NOKIA

C34240.90–C0 Nokia FlexiHopper (Plus) Product Doc, Rel. C2.5

Product Description for Nokia FlexiHopper (Plus) C2.5

The information in this document is subject to change without notice and describes only the product defined in the introduction of this documentation. This document is intended for the use of Nokia's customers only for the purposes of the agreement under which the document is submitted, and no part of it may be reproduced or transmitted in any form or means without the prior written permission of Nokia. The document has been prepared to be used by professional and properly trained personnel, and the customer assumes full responsibility when using it. Nokia welcomes customer comments as part of the process of continuous development and improvement of the documentation.

The information or statements given in this document concerning the suitability, capacity, or performance of the mentioned hardware or software products cannot be considered binding but shall be defined in the agreement made between Nokia and the customer. However, Nokia has made all reasonable efforts to ensure that the instructions contained in the document are adequate and free of material errors and omissions. Nokia will, if necessary, explain issues which may not be covered by the document.

Nokia's liability for any errors in the document is limited to the documentary correction of errors. NOKIA WILL NOT BE RESPONSIBLE IN ANY EVENT FOR ERRORS IN THIS DOCUMENT OR FOR ANY DAMAGES, INCIDENTAL OR CONSEQUENTIAL (INCLUDING MONETARY LOSSES), that might arise from the use of this document or the information in it.

This document and the product it describes are considered protected by copyright according to the applicable laws.

NOKIA logo is a registered trademark of Nokia Corporation.

Other product names mentioned in this document may be trademarks of their respective companies, and they are mentioned for identification purposes only.

Copyright © Nokia Corporation 2006. All rights reserved.

Nokia, FlexiHopper, FIU 19 and FIU 19E are trademarks or registered trademarks of Nokia Corporation.

Other product or company names mentioned herein may be trademarks or trade names of their respective owners.

Hereby, Nokia Corporation, declares that this Nokia FlexiHopper (Plus) Microwave Radio Family is in compliance with the essential requirements and other relevant provisions of Directive: 1999/

The product is marked with the CE marking and Notified Body number according to the Directive 1999/5/EC.

DN03351499 2 (137) Nokia Corporation

Contents

	Contents 3
1	Summary of changes to Product Description for Nokia FlexiHoppe (Plus) C2.5 7
1.1	Changes in documentation between release C2.3 and release C2.5 7
2	Overview of Nokia FlexiHopper (Plus) 9
3 3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.4 3.5 3.6 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 3.7 3.8	Features 17 General information 17 Integrated radio and cross-connection 17 Outdoor unit features 21 Overview of Nokia FlexiHopper (Plus) outdoor unit features 21 Forward error correction coding, interleaving and scrambling 23 ALCQ - Adaptive Level Control with Quality measurement 24 Fading margin measurement 25 Protection methods 25 Dual capacity setup 27 FIU 19E with Ethernet plug-in unit 29 Operating modes 31 Packet buffering 34 Naming conventions for Ethernet data channels inside Flexbus 35 Link loss forwarding 36 Ethernet flow control 37 Built-in test features 37 Configuration backup 40 SW licensing 40
4 4.1 4.2 4.3 4.4 4.5	Applications 43 Network applications 43 Site configuration examples 45 Nokia FlexiHopper (Plus) as a part of the Nokia MetroSite EDGE Solution 50 Nokia FlexiHopper (Plus) as a part of the Nokia UltraSite EDGE Solution 51 Nokia FlexiHopper (Plus) as a part of the Nokia UltraSite and MetroSite WCDMA BTSs 53
5 5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.5	Management 55 Nokia NetAct and Nokia FlexiHopper (Plus) 55 Hopper Manager 55 Using Nokia Q1 bus 56 FIU 19(E) 57 Q1 addresses 59 SNMP management 60 Engineering order-wire (EOW) 65

6

Mechanical structure and interfaces 67

6.1 6.2 6.3	FIU 19(E) indoor unit 67 Technical description of the FXC RRI transmission unit 72 Interface unit IFUE 75	
7 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.10 7.1.10.1 7.1.10.2 7.1.10.3 7.1.10.4 7.1.10.5 7.1.10.7 7.1.11 7.1.11.1 7.1.11.1 7.1.11.2 7.1.11.3 7.1.11.6 7.1.11.5 7.1.11.6 7.1.11.7 7.2 7.2 7.2.1	Channel spacing 99 Modulation and demodulation 99	
7.2.2 7.2.3	FIU 19(E) interfaces 120 FIU 19(E) power supply, dimensions and installation options 12	:3
7.2.3.1	Power supply 123	
7.2.3.2	Dimensions 123	
7.2.3.3 7.2.3.4	Ingress protection 124 Installation options 124	
7.2.3. 4 7.2.4	Ethernet throughput 124	
7.2.5	Propagation delays for packet traffic 125	
7.2.6	Measurement points 126	
7.3	FXC RRI transmission unit 127	
7.3.1	FXC RRI dimensions and weight 127	
7.3.2	Interfaces of the FXC RRI transmission unit 127	
7.3.3	FXC RRI power requirements 128	
7.4	IFUE interface unit 128	
7.4.1	IFUE dimensions and weight 128	
7.4.2	IFUE interfaces 128	
7.4.3	IFUE power requirements 129	
7.5	Flexbus cable 130	

4 (137) © Nokia Corporation DN03351499 Issue 10-0 en

7.6	Statistics 131	
7.7	System requirements for Hopper Manager	131
7.8	Nokia FlexiHopper (Plus) standards 132	

6 (137) © Nokia Corporation DN03351499

Summary of changes to Product **Description for Nokia FlexiHopper (Plus)** C2.5

Changes in documentation between release C2.3 1.1 and release C2.5

- Part of the Product Description has become a separate document: Nokia FlexiHopper (Plus) C2.5 antennas, alignment units, and electrical specifications.
- Proper naming of the FlexiHopper indoor unit, FIU 19(E)
- Nokia Hopper Manager renamed Hopper Manager
- Notes, Cautions, Warnings checked

Additional changes to the Nokia FlexiHopper document include:

- A revised description of Nokia FlexiHopper products. The chapter affected include: Overview of Nokia FlexiHopper (Plus), Features, Technical Specifications.
 - Overview of Nokia FlexiHopper (Plus)
 - Features
 - Technical specifications
- Two figures, 16 and 32, were updated to reflect the proper naming of FIU 19(E).
- SW licensing was revised.
- Updates were made to 4-state modulation and 16-state modulation in Technical specifications.
- The last chapter originally called "International standards" was changed to "Nokia FlexiHopper (Plus) standards.

8 (137) © Nokia Corporation DN03351499

Overview of Nokia FlexiHopper (Plus)

The Nokia FlexiHopper (Plus) C2.5 Product Description covers Nokia FlexiHopper Plus, Nokia FlexiHopper and Nokia FlexiHopper 4E1 products and supporting indoor units. The following rules apply:

- Nokia FlexiHopper Plus enables 2E1 to 16E1 transmission capacity and selectable modulation (4-state and 16-state).
- Nokia FlexiHopper enables 2E1 to 16E1 transmission capacity in the 4state modulation mode.
- Nokia FlexiHopper 4E1 enables 2E1 to 4E1 transmission capacity in the 4state modulation mode and can be upgraded to 16E1 by software licensing.
- Selectable modulation is an option for both Nokia FlexiHopper and Nokia FlexiHopper 4E1.

In this Product Description, Nokia FlexiHopper Plus and Nokia FlexiHopper refer to the modulation in use. Nokia FlexiHopper (Plus) refers to all Nokia FlexiHopper products.

Nokia FlexiHopper (Plus) is a reliable and flexible microwave radio, which can be used in diverse transmission networks: mobile networks, fixed networks or private networks. It provides flexible features like selectable capacity and modulation, which keeps the lifetime cost of Nokia FlexiHopper (Plus) low. Reliability is designed into Nokia FlexiHopper (Plus) by using highly integrated circuits. The high integration rate can be exemplified by indoor units which all support several outdoor units. Several indoor units have been integrated into one unit. The transmission network reliability can be greatly increased by reducing required cabling on a site. No E1-cabling at all is required on a site when Nokia base station integrated indoor units are used.

The Nokia FlexiHopper (Plus) microwave radio consists of an indoor unit (IU) and an outdoor unit (OU). The units are connected together with a single coaxial cable, Flexbus. The Flexbus cable carries power and digital baseband data.

Nokia FlexiHopper (Plus) provides ultimate transmission solution as flexible transmission connectivity. Nokia FlexiHopper (Plus) is the cellular transmission solution for Nokia Base station subsystem solution and for 3G Radio Access Network. Nokia FlexiHopper (Plus) outdoor unit can be connected to several indoor units, which are integrated into Talk, UltraSite, and MetroSite base stations. With this approach one does not need an expensive site support cabinet, which also reduces the site space and gives more flexibility on selecting a site. The Nokia FlexiHopper (Plus) indoor unit can also be integrated into Nokia AXC and MetroHub stand-alone transmission nodes. The Nokia FlexiHopper (Plus) outdoor unit can also be used as a stand-alone transmission solution with FIU 19 and FIU 19E for any kind of telecom or datacom transmission solutions where standard E1 or Ethernet interfaces are used.

All these cellular transmission solutions and installations above can be easily and remotely managed with the same Network Management System.

RoHS compliance

Nokia FlexiHopper (Plus) complies with the European Union RoHS Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment. The directive applies to the use of lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE) in electrical and electronic equipment put on the market after 1 July 2006.

WEEE

Product collection and disposal within European Union

Do not dispose the product as unsorted municipal waste. The crossed-out wheeled bin means that at the product end-of life the product must be taken to separate collection.

Note: this is applicable only within European Union (see WEEE Directive 2002/96/EC)

DN0577953

10 (137) Nokia Corporation DN03351499 Issue 10-0 en

One unit, all capacities - one platform, two different modulation schemes

Nokia FlexiHopper (Plus) microwave radios are available for the 7, 8, 13, 15, 18, 23, 26, 28, 32 and 38 GHz frequency bands. Nokia FlexiHopper (Plus) introduces two different modulation schemes: 4-state and 16-state modulations. To use 16state modulation with Nokia FlexiHopper and Nokia FlexiHopper 4E1, the user needs to order a separate licence file from Nokia. Nokia FlexiHopper Plus includes selecable modulation. For more information, see the section about SW licensing.

The radio transmission capacities of Nokia FlexiHopper (Plus) 4-state modulation are 2x2, 4x2, 8x2, or 16x2 Mbit/s. The channel spacing is accordingly 3.5, 7, 14 or 28 MHz. For 18 GHz there are two alternative channel spacings for each capacity available. The radio transmission capacities of 16-state modulation are 8x2 or 16x2 Mbit/s and the channel spacing is accordingly 7 or 14 MHz. Operating modes can be selected using the node manager without any hardware changes on either indoor or outdoor unit. This makes upgrading a Nokia FlexiHopper (Plus) hop easy and inexpensive, as it can be done entirely remotely in some cases.

Figure 1. Nokia FlexiHopper (Plus) outdoor unit

Flexible functionality and hardware platform

The transmitter uses either 4-state modulation (π /4-DQPSK, differential quadrature phase shift keying) or optional 16-state modulation (32 TCM, Trellis coded modulation), which have the advantages of a narrow spectrum and a good output power efficiency. The optional 16-state modulation is available for 8x2 and 16x2 Mbits/s capacities. The channel bandwidth is half of the bandwidth required for the 4-state modulation.

Nokia FlexiHopper (Plus) supports ALCQ, which is an advanced method, Automatic Transmit Power Control (ATPC). This feature enables the radio transmitter to optimize the transmit power based on the receiving signal quality on the other end of a hop.

With Hopper Manager one can select the Tx frequency freely with 1 kHz frequency step inside the duplex frequency subband.

The Nokia FlexiHopper (Plus) outdoor units are small, lightweight and easy to install.

One interface in the alignment unit supports all Nokia FlexiHopper outdoor units in all frequency bands.

Cabling and grounding connections are the same for Nokia FlexiHopper 4E1 outdoor units, Nokia FlexiHopper outdoor units and Nokia FlexiHopper Plus outdoor units.

12 (137) © Nokia Corporation DN03351499

Installation pole (30-125 mm) Alignment Unit FlexiHopper Outdoor Unit

Antennas for Nokia FlexiHopper (Plus)

Grounding wire

Figure 2. Nokia FlexiHopper (Plus) outdoor unit with an integrated 30 cm antenna and alignment unit

Flexbus cable

The antenna used with Nokia FlexiHopper (Plus) may be integrated or separate. Antennas are available in eight sizes: 20, 30, 60, 90, 120, and 180, 240 and 300 cm. The polarisation of the antenna can easily be changed by rotating the outdoor unit and the antenna feeder through 90°.

The Nokia FlexiHopper (Plus) radio is directly connected to a small (20, 30, or 60 cm) single antenna by using Nokia alignment unit or to a larger single antenna (90, 120, or 180 cm) by using a snap-on-adapter. No waveguides are needed. The alignment is carried out by using a ratchet or a battery-operated screwdriver.

All antennas can be used separately by using the flexible waveguide between the antenna and the radio. Large antennas (240, 300 cm) as well as all dual polarised antennas can only be used separately. 2.4m single polarised (SP) antenna is also available with a split reflector option, and the 3.0m antennas are delivered only with the split reflector option.

For more information on the antennas, see Nokia FlexiHopper (Plus) C2.5 Antennas, Alignment Units and Electrical Specifications.

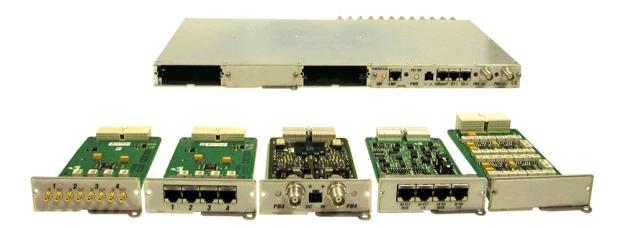
Installation

The outdoor unit can be installed on a roof, wall, or tower. The antenna with the alignment unit can be installed on either side of a pole. Normally, no loose parts are needed in the installation of the alignment unit and the outdoor unit. The outdoor unit and the antenna are fitted with guides, which prevent installation in conflicting polarisations.

Connectors and cabling

The indoor unit and the outdoor unit are connected via a single coaxial cable (Flexbus), which also feeds DC power to the outdoor unit. The outdoor unit has one coaxial connector for the Flexbus cable and one BNC connector for measurement of the AGC (automatic gain control) voltage. AGC voltage measurement is needed when aligning the antenna.

Power supply


The power is fed to the outdoor unit from the indoor unit via the Flexbus cable. There is no need for separate power supply. The power consumption of a Nokia FlexiHopper (Plus) outdoor unit is at a maximum only 25 W, which results in high reliability and a long running time on battery backup.

One indoor unit supports several outdoor units

Nokia supplies different indoor units for Nokia FlexiHopper (Plus) to provide optimal features for different environments. All frequency bands use the same indoor units. One FIU 19(E) can support transmission in up to three directions with the maximum of four outdoor units.

DN03351499 14 (137) Nokia Corporation

FIU 19E indoor unit Figure 3.

The full radio capacity from 2x2 Mbit/s up to 16x2 Mbit/s is available with all indoor unit models. The add/drop capacity varies according to the indoor unit configuration. You can use the same indoor units with the Nokia MetroHopper at fixed 4x2 Mbit/s radio capacity.

The main features of each indoor unit are described below.

FIU 19 - compact 19" indoor unit

FIU 19 is a modular indoor unit for 19-inch applications. The main unit is only 2/ 3 U (29 mm) high. The interface capacity of FIU 19 can be from 4x2 up to 16x2 Mbit/s. You can easily expand it with plug-in units in 4x2 Mbit/s increments. The 16x2 Mbit/s interface capacity can be achieved by the expansion unit, which is the same size as the main unit. The 2 Mbit/s cross-connect function is integrated into the FIU 19 indoor unit. FIU 19 enables connection for up to four outdoor units and supports hot standby and diversity protection methods.

With FIU 19, Nokia FlexiHopper (Plus) can use the Q1 management channel and Nokia NetAct or NMS/10 Network Management System (NMS).

FIU 19E

FIU 19E has all the same features as FIU 19. Additionally FIU 19E supports the SNMP management and the Ethernet payload traffic. The FIU 19E indoor unit has an Ethernet interface for the IP DCN. For FIU 19E there is an optional Ethernet plug-in unit, which has two Ethernet ports.

15 (137) Nokia Corporation

FXC RRI - Nokia MetroSite BTS, Nokia MetroHub, and Nokia UltraSite BTS indoor unit

FXC RRI is an indoor unit, which can be installed in Nokia MetroSite Base Station, Nokia MetroHub Transmission Node, or Nokia UltraSite Base Station. FXC RRI enables connection to two outdoor units, supports loop protection, and also provides grooming with 8 kbit/s granularity. The add/drop capacity is 16x2 Mbit/s.

IFUE - Nokia MetroSite WCDMA and Nokia UltraSite WCDMA interface unit

IFUE is an interface unit that can be installed in Nokia MetroSite WCDMA and Nokia UltraSite WCDMA base stations. The IFUE has three Flexbus interfaces and it provides up to 16x2 Mbit/s capacity to ATM cross-connection.

Easy-to-use management system

Nokia FlexiHopper (Plus) can be fully controlled and managed locally by:

- Hopper Manager (with FIU 19(E))
- Nokia SiteWizard (with FXC RRI)
- Nokia AXC-FB Hopper Manager (with IFUE)

or remotely with the Nokia network management system, NetAct.

The node managers feature an easy-to-use graphical user interface with Commissioning Wizard that guides the user through commissioning tasks.

Versatile maintenance and troubleshooting facilities

- The quality of the transmission can be monitored with the built-in BER (bit error ratio) measurement and withITU-T G.826 statistics.
- Far-end and near-end loops can be used for troubleshooting.
- Software of the outdoor unit and the indoor units can be updated by using local or remote software download.
- Transmission Loader is a software tool, which automates the task of updating a large network.
- Alarms with troubleshooting information.

16 (137) Nokia Corporation DN03351499 Issue 10-0 en

3 Features

3.1 General information

The Nokia FlexiHopper (Plus) Product Description covers Nokia FlexiHopper Plus and Nokia FlexiHopper products and supporting indoor units.

In this Product Description, Nokia FlexiHopper Plus and Nokia FlexiHopper refer to the modulation in use. Nokia FlexiHopper (Plus) refers to all Nokia FlexiHopper products.

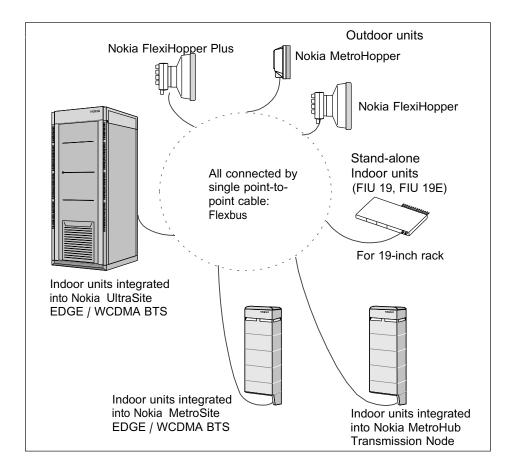
3.2 Integrated radio and cross-connection

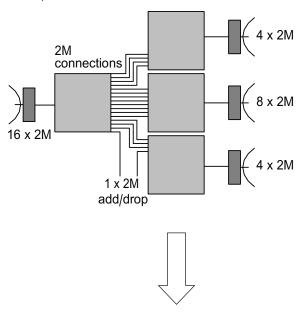
A cross-connection of 2 Mbit/s is integrated into the indoor units and can freely be programmed between different Flexbuses and 2 Mbit/s interfaces. The indoor unit has two or four (FIU 19(E)) totally independent framing/deframing sections, which can be cross-connected to external or internal Flexbus interfaces.

Flexbus - single cable interconnections

Figure 4. The basic Nokia FlexiHopper (Plus) network element configuration

The bidirectional Flexbus cable connects all system elements together. Flexbus carries digital 2 - 16 x 2 Mbit/s signals and controls data between the units of the network element, from the indoor unit to the outdoor unit, as well as from one indoor unit to another indoor unit. Flexbus also feeds DC power to the outdoor unit.




Figure 5. The Flexbus family

Flexbus gives high flexibility to PDH networks without any external multiplexers. Several different logical signals can be carried by Flexbus and all on-site cabling is made by internal electrical cross-connections. If the conventional method is needed, the separate 2M interfaces are available with the FIU 19(E) indoor unit.

18 (137) © Nokia Corporation DN03351499

Conventional setup, 4 indoor units

When Flexbus and integrated cross-connections are used, only two indoor units are required

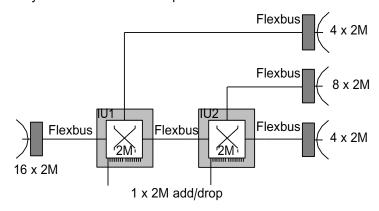


Figure 6. Removing 2M cabling from a site with FIU 19(E) and Flexbus

In a conventional setup (figure *Removing 2M cabling from a site with FIU 19(E) and Flexbus* and figure *Site cabling effect*) the system elements are connected together using several 2M cables. You can replace all these with a single Flexbus cable (figure *Removing 2M cabling from a site with FIU 19(E) and Flexbus* and figure *Site cabling effect*). Note that in this example, in a conventional 16x2 Mbit/s system, there could be up to 96 cables.

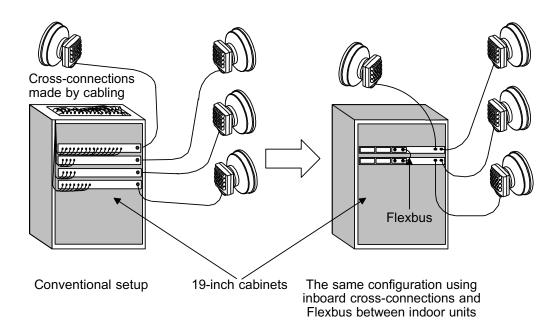


Figure 7. Site cabling effect

The cross-connections (which replace the conventional cabling) can be modified using the Hopper Manager. The cross-connections in IU2 in figure Removing 2M cabling from a site with FIU 19(E) and Flexbus are also pictured in figure Crossconnections in a node manager window.

DN03351499 O Nokia Corporation Issue 10-0 en

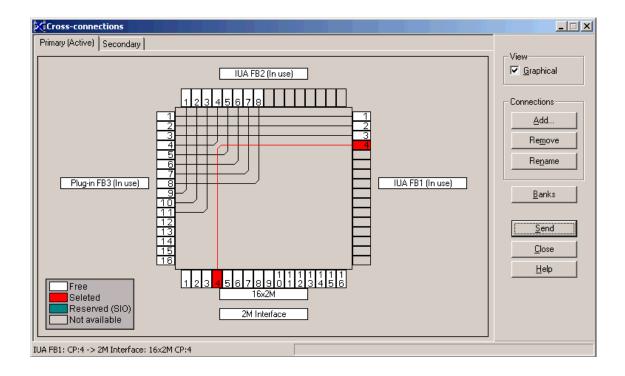


Figure 8. Cross-connections in a node manager window

3.3 Outdoor unit features

3.3.1 Overview of Nokia FlexiHopper (Plus) outdoor unit features

The figure *Block diagram of the outdoor unit* illustrates the top-level block diagram of the radio outdoor unit. The outdoor unit includes five functional units:

- a power supply unit (PSU)
- a modem board
- an intermediate frequency unit (IFU)
- a microwave unit (MWU), and
- a duplex filter.

Use a single coaxial cable when you connect the outdoor unit to the indoor unit. The cable carries the baseband data between the indoor and the outdoor unit in full duplex mode. It also carries the required DC power to the outdoor unit. The cable is connected to the unit in which the data traffic is filtered and transferred to the modem board. The needed DC voltages are generated in the PSU and delivered to other units through the modem board.

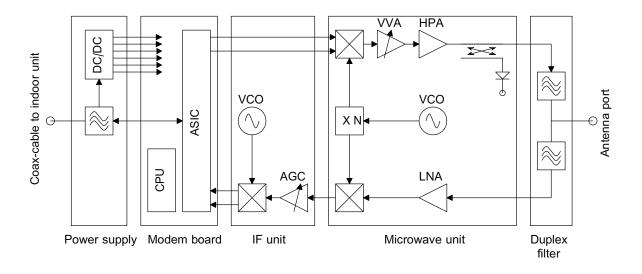


Figure 9. Block diagram of the outdoor unit

Unlike the traditional outdoor unit designs, the modem board is located in the outdoor unit, which makes it possible to use more advanced control loops between the modem board and the RF parts (IFU and MWU).

The main component of the modem board is the custom design ASIC (application-specific integrated circuit). The ASIC contains a digital modulator and demodulator with Reed-Solomon forward error correction (FEC).

The interface between the modem board and the RF part is analog I and Q signals. The modem board also includes an embedded microprocessor system, which is used to control all units inside the outdoor unit as well as to communicate with the indoor unit and the far-end unit when needed.

Nokia FlexiHopper (Plus) introduces two different modulation schemes: 4-state and 16-state modulations. To use 16-state modulation with Nokia FlexiHopper and Nokia FlexiHopper 4E1, the user needs to order a separate licence file from Nokia. Nokia FlexiHopper Plus includes selecable modulation. For more information, see the section about SW licensing.

22 (137) © Nokia Corporation DN03351499 Issue 10-0 en

The RF functions are divided between two units: the IF unit and the microwave unit. The MWU includes all microwave circuits, most of which are MMICs, while the IFU includes required intermediate frequency circuits.

In the transmitter side, direct conversion architecture has been implemented to enable use of a single microwave local oscillator. Since the I/Q up-converter operates at the end frequency, a digital feedback loop is required to correct the amplitude and phase errors of the modulator.

After the up-conversion the signal is amplified enough in order to obtain the required maximum output power level. A temperature compensated power detector is used to monitor the power level after the high power amplifier (HPA), and thus, to drive the voltage variable attenuator (VVA) in order to obtain the required output power level.

In the receiver side, the single IF conversion architecture is used. After the low-noise amplifier (LNA) the received signal is down-converted to the IF. The automatic gain control (AGC) with a dynamic range of about 100 dB is used to obtain a constant rms-power level for the I/Q-demodulator.

The outdoor unit contains two separate phase-locked oscillator circuits. In the MWU, the fundamental oscillator frequency is multiplied in order to obtain the low phase noise VCO signal for the transmitter (Tx) and the receiver (Rx) up- and down-converters. Due to the common VCO frequency at Tx and Rx, the IF frequency is always equal to the duplex spacing.

The waveguide duplex filter separates the transmitter and the receiver and provides at the same time low loss connection to the antenna port.

3.3.2 Forward error correction coding, interleaving and scrambling

Nokia FlexiHopper (Plus) microwave radios use forward error correction (FEC), interleaving and scrambling to improve the transmission quality. The FEC is continuously on, the interleaving is selectable in 4-state modulation between off, 2-depth and 4-depth modes, and for the scrambling there are two optional polynomials. For 16-state modulation the interleaving is fixed to 4-depth mode.

The forward error correction uses the Reed-Solomon coding [RS(63,59)]. The code uses 4 redundancy symbols for every 59 data symbols, so the redundancy of the coding is 6.4%. Together with the interleaving also errors of burst type can be corrected. The maximum error correction effectiveness is achieved with 4-depth interleaving.

When interleaving is in use, the transmission delay increases slightly. Normally this is not a problem, but in long chains of radio links the delay accumulates, and it might be necessary to turn the interleaving off. The acceptable delay for a chain of links should be determined in the transmission planning stage and the interleaving status should be set accordingly.

For more information on FEC, interleaving and scrambling, see Maintenance Documentation for Nokia FlexiHopper products in NOLS (Nokia Online Services) under Documentation → Technical Documentation → Transmission and Backbone → Microwave Radios Error Correction and Scrambling in Nokia FlexiHopper and FlexiHopper Plus microwave radios.

The interleaving and scrambling polynomial settings must be the same in both ends of the hop. Otherwise, the transmitted data is not received correctly. The 4depth interleaving setting is recommended if no special conditions are needed.

ALCQ - Adaptive Level Control with Quality measurement 3.3.3

ALCQ is a method for the Automatic Transmit Power Control (ATPC). This feature enables the radio transmitter to increase or decrease the transmit power automatically, according to the response received from the other end of the hop. This approach achieves more efficient utilization of radio frequencies than the constant power level approach. The controlled use of transmit power reduces interference between systems, which, in turn, allows tighter packing of radio links within the same geographical area or at network star points.

For more information on ALCQ, see Maintenance Documentation for Nokia FlexiHopper products in NOLS (Nokia Online Services) under Documentation → Technical Documentation → Transmission and Backbone → Microwave Radios ALCQ and Fading Margin Measurement in Nokia FlexiHopper and FlexiHopper Plus microwave radios.

The maximum transmit power is set with the Nokia Hopper Manager. However, when the ALCQ is in use, the radio always tries to transmit at minimum power. The common idea behind ALCQ is to monitor the received signal level together with the bit error ratio (BER) of the receiver, and to adjust the far-end transmitter output power to adapt to the fading conditions.

In addition to these conventional ALCQ operation mechanisms, Nokia FlexiHopper (Plus) also applies a novel pseudo-error monitoring for controlling ALCQ. According to this Nokia invention, the bit errors detected by the forward error correction (FEC) decoder are interpreted as pseudo-errors, and further, used as an additional input for the ALCQ operation. In other words, this method can respond to degradation of signal quality before actual bit errors occur over the radio relay.

DN03351499 24 (137) Nokia Corporation

If the fading increases rapidly (multipath fading), the radio reacts immediately by increasing the power, but not higher than the set maximum value. After the fading conditions resume to normal, the power is gradually decreased. The ALCQ also reacts to slow changes in the fading conditions by gradually increasing the transmit power.

3.3.4 Fading margin measurement

During the commissioning of a microwave radio, the operator may wish to measure the fading margin of the radio hop. Traditionally this has required much work and additional hardware, such as RF (radio frequency) attenuators. In Nokia FlexiHopper (Plus), the fading margin measurement is automatic and can be started simply by using the Hopper Manager software.

For more detailed information on the fading margin measurement, see Maintenance Documentation for Nokia FlexiHopper products in NOLS (Nokia Online Services) under Documentation → Technical Documentation → Transmission and Backbone → Microwave Radios *ALCQ* and Fading Margin Measurement in Nokia FlexiHopper and FlexiHopper Plus microwave radios.

3.4 Protection methods

The purpose of protection methods is to protect the transmission link against equipment failures and against disturbances in the radio path. The equipment failures mean degraded transmission quality due to transmitter or receiver defects. The disturbances in the radio path are usually caused by flat or multipath fading that degrades the signal quality in the way that there are bit errors in the received data or the receiver cannot lock to the received signal any more.

In single use, the transmission is not protected against equipment failures or propagation disturbances. If a fault occurs, the transmission remains broken until the faulty device is repaired or replaced with a functional one or the disturbance in the radio path disappears.

In general, the protection methods are divided into two categories:

- 1. equipment protection and
- 2. propagation protection.

In the Nokia FlexiHopper (Plus) microwave radios, hot standby (HSB) is used as an equipment protection method. This means that the number of outdoor units and indoor units can be doubled in order to provide protection against any equipment failure. The redundant units are switched on, but they are muted when the primary units are operating correctly.

In the Nokia FlexiHopper (Plus) microwave radios, the available modes for equipment protection are:

- hot standby with 1 indoor unit and with 2 outdoor units
- hot standby with 2 indoor units and with 2 outdoor units
- hot standby with space diversity and with 1 indoor unit and with 2 outdoor units
- hot standby with space diversity and with 2 indoor units and with 2 outdoor units.

In the hot standby configurations you can use a one-antenna configuration or a two-antenna configuration. When you use the one-antenna configuration, you need a directional coupler. In the hot standby configurations with space diversity, two antennas are needed.

The propagation protection modes supported in the Nokia FlexiHopper (Plus) microwave radios are:

- space diversity
- frequency diversity, one-antenna solution
- frequency diversity, two-antenna solution
- polarisation diversity

In each propagation protection mode, the configuration may include either one or two indoor units. Two outdoor units are needed in all protection modes.

When 2 indoor unit protection configuration is used, both E1 and Ethernet (FIU 19E C2.0 and later releases) payload can be protected.

For more information on the protection methods, see Maintenance Documentation for Nokia FlexiHopper products in NOLS (Nokia Online Services) under Documentation → Technical Documentation → Transmission and Backbone → Microwave Radios.

DN03351499 26 (137) Nokia Corporation

3.5 Dual capacity setup

In dual capacity setup for Nokia FlexiHopper (Plus), two RF bandwidths are transmitted and received in the same channel by using two orthogonal polarisations. A dual polarisation antenna can be used in order to have orthogonal separation between polarisations. Dual polarisation is available in both 4-state and 16-state modulation modes.

The frequency reuse is a technique employed to minimise frequency separation and to increase spectrum capacity without increasing spectrum occupancy. The use of two orthogonal polarisations on the same hop is a method to double the capacity without increasing RF bandwidths. The advantages of the dual capacity setup are:

- 1. possibility to double the capacity of the hop
- 2. possibility to provide less expensive equipment with only one antenna and two radios on both ends of the hop

Disadvantages of the dual capacity setup are:

- 1. Unavailability objectives are harder to achieve due to propagation effects.
- 2. Error performance targets are harder to achieve.
- 3. Usable maximum hop lengths are shorter due to unavailability or error performance objects.

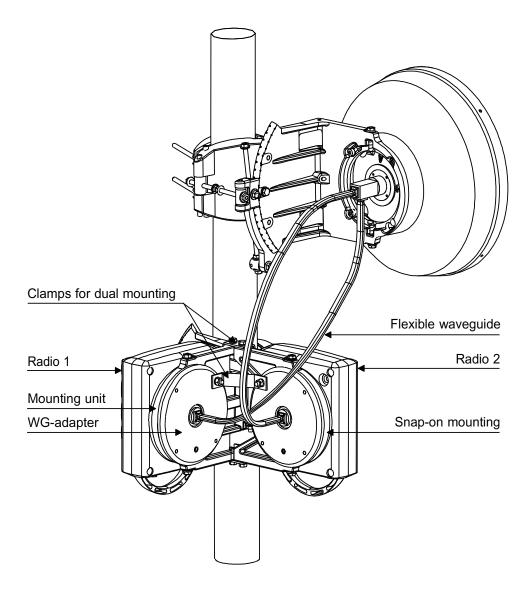


Figure 10. Dual polarisation antenna setup

For more information, see Maintenance Documentation for Nokia FlexiHopper products in NOLS (Nokia Online Services) under Documentation \rightarrow Technical Documentation \rightarrow Transmission and Backbone → Microwave Radios Dual Polarisation with FlexiHopper and FlexiHopper Plus Microwave Radios.

© Nokia Corporation DN03351499 Issue 10-0 en

3.6 FIU 19E with Ethernet plug-in unit

The Ethernet plug-in unit (EPIU) interface unit provides two Ethernet interfaces and makes it possible to transport Ethernet traffic over Nokia FlexiHopper (Plus) and Nokia MetroHopper radios.

The EPIU supports up to two microwave radio links with Ethernet traffic. The capacity of the radio links can be shared between Ethernet traffic and traditional E1 traffic. The Ethernet plug-in unit is available on FIU 19E C2.0 and later releases.

The EPIU provides two 10/100 Base-T Ethernet interfaces (IEEE 802.3, IEEE 802.3u, IEEE 802.3x) on a single plug-in unit. With the Ethernet plug-in unit you can install a 4x2Mbit/s interface unit into a FIU 19E indoor unit and thus share the radio capacity between TDM and Ethernet traffic. Up to 32 Mbits/s of radio path capacity can be configured for the Ethernet traffic. The capacity can be selected with 2 Mbits/s granularity. The remaining radio link capacity can be used for TDM traffic.

The EPIU can learn up to 2048 MAC addresses totally. The MAC address learning, the filtering and the ageing is done automatically at each port of the EPIU. The time for the address ageing is fixed to 5 minutes.

The EPIU can be used in any combination with 4x2M plug-in units. It can also be used with other FIU 19E plug-in units including the extension unit (EXU). Note, however, that the EPIU can only be used in plug-in unit slot 2 of the FIU 19E indoor unit.

The Ethernet plug-in unit also has LEDs for indicating the link status and the activity for each Ethernet interface.

The Hopper Manager is the primary tool for managing FIU 19E with EPIU. The unit also supports configuration through a custom MIB. This enables traffic data to be monitored and interfaces to be configured in a standard way using SNMP. You can also upgrade the EPIU software remotely, via the Hopper Manager, in a similar way as other FIU 19E software modules.

The EPIU is supported for FIU 19E release C2.0 HW and later releases. Earlier FIU 19E releases cannot be upgraded to support the EPIU.

Ethernet plug-in unit operating modes

The EPIU supports three operating modes:

- channel separation
- capacity sharing
- full switch mode

The EPIU can be used in the following FIU 19E network configurations:

- single hop
- 20U protected mode
- 2IU protected mode

Features supported by the EPIU

The EPIU supports the following:

- hot swap and hot plug-in
- both full and half duplex Ethernet interfaces with autonegotiation
- the use of both cross-over and straight cabling with the automatic MDI/ MDIX crossover detection feature
- transparent Ethernet bridging over the radio hop
- standard Ethernet frame support, transparent bridging for VLAN tagged Ethernet frames (length max. 1522 bytes), and also extended frame sizes up to 1536 bytes are supported
- the packet buffer size is selectable towards the radio link with the following options: 32, 64 or 128 kB. In the direction of the receiver, there is a memory of 128 kB that is shared between two Ethernet ports
- Ethernet flow control by Pause frames in full duplex mode
- link loss forwarding (LLF).
- the standard MIB definitions: RMON statistics group from RFC 2819 and Interface group from RFC 2863.
- selectable priority between E1 and Ethernet interfaces for 2IU changeover criteria.

DN03351499 © Nokia Corporation

Limitations and restrictions of the EPIU

- The Ethernet radio hop needs to be terminated at both ends of the hop with the EPIU. The EPIU is needed also in repeater/chaining station configuration.
- Network synchronization distribution is only possible if there is at least one E1 signal connected over the radio hop.
- There is no PPP support Ethernet packet traffic is not embedded to E1 signals.
- Spanning tree protocol is not supported.
- Quality of Service (QoS) is not supported.

3.6.1 Operating modes

When FIU 19E is equipped with the EPIU it is possible to use either one or two radio links for the Ethernet traffic. The Ethernet traffic capacity for those radio links can be individually selected in between 0-32 Mbits/s with 2 Mbits/s granularity. The rest of the capacity of the radio links can be used for TDM traffic.

Channel separation

This operating mode provides two independent data channels for Ethernet traffic over two radio hops. Traffic from Ethernet interface 1 is passed to the first radio link (Flexbus 1 in single mode), traffic from Ethernet interface 2 is passed to the second radio link (Flexbus 2 in single mode). Both radio links and Ethernet interfaces can be configured independently from each other.

Example: FB1 can be configured to work at 16x2M mode in which Ethernet data channels capacity can be selected in between 2-32 Mbits/s. Additionally FB2 can be configured to operate either in 2x2M, 4x2M, 8x2M or 16x2M mode in which Ethernet traffic capacity is configurable with 2 Mbits/s granularity.

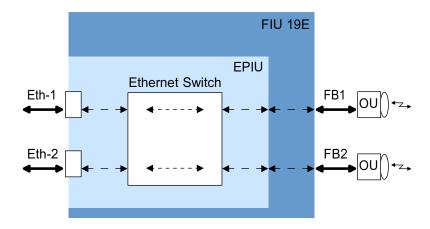


Figure 11. EPIU in channel separation mode

Capacity sharing

The capacity sharing mode allows the use of two individual Ethernet data channels through a single radio hop (FB1 or FB2 in single mode). The radio link capacity, which has been dedicated for Ethernet traffic, can be shared between those two Ethernet data channels with granularity of 1/256. The capacity sharing factor, which indicates how much of the Ethernet data capacity is used by traffic from the Eth-1 port, can be configured in range of 1/256 to 255/256. The rest of the capacity is left for traffic from the Eth-2 port.

Caution

Ethernet traffic over the radio hop may fail if both sides of the radio hop do not use the same Flexbus interface in capacity sharing mode. Make sure both sides of the radio hop use the same Flexbus interface.

Example: A radio that is operating in 16x2M mode is connected to FB1. All of its capacity is selected for the Ethernet traffic. In this example we use a sharing factor of 255/256. In this case a ratio of 255/256 of the link capacity is given to the Eth-1 channel and 1/256 is used by the Eth-2 channel (1/256*32.768 Mbits/s = 128 kbits/s, 255/256 = 32.64 Mbits/s).

© Nokia Corporation DN03351499 Issue 10-0 en

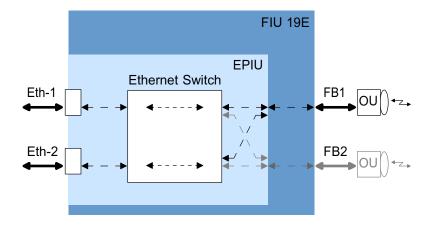


Figure 12. EPIU in capacity sharing mode

When the EPIU operates in capacity sharing mode, it is not possible to build a repeater station configuration with just one FIU 19E. In this case two FIU 19Es, which are equipped with the EPIUs, are needed. External Ethernet cabling is needed between these EPIUs.

Full switch mode

In full switch mode, the EPIU operates as a standard Ethernet switch with four ports, two of these ports are connected towards the FB interfaces. In this operating mode it is possible to use two radio hops via single Ethernet interface or it is possible to connect two Ethernet cables to the EPIU and just use one radio link for carrying traffic from both Ethernet interfaces.

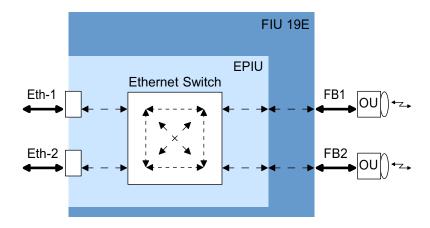


Figure 13. EPIU in full switch mode

Test loops

There are crossed and non-crossed test loops on the EPIU. All of them are implemented inside the Ethernet switch circuit. Crossed loop is a loop where traffic from one interface is connected to another interface. In non-crossed loop the packet traffic is echoed back to the same interface where it came from. Because the loops are implemented inside the Ethernet switch they can be used in all EPIU operating modes.

The crossed interface loop exists between Eth-1 and Eth-2. This loop is also implemented towards the equipment. The non-crossed loops exist for all four interfaces. All test loops for near-end devices can be set via the Hopper Manager. Setting equipment loops is possible for the far-end EPIU via the Hopper Manager.

For more information on loopbacks, see Built-in test features.

3.6.2 **Packet buffering**

The capacity of the radio links for Ethernet traffic cannot exceed 32 Mbits/s - that is about three times lower than the capacity of 100 Base-TX Ethernet interface. The Ethernet traffic is also bursty in nature; therefore some packet buffering is needed for adapting to it. If the packet buffers fill up, incoming packets are dropped until there is space in the packet buffer.

DN03351499 34 (137) © Nokia Corporation Issue 10-0 en

The EPIU has packet buffers in both transmit directions (towards the radio link, and from the radio link). The size of the packet buffer towards the radio link is configurable, you can select the size individually for each port from the following options: 32, 64 or 128 kB. If the biggest buffer size is selected, it is possible to adapt to longer packet bursts and thus it is possible to achieve better radio link utilisation. On the other hand, the longer the packet buffer is, the longer is the buffering delay before the packets are dropped. The default buffer size is 32 kB. This causes the shortest buffering delays. Note that the buffering delay grows significantly when the capacity of the radio links is decreased. The minimum and maximum latencies of a single Ethernet radio hop for different radio link capacities and buffer sizes are presented in *Propagation delays for packet traffic*.

The packet buffer towards the Ethernet interfaces (Eth-1, Eth-2) is 128 kB. This memory is shared dynamically between those two ports.

3.6.3 Naming conventions for Ethernet data channels inside Flexbus

The Ethernet packet traffic is carried over the Serial IO (SIO) data channel inside Flexbus. In unprotected radio hop configurations the data channel inside Flexbus 1 is called SIO1 and the data channel inside Flexbus 2 is called SIO2. In 2OU protected radio hop configurations SIO1 traffic is carried in FB1 (or in FB2 which is the protecting channel) and SIO2 traffic is carried inside FB3 which is an unprotected channel. In 2IU protection configurations SIO1 traffic is carried inside protected radio hop (FB1 of IUA and FB1 of IUB) and SIO2 is not used.

Port naming for EPIU statistical counters

Each EPIU port has a set of statistical counters for monitoring the Ethernet traffic statistic. Those counters can be read via the Hopper Manager or via SNMP queries from the SNMP agent inside the FIU 19E.

Altogether there are four ports whose statistics can be monitored on the EPIU. These ports are named Eth-1, Eth-2, SIO1 and SIO2. The naming is quite straightforward in full switch and channel separation modes. In capacity sharing mode both SIO ports are mapped to single Flexbus. In this case SIO1 counters count the statistics for the Ethernet packets coming from/to Eth-1 interface and SIO2 counters count the Ethernet packets coming from/to Eth-2 interface. This is independent of which Flexbus is selected for transmitting the Ethernet traffic.

Table 1. Summary of the SIO port naming for EPIU statistical counters in each EPIU operation mode

EPIU mode	SIO port name(s) inside FB1	SIO port name(s) inside FB2 (or FB3**)
Channel separation	SIO1	SIO2

None

SIO1 and SIO2

caon En 10 operation mode (cont.)						
EPIU mode	SIO port name(s) inside FB1	SIO port name(s) inside FB2 (or FB3**)				
Full switch	SIO1*	SIO2*				

SIO1 and SIO2

None

Table 1. Summary of the SIO port naming for EPIU statistical counters in each FPIU operation mode (cont.)

3.6.4 Link loss forwarding

Capacity sharing of SIO1

Capacity sharing of SIO2

Link loss forwarding (LLF) is supported on the EPIU in channel separation and capacity sharing modes. LLF can be enabled separately for both EPIU ports.

LLF is a method of error propagation into the Ethernet domain. The feature works by using the link state of the port to signal whether a viable connection is possible to the remote side Ethernet port. If the link is lost on the remote Ethernet port or communication across the radio channel is not possible, the link on the corresponding local Ethernet port is brought down. Whenever such fault situations cease, the Ethernet link is enabled again.

LLF enables third party equipment to detect the link loss situation faster and thus it is possible to change to the alternative route at once if it exists. This may also tie the EPIU into existing network monitoring systems, because the connected equipment detects this link loss.

Note

Link loss forwarding (LLF) is not supported in full switch mode or in 2IU protection mode.

DN03351499 36 (137) Nokia Corporation

^{*)} In full switch mode the Ethernet traffic may originate from either of the two ports Eth-1 or Eth-2.

^{**)} The SIO2 data channel is carried inside FB3 during the 2OU-protected mode.

3.6.5 Ethernet flow control

The EPIU supports Ethernet flow control on full duplex link segments. The flow control functionality is based on IEEE 802.3x where the MAC control frames are used to carry PAUSE commands. The flow control is used to prevent packet loss during link congestion.

If one of the EPIU ports gets congested, the EPIU sends a PAUSE message (with a maximum time for the pause) to the node that is causing the link congestion. When congestion disappears the EPIU sends a new PAUSE frame through the same port (with zero pause-time) to indicate that the link is ready to continue the transmission. When the EPIU receives a PAUSE frame at one of its inputs, it stops the transmission to that interface for a specified pause-time.

Note

The Ethernet flow control does not work unless both ends of a full duplex link segment support flow control based on PAUSE frames. The flow control should be disabled as default.

3.7 Built-in test features

For testing and diagnostics, there are six integrated loopbacks and an internal pseudo-random binary sequence (PRBS) generator and detector available. The table *Loopbacks* and the figure *Loopbacks with FIU 19(E)* describe the looping possibilities with the FIU 19(E) indoor unit.

The operation of the various units of the radio hop can be checked with loopbacks and with an internal or external PRBS generator and detector. PRBS is a two-level signal that has a repetitive sequence, but a random pattern within the sequence. It is used to test the radio link, since it has the basic characteristics of a noise, but in terms of parameters that are easily controlled. One generator in the indoor unit (FIU 19/FIU 19E) sends a PRBS signal, and the other end of the radio link detects this signal.

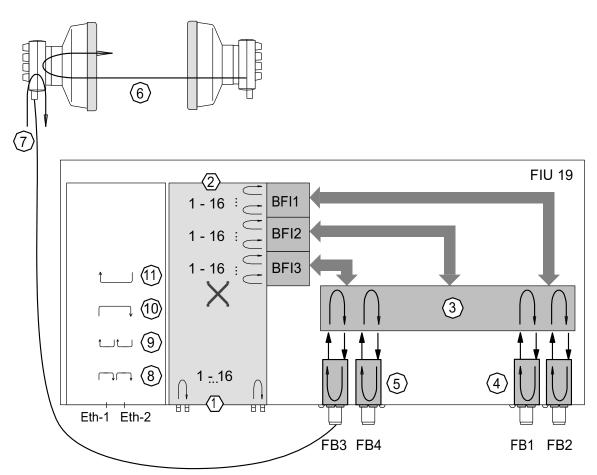
The **Forced Controls** window is used to switch on the PRBS generator, and to specify the used channels (the 2M channels, which are cross-connected in the ASIC to the test generator/detector) for the receiving or transmitting of test signals.

The **Internal Tests** window is used to switch on the PRBS test detector to start analysing received test patterns (see *Using internal tests (PRBS)*).

There are two kinds of binary sequences that can be used here:

- PRBS2: pseudo-random binary sequence for 2 Mbit/s
- PRBSF: pseudo-random binary sequence for Flexbus

Table 2. Loopbacks


Loop type	Description
2M loop to interface (1)	Near-end loop
	Loops back the signal in the 2Mbit/s interfaces in the 2M cross-connection block.
BFI* 2M loop to interface (2)	Far-end loop
	Loops back the signal in 2Mbit/s interfaces in the cross-connection section. These channels are also connected to a Flexbus.
Flexbus loop to interface (3)	Far-end loop
	Loops back the selected Flexbus signal in Flexbus framer and cross-connection block.
Flexbus loop to equipment (FB 1-4) (4-5)	Near-end loop
	Loops back the selected Flexbus signal just prior to the Flexbus interface into the IU-OU cable.
Outdoor unit loop to interface (6)	Far-end loop
	Loops the signal back to the radio interface in the outdoor unit. It can be set for the near-end or far-end outdoor unit.
Outdoor unit loop to equipment (7)	Near-end loop
	Loops the signal back to the IU-OU cable in the near-end outdoor unit.
Eth-1 and Eth-2 - near-end loop (8)	Loops back the signal to the Ethernet interface.
Eth-1 and Eth-2 - far-end loop (9)	Loops the Ethernet signal back to the radio interface.
Crossed near end loop (10)	Loops the signal between Eth-1 and Eth-2.
Crossed far end loop (11)	Loops back the signal between Eth-1 and Eth-2 towards the radio interface.
*) BFI = Buffer Frame Interface in FIU 19(E)	

38 (137) © Nokia Corporation DN03351499

Note

There is no internal test generator or detector for Ethernet plug-in unit test loops. Use external equipment when testing the loops.

- 1) 2M interfaces: loop to interface
- 2) BFI 2M channels: loop to interface
- 3) Flexbuses: loop to interface
- 4) FB1 and FB2: loop to equipment
- 5) FB3 and FB4: loop to equipment
- 6) Outdoor unit: loop to interface
- 7) Outdoor unit: loop to equipment
- 8) Eth 1&2: near end loop
- 9) Eth 1&2: far end loop
- 10) Crossed near end loop
- 11) Crossed far end loop

Figure 14. Loopbacks with FIU 19(E)

3.8 Configuration backup

The Nokia FlexiHopper (Plus) outdoor unit and the FIU 19(E) indoor units support configuration backup. This feature makes it possible to create a backup copy of important unit configurations to other units. That information can be restored to recover from error situations or to quickly commission a unit which has been replaced.

Backups can be made automatically or manually with Hopper Manager. In *Commissioning Nokia FlexiHopper (Plus)*, see *Setting the automatic backup* or *Backing up the settings manually*.

The following backup cases are possible:

- Outdoor unit settings are backed up to the indoor unit.
- Indoor unit settings are backed up to all outdoor units and to the protecting indoor unit.

3.9 SW licensing

Starting from releases Nokia FlexiHopper C6.0, Nokia FlexiHopper Plus C2.2, and Nokia FlexiHopper Indoor unit 19E C2.0 units support software licensing.

The features under licence in the Nokia FlexiHopper family follow.

For Nokia FIU 19E C3.0 indoor unit

- 2nd Flexbus
- SNMP (OSPF feature is licensed also for FIU 19E C2.0)

For Nokia FlexiHopper 4E1 outdoor unit

- Transmission capacity upgrade licences
 - $4x2 \text{ Mbit/s} \rightarrow 8x2 \text{ Mbit/s}$
 - $8x2 \text{ Mbit/s} \rightarrow 16x2 \text{ Mbit/s}$
 - $4x2 \text{ Mbit/s} \rightarrow 16x2 \text{ Mbit/s}$
- 16-state modulation licence

A modulation upgrade can be performed on Nokia FlexiHopper 4E1 only in 8x2 Mbit/s and 16x2 Mbit/s capacities.

40 (137) © Nokia Corporation DN03351499

For Nokia FlexiHopper outdoor unit

• 16-state modulation (32 TCM)

Nokia FlexiHopper (Plus) already includes all available features.

To activate these features, the user needs to order a secure licence file from Nokia and to install the licence. The file is delivered through Nokia software delivery channels and can easily be installed either locally or remotely over the Q1 management channel using Hopper Manager version C4.7 or newer. For transmission capacity upgrade licenses, Hopper Manager C4.9 is needed.

Licence is implemented using secure plain text files generated and authorised by Nokia. In case the licence file is lost or corrupted, the valid licensed user can get a replacement from Nokia without paying for the feature twice. The licence is bound to the unit's serial number and cannot be used in another unit. If radio hardware is swapped by Nokia in a hardware failure case, a new licence file is generated.

All Nokia FlexiHopper (Plus) and FIU 19E licences are permanent and once installed will not expire. Nokia FlexiHopper, Nokia FlexiHopper 4E1 and FIU 19E products include introductory time-limited trial licences for 60 days. When a licence is bought, it can be activated or deactivated as often as needed.

DN03351499 42 (137) O Nokia Corporation

4 Applications

4.1 Network applications

Nokia FlexiHopper (Plus) is mainly used in macrocellular sites. It can also be used in the microcell layer when there is a need for higher capacities or longer radio hops.

After the initial roll-out phase the required capacity may increase. The capacity of Nokia FlexiHopper (Plus) can be programmed and it grows with the evolving network.

The following figure, Example of applications with Nokia FlexiHopper (Plus) in a cellular network, illustrates an example of transmission in a cellular network implemented using Nokia FlexiHopper (Plus).

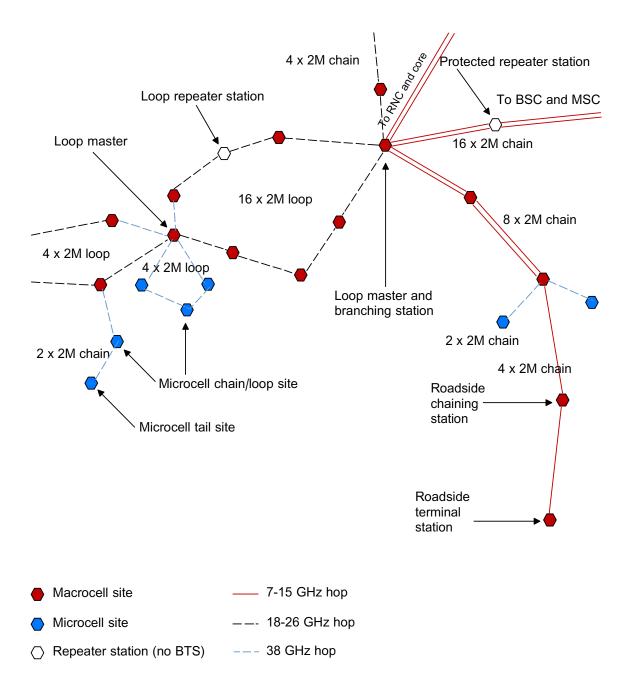


Figure 15. Example of applications with Nokia FlexiHopper (Plus) in a cellular network

44 (137) Nokia Corporation DN03351499 Issue 10-0 en

4.2 Site configuration examples

In the following you can see some examples of the site configurations which can be implemented when using Nokia FlexiHopper (Plus) with various indoor units. The symbols used for the units are presented in the following figure.

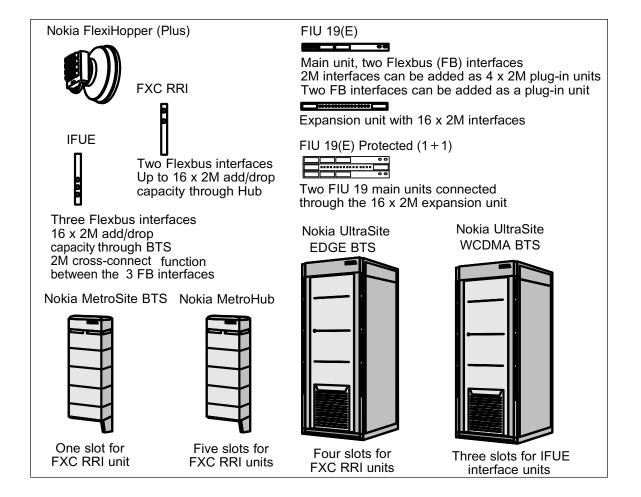


Figure 16. Key symbols

FIU 19(E) indoor unit offers many configuration possibilities. When used with a Flexbus plug-in unit, FIU 19(E) has a total of four Flexbus interfaces. Through these interfaces FIU 19(E) units can be chained without limit. When an additional power supply is connected to the plug-in unit, branching stations with one indoor unit and up to four outdoor units can be implemented. When four outdoor units are connected, one of the transmission directions must be protected.

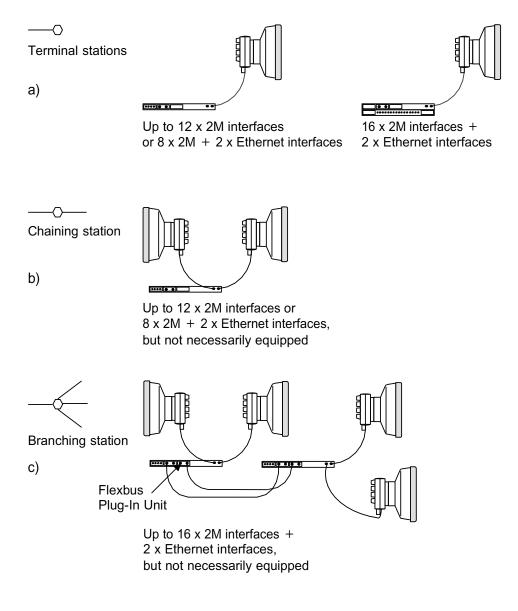


Figure 17. Unprotected stations with FIU 19(E)

46 (137) O Nokia Corporation DN03351499 Issue 10-0 en

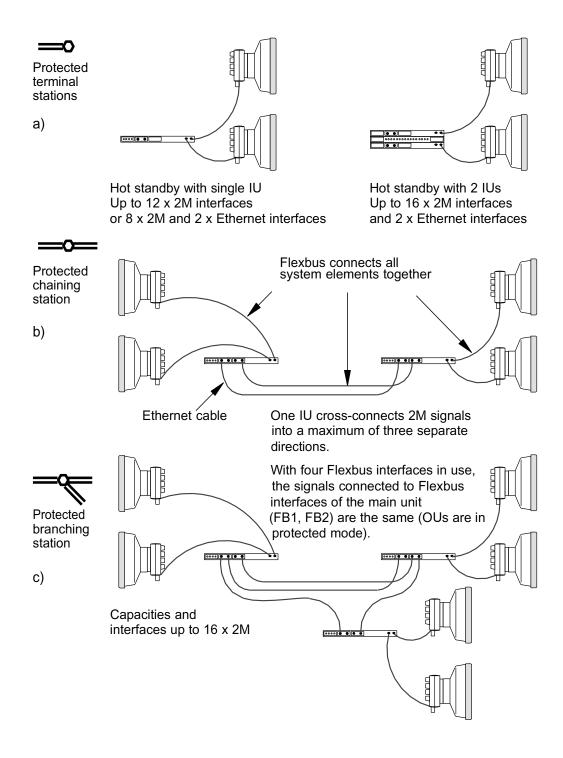
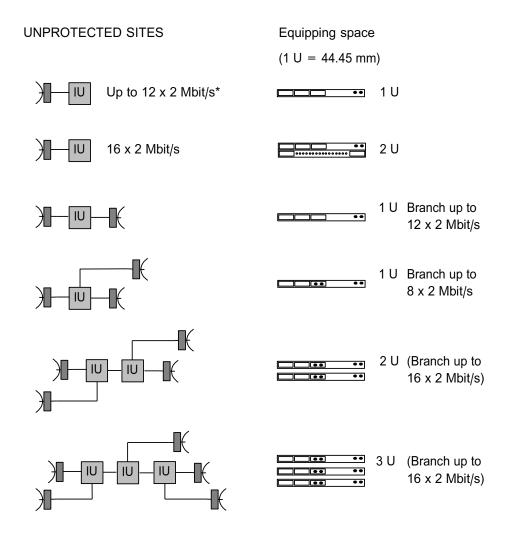
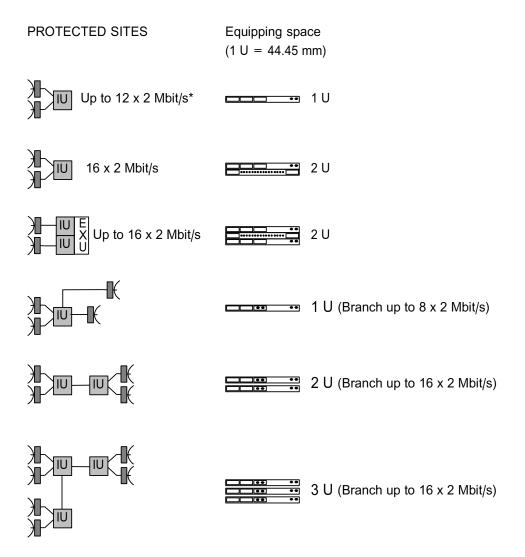



Figure 18. Protected stations with FIU 19(E)

FIU 19(E) units are only 2/3 U (29 mm) high. The actual equipping space required in a standard 19-inch rack depends on the configuration. A wide variety of site configurations can be realised with minimal use of 19-inch rack space.



*) With 12 x 2 Mbit/s payload, the outdoor unit is set to 16x 2 Mbit/s capacity.

Figure 19. FIU 19(E) site summary - unprotected sites

48 (137) O Nokia Corporation DN03351499 Issue 10-0 en

*) With 12 x 2 Mbit/s payload, the outdoor unit is set to 16x 2 Mbit/s capacity.

Figure 20. FIU 19(E) site summary - protected sites

4.3 Nokia FlexiHopper (Plus) as a part of the Nokia MetroSite EDGE Solution

Nokia MetroHopper is usually the radio of choice for Nokia MetroSite transmission needs, but when more transmission capacity or longer hop distances are required, Nokia FlexiHopper (Plus) can be used.

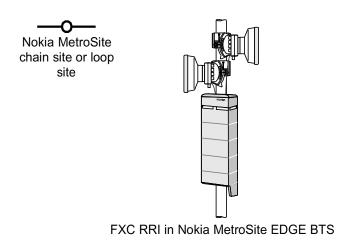
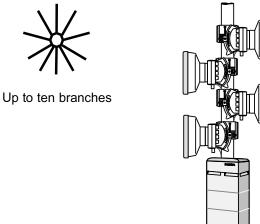



Figure 21. Nokia MetroSite EDGE BTS and Nokia FlexiHopper (Plus)

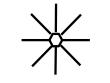
50 (137) © Nokia Corporation DN03351499

1 - 5 x FXC RRI integrated in the node
1 - 10 x Nokia FlexiHopper (Plus) OU
Hub sites, loop protection, grooming, etc.

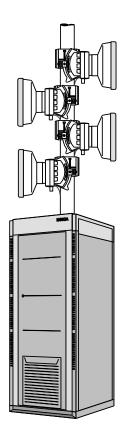
FXC RRI in Nokia MetroHub Transmission Node

Figure 22. Nokia MetroHub and Nokia FlexiHopper (Plus)

Nokia MetroHub is a stand-alone transmission node especially applicable in outdoor installations for cross-connection. The main applications of the Nokia MetroHub are transmission concentrating with high grooming capability (down to 8 kbit/s level) and transmission protection.


Nokia MetroSite EDGE Base Station has one slot for an FXC unit. Nokia MetroHub transmission node has five slots for FXC units.

For more information on site configurations with Nokia MetroHub, see the *Nokia MetroHub transmission node* documentation.


4.4 Nokia FlexiHopper (Plus) as a part of the Nokia UltraSite EDGE Solution

Nokia FlexiHopper (Plus) is connected to Nokia UltraSite EDGE BTS with the FXC RRI indoor unit.

Up to eight branches

1 - 4 x FXC RRI integrated in the BTS

1 - 8 x Nokia FlexiHopper (Plus) OU

Tail sites, chain sites, loop sites, hub sites, grooming, etc.

FXC RRI in Nokia UltraSite EDGE BTS

Figure 23. Nokia UltraSite EDGE BTS and Nokia FlexiHopper (Plus)

The same cross-connection and protection options concerns also the transmission part of UltraSite BTS as MetroHub. UltraSite BTS has four slots for FXC units.

For more information on site transmission configurations with Nokia UltraSite EDGE BTS, see Nokia UltraSite Solution documentation.

DN03351499 52 (137) © Nokia Corporation

Nokia FlexiHopper (Plus) as a part of the Nokia 4.5 UltraSite and MetroSite WCDMA BTSs

Nokia FlexiHopper (Plus) can be integrated into Nokia WCDMA base station solutions in 3rd generation networks. Nokia AXC is an integrated transmission node for Nokia WCDMA base stations. Nokia AXC provides different features and interfaces to transport the ATM traffic of 3rd generation mobile networks over existing transport networks. Each Nokia AXC node consists of an ATM cross-connect unit (AXU) and a number of Interface Units (IFU). IFUE unit includes three Flexbus interfaces.

For more information on the transmission configuration on Nokia WCDMA RAN, see Nokia AXC documentation or Configuring Nokia FlexiHopper (Plus) and MetroHopper with IFUE.

54 (137) © Nokia Corporation DN03351499

5 Management

5.1 Nokia NetAct and Nokia FlexiHopper (Plus)

Nokia NetAct (formerly known as the Nokia Network Management System (NMS)) can be used centrally to collect alarm and measurement data on Nokia FlexiHopper (Plus) radios in a network. Nokia NetAct can also be used to configure the radios. Communication between Nokia NetAct and the radios is enabled via a Nokia Q1 bus.

The Nokia NetAct provides a full range of functions including fault, performance, and configuration management and also transmission, trouble, and security management. Nokia NetAct is the recommended management system for networks consisting of more than 20 nodes.

For more information, see Nokia NetAct or Nokia NMS documentation.

5.2 Hopper Manager

Hopper Manager is a PC based software application for controlling and monitoring Nokia FlexiHopper (Plus) and Nokia MetroHopper radios with FIU 19(E) indoor units. It belongs to the Nokia product range of node managers.

Hopper Manager runs on a PC-compatible computer under Microsoft Windows 95, 98, 2000, XP, or Microsoft Windows NT 4.0. It has an easy to use graphical user interface with Commissioning Wizard that guides you through the commissioning tasks.

The manager is compatible with Nokia NMS/10. All NMS/10 compatible managers can be operated at the same time on a standard PC. The manager can manage one node at a time, but several instances of Hopper Manager can be run in parallel to allow management of several nodes simultaneously.

With Hopper Manager you can:

- commission a new node
- change the configuration of a new or previously configured node
- create 2 Mbit/s cross-connections (with FIU 19(E))
- troubleshoot a node
- monitor the fault status of a node
- monitor transmission quality
- download new software.

FXC RRI cross-connections and radio settings are managed with:

- MetroHub Manager, if FXC RRI is installed in Nokia MetroHub transmission node
- UltraSite BTS Hub Manager, if FXC RRI is installed in UltraSite BTS
- FXC RRI Manager, if FXC RRI is installed in MetroSite BTS.

IFUE cross-connections (2Mbit/s) and radio settings are managed with the AXC-FB Manager.

Hopper Manager can be connected to a Nokia FlexiHopper (Plus) node in three different ways:

- 1. directly via the local management port (LMP)
- 2. remotely via a Nokia Q1 connection
- 3. via a LAN connection (FIU 19E).

Hopper Manager can be used both online and offline. When used online, information is read directly from the node and interpreted by Hopper Manager. This information can then be easily changed and sent back to the node. When you use Hopper Manager offline, you can create settings files in the office and download to the node at a later time.

5.3 **Using Nokia Q1 bus**

Q1 bus is the management connection (V.11) to Nokia NetAct.

© Nokia Corporation DN03351499 56 (137)

5.3.1 FIU 19(E)

The FIU 19(E) indoor unit has two Q1 ports (Q1-1 and Q1-2) on the front panel.

Inside FIU 19(E), the Q1 signal is routed through virtual branching gates. The positions of the gates are set with Hopper Manager.

The Q1 bus is transmitted on the radio path within the overhead of the radio frame. The Q1 interfaces are chained and you can connect the Q1 signal to either of them (figure *Chaining of the Q1 bus in FIU 19(E)*). In this case, a signal connected to the Q1-1 port is routed to the Flexbus interfaces (radio path), to FIU 19(E) processor, and out from the Q1-2 port. The same applies vice versa to a signal connected to the Q1-2 port.

Caution

The equipment may short circuit if the positive voltage is earthed (grounded) on the site. Make sure the Flexbus plug-in unit supply voltage is galvanically isolated.

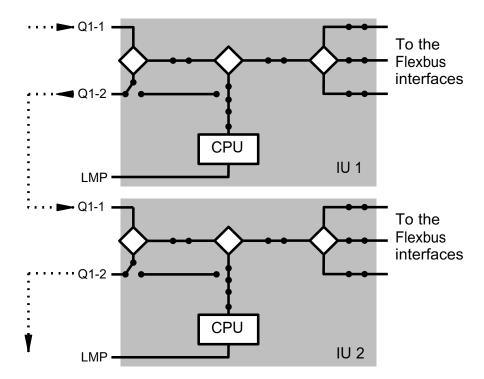


Figure 24. Chaining of the Q1 bus in FIU 19(E)

Several pieces of Q1 managed equipment can be chained at the equipment station. A cable is connected from the Q1-2 port of the first equipment to the Q1-1 port of the second equipment, another cable is connected from the Q1-2 port of the second equipment and to the Q1-1 port of the third equipment, and so on.

FIU 19(E) contains a shunt switch which ensures that when the Q1 signal is chained form O1-1 to O1-2, the chain does not break even if the power supply to a FIU 19(E) unit is lost or switched off.

The Q1 bus can also be carried within a 2 Mbit/s tributary. In this case, another equipment (a BTS, for example) extracts the Q1 bus and routes it further to the microwave radio. The Q1 cable from the BTS is connected to the Q1-2 port of the indoor unit and the signal from it goes straight to the processor (figure Example of Q1 branching in FIU 19(E)). The Q1-1 port is not used.

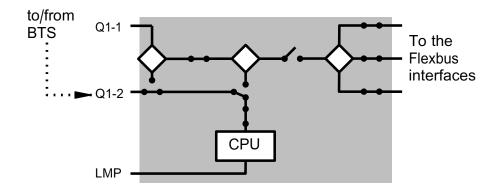


Figure 25. Example of Q1 branching in FIU 19(E)

When FIU 19(E) is used in 2IU + 2OU protected mode, the Q1 interfaces are physically connected via the backplane (figure Q1 connection in FIU 19(E) in 2IU + 2OU protection setup). In a chaining setup, the Q1 cabling is connected to the Q1-1 port of the indoor unit A and Q1-2 port of the indoor unit B.

DN03351499 58 (137) Nokia Corporation



Figure 26. Q1 connection in FIU 19(E) in 2IU + 2OU protection setup

5.3.2 Q1 addresses

Each network element is given a Q1 network element address and an LMP network element address (optional). Network element addresses run from 0 to 3999. Q1 group addresses and LMP group addresses are reserved for future use.

The Q1 port address is used when managing the network element (NE) remotely. NEs within the same Q1 bus must have unique network element addresses.

The LMP address can be used when managing several network elements locally with chained LMP connection. The addressing can be the same from site to site.

All Q1 managed network elements also recognise the Q1 broadcast address 4095. When connecting to the LMP, this address is not actually broadcast. Therefore it can be used for local management.

SNMP management 5.4

As alternative to the Nokia proprietary Q1 bus the Nokia FlexiHopper (Plus), using the FIU 19E as indoor unit, offers the possibility to use the Internet Protocol version 4 (IPv4) for providing management connectivity. An Ethernet port is located at the front panel of the FIU 19E indoor unit, which can be used for connecting the FIU 19E to the IP data communication network (DCN). In addition it is possible to forward the IP management traffic over the radio path towards the Nokia FlexiHopper (Plus) at the other end, which avoids the need for an IP connection towards the Ethernet port of the FIU 19E at each site.

IP DCN on FIU 19E

FIU 19E supports routing of IP DCN traffic between its 10Base-T Ethernet interface and three point-to-point-protocol (PPP) interfaces. PPP data is carried inside radio frame overhead data channels. These channels are called HopLAN and AUX Fast. AUX Fast interface capacity is 64-512 kbits/s depending on the radio link capacity. HopLAN data channel capacity is 7-80 kbits/s depending on the radio links capacity.

HopLAN data channel capacity is shared with OU-OU communication. This is seen as lower than expected throughput (max. 15 frames/s). Hop LAN is best suited for TFTP and Hopper Manager remote connections.

HopLAN is available since C1.5 HW release. AUX Fast is available since C2.0 HW release. These data channels are alternative with each other. Both ends of the radio link have to use same data channel type for ppp link to operate. Data channel type can be selected separately for each radio direction. AUX Fast channel can also be used with Flexbus connected between two indoor units.

Using AUX fast interface for DCN does not require any AUX data plug-in unit.

PPP-link MTU is 1100 bytes. If larger IP frames are sent, those will be fragmented.

The following figure shows basic IP DCN interfaces on FIU 19E and the cross connect functionality between PPP interfaces and AUF fast/HOPLAN data channels.

DN03351499 60 (137) Nokia Corporation

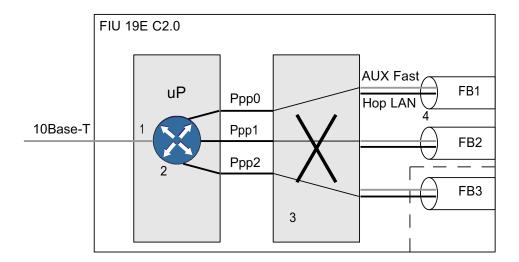


Figure 27. IP DCN interfaces on FIU 19E

IP DCN in 2IU protection

IP DCN can be used in 2IU-protected configuration. Both nodes share the same IP address but they have different MAC addresses. Node Ethernet interfaces should be connected together with an external hub. Only active FIU 19E forwards IP frames. External hub has to be bought locally for 2IU protection use. IP DCN settings are copied automatically from active unit to passive unit while configuring the active unit.

IP routing

FIU 19E provides IP routing functionality for network management and auxiliary IP data traffic. Static routing and dynamic routing (OSPFv2, RFC 2178) protocols are supported. Dynamic routing protocol is a licensed feature.

Static routing

Static IP routing is supported when FIU 19E is used as the indoor unit for Nokia FlexiHopper (Plus). It is possible to transmit IP traffic to other IP equipment located on site or to other sites connected via Nokia FlexiHopper (Plus) radio links. See figure IP routing example for an example.

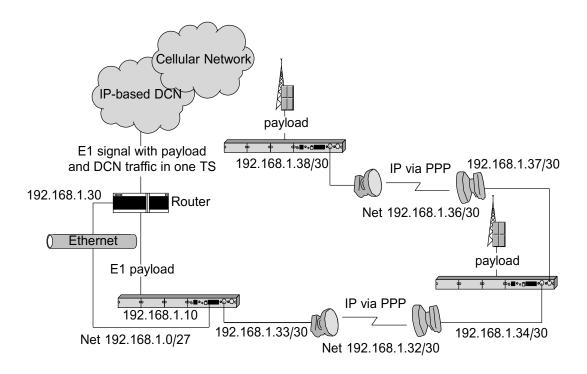


Figure 28. IP routing example

In the example the FIU 19E, which is located at the router side, needs to have a static routing entry destination 192.168.1.36, netmask 255.255.255.252, next hop 192.168.1.34. In addition, the router located at the site has to have a static routing entry for the FIU 19E devices located at the other end of the Nokia FlexiHopper (Plus) radio link. One possible entry in this example would be: destination 192.168.1.32, netmask 255.255.255.248, next hop 192.168.1.10.

Dynamic routing - OSPFv2

OSPF is a dynamic routing protocol that automatically finds out IP network topology and calculates routing table for an OSPF router. This routing protocol is suitable for large and medium size IP networks. OSPF can be used together with static routing but in that case static routing has to be configured also.

FIU 19E can work either as an area border router or intra area router. Additionally following OSPF items are configurable for FIU 19E: Router ID, election priority, ospf admin status for each interface, link cost for each interface, area id, area type (normal, stub, nssa), area aggregates, virtual links, OSPF interface authentication type & authentication data (none, simple password, md5). Following OSPF status information can be viewed with Hopper Manager: dynamic routing table, ospf neighbour list & link state database status.

62 (137) © Nokia Corporation DN03351499

The following router parameters are not configurable and their values are fixed: hello interval (10s), router dead interval (40s), retransmit interval (5s), inftransdelay (1s).

FIU 19E OSPF implementation also supports OSPF related MIB (Management Information Base) according to RFC 1850. Only mandatory groups are supported in this MIB. This makes it possible to configure and view OSPF status via SNMP.

OSPF routing protocol can be used in 2IU/2OU protected configuration. After indoor unit changeover the routing protocol restarts itself and routing table is recalculated for newly activated FIU 19E.

It is recommended to set default gateway to 0.0.0.0 when using OSPF. This has to be done because OSPF protocol can also advertise default routes to the network. Eventually it is up to network planner how to use it. Proxy ARP should be disabled when using OSPF.

It is recommended to keep the number of routing table entries below 300 to ensure good performance of OSPF routing protocol. It is possible to minimize routing table by defining area aggregates.

Proxy ARP

At tail sites, a proxy ARP (transparent subnetting according to RFC 1027) can be used for forwarding the IP traffic towards the far-end FIU 19E. The advantage of this configuration is that it is not necessary to have a routing entry for the far-end unit in the router responsible for forwarding IP traffic to the near-end site.

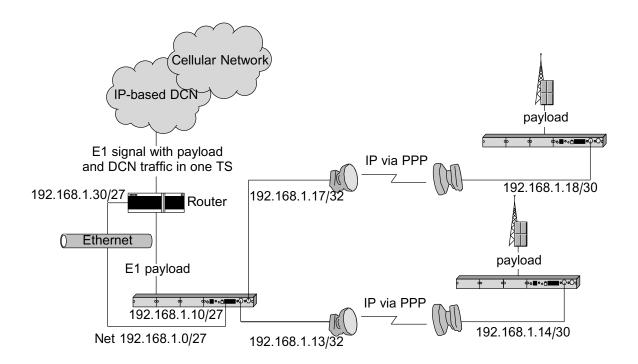


Figure 29. Nokia FlexiHopper (Plus) IP DCN example with Proxy ARP

In case of Proxy ARP, the PPP interface subnet mask at the tail site cannot be set to 255.255.255.255.

Each used port needs to be configured with one IP address. In case of point-to-point links, there is no need to establish separate subnets for the point-to-point link between two Nokia FlexiHopper (Pluses), because the host route entries are automatically added to the routing table for the next hop. Therefore the IP addresses can be distributed freely to all ports.

SNMP

FIU 19E has an inbuilt SNMP agent that provides management functions for the whole radio terminal including the connected radios. Fault, performance and configuration management functions can be performed using SNMP actions. The version that is supported is the SNMP version 2c.

The SNMP interface supports only subset of the features that are implemented to Q1 interface. Commissioning, for example, is recommended to be done with the Hopper Manager. The Hopper Manager can be used via the Nokia Q1 Pipe Connection through the TCP/IP network. SNMP feature is under E-license.

64 (137) Nokia Corporation DN03351499 Issue 10-0 en

NTP

With FIU 19E as the indoor unit, Nokia FlexiHopper (Plus) supports Network Time Protocol (NTP). The NTP functionality is used to update the node's real time clock by connecting to an NTP server, which must be accessible via the IP-based DCN. Up to five NTP server IP addresses can be configured and prioritized in FIU 19E.

The NTP functionality in the indoor unit can be enabled or disabled by using Hopper Manager or via SNMP.

TFTP

The trivial file transfer protocol (TFTP) is used to transmit software binary files via IP DCN. Nokia FlexiHopper (Plus), with the FIU 19E as the indoor unit, utilises TFTP for remote software download. Alternatively, you can use the remove software download via the Nokia Q1 Pipe Connection and Hopper Manager.

For node security reasons the TFTP server functionality can be enabled or disabled in the indoor unit via Hopper Manager or via SNMP.

Other IP applications

Following applications can also use IP DCN network.

- FTP
- Voice over IP (VoIP, used wit AUX fast only)
- Hopper Manager remote connection

5.5 Engineering order-wire (EOW)

Engineering order-wire can be used for service purposes if the mobile phone coverage is not available or lost at the Nokia FlexiHopper (Plus) site. The Nokia T4E Service Telephone (product code: TD21652.50) can be applied as engineering order-wire. You can connect it to FIU 19 and FIU 19E through the AUX data plug-in unit. This makes selective calling from one phone to another or to several phones possible. The AUX fast channel in the radio hop is utilized for speech and signalling. Slot telephones are not used.

For more information on the T4E engineering order-wire with FIU 19 and Nokia FlexiHopper (Plus), see Technical note 67 available in NOLS (Nokia Online Services) → Documentation → Product Documentation → Transmission and Backbone → Microwave Radios → Nokia FlexiHopper Indoor Units → Nokia FlexiHopper Indoor Unit FIU 19 → Maintenance Documentation.

IP EOW

IP DCN network (see SNMP management chapter) can be used to carry IP voice calls when AUX Fast is used as a PPP data channel. Hop LAN PPP link cannot be used to carry voice calls because of its low capacity. To use IP EOW one has to aquire suitable IP phones + configure IP DCN network with FIU 19E's.

Recommendations for IP phone capabilities: IP phones should support SIP v2.0 (Session Initiation Protocol), Voice codecs (G723 or G729), call dialing with recipients IP address without external SIP server.

For more information on the IP EOW, see Technical note 99 that is available in NOLS (Nokia Online Services) → Documentation → Product Documentation → Transmission and Backbone → Microwave Radios → Nokia FlexiHopper Indoor Units → Nokia FlexiHopper Indoor Unit FIU 19E → Maintenance Documentation.

66 (137) © Nokia Corporation DN03351499

6 Mechanical structure and interfaces

6.1 FIU 19(E) indoor unit

The FIU 19(E) indoor unit is only 2/3 U (29 mm) high. The maximum interface capacity of the indoor unit is 12x2 Mbit/s. Interface capacities over 12x2 Mbit/s are implemented by installing the 16x2 Mbit/s expansion unit underneath the indoor unit. Protected use with two indoor units is implemented using two identical FIU 19(E) indoor units and the expansion unit, so the interface capacity is always 16x2 Mbit/s. The expansion unit has the same external dimensions as the indoor unit.

When the expansion unit (EXU) is used to provide 16x2 Mbit/s interfaces, an IC (interface circuit) plug-in unit is installed to EXU plug-in unit slot A. When the expansion unit is used to provide 2IU + 2OU protection, IC plug-in units are installed to both EXU plug-in unit slots. These plug-in units connect the indoor units and the expansion unit together through a common backplane.

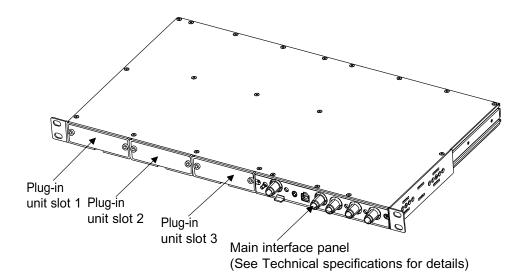


Figure 30. FIU 19 indoor unit

The FIU 19E product is a product variant that differs from the FIU 19 product mechanically in the connector types, and thus, installation. For more information on the interfaces, see *Interfaces*.

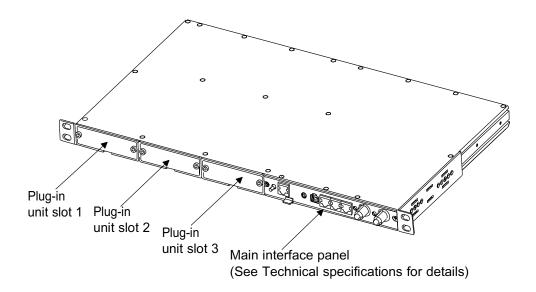


Figure 31. FIU 19E indoor unit

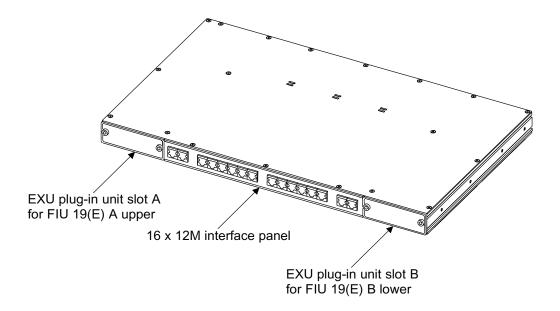


Figure 32. FIU 19(E) EXU with 120 Ω RJ-45 balanced interfaces

68 (137) Nokia Corporation DN03351499 Issue 10-0 en

Installation

The unit is installed horizontally into a 19-inch rack using special mounting brackets. As all the interfaces are located in the front panel, cabling can be performed easily.

FIU 19(E) can also be installed into an ETSI 600 x 300 mm rack or a TM4 Slim rack using adapter kits.

Connectors and cabling

The FIU 19(E) indoor unit has two Flexbus interfaces (FB1, FB2: 50Ω TNC connector) on the front panel. These interfaces feed also power to the OUs connected through them. In addition the FIU 19(E) indoor unit has connectors for power supply (PWR: Molex Micro-Fit 3.0 connector) and measurement interface (MP: 75Ω SMB connector).

The FIU 19 indoor unit has also connectors for network management (Q1: TQ connector) and local management (LMP: BQ connector).

The FIU 19E indoor unit has management connectors for network management (Q1: RJ-45 connector), local management (LMP: RJ-45 connector) and Ethernet interface (10BaseT: RJ-45-connector).

2 Mbit/s interfaces can be added as plug-in units or as an expansion unit. The interfaces can be either balanced (120 Ω TQ, 120 Ω RJ-45) or unbalanced (75 Ω SMB).

Two Flexbus interfaces (FB3, FB4) can be added as an plug-in unit.

Auxiliary data interfaces can be added as plug-in units.

Two Ethernet payload interfaces can be added as an plug-in unit.

The cabling of the interfaces depends on the installation environment. When the units have been set up in 2IU + 2OU protection mode, the following matters have to be considered:

- a protected power supply must be connected to both indoor units
- the Q1 cabling (in a chaining setup) is connected to the Q1-1 port of the indoor unit A and Q1-2 port of the indoor unit B
- when using IP DCN, the Ethernet interface of both indoor units have to be connected with the IP DCN (only in FIU 19E)
- auxiliary interfaces are connected together with a branching wire

- LMP cable can be connected to either unit.
- EPIU Ethernet interfaces must be connected through Ethernet hub, switch or router.

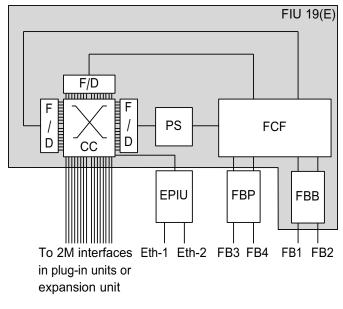
Power supply

FIU 19(E) requires a power supply input of -40.5 to -72 V_{DC}. The power consumption of a fully equipped FIU 19(E) is less than 17 W. The actual power consumption depends on the site equipment and the power losses caused by the equipment.

If outdoor units are connected via Flexbus to the Flexbus plug-in unit, an additional power supply input of +55 to +60 V_{DC} must be connected to the plugin unit. If other indoor units are connected to the Flexbus plug-in unit, additional power supply is not required.

The FIU 19(E) features a slow solderable 3A fuse at the DC input, situated before the power supply unit. The Flexbus plug-in unit has 2A fuses at both of the lines of the additional power supply input.

The Flexbus connection is protected with a gas-discharge tube. The Flexbus DC input features an overvoltage protector.



Caution

Careless Q1 bus planning may cause a Q1 bus loop or more than one alarm poller for the same Q1 bus. Take care with Q1 bus planning.

70 (137) © Nokia Corporation DN03351499 Issue 10-0 en

CC = 2 Mbit/s cross-connection and Ethernet connection F/D = Framing/deframing section FCF = Flexbus connection field PS = Protection switch **FBB** = Flexbus block FB1, FB2 = Flexbus interfaces in the main unit (can be used for protection) **FBP** = Flexbus plug-in unit FB3 = Flexbus interfaces in the plug-in unit FB4 = Flexbus interfaces in the plug-in unit (only available if protection between FB1 and FB2 is in use) **EPIU** = Ethernet plug-in unit (in FIU 19E only) = Ethernet interface 1 Eth-1 Eth-2 = Ethernet interface 2

Figure 33. Routes of 2 Mbit/s and Flexbus signals in FIU 19(E)

Auxiliary interfaces

With one plug-in unit, it is possible to use one aux fast data channel and one aux slow data channel at the same time. The maximum bit rates of these channels depend on the Flexbus transmission capacity. One aux fast and one aux slow data channel can be connected to the same Flexbus direction.

One plug-in unit contains also four TTL type software controlled programmable I/O connections and/or relay control outputs. You can use input connections to trigger alarms to the network management system of external events (for example opening of the cabinet door). Relay controls can be used for example to turn on equipment rack lights.

6.2 Technical description of the FXC RRI transmission unit

The FXC RRI transmission unit has two Flexbus interfaces, which allow the operator to connect the unit to any radio unit with a Flexbus interface. This requires a Flexbus cable. For example, it is possible to connect FXC RRI to:

- Nokia MetroHopper radio with 4 x 2 Mbit/s capacity
- Nokia FlexiHopper (Plus) radio with 2 x 2, 4 x 2, 8 x 2 or 16 x 2 Mbit/s capacity

FXC RRI contains two Flexbus interfaces, FB1 and FB2, located on the front panel and a cross-connection bus interface on the backplane. FXC RRI does not have a separate management connector, as it is managed via the local management port (LMP) of the base station or the transmission node, or via Nokia Q1 bus.

FXC RRI has separate short circuit protection for each of the Flexbus interfaces. This ensures that a short circuit in one Flexbus interface does not affect the other in MetroHub.

If a Flexbus interface is connected to an outdoor unit, the power feed (55 V $_{\rm DC}$) to the outdoor unit is done through the interface.

Currently FXC RRI supports three operating modes:

- single use
- hot standby
- hot standby + space diversity

72 (137) © Nokia Corporation DN03351499

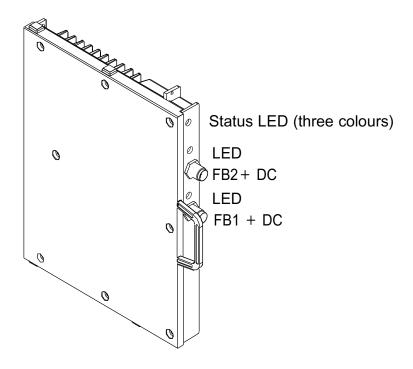


Figure 34. FXC RRI transmission unit

The FXC RRI offers a bypass cross-connection feature, which can be used to bypass traffic through the unit transparently without terminating the signal. From the performance management point of view, a link can be extended to include several nodes, while the performance data is gathered for the whole extended link. It is possible to make bypass cross-connections even if all the platform interfaces of the FXC RRI unit are in use. In other words, the bypass crossconnection does not reserve any capacity from the cross-connection bus.

The platform interfaces of each indoor unit have a maximum capacity of 16 x 2 Mbit/s. This traffic can either be dropped to the cross-connection bus or bypassed from one interface to another in the same FXC RRI in a separate 2 Mbit/s crossconnection field. If the total Flexbus interface traffic in one FXC RRI exceeds 16 x 2 Mbit/s, the surplus traffic has to be bypassed. In such a scenario, time slot 0 is not regenerated.

Nokia Corporation 73 (137)

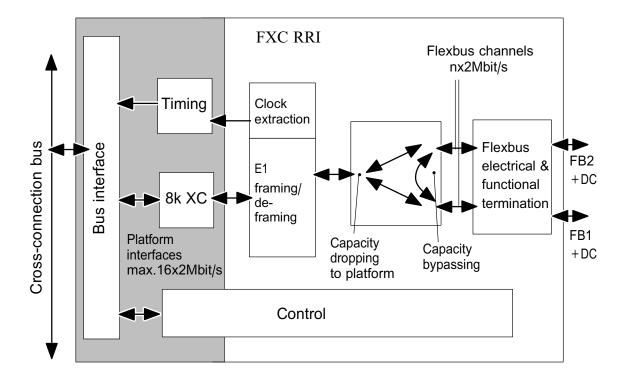


Figure 35. FXC RRI block diagram

A connection made between a Flexbus channel and a platform interface is a blocking connection. This means that the whole 2 Mbit/s frame is reserved for the connection even if only part of it, for example, one time slot, is used.

The operator defines the traffic routes in the network elements by using the crossconnection functions available in the network elements. Thus, routing traffic means managing the cross-connections in the network elements.

The cross-connection function of the FXC RRI transmission unit allows the traffic to be groomed. This ensures that the transmission paths are fully utilised, thereby reducing transmission costs.

The amount of 2M capacity add/drop towards the D-bus of a Nokia BTS is configurable, allowing you to utilise the available capacity to its maximum.

FXC RRI platform interface 15 is always connected to the D-bus, because at least 1*2M capacity is always needed for the Nokia BTS. Only FXC RRI platforms 13 and 16 are configurable.

DN03351499 74 (137) © Nokia Corporation Issue 10-0 en

D11, D12, and D13 are only configurable via the RRI manager in a configuration with an RRI connected to a FlexiHopper (Plus).

6.3 Interface unit IFUE

IFUE interface unit is a part of Nokia WCDMA RAN transport solution and is used in Nokia AXC and S-AXC ATM cross-connect nodes. Nokia AXC is a modular embedded transport node for Nokia WCDMA base stations and Triple-Mode Nokia UltraSite EDGE base station (with WCDMA upgrade kit). The Nokia S-AXC is a stand-alone ATM cross-connect node.

IFUEmechanical structure provides an interconnection to Nokia FlexiHopper (Plus) and MetroHopper radios, and to Nokia GSM/EDGE base stations. This is implemented with three Flexbus interfaces which have a maximum capacity of 16 x 2.048 Mbit/s each. They also provide power to the outdoor microwave radio units.

IFUE includes a PDH cross-connect facility between the 3 Flexbus interfaces as well as the Flexbus interfaces and the E1-ATM interworking.

IFUE supports also IMA by enabling distribution of ATM connections across up to 8 E1 channels in an IMA group. Note that due to differential delay in an IMA group, it is recommended that all E1 channels of an IMA group share the same Flexbus link.

Nokia FlexiHopper (Plus) microwave radio outdoor units connected to Flexbus interfaces 1 and 2 can be configured to protect each other (Hot Stand-by). Flexbus interface 3 is an unprotected interface that can only be operated with one single Nokia MetroHopper or Nokia FlexiHopper (Plus). Propagation protection (space diversity, frequency diversity and polarisation diversity) is also supported.

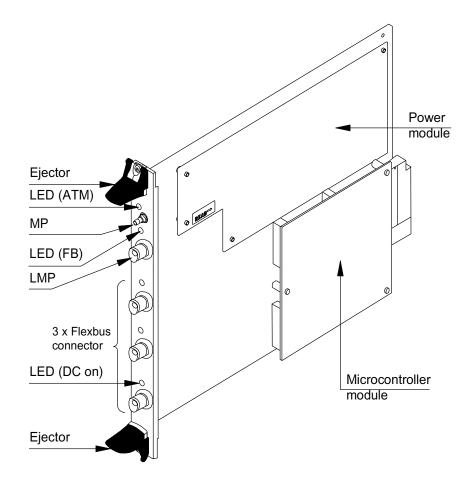


Figure 36. IFUE unit

DN03351499 76 (137) Nokia Corporation

Technical specifications

7.1 Technical specifications for Nokia FlexiHopper (Plus)

7.1.1 General information

The *Nokia FlexiHopper (Plus) C2.5 Product Description* covers Nokia FlexiHopper Plus, Nokia FlexiHopper and Nokia FlexiHopper 4E1 products and supporting indoor units. The following rules apply:

- Nokia FlexiHopper Plus enables 2E1 to 16E1 transmission capacity and selectable modulation (π /4-DQPSK and 32 TCM).
- Nokia FlexiHopper enables 2E1 to 16E1 transmission capacity in the 4state modulation mode.
- Nokia FlexiHopper 4E1 enables 2E1 to 4E1 transmission capacity in the 4state modulation mode and can be upgraded to 16E1 by software licensing.
- Selectable modulation is an option for both Nokia FlexiHopper and Nokia FlexiHopper 4E1.

In this Product Description, Nokia FlexiHopper Plus and Nokia FlexiHopper refer to the modulation in use. Nokia FlexiHopper (Plus) refers to all Nokia FlexiHopper products.

7.1.2 Capacities

Table 3. Capacity options (programmable)

Traffic capacity (Mbit/s)	Gross bit rate (Mbit/s, ±10 ppm)
2 x 2	4.715 127 5
4 x 2	9.430 255

Table 3. Capacity options (programmable) (cont.)

8 x 2	18.860 510	
16 x 2	37.721 020	
Bit rate tolerances		
2 Mbit/s interface	±50 ppm	

7.1.3 Operation

Table 4. Available operating modes

1 indoor unit / 1 outdoor unit (FIU 19(E), FXC RRI, AXC IFUE)		
1 indoor unit / 2 outdoor units (FIU 19(E), FXC RRI, AXC IFUE)		
1 indoor unit / 3 outdoor units (FIU 19(E) + additional power supply), AXC IFUE		
1 indoor unit / 4 outdoor units (FIU 19(E) + additional power supply in HSB configuration)		
HSB, 1 IU / 2 OU (FIU 19(E), FXC RRI, AXC IFUE)		
HSB, 2 IU / 2 OU (FIU 19(E))		
HSB + space diversity, 1 IU / 2 OU (FIU 19(E), AXC IFUE)		
HSB + space diversity, 2 IU / 2 OU (FIU 19(E))		
Frequency diversity 1 IU / 2 OU, two antennas, (FIU 19(E), AXC IFUE)		
Frequency diversity 2 IU / 2 OU, two antennas, (FIU 19(E))		
Polarisation diversity, 1 IU / 2 OU (FIU 19(E), AXC IFUE)		
Polarisation diversity, 2 IU / 2 OU (FIU 19(E))		
Loop protection (FXC RRI)		

For more information on the availability of operating modes, see the latest release plan in NOLS (Nokia Online Services) → Maintenance → Documentation $Center \rightarrow Product\ Information \rightarrow Cellular\ Transmission \rightarrow Microwave\ Radios$ → Nokia FlexiHopper Microwave Radio or Nokia FlexiHopper Plus.

Table 5. Cross-connections

Indoor unit	Cross-connection level
FIU 19(E)	2 Mbit/s
FXC RRI	8 kbit/s

DN03351499 78 (137) O Nokia Corporation

Table 5. Cross-connections (cont.)

Indoor unit	Cross-connection level
AXC IFUE	2 Mbit/s

Table 6. Standards followed for statistics, jitter, and AIS

Statistics	ITU-T G.826
Jitter	ITU-T G.823
AIS	ITU-T G.921, Section 1.4

Table 7. Residual bit error ratio (RBER)

RBER ≤ 10 ⁻¹¹		≤ 10 ⁻¹¹
----------------------------	--	---------------------

7.1.4 Interfaces

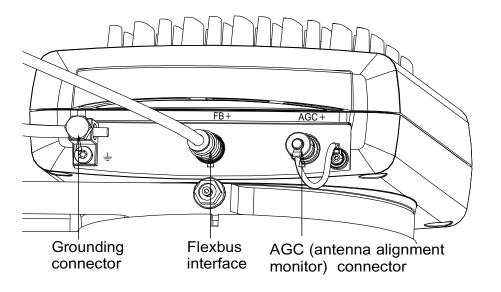


Figure 37. Nokia FlexiHopper (Plus) outdoor unit connectors

Table 8. Antenna connector

Frequency band	Waveguide flange
7, 8 GHz	UBR84
13 GHz	UBR120
15 GHz	UBR140
18, 23, 26 GHz	UBR220
28, 32, 38 GHz	UBR320

Table 9. Electrical interfaces

Flexbus interface	TNC connector (female) 50 Ω
	Power supply for the OU
AGC monitor interface	BNC connector
(antenna alignment monitor)	Voltage range: 0.5 - 4.5 V <i>(decreasing with increasing Rx level)</i>
	Output impedance: > 10 kΩ

Table 10. Outdoor unit dimensions without antenna and alignment units

Frequency band	Height*	Width	Depth	Weight
7, 8 GHz	230 mm	210 mm	230 mm	6.0 kg
13, 15 GHz	230 mm	210 mm	210 mm	5.5 kg
18, 23, 26, 28 GHz	230 mm	210 mm	170 mm	4.5 kg
32, 38 GHz	230 mm	210 mm	120 mm	4.0 kg

^{*}Height with handle is 275 mm.

7.1.5 Environment

Table 11. Electromagnetic compatibility (EMC)

Emissions		

Table 11. Electromagnetic compatibility (EMC) (cont.)

Radiated emission	EN 55022 Class B or CISPR22
	30 - 230 MHz 30 dBμV/m Quasi-peak
	> 230 - 1000 MHz 37 dBµV/m Quasi- peak
Conducted emission	EN 55022 Class B
	DC port:
	0.15 - 0.5 MHz: 66 - 56 dBµV Quasi-peak
	56 - 46 dBμV Average
	> 0.5 - 5 MHz: 56 dBµV Quasi-peak
	46 dBμV Average
	> 5 - 30 MHz: 60 dBµV Quasi-peak
	50 dBμV Average
	Telecommunication ports:
	0.15 – 0.5 MHz: 84 - 74 dBμV Quasi- peak
	74 - 64 dBμV Average
	> 0.5 - 30 MHz: 74 dBµV Quasi-peak
	64 dBμV Average
Immunities	
RF EM field	EN 61000-4-3
	80 - 1000MHz, 1400 - 2000 MHz, 10 V/m: no errors
Electrostatic discharge	EN 61000-4-2
	± 8 kV air discharge: self-recovery, errors accepted
	± 4 kV contact discharge: self-recovery, errors accepted
Fast common mode transients	EN 61000-4-4
	DC port:
	±2 kV self recovery, errors accepted
	Signal ports:
	±1 kV self recovery, errors accepted
	Earth port:
	±1 kV self recovery, errors accepted

Table 11. Electromagnetic compatibility (EMC) (cont.)

RF common mode	EN 61000-4-6
	DC port, signal ports and earth port:
	0.15 – 80 MHz, 10 V _{rms} : no errors
Surges	EN 61000-4-5
	DC port:
	±0.5 kV, 1.2/50μs, 2 Ω series resistance
	Signal ports:
	±1 kV, 1.2/50μs, 2 Ω series resistance
	No damage, self recovery, sync loss accepted
Overvoltage tolerance of the indoor-	4 kV
outdoor cables and outdoor unit power input	1.2/50 μs, 2 Ω series resistance
•	No damage, self recovery

Table 12. Environmental standards and conditions

All units except AXC IFUE, storage						
Ambient temperature	-40 to +70°C					
EN 300 019-1-1	Class 1.2					
EN 300 019-2-1	Class 1.2					
AXC IFUE, storage						
Ambient temperature	-45 to +45°C					
EN 300 019-1-1	Class 1.3E					
All units except AXC IFUE, transportation						
Ambient temperature	-40 to +70°C					
EN 300 019-1-2	Class 2.3					
EN 300 019-2-2	Class 2.3					
AXC IFUE, transportation						
Ambient temperature	-40 to +70°C					
EN 300 019-1-2	Class 2.3					
Nokia FlexiHopper (Plus) outdoor unit, o	peration and tightness					
Operating temperature	-45°C to +55°C (operational)					
Wind	< 55 m/s					

Table 12. Environmental standards and conditions (cont.)

Low air pressure	70 kPa (represent a limit value for open air use, normally at about 3000 m)
IEC 60529	Class IP 55
EN 300 019-1-4	Class 4.1 E
EN 300 019-2-4	Class 4.1 E
FIU 19(E) indoor units, operation	
Ambient temperature	-10 to +55°C
EN 300 019-1-3	Class 3.2
EN 300 019-2-3	Class 3.2
FXC RRI indoor unit, operation	
Ambient temperature	-40 to +50°C (dependent on BTS)
EN 300 019-1-3	Class 3.2
EN 300 019-2-3	Class 3.2
AXC IFUE indoor unit, operation	
Ambient temperature	-33 to -10°C (warm-up)
	-10 to + 55°C (operational)
EN 300 019-1-3	Class 3.2
EN 300 019-1-4	Class 4.1

7.1.6 Outdoor unit power supply

Table 13. Nokia FlexiHopper (Plus) outdoor unit power supply

DC supply voltage in Flexbus connector	+48 to +60 V _{DC}			
Power consumption	< 25 W			

7.1.7 Synchronisation, recovery, and changeover

Table 14. Synchronisation, recovery, and changeover

Transmitter turn on time (Tx off to on)	< 150 ms
Transmitter turn off time (Tx on to off)	< 50 ms
Receiver synchronisation (Rx off to on)	< 100 ms
Changeover time for E1 data, equipment protection (hot standby)	< 500 ms

7.1.8 Frequencies

Table 15. Frequency bands, duplex spacing, and sub-bands

Frequency band (GHz)*	ITU-R Rec.	Frequency band (GHz)	Duplex spacing (MHz)	Numb		Sub band band width	CEPT
						(MHz)	
		LO	HI				
7 (Plus)	F.385-7	7.125 - 7.435	161	4	4	56	-
				7.425	154	4	4
				7.725			
		65	-			•	
				7.415	161	4	4
				7.725			
		58	-				
		7.240 - 7.560	161	4	4	65	-
		7.440 - 7.740	168	3	3	65	-
		7.425 - 7.900	245	4	4	75	-
8 (Plus)	F.386-6	7.725 - 8.275	311.32	3	3	125	-
		8.280 - 8.495	119	3	3	42	-
				8.275	126	3	3
				8.500			
		42	-		•		
		7.900 - 8.400	266	3	3	90	-

Table 15. Frequency bands, duplex spacing, and sub-bands (cont.)

Frequency band (GHz)*	ITU-R Rec.	Frequency band (GHz)	Duplex spacing (MHz)	Number of sub-bands		Sub band band width	СЕРТ
						(MHz)	
		LO	HI				_
13 (Plus)	F.497-6	12.75 -13.25	266	3	3	84	REC 12- 02
15 (Plus)	F.636-3	14.5 - 15.35	644	1	1	203	-
				14.5 - 15.35	728	1	1
		119	REC 12-07				
				14.5 - 15.35	420	3	3
150	-						
		14.4 - 15.35	490	3	3	170	-
18 (Plus)	F.595-8	17.7 - 19.7	1010	4	4	270	REC 12- 03
		17.7 - 19.7	1008	4	4	268	-
23 (Plus)	F.637-3	21.2 - 23.6	1232	3	3	400	-
				21.2 - 23.6	1200	3	3
		420	-			•	
		22.0 - 23.6	1008	2	2	400	T/R 13- 02
26 (Plus)	F.748-4	24.5 - 26.5	1008	3	3	350	T/R 13- 02
28 (Plus)	F.748-4	27.5 - 29.5	1008	3	3	350	T/R 13- 02
32 (Plus)	F.1520	31.8 - 33.4	812	4	4	220	REC 01- 02
38 (Plus)	F.749-2	37.0-39.5	1260	4	4	300	T/R 12- 01
Administration	may define	frequency band a	and duplex-spa	cing.		· 	-

The Nokia FlexiHopper (Plus) Product Description covers Nokia FlexiHopper Plus and Nokia FlexiHopper products and supporting indoor units.

In this Product Description, Nokia FlexiHopper Plus and Nokia FlexiHopper refer to the modulation in use. Nokia FlexiHopper (Plus) refers to all Nokia FlexiHopper products.

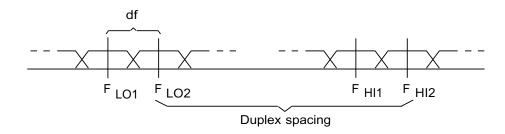


Figure 38. Channel spacing and duplex spacing

For product codes related to different sub-bands, see *Ordering Nokia FlexiHopper (Plus) and Accessories*.

The notation of the sub-bands has changed, for example: $A \rightarrow A LO, A' \rightarrow A HI$.

Table 16. Nokia FlexiHopper (Plus) 7, frequency tuning range

Sub band	3.5 MHz spacing		7.0 MHz spacing		14.0 MHz spacing		28.0 MHz spacing			
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.		
Low freq.	Highfreq.									
161 MHz du	161 MHz duplex spacing, sub-bands A, B,C, D									
A LO	7125.00	7168.25	7125.00	7166.50	7125.00	7163.00	7128.00	7156.00		
B LO			7150.75	7203.25	7152.50	7201.50	7156.00	7198.00		
C LO	7163.00	7191.00		ı	ı	ı	ı	'		
D LO			7185.75	7238.25	7187.50	7236.50	7191.00	7233.00		
7198.00	7226.00		•	•	•	•	•			
	7220.75	7273.25	7222.50	7271.50	7226.00	7268.00	7233.00	7261.00		
A HI	7286.00	7329.25	7286.00	7327.50	7286.00	7324.00	7289.00	7317.00		
В НІ			7311.75	7364.25	7313.50	7362.50	7317.00	7359.00		
СНІ	7324.00	7352.00		1	ı	1	ı	'		
D HI			7346.75	7399.25	7348.50	7397.50	7352.00	7394.00		

Table 16. Nokia FlexiHopper (Plus) 7, frequency tuning range (cont.)

Sub band 3.5 MHz spacing		pacing	7.0 MHz sp	pacing	14.0 MHz spacing		28.0 MHz spacing	
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	Highfreq.							
7359.00								
7387.00	•	•	•	•	•	•	•	
	7381.75	7434.25	7383.50	7432.50	7387.00	7429.00	7394.00	7422.00
154 MHz du	plex spacing	, sub-bands	E, F, G, H					
E LO	7425.00	7477.25	7425.00	7475.50	7425.00	7472.00	7428.00	7465.00
F LO			7450.75	7512.25	7452.50	7510.50	7456.00	7507.00
G LO	7463.00	7500.00		•	•	•	•	
H LO			7484.75	7546.25	7486.50	7544.50	7490.00	7541.00
7497.00	7534.00		1	ı	ı	1	1	
	7518.75	7571.00	7520.50	7571.00	7524.00	7571.00	7531.00	7568.00
E HI	7579.00	7631.25	7579.00	7629.50	7579.00	7626.00	7582.00	7619.00
F HI			7604.75	7666.25	7606.50	7664.50	7610.00	7661.00
G HI	7617.00	7654.00		l .	l .	1	ı	, ,
н ні			7638.75	7700.25	7640.50	7698.50	7644.00	7695.00
7651.00	7688.00		1	ı	ı	1	1	
	7672.75	7725.00	7674.50	7725.00	7678.00	7725.00	7685.00	7722.00
161 MHz du	plex spacing	, sub-bands	l, J, K, L	•	•	•	•	•
I LO	7415.75	7470.25	7417.50	7468.50	7421.00	7465.00	7428.00	7458.00
J LO			7450.75	7505.25	7452.50	7503.50	7456.00	7500.00
K LO	7463.00	7493.00		ı	ı	1	1	
L LO			7484.75	7539.25	7486.50	7537.50	7490.00	7534.00
7497.00	7527.00		1	ı	ı	1	1	
	7518.75	7564.00	7520.50	7564.00	7524.00	7564.00	7531.00	7561.00
I HI	7576.75	7631.25	7578.50	7629.50	7582.00	7626.00	7589.00	7619.00
J HI			7611.75	7666.25	7613.50	7664.50	7617.00	7661.00
КНІ	7624.00	7654.00		ı	ı	ı	I	'
L HI			7645.75	7700.25	7647.50	7698.50	7651.00	7695.00
7658.00	7688.00		ı	ı	ı	ı	I	1
	7679.75	7725.00	7681.50	7725.00	7685.00	7725.00	7692.00	7722.00

Table 16. Nokia FlexiHopper (Plus) 7, frequency tuning range (cont.)

Sub band 3.5 MHz		acing	7.0 MHz sp	pacing	14.0 MHz s	spacing	28.0 MHz	spacing
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	Highfreq.							
161 MHz du	plex spacing,	sub-bands	M, N, O, P					
M LO	7240.75	7302.25	7242.50	7300.50	7246.00	7297.00	7253.00	7290.00
N LO			7272.75	7334.25	7274.50	7332.50	7278.00	7329.00
0 LO	7285.00	7322.00		,	•		•	
P LO			7304.75	7366.25	7306.50	7364.50	7310.00	7361.00
7317.00	7354.00		1	1	•	•	•	•
	7336.75	7398.25	7338.50	7396.50	7342.00	7393.00	7349.00	7386.00
МН	7401.75	7463.25	7403.50	7461.50	7407.00	7458.00	7414.00	7451.00
N HI			7433.75	7495.25	7435.50	7493.50	7439.00	7490.00
ОНІ	7446.00	7483.00		ı	1	1	1	
P HI			7465.75	7527.25	7467.50	7525.50	7471.00	7522.00
7478.00	7515.00		l	l	1	I	1	
	7497.75	7559.25	7499.50	7557.50	7503.00	7554.00	7510.00	7547.00
168 MHz du	plex spacing,	sub-bands	Q, R, S	•	•	•	•	•
Q LO	7444.75	7506.25	7446.50	7504.50	7450.00	7501.00	7457.00	7494.00
R LO			7482.25	7543.75	7484.00	7542.00	7487.50	7538.50
S LO	7494.50	7531.50		ı	1	1	1	
	7519.75	7569.00	7521.50	7569.00	7525.00	7569.00	7532.00	7569.00
Q HI	7612.75	7674.25	7614.50	7672.50	7618.00	7669.00	7625.00	7662.00
R HI			7650.25	7711.75	7652.00	7710.00	7655.50	7706.50
S HI	7662.50	7699.50		ı	1	1	1	
	7687.75	7737.00	7689.50	7737.00	7693.00	7737.00	7700.00	7737.00
245 MHz du	plex spacing,	sub-bands	T, U, V, X (7.4	25-7.900)	•	•	•	•
T LO	7431.50	7501.25	7431.50	7499.50	7435.00	7496.00	7442.00	7489.00
U LO	7479.75	7551.25	7481.50	7549.50	7485.00	7546.00	7492.00	7539.00
V LO	7528.75	7600.25	7530.50	7598.50	7534.00	7595.00	7541.00	7588.00
X LO	7578.75	7648.50	7580.50	7648.50	7584.00	7645.00	7591.00	7638.00

Table 16.	Nokia FlexiHopper	(Plus)	7, frequency	tuning range	(cont.)

Sub band	3.5 MHz spacing		7.0 MHz spacing		14.0 MHz spacing		28.0 MHz spacing	
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	Highfreq.							
T HI	7676.50	7746.25	7676.50	7744.50	7680.00	7741.00	7687.00	7734.00
U HI	7724.75	7796.25	7726.50	7794.50	7730.00	7791.00	7737.00	7784.00
V HI	7773.75	7845.25	7775.50	7843.50	7779.00	7840.00	7786.00	7833.00
X HI	7823.75	7893.50	7825.50	7893.50	7829.00	7890.00	7836.00	7883.00

Table 17. Nokia FlexiHopper (Plus) 8, frequency tuning range

Sub band	3.5 MHz sp	pacing	7.0 MHz sp	pacing	14.0 MHz s	spacing	28.0 MHz s	spacing
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	High freq.							
311.32 MHz	duplex spaci	ng, sub-band	ds A, B, C					
A LO	7725.00	7840.93	7725.00	7839.18	7725.00	7835.68	7731.68	7828.68
B LO			7783.43	7904.93	7785.18	7903.18	7788.68	7899.68
C LO	7795.68	7892.68		•		1		
	7847.43	7963.68	7849.18	7963.68	7852.68	7963.68	7859.68	7956.68
A HI	8036.32	8152.25	8036.32	8150.50	8036.32	8147.00	8043.00	8140.00
В НІ			8094.75	8216.25	8096.50	8214.50	8100.00	8211.00
C HI	8107.00	8204.00		•	1	•	1	
	8158.75	8275.00	8160.50	8275.00	8164.00	8275.00	8171.00	8268.00
266 MHz du	plex spacing	, sub-bands	J, K, L					
J LO	7912.00	7993.25	7912.00	7991.50	7912.00	7988.00	7919.00	7981.00
K LO			7977.25	8063.75	7979.00	8062.00	7982.50	8058.50
L LO	7989.50	8051.50		•	1	•		
	8047.75	8129.00	8049.50	8129.00	8053.00	8129.00	8060.00	8122.00
J HI	8178.00	8259.25	8178.00	8257.50	8178.00	8254.00	8185.00	8247.00
K HI			8243.25	8329.75	8245.00	8328.00	8248.50	8324.50
L HI	8255.50	8317.50		I	ı	ı	ı	1
	8313.75	8395.00	8315.50	8395.00	8319.00	8395.00	8326.00	8388.00
119 MHz du	plex spacing	, sub-bands	D, E, F			•		

Table 17. Nokia FlexiHopper (Plus) 8, frequency tuning range (cont.)

Sub band	3.5 MHz sp	acing	7.0 MHz sp	7.0 MHz spacing		pacing	28.0 MHz s	spacing
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	High freq.							
D LO	8280.75	8319.25	8282.50	8317.50	8286.00	8314.00	8293.00	8307.00
E LO			8308.75	8347.25	8310.50	8345.50	8314.00	8342.00
F LO	8321.00	8335.00						
	8336.75	8375.25	8338.50	8373.50	8342.00	8370.00	8349.00	8363.00
D HI	8399.75	8438.25	8401.50	8436.50	8405.00	8433.00	8412.00	8426.00
E HI			8427.75	8466.25	8429.50	8464.50	8433.00	8461.00
F HI	8440.00	8454.00						
	8455.75	8494.25	8457.50	8492.50	8461.00	8489.00	8468.00	8482.00
126 MHz du	plex spacing	, sub-bands (G, H, I					
G LO	8276.75	8315.25	8278.50	8313.50	8282.00	8310.00	8289.00	8303.00
H LO			8305.25	8343.75	8307.00	8342.00	8310.50	8338.50
I LO	8317.50	8331.50		•	•	•	•	
	8333.75	8372.25	8335.50	8370.50	8339.00	8367.00	8346.00	8360.00
G HI	8402.75	8441.25	8404.50	8439.50	8408.00	8436.00	8415.00	8429.00
н ні			8431.25	8469.75	8433.00	8468.00	8436.50	8464.50
I HI	8443.50	8457.50		1	1	1	1	'
	8459.75	8498.25	8461.50	8496.50	8465.00	8493.00	8472.00	8486.00

Table 18. Nokia FlexiHopper (Plus) 13, frequency tuning range

Sub band	3.5 MHz spacing		7.0 MHz spacing		14.0 MHz spacing		28.0 MHz spacing	
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	High freq.							
266 MHz duplex spacing, sub-bands A, B, C								
A LO	12752.75	12833.25	12754.50	12831.50	12758.00	12828.00	12765.00	12821.00
B LO			12822.75	12903.25	12824.50	12901.50	12828.00	12898.00
C LO	12835.00	12891.00		l	•	l	•	
	12892.75	12973.25	12894.50	12971.50	12898.00	12968.00	12905.00	12961.00

Table 18.	Nokia FlexiHopper (I	Plus) 13	frequency	tuning range	(cont.)

Sub band	3.5 MHz spacing		7.0 MHz spacing		14.0 MHz spacing		28.0 MHz spacing	
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	High freq.							
A HI	13018.75	13099.25	13020.50	13097.50	13024.00	13094.00	13031.00	13087.00
в ні			13088.75	13169.25	13090.50	13167.50	13094.00	13164.00
СНІ	13101.00	13157.00		ı	ı	ı	ı	
	13158.75	13239.25	13160.50	13237.50	13164.00	13234.00	13171.00	13227.00

Table 19. Nokia FlexiHopper (Plus) 15, frequency tuning range

Sub band	3.5 MHz sp	pacing	7.0 MHz sp	acing	14.0 MHz s	spacing	28.0 MHz s	spacing
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	High freq.							
420 MHz du	olex spacing	, sub-bands <i>i</i>	A, B, C					
A LO	14502.75	14649.25	14504.50	14647.50	14508.00	14644.00	14515.00	14637.00
B LO			14641.25	14787.75	14643.00	14786.00	14646.50	14782.50
C LO	14653.50	14775.50						
	14779.75	14921.00	14781.50	14921.00	14785.00	14921.00	14792.00	14914.00
A HI	14922.75	15069.25	14924.50	15067.50	14928.00	15064.00	14935.00	15057.00
В НІ			15061.25	15207.75	15063.00	15206.00	15066.50	15202.50
C HI	15073.50	15195.50		ı	•			
	15199.75	15341.00	15201.50	15341.00	15205.00	15341.00	15212.00	15334.00
490 MHz du	olex spacing	, sub-bands l	D, E, F					
D LO	14404.75	14571.25	14406.50	14569.50	14410.00	14566.00	14417.00	14559.00
E LO			14547.75	14714.25	14549.50	14712.50	14553.00	14709.00
F LO	14560.00	14702.00		ı	•	1	1	
	14689.75	14851.00	14691.50	14851.00	14695.00	14851.00	14702.00	14844.00
D HI	14894.75	15061.25	14896.50	15059.50	14900.00	15056.00	14907.00	15049.00
E HI			15037.75	15204.25	15039.50	15202.50	15043.00	15199.00
F HI	15050.00	15192.00		I	I	ı	ı	1
	15179.75	15341.00	15181.50	15341.00	15185.00	15341.00	15192.00	15334.00
644 MHz du	plex spacing	, sub-bands l	M		ı	1	1	1

Table 19. Nokia FlexiHopper (Plus) 15, frequency tuning range (cont.)

Sub band	3.5 MHz spacing		7.0 MHz spacing		14.0 MHz spacing		28.0 MHz spacing	
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	High freq.							
M LO	14504.50	14697.00	14504.50	14697.00	14508.00	14697.00	14515.00	14690.00
МН	15148.50	15341.00	15148.50	15341.00	15152.00	15341.00	15159.00	15334.00
728 MHz du	plex spacing	, sub-bands	N					
N LO	14502.75	14613.00	14504.50	14613.00	14508.00	14613.00	14515.00	14606.00
N HI	15230.75	15341.00	15232.50	15341.00	15236.00	15341.00	15243.00	15334.00

Table 20. Nokia FlexiHopper (Plus) 18, frequency tuning range

Sub band	3.5/5 MHz*	spacing	7.0/7.5 MH	z* spacing	13.75 MHz	spacing	27.5 MHz s	spacing
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	High freq.							
1010 MHz d	uplex spacin	g, sub-bands	A, B, C, D					
A LO	17704.75	17970.75	17706.00	17969.00	17709.50	17965.50	17716.50	17958.50
B LO			17951.75	18218.25	17953.50	18216.50	17957.00	18213.00
C LO	17964.00	18206.00		ı	•			
D LO			18171.75	18438.25	18173.50	18436.50	18177.00	18433.00
18184.00	18426.00		•	•	•	•	•	,
	18419.25	18682.50	18421.00	18682.50	18424.50	18680.50	18431.50	18673.50
A HI	18714.75	18980.75	18716.00	18979.00	18719.50	18975.50	18726.50	18968.50
В НІ			18961.75	19228.25	18963.50	19226.50	18967.00	19223.00
C HI	18974.00	19216.00		ı	•	•	•	
D HI			19181.75	19448.25	19183.50	19446.50	19187.00	19443.00
19194.00	19436.00		•	•	•	•	•	•
	19429.25	19692.50	19431.00	19692.50	19434.50	19690.50	19441.50	19683.50
1008 MHz d	uplex spacin	g, sub-bands	F, G, H, J					

Table 20.	Nokia FlexiHopper (Plus	s) 18, frequency tuning range (cont.)
	Troma From Toppor (Frac	, io, noquono, turnig rango (

Sub band	3.5/5 MHz*	spacing	7.0/7.5 MHz* spacing		13.75 MHz	spacing	27.5 MHz s	spacing
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	High freq.							
F LO	17722.25	17970.25	17722.25	17969.00	17722.25	17965.50	17722.25	17958.50
G LO			17953.75	18218.25	17955.50	18216.50	17959.00	18213.00
H LO	17966.00	18206.00		ı	ı	ı	ı	'
J LO			18173.75	18438.25	18175.50	18436.50	18179.00	18433.00
18186.00	18426.00		•	•	•	•	•	
	18421.25	18670.75	18423.00	18670.75	18426.50	18670.75	18433.50	18670.75
F HI	18730.25	18978.75	18730.25	18977.00	18730.25	18973.50	18730.25	18966.50
G HI			18961.75	19226.25	18963.50	19224.50	18967.00	19221.00
н ні	18974.00	19214.00		•	•	1	•	
J HI			19181.75	19446.25	19183.50	19444.50	19187.00	19441.00
19194.00	19434.00			•	•			•
	19429.25	19678.75	19431.00	19678.75	19434.50	19678.75	19441.50	19678.75

^{*}Same spectrum for both channelling alternatives.

Table 21. Nokia FlexiHopper (Plus) 23, frequency tuning range

Sub band	3.5 MHz spacing		7.0 MHz spacing		14.0 MHz spacing		28.0 MHz spacing		
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.	
Low freq.	High freq.								
1232 MHz duplex spacing, sub-bands A, B, C									
A LO	21225.75	21622.25	21227.50	21620.50	21231.00	21617.00	21238.00	21610.00	
B LO	21585.75	21982.25	21587.50	21980.50	21591.00	21977.00	21598.00	21970.00	
C LO	21945.75	22342.25	21947.50	22340.50	21951.00	22337.00	21958.00	22330.00	
A HI	22457.75	22854.25	22459.50	22852.50	22463.00	22849.00	22470.00	22842.00	
в ні	22817.75	23214.25	22819.50	23212.50	22823.00	23209.00	22830.00	23202.00	
СНІ	23177.75	23574.25	23179.50	23572.50	23183.00	23569.00	23190.00	23562.00	
1200 MHz d	1200 MHz duplex spacing, sub-bands D, E, F								

Table 21. Nokia FlexiHopper (Plus) 23, frequency tuning range (cont.)

Sub band	3.5 MHz sp	pacing	7.0 MHz sp	pacing	14.0 MHz s	spacing	28.0 MHz s	spacing
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	High freq.							
D LO	21205.00	21618.25	21205.00	21616.50	21207.00	21613.00	21214.00	21606.00
E LO			21591.75	22008.25	21593.50	22006.50	21597.00	22003.00
F LO	21604.00	21996.00		•	•	1	1	
	21981.75	22398.25	21983.50	22396.50	21987.00	22393.00	21994.00	22386.00
D HI	22405.00	22818.25	22405.00	22816.50	22407.00	22813.00	22414.00	22806.00
E HI			22791.75	23208.25	22793.50	23206.50	22797.00	23203.00
F HI	22804.00	23196.00		•	•			
	23181.75	23598.25	23183.50	23596.50	23187.00	23593.00	23194.00	23586.00
1008 MHz di	uplex spacing	g, sub-bands	M, N					
M LO	22003.75	22400.25	22005.50	22398.50	22009.00	22395.00	22016.00	22388.00
N LO	22193.75	22589.00	22195.50	22588.50	22199.00	22585.00	22206.00	22578.00
МН	23011.75	23408.25	23013.50	23406.50	23017.00	23403.00	23024.00	23396.00
N HI	23201.75	23597.00	23203.50	23596.50	23207.00	23593.00	23214.00	23586.00

Table 22. Nokia FlexiHopper (Plus) 26, frequency tuning range

Sub band	3.5 MHz sp	acing	7.0 MHz sp	pacing	14.0 MHz s	pacing	28.0 MHz spacing	
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	High freq.							
1008 MHz d	uplex spacing	g, sub-bands	A, B, C					
A LO	24550.75	24897.25	24552.50	24895.50	24556.00	24892.00	24563.00	24885.00
B LO			24823.75	25170.25	24825.50	25168.50	24829.00	25165.00
C LO	24836.00	25158.00		ı	ı	ı	ı	
	25096.75	25443.25	25098.50	25441.50	25102.00	25438.00	25109.00	25431.00
A HI	25558.75	25905.25	25560.50	25903.50	25564.00	25900.00	25571.00	25893.00
в ні			25831.75	26178.25	25833.50	26176.50	25837.00	26173.00
C HI	25844.00	26166.00		I	I	I	I	! '
	26104.75	26451.25	26106.50	26449.50	26110.00	26446.00	26117.00	26439.00

Table 23. Nokia FlexiHopper (Plus) 28, frequency tuning range

Sub band	3.5 MHz sp	pacing	7.0 MHz sp	acing	14.0 MHz s	spacing	28.0 MHz spacing	
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	High freq.							
1008 MHz d	uplex spacing	g, sub-bands	A, B, C					
A LO	27550.25	27896.75	27552.00	27895.00	27555.50	27891.50	27562.50	27884.50
B LO			27823.25	28169.75	27825.00	28168.00	27828.50	28164.50
C LO	27835.50	28157.50		ı	ı	•	•	· •
	28096.25	28442.75	28098.00	28441.00	28101.50	28437.50	28108.50	28430.50
A HI	28558.25	28904.75	28560.00	28903.00	28563.50	28899.50	28570.50	28892.50
ВНІ			28831.25	29177.75	28833.00	29176.00	28836.50	29172.50
СНІ	28843.50	29165.50		I	I	I	I	
	29104.25	29450.75	29106.00	29449.00	29109.50	29445.50	29116.50	29438.50

Table 24. Nokia FlexiHopper (Plus) 32, frequency tuning range

Sub band	3.5 MHz sp	pacing	7.0 MHz sp	acing	14.0 MHz s	pacing	28.0 MHz s	spacing
freq.			Low freq.	High freq.	Low freq.	High freq.	Low freq.	High freq.
Low freq.	High freq.							
812 MHz du	plex spacing	, sub-bands <i>i</i>	A, B, C, D					
A LO	31816.75	32033.25	31818.50	32031.50	31822.00	32028.00	31829.00	32021.00
B LO	31995.75	32212.25	31997.50	32210.50	32001.00	32207.00	32008.00	32200.00
C LO	32173.75	32390.25	32175.50	32388.50	32179.00	32385.00	32186.00	32378.00
D LO	32352.75	32569.25	32354.50	32567.50	32358.00	32564.00	32365.00	32557.00
A HI	32628.75	32845.25	32630.50	32843.50	32634.00	32840.00	32641.00	32833.00
ВНІ	32807.75	33024.25	32809.50	33022.50	32813.00	33019.00	32820.00	33012.00
C HI	32985.75	33202.25	32987.50	33200.50	32991.00	33197.00	32998.00	33190.00
D HI	33164.75	33381.25	33166.50	33379.50	33170.00	33376.00	33177.00	33369.00

38319.75

38589.75

38869.75

39149.75

38606.25

38886.25

39166.25

39436.25

38319.75

38591.50

38871.50

39151.50

A HI

ВН

C HI

D HI

Sub band 3.5 MHz spacing 14.0 MHz spacing 7.0 MHz spacing 28.0 MHz spacing freq. Low freq. High freq. Low freq. High freq. Low freq. High freq. Low freq. High freq. 1260 MHz duplex spacing, sub-bands A, B, C, D A LO 37059.75 37346.25 37059.75 37344.50 37059.75 37341.00 37062.00 37334.00 B LO 37329.75 37626.25 37331.50 37624.50 37335.00 37621.00 37342.00 37614.00 C LO 37609.75 37906.25 37611.50 37904.50 37615.00 37901.00 37622.00 37894.00 D LO 37889.75 38176.25 37891.50 38176.25 37895.00 38176.25 37902.00 38174.00

38604.50

38884.50

39164.50

39436.25

Table 25. Nokia FlexiHopper (Plus) 38, frequency tuning range

Table 26. Transmitter frequency adjustment and stability

Frequency adjustment step*	0.001 MHz				
Frequency stability in all conditions	< ±10 ppm				
Ageing	< ±1 ppm / year				
	< ±5 ppm / 15 years				
*The software allows a 1 kHz step. Due to hardware limitations the actual resolution is 10 - 25 kHz.					

38319.75

38595.00

38875.00

39155.00

38601.00

38881.00

39161.00

39436.25

38322.00

38602.00

38882.00

39162.00

38594.00

38874.00

39154.00

39434.00

7.1.9 RF parameters

Table 27. Nominal transmit power with 4-state modulation (π /DQPSK) at antenna connector

Frequency band	Transmit power (dBm), nominal
7,8 GHz	23
13, 15 GHz	20
18, 23, 26 GHz	18
28, 32, 38 GHz	16

96 (137)

Table 28. Nominal transmit power with 16-state modulation (32 TCM) at antenna connector

Frequency band	Transmit power (dBm), nominal
7, 8 GHz	23
13 GHz	20
15, 18, 23, 26 GHz	18
28, 32, 38 GHz	16

Table 29. Transmit power stability and adjustment

Frequency band	Transmit power stability	Transmit power adjustment step
7, 8, 13, 15, 18, 23, 26, 28 GHz	< ±2 dB	1 dB
32, 38 GHz	< ±3 dB	1 dB

Table 30. Spurious outputs

Spurious emissions (Tx	Frequency	Level
and Rx) at antenna connector	0.03 - 21.2 GHz	< -50 dBm
(1 MHz reference bandwidth)	21.2 - 3 rd harmonic	< -30 dBm

Table 31. Out-of-band CW interference tolerance*

Frequency of interference source	C/I (dB)	BER 10 ⁻⁶ threshold degradation			
0.07 GHz to 2 nd harmonic (excluding ± twice the channel bandwidth)	-35	1 dB			
*Meets the standards listed in the table Radio Transmission (ETSI) inNokia FlexiHopper (Plus) Standards.					

Table 32. Noise figure at antenna connector

Frequency band	Receiver noise figure (dB), guaranteed over temperature
7, 8 GHz	< 6
13, 15 GHz	< 6.5
18, 23 GHz	< 7
26, 28, 32 GHz	< 7.5
38 GHz	< 8

Table 33. Automatic Gain Control (AGC) tracking speed, received signal level measurement and automatic fading margin measurement

AGC tracking speed	> 100 dB/s
Received signal level measurement accuracy (from BER 10 ⁻³ threshold up to -30 dBm level)	< ±3 dB (typical) < ±5 dB (guaranteed)
Accuracy of fading margin measurement (measurement range 10 - 55 dB or up to -30 dBm Rx level)	±3 dB (typical)

7.1.10 4-state modulation

7.1.10.1 Transmission delay

Table 34. Transmitter - receiver transmission delay (zero length radio path, 4-depth convolutional interleaver and FEC setting RS(63,59) code)

Modulation type	Capacity (Mbit/s)	Interleaver on	Interleaver off
4-state modulation	2 x 2	< 480 µs	< 150 µs
	4 x 2	< 240 µs	< 65 µs
	8 x 2	< 120 µs	< 33 µs
	16 x 2	< 60 µs	< 17 µs

For calculating the transmission delay over the entire hop including indoor units and radio path, you can use the following data:

- Transmission delay caused by FIU 19(E): 30 μs
- Transmission delay caused by hop length: 3.3 μs/km

7.1.10.2 Channel spacing

Table 35. Channel spacing between adjacent channels (ITU-R)*

Frequency band	Capacity	Channel spacing, df (MHz)	Channel spacing, df (MHz)	
	(Mbit/s)			
Same polarisation	Cross- polarisation			
4-state modulation	2 x 2	5.0	0	
18 GHz	4 x 2	7.5	0	
	8 x 2	13.75	0	
	16 x 2	27.5	0	
All bands	2 x 2	3.5	0	
	4 x 2	7.0	0	
	8 x 2	14.0	0	
	16 x 2	28.0	0	
*Channel spacing is	not limited to these	values.		

7.1.10.3 Modulation and demodulation

Table 36. Modulation and demodulation

4-state modulation	Modulation method	π/4-DQPSK
	Demodulation method	Partially differential

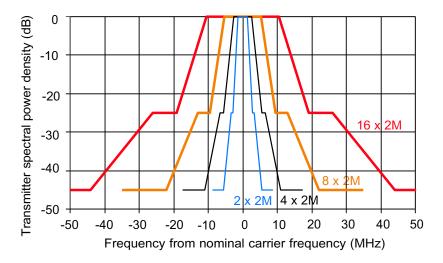


Figure 39. Spectrum mask for Nokia FlexiHopper (Plus) operating in 4-state modulation mode

Table 37. Spectrum masks for 4-state modulation; Attenuation of spectrum mask (dB) at a specific distance (MHz) from centre frequency (linear interpolation between specified points)

Frequency band	ETSI spectral efficiency class for 4-state modulation	Capacity Channel spacing	Attenuation (dB)	Distance from centre frequency (MHz)
All bands	Class 2	2 x 2 Mbit/s	> 0	0 - 1.4
		(3.5 MHz)	> 25	2.8 - 3.25
			> 45	5.5 - 8.75
				4 x 2 Mbit/s
				(7.0 MHz)
		> 0	0 - 2.7	
		> 25	5.6 - 6.5	
		> 45	11 - 17.5	
				8 x 2 Mbit/s
				(14.0 MHz)

Table 37. Spectrum masks for 4-state modulation; Attenuation of spectrum mask (dB) at a specific distance (MHz) from centre frequency (linear interpolation between specified points) (cont.)

Frequency band	ETSI spectral efficiency class for 4-state modulation	Capacity Channel spacing	Attenuation (dB)	Distance from centre frequency (MHz)
> 0				
> 25				
> 45				
0 - 5.2				
9.6 - 13				
22 - 35				
]	16 x 2 Mbit/s	> 0	0 - 10.4
		(28.0 MHz	> 25	19.2 - 26
			> 45	44 - 70
Meets the standards listed in the table Radio Transmission (ETSI) in Nokia FlexiHopper (Plus) Standards.				

Table 38. Emission codes (ITU-R SM.1138)

Capacity	Code	
	(4-state modulation)	
2 x 2 Mbit/s	3M50G7W 5M00G7W*	
4 x 2 Mbit/s	7M00G7W 7M50G7W*	
8 x 2 Mbit/s	14M0G7W 13M8G7W*	
16 x 2 Mbit/s	28M0G7W 27M5G7W*	

^{*}The latter emission codes only apply to 18 GHz, for which alternative channel spacing is available. As a result both presented emission codes apply to 18 GHz.

Table 39. Receiver bandwidths for 4-state modulation

Capacity (Mbit/s)		Receiver -3 dB bandwidth, nominal (MHz)	Receiver noise bandwidth, nominal (MHz)
2 x 2	3.5 MHz	±0.9	1.8

Table 39. Receiver bandwidths for 4-state modulation (cont.)

Capacity (Mbit/s)	Bandwidth	Receiver -3 dB bandwidth, nominal (MHz)	Receiver noise bandwidth, nominal (MHz)
4 x 2	7.0 MHz	±1.8	3.6
8 x 2	14.0 MHz	±3.6	7.2
16 x 2	28.0 MHz	±7.1	14.2

7.1.10.4 Interference sensitivity

Table 40. Co-channel interference (CCI, similar interference source)

Capacity	C/I, guaranteed (dB)				
	BER 10 ⁻³ threshold degradation		BER 10 ⁻⁶ threshold degradation		
	< 1 dB	< 3 dB	< 1 dB	< 3 dB	
All capacities	18	15	23	19	

Adjacent channel interference (ACI, similar interference source) Table 41.

Capacity	Channel	C/I, guarant	l, guaranteed (dB)		
	spacing (MHz)	BER 10 ⁻³ threshold degradation		BER 10 ⁻⁶ th degradatio	
				< 1 dB	< 3 dB
< 1 dB	< 3 dB				
2 x 2 Mbit/s	3.5	-8	-11	-4	-8
	5.0	-24	-27	-19	-23
4 x 2 Mbit/s	7.0	-8	-11	-4	-8
	7.5	-9	-12	-5	-9
8 x 2 Mbit/s	14.0	-8	-11	-4	-8
	13.75	-8	-11	-4	-8
16 x 2 Mbit/s	28.0	-8	-11	-4	-8
	27.5	-8	-11	-4	-8

Table 42. Two channels away interference (similar interference source)

Capacity	C/I, guaranteed (dB)			
	BER 10 ⁻³ thres degradation	shold	BER 10 ⁻⁶ threshold degradation	
< 1 dB				< 3 dB
All capacities	-24	-27	-19	-23

7.1.10.5 Power levels

Table 43. Nominal transmit power at antenna connector

Frequency band	Transmit power (dBm), nominal
7, 8 GHz	23
13, 15 GHz	20
18, 23, 26 GHz	18
28, 32, 38 GHz	16

Table 44. Minimum transmit power

Frequency band	Capacity (Mbit/s)	Minimum transmit power (dBm), nominal
7, 8 GHz	All capacities	-3
13, 15 GHz	All capacities	-6
18, 23, 26, 28, 32, 38 GHz	2 x 2	-10
	4 x 2	-7
	8 x 2	-4
	16 x 2	-1

Table 45. Receiver threshold at antenna connector

Frequency band	Capacity (Mbit/s)			BER 10 ⁻⁶ threshold (dBm)	
				Typical	Guarant eed
Typical	Guarantee d		•	•	
7, 8 GHz	2 x 2	-94	-92	-91	-89
	4 x 2	-92	-90	-89	-87
	8 x 2	-89	-87	-86	-84
	16 x 2	-86	-84	-83	-81
13, 15 GHz	2 x 2	-93	-91	-90	-88
	4 x 2	-91	-89	-88	-86
	8 x 2	-88	-86	-85	-83
	16 x 2	-86	-84	-83	-81
18 GHz	2 x 2	-93	-91	-90	-88
	4 x 2	-91	-89	-88	-86
	8 x 2	-88	-86	-85	-83
	16 x 2	-85	-83	-82	-80
23 GHz	2 x 2	-93	-91	-90	-88
	4 x 2	-91	-89	-88	-86
	8 x 2	-88	-86	-85	-83
	16 x 2	-86	-84	-83	-81
26 GHz	2 x 2	-93	-91	-90	-88
	4 x 2	-90	-88	-87	-85
	8 x 2	-87	-85	-84	-82
	16 x 2	-85	-83	-82	-80
28 GHz	2 x 2	-92	-89	-89	-86
	4 x 2	-90	-87	-87	-84
	8 x 2	-87	-84	-84	-81
	16 x 2	-85	-82	-82	-79
32 GHz	2 x 2	-91	-88	-88	-85
	4 x 2	-88	-85	-85	-82
	8 x 2	-86	-83	-83	-80
	16 x 2	-83	-80	-80	-77

Table 45. Receiver threshold at antenna connector (cont.)

Frequency band	Capacity (Mbit/s)	BER 10 ⁻³ threshold (dBm)		BER 10 ⁻⁶ threshold (dBm)	
				Typical	Guarant eed
Typical	Guarantee d				
38 GHz	2 x 2	-91	-89	-88	-86
	4 x 2	-90	-88	-87	-85
	8 x 2	-87	-85	-84	-82
	16 x 2	-85	-83	-82	-80

Typical values are met by about 80% of the equipment working at T=25°C at nominal power feeding.

Guaranteed values are guaranteed in full temperature range and frequency range.

Table 46. Typical receiver noise power

Frequency band	Capacity (Mbit/s)	Receiver noise power at antenna port at 25°C (dBm), typical
7, 8 GHz	2 x 2	-107
	4 x 2	-104
	8 x 2	-101
	16 x 2	-98
13, 15, 18, 23 GHz	2 x 2	-106
	4 x 2	-103
	8 x 2	-100
	16 x 2	-97
26, 28, 32, 38 GHz	2 x 2	-104
	4 x 2	-101
	8 x 2	-98
	16 x 2	-95

Table 47. Maximum receiver power level at antenna connector

Frequency band	Maximum input po	No damage	
7, 8, 13, 15, 18 GHz	-20 dBm	10 ⁻³	< 0 dBm
23, 26, 28, 32, 38	-20 dBm	10 ⁻³	< 0 dBm
GHz	-24 dBm	10 ⁻⁸	< 0 dBm

7.1.10.6 System value

Table 48. System value for Nokia FlexiHopper (Plus) using 4-state modulation

Frequency band	Capacity (Mbit/s)	System value, typical (dB)	System value, guaranteed (dB)
7, 8 GHz	2 x 2	117	114
	4 x 2	115	112
	8 x 2	112	109
	16 x 2	109	106
13, 15 GHz	2 x 2	113	109
	4 x 2	111	107
	8 x 2	108	104
	16 x 2	106	102
18 GHz	2 x 2	111	107
	4 x 2	109	105
	8 x 2	106	102
	16 x 2	103	99
23 GHz	2 x 2	111	107
	4 x 2	109	105
	8 x 2	106	102
	16 x 2	104	100
26 GHz	2 x 2	111	107
	4 x 2	108	104
	8 x 2	105	101
	16 x 2	103	99

Table 48.	System value for Nokia FlexiHopper (Plus) using 4-state modulation
	(cont.)

Frequency band	Capacity (Mbit/s)	System value, typical (dB)	System value, guaranteed (dB)
28 GHz	2 x 2	108	103
	4 x 2	106	101
	8 x 2	103	98
	16 x 2	101	96
32 GHz	2 x 2	107	101
	4 x 2	104	98
	8 x 2	102	96
	16 x 2	99	93
38 GHz	2 x 2	107	102
	4 x 2	106	101
	8 x 2	103	98
	16 x 2	101	96

Typical values are met by about 80 % of the equipment working at T=25 °C at nominal power feeding.

Guaranteed values are guaranteed in full temperature range and frequency range.

The system value is defined as the attenuation value between the transmitter and receiver antenna ports, which causes a BER 10^{-3} .

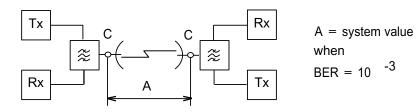
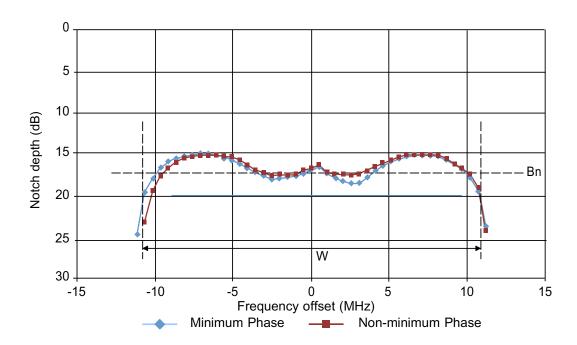



Figure 40. Defining system value

7.1.10.7 **Signature**

Typical BER 10^{-3} signature curves for Nokia FlexiHopper (Plus) with 4-state modulation and with 16 x 2M capacity Figure 41.

Signature data for BER limit 10⁻³ Table 49.

Minimum phase				
Capacity	Signature width w (MHz)	Average notch depth B_n (dB)	Typical dispersive fading margin (dB)	
2x2	-	> 31.5	-	
4x2	4.0 ± 1	27.0 ± 1	61.4	
8x2	9.0 ± 1	22.0 ± 1	52.2	
16x2	20.5 ± 1	17.0 ± 1	42.9	

108 (137)

Non-minimum phase					
Capacity Signature width w (MHz) Average notch depth B_n (dB) Typical dispersive fading margi (dB)					
2x2	-	> 31.5	-		
4x2	4.0 ± 1	26.5 ± 1	60.9		
8x2	9.0 ± 1	21.5 ± 1	51.6		
16x2	19.5 ± 1	16.5 ± 1	42.6		

Table 50. Signature data for BER limit 10⁻⁶

Minimum phase						
Capacity Signature width w (MHz) Average notch depth B_n (dB) Typical dispersive fading margin (dB)						
2x2	-	> 31.5	-			
4x2	4.5 ± 1	25.5 ± 1	59.2			
8x2	10.0 ± 1	20.5 ± 1	50.0			
16x2	23.0 ± 1	15.5 ± 1	40.7			

Non-minimum phase						
Capacity Signature width w (MHz) Average notch depth B_n (dB) Typical dispersive fading margin (dB)						
2x2	-	> 31.5	-			
4x2	4.5 ± 1	25.0 ± 1	58.6			
8x2	10.0 ± 1	20.0 ± 1	49.5			
16x2	22.0 ± 1	15.0 ± 1	40.3			

7.1.11 16-state modulation

To use 16-state modulation the user needs to order a separate licence file from Nokia. For more information, see *SW licensing*.

7.1.11.1 Transmission delay

Table 51. Transmitter - receiver transmission delay (zero length radio path, 4-depth convolutional interleaver and FEC setting RS(63,59) code)

Modulation type	Capacity (Mbit/s)	Interleaver on*
16-state modulation	8 x 2	< 765 µs
	16 x 2	< 383 µs

^{*}For 16-state modulation the interleaver is always on.

For calculating the transmission delay over the entire hop including indoor units and radio path, you can use the following data:

- Transmission delay caused by FIU 19(E): 30 μs
- Transmission delay caused by hop length: 3.3 μs/km

7.1.11.2 Channel spacing

Table 52. Channel spacing between adjacent channels (ITU-R)*

Frequency band	Capacity	Channel spacing	g, df (MHz)
	(Mbit/s)		
Same polarisation	Cross-polarisation		
16-state modulation	8 x 2	7.0	7.0
7 GHz	16 x 2	14.0	14.0
8 GHz			
13 GHz			
15 GHz			
18 GHz			
23 GHz			
26 GHz			
28 GHz			
32 GHz			
38 GHz			
16-state modulation	8 x 2	7.5	7.5
18 GHz	16 x 2	13.75	13.75
*Channel spacing is not limited to	these values.	-	

7.1.11.3 Modulation and demodulation

Table 53. Modulation and demodulation

16-state modulation	Modulation method	32 Trellis Coded Modulation (TCM)	
	Demodulation method	Viterbi detection	

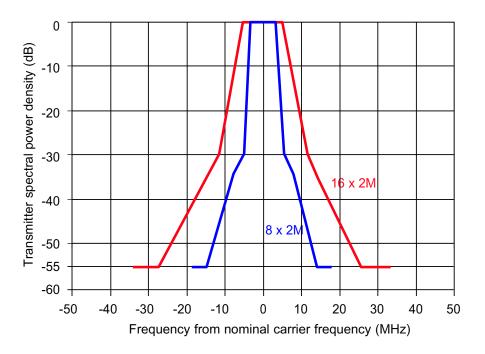


Figure 42. Spectrum masks for Nokia FlexiHopper Plus operating in 16-state modulation mode, 7 to 18 GHz

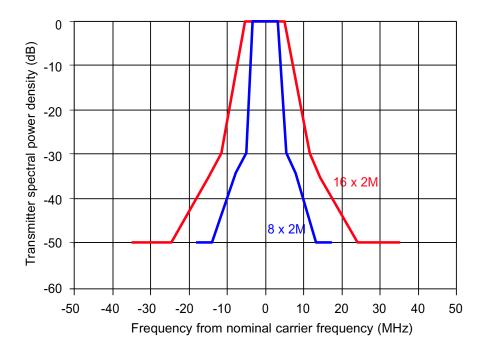


Figure 43. Spectrum masks for Nokia FlexiHopper Plus operating in 16-state modulation mode, 23 to 38 GHz

Table 54. Spectrum masks for 16-state modulation; Attenuation of spectrum mask (dB) at a specific distance (MHz) from centre frequency (linear interpolation between specified points)

Frequency band	ETSI spectral efficiency class for 16- state modulation mode	Capacity Channel spacing	Attenuation (dB)	Distance from centre frequency (MHz)
7 GHz	Class 4	8 x 2 Mbit/s (7 MHz)	>0	0 - 2.8
8 GHz			>32	5.6
13 GHz			>37	7.0
15 GHz			>55	14.0-17.5
18 GHz				16 x 2 Mbit/s (14 MHz)

112 (137) © Nokia Corporation DN03351499 Issue 10-0 en

Table 54. Spectrum masks for 16-state modulation; Attenuation of spectrum mask (dB) at a specific distance (MHz) from centre frequency (linear interpolation between specified points) (cont.)

Frequency band	ETSI spectral efficiency class for 16- state modulation mode	Capacity Channel spacing	Attenuation (dB)	Distance from centre frequency (MHz)
>0				
>32				
>37				
>55				
0 - 5.6				-
11.2				
14.0				
28.0 - 35.0				
23 GHz	Class 4	8 x 2 Mbit/s (7 MHz)	>0	0 - 2.8
26 GHz			>30	5.6
28 GHz			>35	7.0
32 GHz			>50	12.25 - 17.5
38 GHz				16 x 2 Mbit/s (14 MHz)
>0	0 - 5.6			
>30	11.2			
>35	14.0			
>50	24.5 - 35			

Meets the standards listed in Table Radio Transmission (ETSI) in Nokia FlexiHopper (Plus) Standards.

Table 55. Emission codes (ITU-R SM.1138)

Capacity	Code	
	(16-state modulation)	
8 x 2 Mbit/s	7M00D7W, 7M50D7W *)	
16 x 2 Mbit/s	14M0D7W, 13M8D7W *)	

^{*)} The latter emission codes apply only to 18 GHz, for which there are two alternative channel spacing available. As a result noth presented emission codes apply to 18 GHz.

Table 56. Receiver bandwidths for 16-state modulation

Capacity (Mbit/s)	Bandwidth	Receiver -3 dB bandwidth, nominal (MHz)	Receiver noise bandwidth, nominal (MHz)
8 x 2	7.0 MHz	±2.4	4.8
16 x 2	14.0 MHz	±4.7	9.4

7.1.11.4 Interference sensitivity

Table 57. Co-channel interference (CCI, similar interference source)

Capacity	C/I, guaranteed (dB)				
(Mbit/s)	BER 10 ⁻³ thres degradation	shold	BER 10 ⁻⁶ threshold degradation		
	< 1 dB	< 3 dB	< 1 dB	< 3 dB	
8 x 2	27	23	30	26	
16 x 2	27	23	30	26	

Table 58. Adjacent channel interference (ACI, similar interference source)

Capacity	Channel	C/I, guaranteed (dB)			
(Mbit/s)	spacing (MHz)	BER 10 ⁻³ threshold degradation		BER 10 ⁻⁶ threshold degradation	
				< 1 dB	< 3 dB
< 1 dB	< 3 dB				
8 x 2	7.0	-9	-12	-6	-10
16 x 2	14.0	-10	-13	-7	-11

Table 59. Two channels away interference (similar interference source)

Capacity	C/I, guaranteed (dB)			
	BER 10 ⁻³ threshold degradation		BER 10 ⁻⁶ threshold degradation	
	< 1 dB	< 3 dB	< 1 dB	< 3 dB
All capacities	-17	-19	-16	-18

7.1.11.5 Power levels

Table 60. Nominal transmit power at antenna connector

Frequency band	Transmit power (dBm), nominal
7, 8 GHz	23
13 GHz	20
15, 18, 23, 26 GHz	18
28, 32, 38 GHz	16

Table 61. Minimum transmit power

Frequency band	Capacity (Mbit/s)	Minimum transmit power (dBm), nominal
7, 8 GHz	8 x 2	4
	16 x 2	4
13, 15 GHz	8 x 2	1
	16 x 2	1
18 GHz	8 x 2	0
	16 x 2	3
23, 26, 28, 32, 38 GHz	8 x 2	-5
	16 x 2	-2

Table 62. Receiver threshold at antenna connector

Frequency band	Capacity (Mbit/s)	BER 10 ⁻³ threshold (dBm)		BER 10 ⁻⁶ threshold (dBm)	
				Typical	Guarantee d
Typical	Guarantee d		•		
7, 8 GHz	8 x 2	-85	-82	-82	-79
	16 x 2	-82	-79	-79	-76
13 GHz	8 x 2	-82	-79	-79	-76
	16 x 2	-80	-77	-77	-74
15 GHz	8 x 2	-84	-81	-81	-78
	16 x 2	-82	-79	-79	-76
18 GHz	8 x 2	-82	-79	-79	-76
	16 x 2	-79	-76	-76	-73
23 GHz	8 x 2	-83	-81	-80	-78
	16 x 2	-80	-78	-77	-75
26 GHz	8 x 2	-81	-79	-78	-76
	16 x 2	-78	-76	-75	-73
28, 32 GHz	8 x 2	-81	-78	-78	-75
	16 x 2	-78	-75	-75	-72
38 GHz	8 x 2	-81	-78	-78	-75
	16 x 2	-79	-76	-76	-73

Typical values are met by about 80 % of the equipment working at T=25°C at nominal power feeding.

Guaranteed values are guaranteed in full temperature and frequency range.

Table 63. Typical receiver noise power

Frequency band	Capacity (Mbit/s)	Receiver noise power at antenna port at 25°C (dBm), typical
7, 8 GHz	8 x 2	-104
	16 x 2	-101

116 (137) © Nokia Corporation DN03351499

Table 63. Typical receiver noise power (cont.)

Frequency band	Capacity (Mbit/s)	Receiver noise power at antenna port at 25°C (dBm), typical
13, 15, 18, 23 GHz	8 x 2	-103
	16 x 2	-100
26, 28, 32, 38 GHz	8 x 2	-101
	16 x 2	-98

Table 64. Maximum receiver power level at antenna connector

Frequency band	Maximum input power at BER level		No damage
7,8 GHz	- 20 dBm	10 ⁻³	< 0 dBm
13, 15, 18 GHz	- 20 dBm	10 ⁻⁸	< 0 dBm
23, 26, 28, 32, 38	-20 dBm	10 ⁻³	< 0 dBm
GHz	-24 dBm	10 ⁻⁸	< 0 dBm

7.1.11.6 System value

Table 65. System value for Nokia FlexiHopper Plus using 16-state modulation

Frequency band	Capacity (Mbit/s)	System value, typical (dB)	System value, guaranteed (dB)
7, 8 GHz	8 x 2	108	103
	16 x 2	105	100
13 GHz	8 x 2	102	97
	16 x 2	100	95
15 GHz	8 x 2	102	97
	16 x 2	100	95
18 GHz	8 x 2	100	95
	16 x 2	97	92
23 GHz	8 x 2	101	97
	16 x 2	98	94
26 GHz	8 x 2	99	95
	16 x 2	96	92

Table 65.	System value for Nokia FlexiHopper Plus using 16-state modulation
	(cont.)

Frequency band	Capacity (Mbit/s)	System value, typical (dB)	System value, guaranteed (dB)
28 GHz	8 x 2	97	92
	16 x 2	94	89
32 GHz	8 x 2	97	91
	16 x 2	94	88
38 GHz	8 x 2	97	91
	16 x 2	95	89

Typical values are met by about 80 % of the equipment working at T=25°C at nominal power feeding.

Guaranteed values are guaranteed in full temperature range and frequency range.

The system value is defined as the attenuation value between the transmitter and receiver antenna ports, which causes a BER 10⁻³.

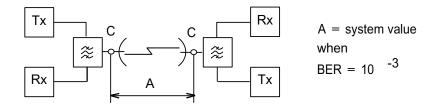


Figure 44. Defining system value

118 (137) DN03351499 O Nokia Corporation

7.1.11.7 Signature

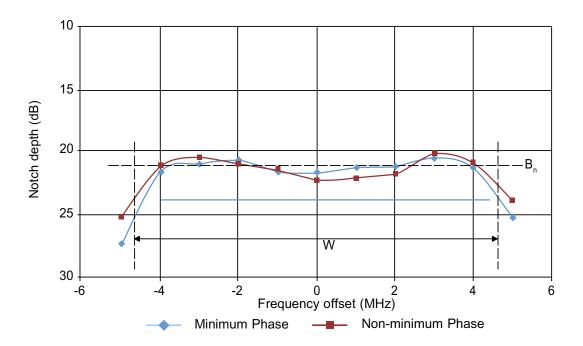


Figure 45. Typical BER 10^{-3} signature curves for Nokia FlexiHopper Plus with 16-state modulation and with 16 x 2M capacity

Table 66. Signature data for BER limits 10⁻³ and 10⁻⁶

Minimum and non-minimum phase			
Capacity	Signature width w (MHz)	Average notch depth B_n (dB)	Typical dispersive fading margin (dB)
8x2	4.5 ± 1	26.5 ± 1	60.4
16x2	9.0 ± 1	20.5 ± 1	50.5

7.2 FIU 19(E) indoor unit

7.2.1 General information

The Nokia FlexiHopper (Plus) Product Description covers the technical specifications for both FIU 19 and FIU 19E indoor units. In this Product Description, these units are referred to as FIU 19 and FIU 19E according to which one of the units is in question individually. The use of FIU 19(E) refers to both of the indoor units together.

7.2.2 FIU 19(E) interfaces

Table 67. FIU 19(E) interfaces

	FIU 19	FIU 19E
Flexbus interfaces 1 and 2	TNC connector 50 Ω	TNC connector 50 Ω
(FB1, FB2)	Up to 16 x 2 Mbit/s signals	Up to 16 x 2 Mbit/s signals
	Embedded power supply voltage 55 V_{DC} for radio outdoor units	Embedded power supply voltage 55 V_{DC} for radio outdoor units
Network management	TQ connector	RJ-45 connector
interfaces (Q1-1, Q1-2)	Max. 9600 bit/s, V.11	Max. 9600 bit/s, V.11
Power supply connector (PWR)	Molex Micro-Fit 3.0	Molex Micro-Fit 3.0
Local management port	BQ connector	RJ-45 connector
(LMP)	Max. 115 kbit/s RS-232 interface	Max. 115 kbit/s RS-232 interface
Measurement point	SMB connector, 75 Ω	SMB connector, 75 Ω
connector (MP)	Digital output for 2 Mbit/s signals and internal frequencies	Digital output for 2 Mbit/s signals and internal frequencies
Ethernet Interface	-	RJ-45
10baseT		10 Mbit/s link for management

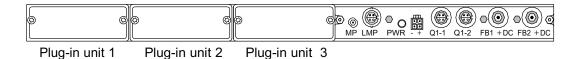


Figure 46. FIU 19 interfaces

120 (137) © Nokia Corporation DN03351499 Issue 10-0 en

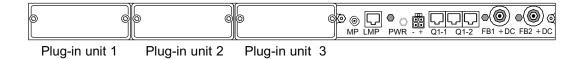


Figure 47. FIU 19E interfaces

Table 68. FIU 19(E) interfaces in the 4 x 2 M plug-in units and the 16 x 2 expansion unit

2M interfaces, n x 2 Mbit/s	SMB connector, 75 Ω or
	TQ connector, 120 Ω <i>or</i>
	RJ-45 connector, 120 Ω
	ITU-T G.703

Table 69. FIU 19(E) interfaces in the Flexbus plug-in unit

Flexbus interfaces 3 and 4 (FB3, FB4)	TNC connector 50 Ω
	Up to 16 x 2 Mbit/s signals, OU power supply 55 - 60 V_{DC}
OU power supply input (for third and fourth OU)	Molex Micro-Fit 3.0

Table 70. FIU 19(E) interfaces in the AUX data plug-in unit

	FIU 19	FIU 19E
Auxiliary interfaces (4)	Four RJ-45 modular connectors	Four RJ-45 modular connectors
	AUX slow channel	AUX slow interface:
		max. 4800 bit/s (at 2 x 2 Mbit/s capacity) or 9600 bit/s (at 4 x 2 Mbit/s or higher capacity), EIA-232 or ITU-T V.11
	AUX fast channel	AUX fast interface:
		max. 64 kbit/s, ITU-T V.11 or ITU-T G.703
	Four TTL-type programmable I/O channels	Four TTL-type programmable I/O interfaces
	Four relay controls	-

Table 71.	FIU 19 AUX data plug-in unit, AUX slow channels
-----------	---

Channel type	Capacity	Max bit rate (bit/s)	Approx. sample rate (1000 /s)	Note	
EIA-232	2 x 2M	4800	32	Max cable C: 2500	
	4 - 16 x 2M	9600	64	pF Max cable length: 25 m	
ITU-T V.11 (RS-	2 x 2M	4800	32	Max cable length:	
485)*	4 - 16 x 2M	9600	64	1 km	
* Optionally also T	TL type clock output	s for synchronous data			

Only one AUX slow channel and one AUX fast channel can be simultaneously connected to a Flexbus.

Table 72. FIU 19 AUX data plug-in unit, AUX fast channels

Channel type	Capacity	Max bit rate (bit/s)	Approx. sample rate (1000 /s)	Note
ITU-T V.11 (RS-485)*	2 - 16 x 2M	64 000 ± 100 ppm	N/A	Co/contra- directional
ITU-T G.703 120 Ω balanced**	2 - 16 x 2M	64 000 ± 100 ppm	N/A	Co-directional
ITU-T V.11	2 x 2M	9 600	64	Sampled mode
(RS-485)***	4 x 2M	19 200	64/128	
	8 x 2M	38 400	64/128/256	
	16 x 2M	64 000	64/128/256/512	

^{*} Also V.11 type programmable clock channel.

122 (137) Nokia Corporation DN03351499 Issue 10-0 en

^{**} HDB3 coding used as in 2Mbit channels. Currently, no applications known to be used in.

^{***} Optionally also V.11 type programmable clock channel.

Table 73. FIU 19 AUX data plug-in unit, TTL-type I/O channels

Channel type	Input high min	Input low max	Output high min	Output low max
TTL input/output	2 V	0.8 V	3.8 V	0.45 V

Table 74. FIU 19 AUX data plug-in unit, relay controls

Channel type	Pos U _{in} max	Neg U _{in} max	I max	P max
Relay control	+72 V	-72 V	50 mA	300 mW

Table 75. FIU 19E C2.0 Ethernet plug-in unit

Ethernet interfaces Eth-1 and Eth-2	RJ-45 connector
	10/100 Base-T
	Autonegotiation support
	Half or full duplex
	Automatic MDI/MDIX detector

7.2.3 FIU 19(E) power supply, dimensions and installation options

7.2.3.1 Power supply

Table 76. FIU 19(E) power supply

Main unit power supply	-40.5 to -60 V _{DC}
Operating range	-40.5 to -72 V _{DC}
Flexbus plug-in unit power supply	+52 to +60 V _{DC}
Power consumption (16 x 2M IU only)	< 15 W
Power consumption (16 x 2M IU + 2 OUs + maximum cable loss)	< 65W

7.2.3.2 Dimensions

Table 77. Dimensions of the FIU 19(E) main unit and the expansion unit

Height	29 mm (2/3 U)

Table 77. Dimensions of the FIU 19(E) main unit and the expansion unit (cont.)

Width	444 mm (with 1 U brackets)
	449 mm (with 1.5 U / 2 U brackets) *)
Depth	300 mm (without connectors)
Weight	2.8 kg
*) 2 U brackets only for FIU 19.	

Table 78. Dimensions of the FIU 19(E) plug-in units

Height	25 mm
Width	75 mm
Depth	160 mm
Weight	0.075 - 0.150 kg

7.2.3.3 Ingress protection

Table 79. FIU 19(E) ingress protection class

Ingress protection class	IP21
--------------------------	------

7.2.3.4 Installation options

Table 80. FIU 19(E) installation options

FIU 19	FIU 19E
IEC 19-inch rack	IEC 19-inch rack
ETSI 600 x 300 mm rack (with adapter)	ETSI 500 mm rack (with adapter)
TM4 slim rack (with adapter)	TM4 slim rack (with adapter)

7.2.4 **Ethernet throughput**

Figure Ethernet traffic throughput for different packet sizes as percentage of radio link capacity shows the calculated Ethernet traffic throughput over the radio link for different packet sizes. The throughput is shown as percentage of the Ethernet capacity of the radio links. Actual bit/packet rates can be calculated from this information for different radio link capacities.

124 (137) DN03351499 © Nokia Corporation Issue 10-0 en

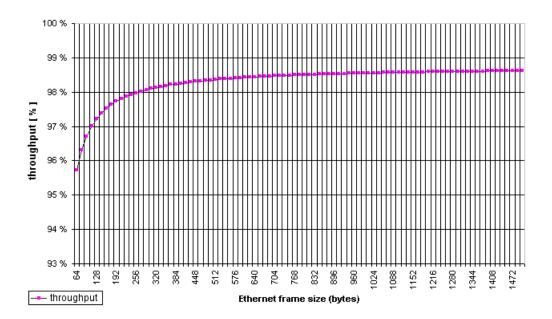


Figure 48. Ethernet traffic throughput for different packet sizes as percentage of radio link capacity

7.2.5 Propagation delays for packet traffic

The table *Packet propagation delay over single radio hop* summarizes packet propagation delays over single radio hop for different Ethernet packet sizes. Radio path propagation delay is not included in this table. Maximum propagation delay does not depend much on frame length.

Table 81. Packet propagation delay over single radio hop

	Buffer size	Packet length	. •	n delay (PD) apacities for	
	[kB]	[bytes]	2 M	16 M	32 M
Min PD	32-128	64	0.8	0.2	0.1
	32-128	700	3.7	0.7	0.4
	32-128	1500	6.7	1.2	0.8

	Buffer size	Packet length		n delay (PD) apacities for	for different Ethernet
	[kB]	[bytes]	2 M	16 M	32 M
Max PD	32	64-1536	128	16	8.2
	64	64-1536	260	32	16
	128	64-1536	510	64	32

Table 81. Packet propagation delay over single radio hop (cont.)

7.2.6 Measurement points

The indoor unit can send one of a variety of signals to its measurement point interface (MP) for analysis. The FIU 19(E) measurement point is located on the front panel.

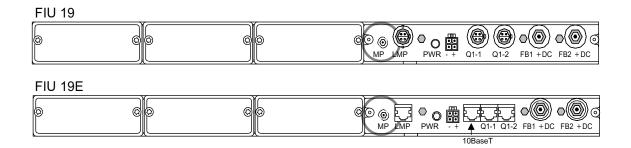


Figure 49. FIU 19 and FIU 19E measurement points

The available signals are:

- 2M Tx data
- BFI 2M Rx data (signals in the cross-connection section)
- 2M PRBS (pseudo-random binary sequence)
- 2M AIS (alarm indication signal)
- Flexbus Tx clock
- Flexbus 2M Rx clock

- 2M Tx clock
- BFI 2M Rx clock

In FIU 19(E), the measurement point output is 75 Ω G.703.

7.3 FXC RRI transmission unit

7.3.1 FXC RRI dimensions and weight

Table 82. FXC RRI dimensions and weight

Height	254 mm
	(10 in.)
Width	30 mm
	(1.18 in.)
Depth	220 mm
	(8.7 in.)
Weight	1.35 kg
	(3 lb.)

7.3.2 Interfaces of the FXC RRI transmission unit

Table 83. FXC RRI interfaces

Flexbus interfaces 1 (FB1) and 2 (FB2)	TNC connector 50 Ω
	Up to 16 x 2 Mbit/s signals
	Embedded power supply voltage 55 V _{DC} for radio outdoor units
Jitter and wander	ITU-T G.823
Bidirectional data	37 Mbit/s, NRZ code, 1.4V pulse amplitude

FXC RRI power requirements 7.3.3

Table 84. Power supply and power consumption

DC supply voltage	Powered by Nokia MetroHub, Nokia UltraSite BTS or Nokia MetroSite BTS
Power consumption	< 8 W
	(For OU power consumption, see the radio documentation)

IFUE interface unit 7.4

7.4.1 IFUE dimensions and weight

Table 85. IFUE dimensions

Property	Value (metric)
Height	264 mm
Width	25 mm
Depth	285 mm (incl. front panel)
Weight	1000 g

7.4.2 **IFUE** interfaces

Table 86. IFUE interfaces

Interface	Connector
Flexbus interfaces 1-3	TNC connector 50 Ω (female)
FB1, FB2, FB3	ATM Forum af-phy-0064.000 (E1 Physical Interface Specification)
	ATM Forum af-phy-0086.000 (Inverse Multiplexing for ATM (IMA))
	ATM Forum af-phy-0086.001 (Inverse Multiplexing for ATM (IMA))
	ATM Forum at-vtoa-0078.000 (Circuit Emulation Service)
Local Management Port (LMP)	BQ connector

128 (137) © Nokia Corporation DN03351499 Issue 10-0 en

Table 86. IFUE interfaces (cont.)

Interface	Connector
Measurement Point (MP)	SMB connector

Table 87. Flexbus cable requirements

Property	Value
Cable type	Coaxial cable, double shielded or semi- rigid
Characteristic impedance	50 ± 2 Ω
DC resistance	< 4.6 Ω (sum of inner and outer conductor)
Data attenuation	< 9.0 dB at 19 MHz
Flexbus signals	- DC power supply
	- Bidirectional data (37 Mbit/s, NRZ code, 1.4 V pulse amplitude)
Overvoltage protection and cable equalizer are integral parts of the Flexbus interface.	

Overvoltage protection and cable equalizer are integral parts of the Flexbus interface. Primary over-voltage protection is a 90 V gas-arrester.

Table 88. Recommended cable types

RG-223	Maximum length 140 m
RG-214	Maximum length 300 m

7.4.3 IFUE power requirements

Table 89. IFUE power supply and consumption

Property	Value
DC power supply	-40.5 to - 60 V _{DC}
Power consumption (typical)	25 W
Power consumption (max.)	25 W
Remote power feeding per Flexbus interface (typical)	30 W
Power consumption for remote power feeding per Flexbus interface (max.)	35 W

Flexbus cable 7.5

Table 90. Flexbus cable requirements

Cable type	Coaxial cable, double shielded or semi- rigid
Characteristic impedance	50 ± 2 Ω
DC resistance	< 4.6 Ω (sum of inner and outer conductor)
Data attenuation	< 9.0 dB at 19 MHz
Flexbus signals	DC power supply
	Bidirectional digital data (37 Mbit/s, NRZ code, 1.4 V pulse amplitude)
Overvoltage protection and cable equaliser are integral parts of the Flexbus interface. Primary overvoltage protection is a 90 V gas-arrester.	

Table 91. Recommended cable types for Flexbus

Cables / 50 Ω	RG-223	RG-214
Max. length (m)	140	300
Character	Outdoor use, UV- stabilised, halogenfree, operational temperature range: -40 - +60 degrees Celsius.	Outdoor use, UV-stabilised, halogenfree, operational temperature range: -40 - +60 degrees Celsius.
UL approval	UL 1581	UL 1581
Sales items	T36626.01	T36629.01
Reel length (m)	500	500

Nokia provides the following Flexbus connector kits:

- Flexbus TNC-TNC (RG-223) Connector Kit (T55255.01)
- Flexbus TNC-TNC (RG-214) Connector Kit (T55255.02)
- Flexbus N-TNC (RG-223) Connector Kit (T55255.11)
- Flexbus N-TNC (RG-214) Connector Kit (T55255.12)

130 (137) © Nokia Corporation DN03351499

7.6 Statistics

The statistics the network element records for signal quality are kept to ITU-T recommendation G.826. The values are available as either infinite, or 15-minute and 24-hour histories (last 16 measurements).

The following statistics are recorded:

Table 92. Statistics

ID text	Unit	Description
G.826 TT	seconds	Total Time as specified in G.826
G.826 AT	seconds	Available Time as specified in G.826
G.826 ES	seconds	Errored Seconds as specified in G.826
G.826 SES	seconds	Severely Errored Seconds as specified in G.826 1)
G.826 BBE	counter	Background Block Errors as specified in G.826
G.826 EB	counter	Errored Blocks as specified in G.826
G.020 ED	Counter	Effored Blocks as specified in G.ozo

¹⁾ G.826 gives two definitions for SES. In Nokia Q1, the definition of SES as "≥30% errored blocks in one-second period" is adopted.

7.7 System requirements for Hopper Manager

Hopper Manager requires the following minimum system configuration:

Table 93. System requirements

Computer	Intel Pentium -based IBM-compatible PC
Operating system	Microsoft Windows 95/98/2000/XP
	Microsoft Windows NT 4.0 Workstation
System memory	16 MB for Windows 95
	32 MB for Windows NT
Hard disk space	32 MB for the node manager software
Display	Super VGA, minimum resolution of 800 x 600

Table 93. System requirements (cont.)

Accessories	CD-ROM drive
	Windows compatible mouse or pointing device
	Windows compatible printer (optional)
	LMP cable (from the PC to the node)

7.8 Nokia FlexiHopper (Plus) standards

This is a list of the standards referred to in the technical specifications.

Table 94. Signals (ITU-T)

Recommendation	Recommendation name
G.703	Physical/electrical characteristics of hierarchical digital interfaces.
G.704	Synchronous frame structures used at primary and secondary hierarchical levels.
G.823	The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy.
G.826	Error performance parameters and objectives for international, constant bit rate digital paths at or above primary rate.
G.921	Digital sections based on the 2048 kbit/s hierarchy.
V.11	Data communication over the telephone network; Electrical characteristics for balanced double-current interchange circuits operating at data signalling rates up to 10 Mbit/s.

Table 95. Frequency allocation (ITU-R)

Recommendation	Recommendation name
F.746-7	Radio frequency arrangements for fixed service systems.
F.385-7	Radio-frequency channel arrangements for radio-relay systems operating in the 7 GHz band.
F.386-6	Radio-frequency channel arrangements for medium and high-capacity analogue or digital radio-relay systems operating in the 8 GHz band.

132 (137) © Nokia Corporation DN03351499

Table 95. Frequency allocation (ITU-R) (cont.)

Recommendation	Recommendation name
F.497-6	Radio-frequency channel arrangements for radio-relay systems operating in the 13 GHz band.
F.636-3	Radio frequency channel arrangements for radio-relay systems operating in the 15 GHz band.
F.595-8	Radio-frequency channel arrangements for radio-relay systems operating in the 18 GHz band.
F.637-3	Radio-frequency channel arrangements for radio-relay systems operating in the 23 GHz band
F.748-4	Radio-frequency channel arrangements for radio-relay systems operating in the 25, 26, 28 GHz band.
F.1520-2	Radio frequency arrangements for systems in the fixed service operating in the band 31.8 - 33.4 GHz.
F.749-2	Radio-frequency channel arrangements for radio-relay systems operating in the 38 GHz band.
SM.1138	Determination of necessary bandwidths including examples for their calculation and associated examples for the designation of emissions.

Table 96. CEPT/ERC/REC

Recommendation	Recommendation name
ERC/REC 12-02	Harmonised radio frequency channel arrangements for analogue and digital terrestrial fixed systems operating in the band 12.75 GHz to 13.25 GHz.
ERC/REC 12-07	Harmonised radio frequency channel arrangements for digital terrestrial fixed systems operating in the band 14.5 – 14.62 GHz paired with 15.23 - 15.35 GHz.
ERC/REC 12-03	Harmonised radio frequency channel arrangements for digital terrestrial fixed systems operating in the band 17.7 GHz to 19.7 GHz.
T/R 13-02	Preferred channel arrangements for fixed services in the range 22.0-29.5 GHz.
CEPT/ERC/REC 01-02	Preferred channel arrangement for digital fixed service systems operating in the frequency band 31.8 - 33.4 GHz.
T/R 12-01	Harmonized radio frequency channel arrangements for analogue and digital terrestrial fixed systems operating in the band 37-39.5 GHz.
ERC/REC 74-01	Spurious emissions.

Table 97. Radio transmission (ETSI)

Recommendation	Recommendation name
ETSI EN 301 751, V1.2.1 (2002-11)	Fixed radio systems; point-to-point equipments and antennas; generic harmonized standard for point-to-point digital fixed radio systems and antennas covering the essential requirements under article 3.2 of the 1999/5/EC Directive.
ETSI EN 302 217-2-2, V 1.1.3 (2004-12)	Fixed Radio Systems: Characteristics and requirements for point-to-point equipment and antennas: Part 2-2 Harmonized EN covering essential requirements of Article 3.2 of R&TTE Directive for digital systems operating in frequency bands where frequency cooperation is applied.
ETSI EN 302 217-4-2, V 1.1.3 (2004-12)	Fixed Radio Systems; Characteristics and requirements for point-to-point equipment and antennas; Part 4-2: Harmonized EN covering essential requirements of Article 3.2 of R&TTE Directive for antennas.
ETSI EN 301 126-1, V1.1.2 (1999-09)	Fixed radio systems; conformance testing; Part 1: point-to-point equipments - Definitions, general requirements and test procedures.
ETSI EN 301 216, V1.2.1 (2001-07)	Fixed radio systems; point-to-point equipment; plesiochronous digital hierarchy (PDH); low and medium capacity and STM-0 digital radio system operating in the frequency bands in the range 3 GHz to 11 GHz.
ETSI EN 301 128, V 1.2.1 (2001-02)	Fixed radio systems; point-to-point equipment; plesiochronous digital hierarchy (PDH); low and medium capacity digital radio systems operating in the 13 GHz, 15 GHz and 18 GHz frequency bands.
ETSI EN 300 197, V 1.6.1 (2002-07)	Fixed radio systems; point-to-point equipment; Parameters for radio systems for the transmission of digital signals operating at 32 GHz and 38 GHz.
ETSI EN 300 198, V.1.5.1 (2002-07)	Transmission and multiplexing (TM); parameters for radio systems for the transmission of digital signals operating at 23 GHz.
ETSI EN 300 431, V 1.4.1 (2002-03)	Fixed radio systems; point-to-point equipment; parameters for radio system for the transmission of digital signals operating in the frequency range 24.50 GHz to 29.50 GHz.
ETSI EN 300 833, V 1.4.1 (2002-11)	Fixed radio systems; point-to-point antennas; antennas for point-to-point fixed radio systems operating in the frequency band 3 GHz to 60 GHz.
ETSI EN 301 126-3-1, V 1.1.2 (2002-12)	Fixed radio Systems; conformance testing; part 3-1: point-to-point antennas - definitions, general requirements and tests procedures.

134 (137) © Nokia Corporation DN03351499 Issue 10-0 en

Table 98. Environment

Recommendation	Recommendation name
ETS 300 019-1-1 Class 1.2	Equipment Engineering (EE); Environmental conditions and environmental tests for telecommunications equipment; Storage.
ETS 300 019-1-2	Equipment Engineering (EE); Environmental conditions
Class 2.3	and environmental tests for telecommunications equipment; Transportation.
ETS 300 019-1-3	Equipment Engineering (EE); Environmental conditions and environmental tests for telecommunications
Class 3.2	equipment; Stationary use at weatherprotected locations.
ETS 300 019-1-4	Equipment Engineering (EE); Environmental conditions
Class 4.1	and environmental tests for telecommunications equipment; Stationary use at non-weatherprotected locations.
ETS 300 019-1-4	Equipment Engineering (EE); Environmental conditions
Class 4.1E	and environmental tests for telecommunications equipment; Part 2-4: Specification of environmental tests; Stationary use at non-weatherprotected locations.
ETS 300 132-2	Equipment Engineering (EE); Power supply interface at the input to telecommunications equipment;
	Part 2: Operated by direct current (DC).
EN 55022 or CISPR22	Limits and methods of measurement of radio interference characteristics of information technology equipment.
EN 61000-4-2	Electromagnetic compatibility (EMC) –
	Part 4-2: Testing and measurement techniques – Electrostatic discharge immunity test.
EN 61000-4-3	Electromagnetic compatibility (EMC) –
	Part 4-3: Testing and measurement techniques – Radiated, radio frequency, electromagnetic field immunity test.
EN 61000-4-4	Electromagnetic compatibility (EMC) –
	Part 4-4: Testing and measurement techniques – Electrical fast transient/burst immunity test.
EN 61000-4-5	Electromagnetic compatibility - Basic immunity standard - Surge immunity test.
EN 61000-4-6	Electromagnetic compatibility - Basic immunity standard - Conducted disturbances induced by radio frequency fields.
EN 301 489-1	Electromagnetic compatibility and Radio Spectrum Matters (ERM); Electromagnetic Compatibility (EMC) standard for radio equipment and services;
	Part 1: Common technical requirements.

Table 98. Environment (cont.)

Recommendation	Recommendation name
EN 301 489-4	Electromagnetic compatibility and Radio Spectrum Matters (ERM); Electromagnetic Compatibility (EMC) standard for radio equipment and services;
	Part 4: Specific requirements for fixed radio links and ancillary equipment and services.
EN 300 113-1 (2002-02)	Electromagnetic compatibility and Radio Spectrum Matters (ERM); Land mobile service; Radio equipment intended for the transmission of data (and/or speech) using constant or non-constant envelope modulation and having an antenna connector
	Part 1: Technical characteristics and methods of measurement.
IEC 60 529	Degrees of protection provided by enclosures (IP codes).
IEC 60 950	Safety of information technology equipment.

Table 99. IETF standards and RFCs

Standard number	Standard title
RFC 768	User Datagram Protocol (UDP).
RFC 791	Internetwork Protocol (IPv4).
RFC 792	Internetwork Control Message Protocol (ICMP).
RFC 793	Transmission Control Protocol (TCP).
RFC 826	Address Resolution Protocol.
RFC 894	Standard for Transmission of IP Datagrams over Ethernet.
RFC 950	Internet Standard Subnetting Procedure.
RFC 1027	Using ARP to Implement Transparent Subnet Gateways.
RFC 1213	MIB-II; MIB for Network Management of TCP/IP-based internets.
RFC 1519	Classless Interdomain Routing: An Address Assignment and Aggregation Strategy.
RFC 1850	OSPF Version 2 Management Information Base, mandatory groups
RFC 1905	Protocol Operations for Version 2 of the Simple Network Management Protocol (SNMPv2).
RFC 1906	Transport Mappings for Version 2 of the Simple Network Management Protocol (SNMPv2).

DN03351499 136 (137) O Nokia Corporation

Table 99. IETF standards and RFCs (cont.)

Standard number	Standard title
RFC 1907	Management Information Base for Version 2 of the Simple Network Management Protocol (SNMPv2).
RFC 2021	Remote Network Monitoring Management Information Base Version 2 (SMIv2).
RFC 2178	OSPF Version 2
RFC 2578	Structure of Management Information Version 2 (SMIv2).
RFC 2579	Textual Conventions for SMIv2.
RFC 2580	Conformance Statements for SMIv2.
RFC 2737	Entity-MIB.
RFC 2863	The Interfaces Group of MIB-II.

Table 100. IEEE Standards for 10Base-T interface

Standard number	Standard title
802-3	Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications.

Table 101. IETF Standards and RFCs for payload Ethernet EPIU

Standard identification	Standard title
RFC 2819	RMON Statistics Group
RFC 2863	The Interfaces Group of MIB II

Standard identification	Standard title
802.3	Part 3: Carrier Sense with Multiple Access with Collision detection access method and physical layer specifications
802.3u	100Base-T Fast Ethernet and Auto-Negotiation
802.3x	Full Duplex standard