computation,
rewriting rules, and templates builds quite a bit of redundancy into the compiling process. The
effect of this is that, in a surprisingly short time, the compiler will start generating correct code
for those programs that it can compile. The hard part of the job then becomes finding and
eliminating those situations where the compiler refuses to compile a program because it knows
it cannot do it right. For example, a template may simply be missing; this may either give a
compiler error of the form ‘‘no match for op ...”" , or cause the compiler to go into an infinite
loop applying various rewriting rules. The compiler has a variable, nrecur, that is set to 0 at the
beginning of an expressions, and incremented at key spots in the compilation process; if this
parameter gets too large, the compiler decides that it is in a loop, and aborts. Loops are also
characteristic of botches in the machine-dependent rewriting rules. Bad Sethi-Ullman computa-
tions usually cause the scratch registers to run out; this often means that the Sethi-Ullman
number was underestimafed, so swore did not store something it should have; alternatively, it
can mean that the rewriting rules were not smart enough to find the sequence that sucomp
assumed would be used.

The best approach when a compiler error is detected involves several stages. First, try to
get a small exampie program that steps on the bug. Second, turn on various debugging flags in
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the code generator, and follow the tree through the process of being matched and rewritten.
Some flags of interest are —e, which prints the expression tree, —r, which gives information
about the allocation of registers, —a, which gives information about the performance of rallo,
and —o, which gives information about the behavior of order. This technique should allow
most bugs to be found relatively quickly.

Unfortunately, finding the bug is usually not enough; it must also be fixed! The difficulty
arises because a fix to the particular bug of interest tends to break other code that already
works. Regression tests, tests that compare the performance of a new compiler against the per-
formance of an older one, are very valuable in preventing major catastrophes.

Summary and Conclusion

The portable compiler has been a useful tool for providing C capability on a large number
of diverse machines, and for testing a number of theoretical constructs in a practical setting. It
has many blemishes, both in style and functionality. It has been applied to many more
machines than first anticipated, of a much wider range than originally dreamed of. Its use has
also spread much faster than expected, leaving parts of the compiler still somewhat raw in
shape.

On the theoretical side, there is some hope that the skeleton of the sucomp routine could
be generated for many machines directly from the templates; this would give a considerable
boost to the portability and correctness of the compiler, but might affect tunability and code
quality. There is also room for more optimization, both within optim and in the form of a port-
able ‘‘peephole’” optimizer.

On the practical, development side, the compiler could probably be sped up and made
smaller without doing too much violence to its basic siructure. Parts of the compiler deserve to
be rewritten: the initialization code, register allocation, and parser are prime candidates. It
might be that doing some or all of the parsing with a recursive descent parser might save
enough space and time to be worthwhile; it would certainly ease the problem of moving the
compiler to an environment where Yacc is not already present.

Finally, 1 would like to thank the many people who have sympathetically, and even
enthusiastically, helped me grapple with what has been a frustrating program to write, test, and
install. D. M. Ritchie and E. N. Pinson provided needed early encouragement and philosophi-
cal guidance; M. E. Lesk, R. Muha, T. G. Peterson, G. Riddle, L. Rosler, R. W. Mitze, B. R.
Rowland, S. 1. Feldman, and T. B. London have all contributed ideas, gripes, and all, at one
time or another, climbed “‘into the pits™ with me to help debug. Without their help this effort
would have not been possible; with it, it was often kind of fun.
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ABSTRACT

A network of over eighty UNIXT computer systems has been established
using the telephone system as its primary communication medium. The net-
work was designed to meet the growing demands for software distribution and
exchange. Some advantages of our design are:

- The startup cost is low. A system needs only a dial-up port, but systems
with automatic calling units have much more flexibility.

- No operating system changes are required to install or use the system.

- The communication is basically over dial-up lines, however, hardwired
communication lines can be used to increase speed.

- The command for sending/receiving files is simple to use.

Keywords: networks, communications, software distribution, software
maintenance '
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A Dial-Up Network of UNIX™ Systems

D. A. Nowitz
M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Purpose

The widespread use of the UNixt system! within Bell Laboratories has produced problems
of software distribution and maintenance. A conventional mechanism was set up to distribute
.the operating system and associated programs from a central site to the various users. However
this mechanism alone does not meet all software distribution needs. Remote sites generate
much software and must transmit it to other sites. Some UNIX systems are themselves central
sites for redistribution of a particular specialized utility, such as the Switching Control Center
System. Other sites have particular, often long-distance needs for software exchange; switching
research, for example, is carried on in New Jersey, Illinois, Ohio, and Colorado. In addition,
general purpose utility programs are written at all UNIX system sites. The UNIX system is
modified and enhanced by many people in many places and it would be very constricting to
deliver new software in a one-way stream without any alternative for the user sites to respond
with changes of their own.

Straightforward software distribution is only part of the problem. A large project may
exceed the capacity of a single computer and several machines may be used by the one group of
people. It then becomes necessary for them to pass messages, data and other information back
an forth between computers.

Several groups with similar problems, both inside and outside of Bell Laboratories, have
constructed networks built of hardwired connections only.%3 Our network, however, uses both
dial-up and hardwired connections so that service can be provided to as many sites as possible.

2. Design Goals

Although some of our machines are connected directly, others can only communicate
over low-speed dial-up lines. Since the dial-up lines are often unavailable and file transfers may
take considerable time, we spool all work and transmit in the background. We also had to
adapt to a community of systems which are independently operated and resistant to suggestions
that they should all buy particular hardware or install particular operating system modifications.
Therefore, we make minimal demands on the local sites in the network. Our implementation
requires no operating system changes; in fact, the transfer programs look like any other user
entering the system through the nqrmal dial-up login ports, and obeying all local protection
rules.

We distinguish “‘active’ and ‘‘passive” systems on the network. Active systems have an
automatic calling unit or a hardwired line to another system, and can initiate a connection. Pas-
sive systems do not have the hardware to initiate a connection. However, an active system can
be assigned the job of calling passive systems and executing work found there; this makes a
passive system the functional equivalent of an active system, except for an additional delay
while it waits to be polled. Also, people frequently log into active systems and request copying
from one passive system to another. This requires two telephone calls, but even so, it is faster

tUNIX is a Trademark of Bell Laboratories.
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than mailing tapes.

Where convenient, we use hardwired communication lines. These permit much faster
transmission and multiplexing of the communications link. Dial-up connections are made at
either 300 or 1200 baud; hardwired connections are asynchronous up to 9600 baud and might
run even faster on special-purpose communications hardware.®5 Thus, systems typically join
our network first as passive systems and when they find the service more important, they
acquire automatic calling units and become active systems; eventually, they may install high-
speed links to particular machines with which they handle a great deal of traffic. At no point,
however, must users change their programs or procedures.

The basic operation of the network is very simple. Each participating system has a spool
directory, in which work to be done (files to be moved, or commands to be executed remotely)
is stored. A standard program, uucico, performs all transfers. This program starts by identify-
ing a particular communication channel to a remote system with which it will hold a conversa-
tion. Uucico then selects a device and establishes the connection, logs onto the remote machine
and starts the wucico program on the remote machine. Once two of these programs are con-
nected, they first agree on a line protocol, and then start exchanging work. Each program in
turn, beginning with the calling (active system) program, transmits everything it needs, and
then asks the other what it wants done. Eventually neither has any more work, and both exit.

In this way, all services are available from all sites; passive sites, however, must wait until
called. A variety of protocols may be used; this conforms to the real, non-standard world. As
long as the caller and called programs have a protocol in common, they can communicate.
Furthermore, each caller knows the hours when each destination system should be called. If a
destination is unavailable, the data intended for it remain in the spool directory until the desti-
nation machine can be reached.

The implementation of this Bell Laboratories network between independent sites, all of
which store proprietary programs and data, illustratives the pervasive need for security and
administrative controls over file access. Each site, in configuring its programs and system files,
limits and monitors transmission. In order to access a file a user needs access permission for
the machine that contains the file and access permission for the file itself. This is achieved by
first requiring the user to use his password to log into his local machine and then his local
machine logs into the remote machine whose files are to be accessed. In addition, records are
kept identifying all files that are moved into and out of the local system, and how the requestor
of such accesses identified himself. Some sites may arrange to permit users only to call up and
request work to be done; the calling users are then called back before the work is actually done.
It is then possible to verify that the request is legitimate from the standpoint of the target sys-
tem, as well as the originating system. Furthermore, because of the call-back, no site can
masquerade as another even if it knows all the necessary passwords.

Each machine can optionally maintain a sequence count for conversations with other
machines and require a verification of the count at the start of each conversation. Thus, even
if call back is not in use, a successful masquerade requires the calling party to present the
correct sequence number. A would-be impersonator must not just steal the correct phone
number, user name, and password, but also the sequence count, and must call in sufficiently
promptly to precede the next legitimate request from either side. Even a successful
masquerade will be detected on the next correct conversation.

3. Processing

The user has two commands which set up communications, wucp to set up file copying,
and wux to set up command execution where some of the required resources (system and/or
files) are not on the local machine. Each of these commands will put work and data files into
the spool directory for execution by wucp daemons. Figure 1 shows the major blocks of the file
transfer process.
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File Copy

The uucico program is used to perfoim all communications between the two systems. It
performs the following functions:

- Scan the spool directory for work.

- Place a call to a remote system.

- Negotiate a line protocol to be used.

- Start program wucico on the remote system.

- Execute all requests from both systems.

- Log work requests and work completions.
Uucico may be started in several ways;

a) by a system daemon,

b) by one of the uucp or uux programs,

c) by aremote system.

Scan For Work

The file names in the spool direciory are constructed to allow the daemon programs
(uucico, uuxqt) to determine the files they should look at, the remote machines they should call
and the order in which the files for a particular remote machine should be processed.

Call Remote System

The call is made using information from several files which reside in the uucp program
directory. At the start of the call process, a lock is set on the system being called so that
another call will not be attempted at the same time.

The system name is found in a ‘“‘systems’’ file. The information contained for each sys-
tem is:

[1] system name,

[2] times to call the system (days-of-week and times-of-day),

[31 device or device type to be used for call,

[4] line speed,

[5]1 phone number,

[6] login information (multiple fields).

The time field is checked against the present time to see if the call should be made. The
phone number may contain abbreviations (e.g. ‘‘nyc’’, ‘‘boston’) which get translated into dial
sequences using a ‘‘dial-codes’ file. This permits the same ‘‘phone number’’ to be stored at
every site, despite local variations in telephone services and dialing conventions.

A “‘devices” file is scanned using fields [3] and [4] from the ‘‘systems’ file to find an
available device for the connection. The program will try all devices which satisfy [3] and [4]
until a connection is made, or no more devices can be tried. If a non-multiplexable device is
successfully opened, a lock file is created so that another copy of uucico will not try to use it. If
the connection is complete, the login information is used to log into the remote system. Then a
command is sent to the remote system to start the wucico program. The conversation between
the two uucico programs begins with a handshake started by the called, SLAVE, system. The
SLAVE sends a message to let the MASTER know it is ready to receive the system
identification and conversation sequence number. The response from the MASTER is verified
by the SLAVE and if acceptable, protocol selection begins.
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Line Protocol Selection
The remote system sends a message
Pproto-list
where proto-list is a string of characters, each representing a line protocol. The calling program

checks the. proto-list for a letter corresponding to an available line protocol and returns a use-
protocol message. The wuse-protocol message is

Ucode

where code is either a one character protocol letter or a N which means there is no common
protocol.

Greg Chesson designed and implemented the standard line protocol used by the uucp
transmission program. Other protocols may be added by individual installations.

Work Processing

During processing, one program is the MASTER and the other is SLAVE. Initially, the
calling program is the MASTER. These roles may switch one or more times during the conver-
sation.

There are four messages used during the work processing, each specified by the first char-
acter of the message. They are

send a file,
receive a file,
copy complete,
hangup.

el @R -7

The MASTER will send R or S messages until all work from the spool directory is complete, at
which point an A message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY, HN,
corresponding to yes or no for each request.

The send and receive replies are based on permission to -access the requested
file/directory. After each file is copied into the spool directory of the receiving system, a copy-
complete message is sent by the receiver of the file. The message CVY will be sent if the UNIX
cp command, used to copy from the spool directory, is successful. Otherwise, a CN message is
sent. The requests and results are logged on both systems, and, if requested, mail is sent to the
user reporting completion (or the user can request status information from the log program at
any time).

The hangup response is determined by the SLAVE program by a work scan of the spool
directory. If work for the remote system exists in the SLAVE’s spool directory, a /N message
is sent and the programs switch roles. If no work exists, an HY response is sent.

A sample conversation is shown in Figure 2.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE and the
protocols are turned off. Each program sends a final "O0O" message to the other.

4. Present Uses

One application of this software is remote mail. Normally, a UNIX system user writes
““mail dan’’ to send mail to user ‘‘dan’’. By writing ‘‘mail usg!dan’ the mail is sent to user
‘“‘dan’” on system ‘‘usg”’.

The primary uses of our network to date have been in software maintenance. Relatively
few of the bytes passed between systems are intended for people to read. Instead, new pro-
grams (or new versions of programs) are sent to users, and potential bugs are returned to
authors. Aaron Cohen has implemented a ‘‘stockroom’ which allows remote users to call in
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and request software. He keeps a ‘‘stock list”” of available programs, and new bug fixes and
utilities are added regularly. In this way, users can always obtain the latest version of anything
without bothering the authors of the programs. Although the stock list is maintained on a par-
ticular system, the items in the stockroom may be warehoused in many places; typically each
program is distributed from the home site of its author. Where necessary, uucp does remote-
to-remote copies.

We also routinely retrieve test cases from other systems to determine whether errors on
remote systems are caused by local misconfigurations or old versions of software, or whether
they are bugs that must be fixed at the home site. This helps identify errors rapidly. For one
set of test programs maintained by us, over 70% of the bugs reported from remote sites were
due to old software, and were fixed merely by distributing the current version.

Another application of the network for software maintenance is to compare files on two
different machines. A very useful utility on one machine has been Doug Mcllroy’s *‘diff”* pro-
gram which compares two text files and indicates the differences, line by line, between them.®
Only lines which are not identical are printed. Similarly, the program ‘‘uudiff”’ compares files
(or directories) on two machines. One of these directories may be on a passive system. The
“uudiff”’ program is set up to work similarly to the inter-system mail, but it is slightly more
complicated.

To avoid moving large numbers of usually identical files, wudiff computes file checksums
on each side, and only moves files that are different for detailed comparison. For large files,
" this process can be iterated; checksums can be computed for each line, and only those lines that
are different actually moved.

The “‘uux™ command has been useful for providing remote output. There are some
machines which do not have hard-copy devices, but which are connected over 9600 baud com-
munication lines to machines with printers. The wux command allows the formatting of the
printout on the local machine and printing on the remote machine using standard UNIX com-
mand programs.

5. Performance

Throughput, of course, is primarily dependent on transmission speed. The table below
shows the real throughput of characters on communication links of different speeds. These
numbers represent actual data transferred; they do not include bytes used by the line protocol
for data validation such as checksums and messages. At the higher speeds, contention for the
processors on both ends prevents the network from driving the line full speed. The range of
speeds represents the difference between light and heavy loads on the two systems. If desired,
operating system modifications can be installed that permit full use of even very fast links.

Nominal speed Characters/sec.

300 baud 27
1200 baud 100-110
9600 baud 200-850

In addition to the transfer time, there is some overhead for making the connection and logging
in ranging from 15 seconds to 1 minute. Even at 300 baud, however, a typical 5,000 byte
source program can be transferred in four minutes instead of the 2 days that might be required
to mail a tape.

Traffic between systems is variable. Between two closely related systems, we observed 20
files moved and 5 remote commands executed in a typical day. A more normal traffic out of a
single system would be around a dozen files per day.

The total number of sites at present in the main network is 82, which includes most of
the Bell Laboratories full-size machines which run the UNIX operating system. Geographically,
the machines range from Andover, Massachusetts to Denver, Colorado.
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Uucp has also been used to set up another network which connects a group of systems in
operational sites with the home site. The two networks touch at one Bell Labs computer.

6. Further Goals

Eventually, we would like to develop a full system of remote software maintenance. Con-
ventional maintenance (a support group which mails tapes) has many well-known disadvan-
tages.” There are distribution errors and delays, resulting in old software running at remote
sites and old bugs continually reappearing. These difficulties are aggravated when there are 100
different small systems, instead of a few large ones.

The availability of file transfer on a network of compatible operating systems makes it
possible just to send programs directly to the end user who wants them. This avoids the
bottleneck of negotiation and packaging in the central support group. The “‘stockroom’ serves
this function for new utilities and fixes to old utilities. However, it is still likely that distribu-
tions will not be sent and installed as often as needed. Users are justifiably suspicious of the
“latest version’ that has just arrived; all too often it features the ‘‘latest bug.”’ What is needed
is to address both problems simultaneously:

1. Send distributions whenever programs change.
2. Have sufficient quality control so that users will install them.

To do this, we recommend systematic regression testing both on the distributing and receiving
systems. Acceptance testing on the receiving systems can be automated and permits the local
system to ensure that its essential work can continue despite the constant installation of changes
sent from elsewhere. The work of writing the test sequences should be recovered in lower
counseling and distribution costs.

Some slow-speed network services are also being implemented. We now have inter-
system “‘mail’’ and “‘diff,”" plus the many implied commands represented by ‘‘uux.” However,
we still need inter-system ‘‘write” (real-time inter-user communication) and ‘“‘who’’ (list of
people logged in on different systems). A slow-speed network of this sort may be very useful
for speeding up counseling and education, even if not fast enough for the distributed data base
applications that attract many users to networks. Effective use of remote execution over siow-
speed lines, however, must await the general installation of multiplexable channels so that long
file transfers do not lock out short inquiries.

" 7. Lessons
The following is a summary of the lessons we learned in building these programs.

1. By starting your network in a way that requires no hardware or major operating system
changes, you can get going quickly.

2. Support will follow use. Since the network existed and was being used, system main-
tainers were easily persuaded to help keep it operating, including purchasing additional
hardware to speed traffic.

3. Make the network commands look like local commands. Our users have a resistance to
learning anything new: all the inter-system commands look very similar to standard UNIX
system commands so that little training cost is involved.

4. An initial error was not coordinating enough with existing communications projects: thus,
the first version of this network was restricted to dial-up, since it did not support the vari-
ous hardware links between systems. This has been fixed in the current system.
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ABSTRACT

Uucp is a series of programs designed to permit communication between
UNIX systems using either dial-up or hardwired communication lines. This
document gives a detailed implementation description of the current (second)
implementation of uucp.

This document is for use by an administrator/installer of the system. It is
not meant as a user’s guide. !
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Uucp Implementation Description

D. A. Nowirz

Introduction

Uucp is a series of programs designed to permit communication between UNIXT systems using
either dial-up or hardwired communication lines. It is used for file transfers and remote com-
mand execution. The first version of the system was designed and implemented by M. E.
Lesk.! This paper describes the current (second) implementation of the system.

Uucp is a batch type operation. Files are created in a spool directory for processing by the uucp
demons. There are three types of files used for the execution of work. Data files contain data
for transfer to remote systems. Work files contain directions for file transfers between systems.
Execution files are directions for UNIX command executions which involve the resources of one
or more systems.

The uucp system consists of four primary and two secondary programs. The primary programs
are: :

uucp This program creates work and gathers data files in the spool directory for the
transmission of files.
uux This program creates work files, execute files and gathers data files for the

remote execution of UNIX commands.
uucico This program executes the work files for data transmission.
uuxqt This program executes the execution files for UNIX command execution.
The secondary programs are:

uulog This program updates the log file with new entries and reports on the status of
uucp requests. '

uuclean  This program removes old files from the spool directory.

The remainder of this paper will describe the operation of each program, the installation of the
system, the security aspects of the system, the files required for execution, and the administra-
tion of the system.

1. Uucp - UNIX to UNIX File Copy

The wucp command is the user’s primary interface with the system. The uucp command was
designed to look like ¢p to the user. The syntax is

uucp loption] ... source ... destination

where the source and destination may contain the prefix system-name! which indicates the Sys-
tem on which the file or files reside or where they will be copied.

The options interpreted by wucp are:
—d Make directories when necessary for copying the file.

2

TUNIX is a Trademark of Bell Laboratories.
1 M. E. Lesk and A. S. Cohen, UNIx Software Distribution by Communication Link, private communication.
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—C Don’t copy source files to the spool directory, but use the specified source
when the actual transfer takes place.

—gletter Put letter in as the grade in the name of the work file. (This can be used to
change the order of work for a particular machine.)

-m Send mail on completion of the work.

The following options are used primarily for debugging:
-r Queue the job but do not start wucico program.
—sdir Use directory dir for the spool directory.

—xnum  Numis the level of debugging output desired.

The destination may be a directory name, in which case the file name is taken from the last part
of the source’s name. The source name may contain special shell characters such as *“ ?*[P°. If
a source argument has a system-name! prefix for a remote system, the file name expansion will
be done on the remote system.

The command
uucp *.c usg!/usr/dan

will set up the transfer of all files whose names end with ‘““.c” to the ‘‘/usr/dan’’ directory on
the‘‘usg’ machine.

The source and/or destination names may also contain a “user prefix. This translates to the
login directory on the specified system. For names with partial path-names, the current direc-
tory is prepended to the file name. File names with ../ are not permitted.

The command
uucp usg!"dan/*.h “dan

will set up the transfer of files whose names end with *“.h’’ in dan’s login directory on system
“‘usg’ to dan’s local login directory.

For each source file, the program will check the source and destination file-names and the
system-part of each to classify the work into one of five types:

[1] Copy source to destination on local system.

[2] Receive files from other systems.

[3] Send files to a remote systems.

[4] Send files from remote systems to another remote system.

[5] Receive files from remote systems when the source contains special shell characters
as mentioned above.

After the work has been set up in the spool directory, the wuucico program is started to try to
contact the other machine to execute the work (unless the —r option was specified).

Type 1

A ¢p command is used to do the work. The —d and the —m options are not honored in this
case.

Type 2

A one line work file is created for each file requested and put in the spool directory with the foi- "

lowing fields, each separated by a blank. (All work files and execute files use a blank as the field
separator.)
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[2] The full path-name of the source or a “user/path-name. The “user part will be
expanded on the remote system.

{31 The full path-name of the destination file. If the ~user notation is used, it will be
immediately expanded to be the login directory for the user.

[4] The user’s login name.

[5] A “— followed by an option list. (Only the —m and —d options will appear in
this list.)

Type 3
For each source file, a work file is created and the source file is copied into a data file in the
spool directory. (A ‘“—c¢” option on the wucp command will prevent the data file from being

made.) In this case, the file will be transmitted from the indicated source.) The fields of each
entry are given below.

11 s

[2] The full-path name of the source file.

[3] The full-path name of the destination or ~user/file-name.

[4] The user’s login name.

[51 A “—" followed by an option list.

[6] The name of the data file in the spool directory.

[71 The file mode bits of the source file in octal print format (e.g. 0666).

Type 4 and Type 5

Uucp generates a uucp command and sends it to the remote machine; the remote wucico exe-
cutes the uucp command.

2. Uux - UNIX To UNIX Execution

The uux command is used to set up the execution of a UNIX command where the execution
machine and/or some of the files are remote. The syntax of the uux command is

uux | —1loption] ... command-string

where the command-string is made up of one or more arguments. All special shell characters
such as ““<>["" must be quoted either by quoting the entire command-string or quoting the
character as a separate argument. Within the command-string, the command and file names
may contain a system-name! prefix. All arguments which do not contain a ““!I"* will not be
treated as files. (They will not be copied to the execution machine.) The *“—"’ is used to indi-
cate that the standard input for command-string should be inherited from the standard input of
the uux command. The options, essentially for debugging, are:

-r Don’t start uucico or uuxqt after queuing the job;
—xnum Num is the level of debugging output desired.
The command
pr abc | uux — usg!lpr

will set up the output of *‘pr abc’ as standard input to an Ipr command to be executed on sys-
tem “‘usg’’.

Uux generates an execute file which contains the names of the files required for execution
(including standard input), the user’s login name, the destination of the standard output, and
the command to be executed. This file is either put in the spool directory for local execution or
sent to the remote system using a generated send command (type 3 above).

For required files which are not on the execution machine, uux will generate receive command
files (type 2 above). These command-files will be put on the execution machine -and executed
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by the wucico program. (This will work only if the local system has permission to put files in
the remote spool directory as controlled by the remote USERFILE. )

The execute file will be processed by the wuxgt program on the execution machine. It is made
up of several lines, each of which contains an identification character and one or more argu-
ments. The order of the lines in the file is not relevant and some of the lines may not be
present. Each line is described below.

User Line
U user system
where the user and system are the requester’s login name and system.

Required File Line
F file-name real-name

where the file-name is the generated name of a file for the execute machine and real-name
is the last part of the actual file name (contains no path information). Zero or more of
these lines may be present in the execute file. The uuxqt program will check for the
existence of all required files before the command is executed.

Standard Input Line

I file-name
The standard input is either specified by 2 ‘< in the command-string or inherited from
the standard input of the wux command if the ‘‘—’ option is used. If a standard input is

not specified, “‘/dev/null” is used.

Standard Output Line
O file-name system-name

The standard output is specified by a ‘>’ within the command-string. If a standard out-
put is not specified, ‘‘/dev/null” is used. (Note — the use of ““>>"" is not imple-
mented.)

" Command Line
C command |[arguments] ...

The arguments are those specified in the command-string. The standard input and stan-
dard output will not appear on this line. All required files will be moved to the execution
directory (a subdirectory of the spool directory) and the UNIX command is executed using
the Shell specified in the wucp.h header file. In addition, a sheill ‘““PATH’ statement is
prepended to the command line as specified in the wuxgt program.

After execution, the standard output is copied or set up to be sent to the proper place.

3. Uucico - Copy In, Copy Out
The uucico program will perform the following major functions:
- Scan the spool directory for work.
- Place a call to a remote system.
- Negotiate a line protocol to be used.
- Execute all requests from both systems.
- Log work requests and work completions.
Uucico may be started in several ways;
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a) by a system daemon,
b) by one of the wucp, uux, uuxqror uucico programs,
c) directly by the user (this is usually for testing),

d) by a remote system. (The uucico program should be specified as the ‘‘shell” field in
the ““/etc/passwd”’ file for the ‘“‘uucp” logins.)

When started by method a, b or ¢, the program is considered to be in MASTER mode. In this
mode, a connection will be made to a remote system. If started by a remote system (method
d), the program is considered to be in SLA VE mode.

The MASTER mode will operate in one of two ways. If no system name is specified (—s
option not specified) the program will scan the spool directory for systems to call. If a system
name is specified, that system will be called, and work will only be done for that system.

The uucico program is generally started by another program. There are several options used for
execution:

—rl Start the program in MASTER mode. This is used when wuucico is started by a
program or ‘‘cron’’ shell.

—Ssys Do work only for system sys. If —sis specified, a call to the specified system
will be made even if there is no work for system sys in the spool directory.
This is useful for polling systems which do not have the hardware to initiate a
connection. ' ‘

The following options are used primarily for debugging:
—ddir Use directory dir for the spool directory.
—xnum  Num is the level of debugging output desired.
The next part of this section will describe the major steps within the wucico program.

Scan For Work

The names of the work related files in the spool directory have format
type . system-name grade number '

where: <
Type is an upper case letter, ( C - copy command file, D - data file, X - execute file);
System-name is the remote system;
Grade is a character;
Number is a four digit, padded sequence number.

The file

C.res45n0031
would be a work file for a file transfer between the local machine and the ‘‘res45’’ machine.

The scan for work is done by looking through the spool directory for work files (files with prefix
“C.”). A list is made of all systems to be called. Uucico will then call each system and process
all work files.

Call Remote System

The call is made using information from several files which reside in the uucp program direc-
tory. At the start of the call process, a lock is set to forbid multiple conversations between the
same two systems.

The system name is found in the L.sys file. The information contained for each system is;




[1] system name,
[2] times to call the system (days-of-week and times-of-day),
[3] device or device type to be used for call,
[4] line speed,
[5] phone number if field [3] is 4CU or the device name (same as field [3]) if not ACU,
[6] login information (multiple fields),
The time field is checked against the present time to see if the call should be made.

The phone number may contain abbreviations (e.g. mh, py, boston) which get translated into
dial sequences using the L-dialcodes file.

The L-devices file is scanned using fields [3] and [4] from the L.sys file to find an available dev-
ice for the call. The program will try all devices which ‘satisfy [3] and [4] until the call is made,
or no more devices can be tried. If a device is successfully opened, a lock file is created so that
another copy of wucico will not try to use it. If the call is complete, the login information (field
[6] of L.sys) is used to login.

The conversation between the two wucico programs begins with a handshake started by the
called, SLAVE, system. The SLAVE sends a message to let the MASTER know it is ready to
receive the system identification and conversation sequence number. The response from the
MASTER is verified by the SLAVE and if acceptable, protocol selection begins. The SLAVE
can also reply with a “‘call-back required’” message in which case, the current conversation is
terminated.

Line Protocol Selection
The remote system sends a message
Pproto-list
where proto-list is a string of characters, each representing a line protocol.

The calling program checks the proto-list for a letter corresponding to an available line protocol
and returns a use-protoco/ message. The use-protocol message is

Ucode

where code is either a one character protocol letter or N which means there is no common pro-
tocol.

Work Processing

The initial roles ( MASTER or SLAVE ) for the work processing are the mode in which each
program starts. (The MASTER has been specified by the ““—rl” uucico option.) The MASTER
program does a work search similar to the one used in the ““‘Scan For Work®’ section.

There are five messages used during the work processing, each specified by the first character of
the message. They are;

send a file,

receive a file,

copy complete,

execute a uucp command,
hangup.

The MASTER will send R, S or X messages until all work from the spool directory is complete,
at which point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY,
HN, XY, XN, corresponding to yes or no for each request.
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The send and receive replies are based on permission to access the requested file/directory
using the USERFILE and read/write permissions of the file/directory. After each file is copied
into the spool directory of the receiving system, a copy-complete message is sent by the
receiver of the file. The message CY will be sent if the file has successfully been moved from
the temporary spool file to the actual destination. Otherwise, a CN message is sent. (In the
case of CN, the transferred file will be in the spool directory with a name beginning with
“TM’.) The requests and results are logged on both systems.

The hangup response is determined by the SLAVE program by a work scan of the spool direc-
tory. If work for the remote system exists in the SLAVE’s spool directory, an HN message is
sent and the programs switch roles. If no work exists, an HY response is sent.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE and the proto-
cols are turned off. Each program sends a final ‘‘O0” message to the other. The original
SLAVE program will clean up and terminate. The MASTER will proceed to call other systems
and process work as long as possible or terminate if a —s option was specified.

4. Uuxqt - Uucp Command Execution

The uuxqt program is used to execute execute files generated by uux. The uuxqt program may be
started by either the uucico or uux programs. The program scans the spool directory for execute
files (prefix ““X.””). Each one is checked to see if all the required files are available and if so,
the command line or send line is executed.

The execute file is described in the ““Uux”’ section above.

Command Execution

The execution is accomplished by executing a sh —c of the command line after appropriate
standard input and standard output have been opened. If a standard output is specified, the
program will create a send command or copy the output file as appropriate.

5. Uulog - Uucp Log Inquiry

The uucp programs create individual log files for each program invocation. Periodically, uulog
may be executed to prepend these files to the system logfile. This method of logging was
chosen to minimize file locking of the logfile during program execution.

The uulog program merges the individual log files and outputs specified log entries. The output
request is specified by the use of the following options:

—ssys  Print entries where sys is the remote system name;
—uuser Print entries for user user.

The intersection of lines satisfying the two options is output. A null sys or user means all sys-
tem names Or users respectively.

6. Uuclean - Uucp Spool Directory Cleanup

This program is typically started by the daemon, once a day. Its function is to remove files
from the spool directory which are more than 3 days old. These are usually files for work
which can not be completed.

The options available are:
—ddir The directory to be scanned is dir.

-m Send mail to the owner of each file being removed. (Note that most files put
into the spool directory will be owned by the owner of the uucp programs since
the setuid bit will be set on these programs. The mail will therefore most
often go to the owner of the uucp programs.)

g
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—nhours Change the aging time from 72 hours to hours hours.

—ppre Examine files with prefix pre for deletion. (Up to 10 file prefixes may be
specified.)

—xnum  This is the level of debugging output desired.

7. Security

The uucp system, left unrestricted, will let any outside user execute any com-
mands and copy in/out any file which is readable/writable by the uucp login
user. It is up to the individual sites to be aware of this and apply the protec-
tions that they feel are necessary.

There are several security features available aside from the normal file mode protections.
These must be set up by the installer of the wucp system.

- The login for uucp does not get a standard shell. Instead, the wucico program is started.
Therefore, the only work that can be done is through wucico.

- A path check is done on file names that are to be sent or received. The USERFILE supplies
the information for these checks. The USERFILE can also be set up to require call-back for
certain. login-ids. (See the ‘‘Filés required for execution’’ section for the file description.)

- A conversation sequence count can be set up so that the called system can be more
confident that the caller is who he says he is.

- The uuxqt program comes with a list of commands that it will execute. A “PATH” shell
statement is prepended to the command line as specifed in the uuxqt program. The installer
may modify the list or remove the restrictions as desired.

- The L.sys file should be owned by uucp and have mode 0400 to protect the phone numbers
and login information for remote sites. (Programs uucp, uucico, uux, uuxqt should be also
owned by uucp and have the setuid bit set.)

8. Uucp Installation

There are several source modifications that may be required before the system programs are
compiled. These relate to the directories used during compilation, the directories used during
execution, and the local uucp system-name.

The four directories are:

lib (/usr/src/cmd/uucp) This directory contains the source files for generating
the wucp system.

program (/usr/lib/uucp) This is the directory used for the executable system pro-
grams and the system files.

spool (/usr/spool/uucp) This is the spool directory used during wucp execution.

xqtdir (/usr/spool/uucp/.XQTDIR) This directory is used during execution of exe-
cute files.

The names given in parentheses above are the default values for the directories. The italicized
named /ib, program, xqtdir, and spool will be used in the following text to represent the appropri-
ate directory names.

There are two files which may require modification, the makefile file and the uucp. h file. The

following paragraphs describe the modifications. The modes of spool and xqrdir should be made
<0777,
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Uucp.h modification

Change the program and the spoo/ names from the default values to the directory names to be
used on the local system using global edit commands.

Change the define value for MYNAME to be the local uucp system-name.

makefile modification
There are several make variable definitions which may need modification.

INSDIR  This is the program directory (e.g. INSDIR =/usr/lib/uucp). This parameter is
used if ““make cp’’ is used after the programs are compiled.

I0CTL This is required to be set if an appropriate ioct/ interface subroutine does not
exist in the standard “‘C’’ library; the statement “IOCTL=ioctl.o” is required
in this case.

PKON The statement “PKON=pkon.o” is required if the packet driver is not in the
kernel.

Compile the system The command
make
will compile the entire system. The command
make cp
will copy the commands to the to the appropriate directories.

The programs wucp, uux, and uulog should be put in *‘/usr/bin’’. The programs uuxqt, uucico,
and uuclean should be put in the program directory. :

Files required for execution

There are four files which are required for execution, all of which should reside in the program
directory. The field separator for all files is a space unless otherwise specified.

L-devices

This file contains entries for the call-unit devices and hardwired connections which are to be
used by wucp. The special device files are assumed to be in the /dev directory. The format for
each entry is

line call-unit speed

where;
line is the device for the line (e.g. cul0),
call-unit is the automatic call unit associated with line (e.g. cua0), (Hardwired lines
have a number “‘0”’ in this field.),
speed is the line speed.
The line

cul0 cual _300

would be set up for a system which had device cul0 wired to a call-unit cua0 for use at 300
baud. .

L-dialcodes

This file contains entries w'ith location abbreviations used in the L.sys file (e.g. py, mh, boston).
The entry format is
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abb dial-seq

where;

abb is the abbreviation,

dial-seq is the dial sequence to call that location.
The line

py 165—

would be set up so that entry py7777 would send 165—7777 to the dial-unit.

LOGIN/SYSTEM NAMES

It is assumed that the login name used by a remote computer to call into a local computer is not
-the same as the login name of a normal user of that local machine. However, several remote

computers

may employ the same login name.

Each computer is given a unique system name which is transmitted at the start of each call.

This name

identifies the calling machine to the called machine.

USERFILE
This file contains user accessibility information. It specifies four types of constraint;

(1]
(2]
[31-
(4]

which files can be accessed by a normal user of the local machine,

which files can be accessed from a remote computer,

which login name is used by a particular remote computer,

whether a remote computer should be called back in order to confirm its identity. .

Each line in the file has the following format
login,sys [c] path-name [ path-namel ...

where;
login
sys
c

is the login name for a user or the remote computer,
is the system name for a remote computer,
is the optional call-back required flag,

path-name is a path-name prefix that is acceptable for wuser.

The constraints are implemented as follows.

(1]

(2]

(3]

[4]

The line

When the program is obeying a command stored on the local machine, MASTER
mode, the path-names allowed are those given for the first line in the USERFILE
that has a login name that matches the login name of the user who entered the com-
mand. If no such line is found, the first line with a aull login name is used.

When the program is responding to a command from a remote machine, SLAVE
mode, the path-names allowed are those given for the first line in the file that has
the system name that matches the system name of the remote machine. If no such
line is found, the first one with a nu/l system name is used.

When a remote computer logs in, the login name that it uses must appear in the
USERFILE. There may be several lines with the same login name but one of them
must either have the name of the remote system or must contain a aull system
name.

If the line matched in ([3]) contains a *‘c
before any transactions take place.

LR

, the remote machine is called back
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u,m /usr/xyz

allows machine m to login with name u and request the transfer of files whose names start with
“/usr/xyz”’.

The line

dan, /usr/dan
allows the ordinary user dan to issue commands for files whose name starts with *‘/usr/dan”’.
The lines

u,m /usr/xyz /usr/spool
u, /usr/spool

allows any remote machine to login with name u, but if its system name is not m, it can only
ask to transfer files whose names start with ‘“/usr/spool”’.

The lines

root, /
, Jusr

allows any user to transfer files beginning with ‘‘/usr’’ but the user with login root can transfer
any file.

L.sys

Each entry in this file represents one system which can be called by the local uucp programs.
The fields are described below.

system name
The name of the remote system.

time

This is a string which indicates the days-of-week and times-of-day when the system should
‘be called (e.g. MoTuTh0800—1730).

The day portion may be a list containing some of
Su Mo Tu We Th Fr Sa _
or it may be Wk for any week-day or Any for any day.

The time should be a range of times (e.g. 0800—1230). If no time portion is specified,
any time of day is assumed to be ok for the call.

device

This is either ACU or the hardwired device to be used for the call. For the hardwired
case, the last part of the special file name is used (e.g. tty0). '

speed
This is the line speed for the call (e.g. 300).

phone

The phone number is made up of an optional alphabetic abbreviation and a numeric part.
The abbreviation is one which appears in the L-dialcodes file (e.g. mh5900, bos-
ton995—9980).

For the hardwired devices, this field contains the same string as used for the device field.

&
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login
The login information is given as a series of fields and subfields in the format
 expect send | expect send | ...

where; expect is the string expected to be read and send is the string to be sent when the
expect string is received. :

- The expect field may be made up of subfields of the form
expectl—send—expectl...

where the send is sent if the prior expect is not successfully read and the expect following
the send is the next expected string.

There are two special names available to be sent during the login sequence. The string
EOT will send an EOT character and the string BREAK will try to send a BREAK charac-
ter. (The BREAK character is simulated using line speed changes and null characters and
may not work on all devices and/or systems.)

A typical entry in the L.sys file would be
sys Any ACU 300 mh7654 login uucp ssword: word
The expect algorithm looks at the last part of the string as illustrated in the password field.

9. Administration

This section indicates some events and files which must be administered for the wucp system.
Some administration can be accomplished by skell files which can be initiated by crontab entries.
Others will require manual intervention. Some sample shell files are given toward the end of
this section.

SQFILE — sequence check file

This file is set up in the program directory and contains an entry for each remote system with
which you agree to perform conversation sequence checks. The initial entry is just the system
name of the remote system. The first conversation will add two items to the line, the conversa-
tion count, and the date/time of the most resent conversation. These items will be updated
with each conversation. If a sequence check fails, the entry will have to be adjusted.

TM - temporary data files

These files are created in the spoo/ directory while files are being copied from a remote
machine. Their names have the form

TM.pid.ddd

where pid is a process-id and ddd is a sequential three digit number starting at zero for each
invocation of wucico and incremented for each file received.

After the entire remote file is received, the TM file is moved/copied to the requested destina-
tion. If processing is abnormally termmated or the move/copy fails, the file will remain in the
spool directory.

The leftover files should be periodically removed; the wuclean program is useful in this regard.
The command

uuclean —pTM
will remove all TM files older than three days.
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LOG - log entry files

During execution of programs, individual LOG files are created in the spoo/ directory with infor-
mation about queued requests, calls to remote systems, execution of wux commands and file
copy results. These files should be combined into the LOGFILE by using the uulog program.
This program will put the new LOG files at the beginning of the existing LOGFILE. The com-
mand

* uulog

will accomplish the merge. Options are available to print some or all the log entries after the
files are merged. The LOGFILE should be removed periodically since it is copied each time
new LOG entries are put into the file.

The LOG files are created initially with mode 0222. If the program which creates the file ter-
minates normally, it changes the mode to 0666. Aborted runs may leave the files with mode
0222 and the wuulog program will not read or remove them. To remove them, either use rm,
uuclean, or change the mode to 0666 and let uulog merge them with the LOGFILE.

STST — system status files

These files are created in the spool directory by the wucico program. They contain information
of failures such as login, dialup or sequence check and will contain a TALKING status when to
machines are conversing. The form of the file name is

STST.sys
where sys is the remote system name.

For ordinary failures (dialup, login), the file will prevent repeated tries for about one hour. For
sequence check failures, the file must be removed before any future attempts to converse with
that remote system.

If the file is left due to an aborted run, it may contain a TALKING status. In this case, the file
must be removed before a conversation is attempted.

LCK — lock files

Lock files are created for each device in use (e.g. automatic calling unit) and each system
conversing. This prevents duplicate conversations and multlple attempts to use the same dev-
ices. The form of the lock file name is

LCK..str

where sir is either a device or system name. The files may be left in the spool directory if runs
abort. They will be ignored (reused) after a time of about 24 hours. When runs abort and calls
are desired before the time limit, the lock files should be removed.

Shell Files

The uucp program will spool work and attempt to start the wucico program, but the starting of
uucico will sometimes fail. (No devices available, login failures etc.). Therefore, the wucico
program should be periodically started. The command to start uucico can be put in a “‘shell”’
file with a command to merge LOG files and started by a crontab entry on an hourly basis. The
file could contain the commands

program/uulog
program/uucico —rl

Note that the ““—rl1”’ option is required to start the wwucico program in MASTER mode.

Another shell file may be set up on a daily basis to remove M, ST and LCK files and C. or D.
files for work which can not be accomplished for reasons like bad phone number, login changes
etc. A shell file containing commands like
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program/uuclean —pTM —pC. —pD.
program/uuclean —pST —pLCK —nl2

can be used. Note the ““—nl2” option causes the ST and LCK files older than 12 hours to be
deleted. The absence of the ““—n’’ option will use a three day time limit.
A daily or weekly shell should also be created to remove or save old LOGFILEs. A shell like

cp spool/LOGFILE  spool/0.LOGFILE
rm spool/LOGFILE

can be used.

Login Entry

One or more logins should be set up for wucp. Each of the *‘/etc/passwd’ entries should have
the ‘‘program/uucico’ as the shell to be executed. The login directory is not used, but if the
system has a special directory for use by the users for sending or receiving file, it should as the
login entry. The various logins are used in conjunction with the USERFILE to restrict file
access. Specifying the shell argument limits the login to the use of uucp ( uucico) only.

File Modes
It is suggested that the owner and file modes of various programs and files be set as follows.

The programs wucp, uux, uticico and wuxqt should be owned by the wucp login with the ‘‘setuid”
bit set and only execute permissions (e.g. mode 04111). This will prevent outsiders from
modifying the programs to get at a standard shell for the wucp logins.

The L.sys, SQFILE and the USERFILE which are put in the program directory should be owned
by the wuucp login and set with mode 0400.
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On the Security of UNIX

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Recently there has been much interest in the security aspects of operating systems and
software. At issue is the ability to prevent undesired disclosure of information, destruction of
information, and harm to the functioning of the system. This paper discusses the degree of
security which can be provided under the UNIXT system and offers a number of hints on how to
improve security.

The first fact to face is that UNIX was not developed with security, in any realistic sense, in
mind; this fact alone guarantees a vast number of holes. (Actually the same statement can be
made with respect to most systems.) The area of security in which UNIX is theoretically weakest
is in protecting against crashing or at least crippling the operation of the system. The problem
here is not mainly in uncritical acceptance of bad parameters to system calls— there may be
bugs in this area, but none are known— but rather in lack of checks for excessive consumption

of resources. Most notably, there is no limit on the amount of disk storage used, either ih total.

space allocated or in the number of files or directories. Here is a particularly ghastly shelil
sequence guaranteed to stop the system:

while : ; do
mkdir x
cd x
done

Either a panic will occur because all the i-nodes on the device are used up, or all the disk
blocks will be consumed, thus preventing anyone from writing files on the device.

In this version of the system, users are prevented from creating more than a set number
of processes simultaneously, so unless users are in collusion it is unlikely that any one can stop
the system altogether. However, creation of 20 or so CPU or disk-bound jobs leaves few
resources available for others. Also, if many large jobs are run simultaneously, swap space may
run out, causing a panic.

It should ‘be evident that excessive consumption of disk space, files, swap space, and
processes can easily occur accidentally in malfunctioning programs as well as at command level.
In fact UNIX is essentially defenseless against this kind of abuse, nor is there any easy fix. The
best that can be said is that it is generally fairly easy to detect what has happened when disaster
strikes, to identify the user responsible, and take appropriate action. In practice, we have found
that difficulties in this area are rather rare, but we have not been faced with malicious users,
and enjoy a fairly generous supply of resources which have served to cushion us against
accidental overconsumption. :

The picture is considerably brighter in the area of protection of information from unau-
thorized perusal and destruction. Here the degree of security seems (almost) adequate theoret-
ically, and the problems lie more in the necessity for care in the ‘actual use of the system.

Each UNIX file has associated with it eleven bits of protection information together with a
user identification number and a user-group identification number (UID and GID). Nine of

tUNIX is a Trademark of Bell Laboratories.
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the protection bits are used to specify independently permission to read, to write, and to exe-
cute the file to the user himself, to members of the user’s group, and to all other users. Each
process generated by or for a user has associated with it an effective UID and a real UID, and
an effective and real GID. When an attempt is made to access the file for reading, writing, or
execution, the user process’s effective UID is compared against the file’s UID; if a match is
obtained, access is granted provided the read, write, or execute bit respectively for the user
himself is present. If the UID for the file and for the process fail to match, but the GID’s do
match, the group bits are used; if the GID’s do not match, the bits for other users are tested.
The last two bits of each file’s protection information, called the set-UID and set-GID bits, are
used only when the file is executed as a program. If, in this case, the set-UID bit is on for the
file, the effective UID for the process is changed to the UID associated with the file; the change
persists until the process terminates or until the UID changed again by another execution of a
set-UID file. Similarly the effective group ID of a process is changed to the GID associated
with a file when that file is executed and has the set-GID bit set. The real UID and GID of a
process do not change when any file is executed, but only as the result of a privileged system
call.

The basic notion of the set-UID and set-GID bits is that one may write a program which
is executable by others and which maintains files accessible to others only by that program.
The classical example is the game-playing program which maintains records of the scores of its
players. The program itself has to read and write the score file, but no one but the game’s
sponsor can be allowed unrestricted access to the file lest they manipulate the game to their
own advantage. The solution is to turn on the set-UID bit of the game program. When, and
only when, it is invoked by players of the game, it may update the score file but ordinary pro-
grams executed by others cannot access the score.

There are a number of special cases involved in determining access permissions. Since
executing a directory as a program is a meaningless operation, the execute-permission bit, for
directories, is taken instead to mean permission to search the directory for a given file during
the scanning of a path name; thus if a directory has execute permission but no read permission
for a given user, he may access files with known names in the directory, but may not read (list)
the entire contents of the directory. Write permission on a directory is interpreted to mean that
the user may create and delete files in that directory; it is impossible for any user to write
directly into any directory.

Another, and from the point of view of security, much more serious special case is that
there is a “‘super user’” who is able to read any file and write any non-directory. The super-
user is also able to change the protection mode and the owner UID and GID of any file and to
invoke privileged system calls. It must be recognized that the mere notion of a super-user is a
theoretical, and usually practical, blemish on any protection scheme.

The first necessity for a secure system is of course arranging that all files and directories
have the proper protection modes. Traditionally, UNIX software has been exceedingly permis-
sive in this regard; essentially all commands create files readable and writable by everyone. In
the current version, this policy may be easily adjusted to suit the needs of the installation or the
individual user. Associated with each process and its descendants is a mask, which is in effect
and-ed with the mode of every file and directory created by that process. In this way, users
can arrange that, by default, all their files are no more accessible than they wish. The standard
mask, set by login, allows all permissions to the user himself and to his group, but disallows
writing by others.

To maintain both data privacy and data integrity, it is necessary, and largely sufficient, to
make one’s files inaccessible to others. The lack of sufficiency could follow from the existence
of set-UID programs created by the user and the possibility of total breach of system security in
one of the ways discussed below (or one of the ways not discussed below). For greater protec-
tion, an encryption scheme is available. Since the editor is able to create encrypted documents,
and the crypt command can be used to pipe such documents into the other text-processing pro-
grams, the length of time during which cleartext versions need be available is strictly limited.
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The encryption scheme used is not one of the strongest known, but it is judged adequate, in
the sense that cryptanalysis is likely to require considerably more effort than more direct
methods of reading the encrypted files. For example, a user who stores data that he regards as
truly secret should be aware that he is implicitly trusting the system administrator not to install
a version of the crypt command that stores every typed password in a file.

Needless to say, the system administrators must be at least as careful as their most
demanding user to place the correct protection mode on the files under their control. In partic-
ular, it is necessary that special files be protected from writing, and probably reading, by ordi-
nary users when they store sensitive files belonging to other users. It is easy to write programs
that examine and change files by accessing the device on which the files live.

On the issue of password security, UNIX is probably better than most systems. Passwords
are stored in an encrypted form which, in the absence of serious attention from specialists _in
the field, appears reasonably secure, provided its limitations are understood. In the current ver-
sion, it is based on a slightly defective version of the Federal DES; it is purposely defective so
that easily-available hardware is useless for attempts at exhaustive key-search. Since both the
encryption algorithm and the encrypted passwords are available, exhaustive enumeration of
potential passwords is still feasible up to a point. We have observed that users choose pass-
words that are easy to guess: they are short, or from a limited alphabet, or in a dictionary.
Passwords should be at least six characters long and randomly chosen from an alphabet which
includes digits and special characters.

Of course there also exist feasible non-cryptanalytic ways of finding out passwords. For
example: write a program which types out ‘“‘login:>> on the typewriter and copies whatever is
typed to a file of your own. Then invoke the command and go away until the victim arrives.

The set-UID (set-GID) notion must be used carefully if any security is to be maintained.
The first thing to keep in mind is that a writable set-UID file can have another program copied
onto it. For example, if the super-user (su) command is writable, anyone can copy the shell
onto it and get a password-free version of su. A more subtle problem can come from set-UID
programs which are not sufficiently careful of what is fed into them. To take an obsolete exam-
ple, the previous version of the mail command was set-UID and owned by the super-user.
This version sent mail to the recipient’s own directory. The notion was that one should be able
to send mail to anyone even if they want to protect their directories from writing. The trouble
was that mail was rather dumb: anyone could mail someone else’s private file to himself. Much
more serious is the following scenario: make a file with a line like one in the password file
which allows one to log in as the super-user. Then make a link named *‘.mail”’ to the password
file in some writable directory on the same device as the password file (say /tmp). Finally mail
the bogus login line to /tmp/.mail; You can then login as the super-user, clean up the incrim-
inating evidence, and have your will.

The fact that users can mount their own disks and t pes as file systems can be another
way of gaining super-user status. Once a disk pack is mounted, the system believes what is on
it. Thus one can take a blank disk pack, put on it anything desired, and mount it. There are
obvious and unfortunate consequences. For example: a mounted disk with garbage on it will
crash the system; one of the files on the mounted disk can easily be a password-free version of
su; other files can be unprotected entries for special files. The only easy fix for this problem is
to forbid the use of mount to unprivileged users. A partial solution, not so restrictive, would
be to have the mount command examine the special file for bad data, set-UID programs owned
by others, and accessible special files, and balk at unprivileged invokers.

s
=~
1]
&
o
=
=3
=
s
=]
Ty
ooy
2.
=
A




Password Security: A Case History

Robert Morris
Ken Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the history of the design of the password security
scheme on a remotely accessed time-sharing system. The present design was
the result of countering observed attempts to penetrate the system. The result
is a compromise between extreme security and ease of use.

April 3, 1978
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Password Security: A Case History

Robert Morris
Ken Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

INTRODUCTION

Password security on the UNIXT time-sharing system [1] is provided by a collection of pro-
grams whose elaborate and strange design is the outgrowth of many years of experience with
earlier versions. To help develop a secure system, we have had a continuing competition to
devise new ways to attack the security of the system (the bad guy) and, at the same time, to
devise new techniques to resist the new attacks (the good guy). This competition has been in
the same vein as the competition of long standing between manufacturers of armor plate and

those of armor-piercing shells. For this reason, the description that follows will trace the his- .

tory of the password system rather than simply presenting the program in its current state. *In
this way, the reasons for'the design will be made clearer, as the design cannot be understood
without also understanding the potential attacks. :

An underlying goal has been to provide password security at minimal inconvenience to
the users of the system. For example, those who want to run a completely open system
without passwords, or to have passwords only at the option of the individual users, are able to
do so, while those who require all of their users to have passwords gain a high degree of secu-
rity against penetration of the system by unauthorized users.

The password system must be able not only to prevent any access to the system by unau-
thorized users (i.e. prevent them from logging in at all), but it must also prevent users who are
already logged in from doing things that they are not authorized to do. The so called ‘‘super-
user’’ password, for example, is especially eritical because the super-user has all sorts of per-
missions and has essentially unlimited acces$ to all system resources.

Password security is of course only one component of overall system security, but it is an
essential component. Experience has shown that attempts to penetrate remote-access systems
have been astomshmgly sophlstlcated !

Remote-access systems are pecullarly vulnerable to penetration by outsiders as there are
threats at the remote terminal, along the communications link, as well as at the computer itself.
Although the security of a password encryption algorithm is an interesting intellectual and
mathematical problem, it is only one_tiny facet of a very large problem. In practice, physical
security of the computer commumcatxons secunty of the communications link, and physical
control of the computer itself loom as far more important issues. Perhaps most important of all
is ,control over the actions of ex-employees, since they are not under any direct control and
they ‘may ‘have intimate knowledge about the system, its resources, and methods of access.
Good systemn security involves realistic evaluation of the risks not only of deliberate attacks but
also of casual unauthorized access and accidental disclosure.

+UNIX is a Trademark of Bell Laboratories.




PROLOGUE

The UNIX system was first implemented with a password file that contained the actual
passwords of all the users, and for that reason the password file had to be heavily protected
against being either read or written. Although historically, this had been the technique used for
remote-access systems, it was completely unsatisfactory for several reasons.

The technique is excessively vulnerable to lapses in security. Temporary loss of protec-
tion can occur when the password file is being edited or otherwise modified. There is no way to
prevent the making of copies by privileged users. Experience with several earlier remote-access
systems showed that such lapses occur with frightening frequency. Perhaps the most memor-
able such occasion occurred in the early 60’s when a system administrator on the CTSS system
at MIT was editing the password file and another system administrator was editing the daily
message that is printed on everyone’s terminal on login. Due to a software design error, the
temporary editor files of the two users were interchanged and thus, for a time, the password file
was printed on every terminal when it was logged in.

Once such a lapse in security has been discovered, eyery'one’s password must be changed,
usually simultaneously, at a considerable administrative cost. This is not a great matter, but far
more serious is the high probablhty of such lapses going unnoticed by the system administra-
tors.

Security against unauthorized disclosure of the passwords was, in the last analysis, impos-
sible with this system because, for example, if the contents of the file system are put on to
magnetic tape for backup, as they must be, then anyone who has physrcal access to the tape can
read anything on it with no restriction.

Many programs must get information of various kinds about the users of the system, and
these programs in general should have no specral permission to read the password file. . The
information which should have been in the password file actually was distributed (or rephcated)
into a number of files, all of which had to be updated whenever a user was added to or dropped
from the system.

THE FIRST SCHEME

The obvious solution is to arrange that the passwords not appear in the system at all, and
it is not difficult to decide that this can be done .by encrypting each user’s password, putting
only the encrypted form in the password file, and throwing away his original password (the one
that he typed in). When the user later tries to log in to the system, the password that he types
is encrypted and compared with the encrypted version in the password file. If the two match,
his login attempt is accepted. Such a schemeé was first described i in_[3, p.91ff.]." It also seemed
advisable to devise a system in which neither the password file nor the password program itself
needed to be protected against being read by anyone

All that was needed to implement these ideas was to find a means of encrypnon that was
very difficult to invert, even when the encryption program is available. Most of the standard
encryption methods used (in the past) for encryption of messages are rather easy to invert. A
convenient and rather good encryption program happened to exist on the sysiem at the time; it
simulated the M-209 cipher machine [4] used by the U.s. Army ‘during World War II. It
turned out that the M-209 program was usable, but with a given key, the ciphers produced by
this program are trivial to invert. It is a much more difficult matter to find out the key glven
the cleartext input and the enciphered output of the program. Therefore, the password was
used not as the text to be encrypted but as the key, and a constant was encrypted using this
key. The encrypted result was entered into the password file.
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ATTACKS ON THE FIRST APPROACH

Suppose that the bad guy has available the text of the password encryption program and
the complete password file. Suppose also that he has substantial computing capacity at his
disposal.

One obvious approach to penetrating the password mechanism is to attempt to find a gen-
eral method of inverting the encryption algorithm. Very possibly this can be done, but few suc-
cessful results have come to light, despite substantial efforts extending over a period of more
* than five years. The results have not proved to be very useful in penetrating systems.

Another approach to penetration is simply to keep trying potential passwords until one
succeeds; this is a general cryptanalytic approach called key search. Human beings being what
“they are} there is a strong tendency for people to choose relatively short and simple passwords
that they can remember. Given free choice, most people will choose their passwords from a
restricted character set (e.g. all lower-case letters), and will often choose words or names. This
human habit makes the key search job a great deal easier.

The critical factor involved in key search is the amount of time needed to encrypt a
potential password and to check the result against an ent:y in the password file. The running
time to encrypt one trial password and check the result turned out to be approximately 1.25
milliseconds on a PDP-11/70 when the encryption algorithm was recoded for maximum speed.
It is takes essentially no more time to test the encrypted trial password against all the passwords
in an entire password file, or for that matter, against any collection of encrypted passwords,
perhaps collected from many installations. -

If we want to check all passwords of length n that consist entirely of lower-case letters, the
number of such passwords is 26”. If we suppose that the password censists of printable charac-
ters only, then the number of possible passwords is somewhat less than 95”. (The standard
system ‘‘character erase’’ and ‘‘line kill’’ characters are, for example, not prime candidates.)
We can immediately estimate the running time of a program that will test every password of a
given length with all of its characters chosen from some set of characters. The following table
gives estimates of the running time required on a PDP-11/70 to test all possible character
strings of length n chosen from various sets of characters: namely, all lower-case letters, all
lower-case letters plus digits, all alphanumeric characters, all 95 printable ASCII characters, and
finaily all 128 ASCII characters.

26 lower-case 36 lower-case letters:’ 62 alphanumeric 95 printable  all 128 ASCII

n letters and digits -1 -, characters characters characters
I 30 msec. 40 msec. "~ 80 msec. 120 msec. 160 msec.
2 800 msec. 2 sec. S sec. 11 sec. 20 sec.

3 22 sec.- 58 sec. 5 min. 17 min. 43 min.
4 10 min. - 35 min. 5 hrs. 28 hrs. 93 hrs.

5 4 hrs. 21 hrs. 318 hrs.

6 107 hrs. :

One has to conclude that it is no great matter for someone with access to a PDP-11 to test all
lower-case alphabetic strings up to length five and, given access to the machine for, say, several
weekends, to test all such strings up to six characters in length. By using such a program
against a collection of actual encrypted passwords, a substantial fraction of all the passwords will
be found.

Another profitable approach for the bad guy is to use the word list from a dictionary or to
use a list of names. For -example, a large commercial dictionary contains typicallly about
250,000 words; these words can be checked in about five minutes. Again, a noticeable fraction
of any collection of passwords will be found. Improvements and extensions will be (and have
been) found by a determined bad guy. Some ‘‘good’’ things to try are:

@
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- The dictionary with the words spelled backwards.

- A list of first names (best obtained from some mailing list). Last names, street names,
and city names also work well.

- The above with initial upper-case letters.

- All valid license plate numbers in your state. (This takes about five hours in New Jer-
sey.)

- Room numbers, social security numbers, telephone numbers, and the like.

The authors have conducted experiments to try to determine typical users’ habits in the
choice of passwords when no constraint is put on their choice. The results were disappointing,
except to the bad guy. In a collection of 3,289 passwords gathered from many users over a
long period of time; : : : - - .

- o T

15 were a single ASCII character;

72 were strings of two ASCII characters;
464 were strings of three ASCII characters;

477 were string of four alphamerics;

706 were five letters, all upper-case or all lower-case: N
605 were six letters, all lower-case. N

AS
i

An additional 492 passwords appeared in various available drctronarres name lists, and .the lrke
A total of 2,831, or 86% of this sample of passwords fell inte. one of these classes.

There was, of course, considerable overlap between the dictionary results and the charac-
ter string searches. The dictionary search alone, which requrred only five minutes.to run, pro-

duced about one third of the passwords. ¢ L V.

-

Users could be urged (or forced) to use either longer ‘passwords or passwords chosen from

a larger character set, or the system could itself choose passwords for the users.

AN ANECDOTE ‘ !
An entertaining and instructive example is the attempt made at one installation to force

users to use less predictable passwords. The users did not choose their own passwords; the sys- .

tem supplied them. The supplied passwords were eight characters long and were taken from
the character set consisting of lower-case letters and digits. They were generated by a pseudo-
random number generator with only 25 starting values. The time required to search (again on
a PDP-11/70) through all character strings of length 8 from a 36-character alphabet is 112
years.

Unfortunately, onlyiizls of them need be looked at, because that-is the number of possible

outputs of the random number generator. The bad guy did, in. fact, generate and test each of .
these strings and found every one .of the system-generated passwords using a total of only about -

one minute of machine time.

IMPROVEMENTS TO THE FIRST APPROACH . : N

1. Slower Encryption T : o Tl

Obviously, the first algorithm used was far too fast. “The announcement of the DES
encryption algorithm [2] by the National Bureau of Standards was timely and fortunate.” The"

DES is, by design, hard to invert, but equally valuable is the fact that it is extremely slow when
implemented in software. The DES was implemented and used in the following way: The first

eight characters of the user’s password are used as a key for the DES; then the algorithm is .

used to encrypt a constant. Although this constant is zero at the moment, it is easily accessible
and can be made installation-dependent. Then the DES algorithm is iterated 25 times and the
resulting 64 bits are repacked to become a string of 11 printable characters.
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2. Less Predictable Passwords

The password entry program was modified so as to urge the user to use more obscure
passwords. If the user enters an alphabetic password (ali’ upper-case or all lower-case) shorter
than six characters, or a password from a larger character set shorter than five characters, then
the program asks hlm to enter a longer password. This further reduces the efficacy of key
search. ' '

These improvements make it exceedingly difficult to find any individual password. The
user is warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he
is not prevented from using his spouse’s name if he wants to.

3.. Salted Passwords

' The key search technique is still likely to tufn Up'a few passwords when it is used on a
large collection of passwords and it seemed wise to make this task as difficuit as possible. To
this end, when a’ password is first ‘entéred, the password program obtains a 12-bit random
number (by reading the real-time clock) and appends this to'the password typed in by the user.
The concatenated-string is encrypted and: both the 12-bit random quantity (called the salt) and
the '64-bit resuit-of the encryption are-entered into the password file.

When the sér later logs in t6'the system, the 12-bit quantity is extracted from the pass-
word file and appended to the typed password. The encrypted 'résult is required, as before, to
be the same as the rémaining 64 bits in the password file. This.modification does noj increase
the task of finding any. individual password, starting from scratch, but now the work of testing a
given character string against a large collection of encrypted passwords has been multiplied by
4096 (2'3. The reason:for this is‘that there are 4096 encrypted versions of each password and
one of them has been picked more or less.at random by the.systent-

With this modification, it is'tkely that the bad guy can’spend days of computer time try-
ing to find a password on a system with hundreds of passwords, and find none at all. More
important is the fact that it becomes impractical to prepare an encrypted dictionary in advance.
Such an encrypted dictionary could be used to crack new passwords in milliseconds when they
appear.

There is a (not.-inadvertent) side effect of this modification.  ft becomes nearly impossible
to find out whether a person with passwords on two or more systérhs has used the same pass-
word on all of them, unless you.already know that.

4. The Threat of the DES Chip

Chips to perform the DES encryption are already commercially available and they are very
fast. The use of such a chip speeds up the process of password hunting by three orders of mag-
nitude. To avert this possibility, one of the internal tables of the DES algorithm (in particular,
the so-called E-table) is changed in a way that depends on the 12-bit random number. The E-
table is inseparably wired into the DES chip, so that the commercial chip cannot be used.
Obviously, the bad guy could have his own chip designed and built, but the cost would be
unthinkable.

5. A Subtie Point

To login successfully on the UNIX system, it is necessary after dialing in to type a valid
user name, and then the correct password for that user name. It is poor design to write the
login command in such a way that it tells an interloper when he has typed in a invalid user
name. The response to an invalid name should be identical to that for a valid name.

When the slow encryption algorithm was first implemented, the encryption was done onlg
if the user name was valid, because otherwise there was no encrypted password to compare with
the supplied password. The result was that the response was delayed by about one-half second
if the name was valid, but was immediate if invalid. The bad guy could find out whether a par-
ticular user name was valid. The routine was modified to do the encryption in either case.
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CONCLUSIONS

On the issue of password secu“rit"}'{, UNIX is probably better than most systems. The use
of encrypted passwords appears reasonably secure in the absence of serious attention of experts
in the field. .

It is also worth some effort to conceal even the encrypted passwords. Some UNIX sys-
tems have instituted what is called an ‘‘external security code’ that must be typed when dialing
into the system, but before logging in, If this code is changed periodically, then someone with
an old password will likely be prevented from using it. L

Whenever any security procedure is instituted that attempts to deny access to unauthor-
ized persons, it is wise to keep a record of both successful and unsuccessful attempts .to get at
the secured resource. Just ag an put- -of:zhours visitor to a omputer center normally must not
only identify himself, but a record is usually also kept qf his. entry. Just so it is a wise precau-
tion to make and keep a record of. all attempts to log mto a remote access time- sharmg system
and certainly all unsuccessful attempts.

»

Bad guys fall on a spectrum-whose one end is someone;with - ordmary;access to a system
and whose goal is to find out a particular password (usually that of the super-user) and, at the:
other end, someone who wishes to collect as much password information as, possible from as
many systems as possible. Most ‘of the work reported here serves to frustrate the Jatter type;,
our experience indicates that the former type of bad guy never was very successful

ke

We recognize that a time-sharing system must operate in a hostile envrronment We did
not attempt to hide the security aspects of the operating system, thereby playing the customary
make-believe game in which weaknesses of: the system:-are not discussed no  matter how.
apparent. Rather we advertised the password algorithm-and invited attack in:the belief that this
approach would minimize future, trouble. The approach has heen successﬁut.
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