

VMware Tanzu Kubernetes Grid: Install, Configure, Manage

Lecture Manual

Tanzu Kubernetes Grid 1.3

VMware Tanzu Kubernetes Grid: Install, Configure, Manage

Lecture Manual

Tanzu Kubernetes Grid 1.3

Part Number EDU-EN-TKGICM13-LECT (17-SEP-2021)

Copyright © 2021 VMware, Inc. All rights reserved. This manual and its accompanying materials are protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at <http://www.vmware.com/go/patents>. VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. VMware vSphere® with VMware Tanzu™, VMware vSphere® Distributed Resource Scheduler™, VMware vSphere® Client™, VMware vSphere® 2015, VMware vSphere®, VMware vRealize® Operations™ Enterprise, VMware vRealize® Operations™, VMware vRealize® Operations™ Standard, VMware vRealize® Operations™ Advanced, VMware vRealize® Log Insight™ for vCenter™, VMware vRealize® Log Insight™, VMware vCenter® Single Sign-On, VMware vCenter Server®, VMware vSphere® vApp(s)™, VMware View®, VMware Horizon® View™, VMware Verify™, VMware Tanzu™ Standard, VMware Tanzu™ Mission Control™, VMware Tanzu™ Basic, VMware Tanzu™ Advanced, VMware Tanzu™, VMware Tanzu™ Standard, VMware Tanzu™ Advanced, VMware Tanzu™ Enterprise, VMware Tanzu™ Community, VMware Tanzu™ Basic, VMware® Pivotal Container Service, VMware® Enterprise PKS, VMware Cloud™ on AWS, VMware Cloud™ on AWS GovCloud (US), VMware Cloud™ on AWS Outposts, VMware Tanzu™ Observability™ powered by Wavefront®, VMware Tanzu™ Observability™ by Wavefront, VMware Tanzu™ Mission Control™ Standard, VMware Tanzu™ Mission Control™ Advanced, VMware Tanzu™ Mission Control™ Enterprise, VMware Tanzu™ Kubernetes Grid™, Project Photon OS™, VMware Photon™, VMware NSX-T™ Data Center, VMware NSX-T™, VMware NSX® Advanced Load Balancer™, VMware NSX® Advanced Load Balancer™ – Basic Edition, VMware Lab Connect™, VMware Horizon® Standard Edition, VMware Pivotal Labs® Health Check™, VMware Go™, VMware ESXi™, Azure VMware® Solution, and VMware ACE™ are registered trademarks or trademarks of VMware, Inc. in the United States and/or other jurisdictions.

The training material is provided “as is,” and all express or implied conditions, representations, and warranties, including any implied warranty of merchantability, fitness for a particular purpose or noninfringement, are disclaimed, even if VMware, Inc., has been advised of the possibility of such claims. This training material is designed to support an instructor-led training course and is intended to be used for reference purposes in conjunction with the instructor-led training course.

The training material is not a standalone training tool. Use of the training material for self-study without class attendance is not recommended. These materials and the computer programs to which it relates are the property of, and embody trade secrets and confidential information proprietary to, VMware, Inc., and may not be reproduced, copied, disclosed, transferred, adapted or modified without the express written approval of VMware, Inc.

Contents

Module 1 Course Introduction.....	1
1-2 Course Introduction	1
1-3 Importance.....	1
1-4 Learner Objectives.....	1
1-5 Course Outline.....	2
1-6 Typographical Conventions.....	3
1-7 References.....	4
1-8 VMware Online Resources.....	4
1-9 VMware Education Overview.....	5
1-10 VMware Certification Overview	6
1-11 VMware Badge Overview.....	7
Module 2 Introducing VMware Tanzu Kubernetes Grid.....	9
2-2 Importance.....	9
2-3 Module Lessons	9
2-4 Lesson 1: Tanzu Kubernetes Grid in the VMware Tanzu Portfolio.....	10
2-5 Learner Objectives.....	10
2-6 VMware Tanzu Portfolio	10
2-7 Kubernetes Life Cycle Management.....	11
2-8 Tanzu Kubernetes Grid	12
2-9 vSphere with Tanzu	13
2-10 Tanzu Kubernetes Grid Integrated Edition	14
2-11 VMware Tanzu Mission Control.....	15
2-12 VMware Tanzu Editions	16
2-13 Review of Learner Objectives.....	17
2-14 Lesson 2: Tanzu Kubernetes Grid Concepts	18
2-15 Learner Objectives.....	18

2-16	Bootstrap Machines	19
2-17	Tanzu CLI and Installer Interface.....	20
2-18	Tanzu Kubernetes Cluster Plans	21
2-19	Management Clusters.....	22
2-20	Tanzu Kubernetes Clusters.....	23
2-21	Shared and In-Cluster Services	24
2-22	Tanzu Kubernetes Grid Instances.....	25
2-23	Bootstrapping Many Instances.....	26
2-24	Registering with VMware Tanzu Mission Control.....	27
2-25	Review of Learner Objectives.....	28
2-26	Lesson 3: Tanzu CLI and Carvel Tools.....	29
2-27	Learner Objectives.....	29
2-28	About the Tanzu CLI	30
2-29	Tanzu CLI Plug-Ins	31
2-30	Installing Tanzu CLI Plug-Ins.....	32
2-31	Tanzu CLI Command Syntax.....	33
2-32	CLI Configuration Files	34
2-33	Bootstrap Machine Requirements.....	35
2-34	About the Tanzu Kubernetes Grid Installer Interface	36
2-35	Carvel Tools	37
2-36	Lab 1: Setting Up a Bootstrap Machine	38
2-37	Review of Learner Objectives.....	39
2-38	Lesson 4: Cluster API.....	40
2-39	Learner Objectives.....	40
2-40	Introducing Cluster API.....	41
2-41	Cluster API CRDs.....	42
2-42	Machine Health Checks.....	43
2-43	Cluster API Components	44
2-44	Bootstrap Providers	45
2-45	Infrastructure Providers.....	46
2-46	Cluster API Controllers	47
2-47	About the Cluster API Provider for vSphere	48
2-48	Review of Learner Objectives.....	49
2-49	Key Points.....	49
Module 3	Management Clusters.....	51
3-2	Importance.....	51

3-3	Module Lessons	51
3-4	Lesson 1: Preparing the vSphere Environment.....	52
3-5	Learner Objectives.....	52
3-6	vSphere Requirements	53
3-7	vSphere Port Requirements.....	54
3-8	Dedicated vSphere SSO User	55
3-9	Tanzu Kubernetes Grid User Permissions.....	56
3-10	SSH Key Pairs.....	57
3-11	OVA Templates.....	58
3-12	Deploying in Internet-Restricted Environments.....	59
3-13	Lab 2: Preparing for an Internet-Restricted Installation	60
3-14	Lab 3: Configuring vSphere	60
3-15	Review of Learner Objectives.....	60
3-16	Lesson 2: NSX Advanced Load Balancer	61
3-17	Learner Objectives.....	61
3-18	Load Balancing Kubernetes Services	62
3-19	NSX Advanced Load Balancer Components.....	63
3-20	NSX Advanced Load Balancer Architecture.....	64
3-21	AKO Operator Functionality	65
3-22	Avi Kubernetes Operator Functionality.....	66
3-23	Review of Learner Objectives.....	67
3-24	Lesson 3: Cluster Authentication.....	68
3-25	Learner Objectives.....	68
3-26	External Authentication.....	69
3-27	User Authentication Using Pinniped	70
3-28	About Dex	70
3-29	Kubeconfig Files Configured with Pinniped Authentication	71
3-30	Pinniped Authentication Workflow (1)	72
3-31	Pinniped Authentication Workflow (2)	73
3-32	Pinniped Authentication Workflow (3)	74
3-33	Pinniped Session Cache	75
3-34	Review of Learner Objectives.....	76
3-35	Lesson 4: Creating Management Clusters.....	77
3-36	Learner Objectives.....	77
3-37	Initializing Tanzu Kubernetes Grid Instances	78
3-38	Deploying Management Clusters: vSphere 7	79

3-39	Deploying Management Clusters: Installer UI or CLI.....	80
3-40	Tanzu CLI Management Cluster Plug-In.....	81
3-41	Tanzu CLI Management Cluster Create Command	82
3-42	Tanzu Kubernetes Grid Installer (1)	83
3-43	Tanzu Kubernetes Grid Installer (2).....	84
3-44	Tanzu Kubernetes Grid Installer (3)	85
3-45	Tanzu Kubernetes Grid Installer (4).....	86
3-46	Tanzu Kubernetes Grid Installer (5)	87
3-47	Tanzu Kubernetes Grid Installer (6)	88
3-48	Tanzu Kubernetes Grid Installer (7)	89
3-49	Tanzu Kubernetes Grid Installer (8).....	90
3-50	Tanzu Kubernetes Grid Installer (9)	91
3-51	Tanzu Kubernetes Grid Installer (10)	92
3-52	Tanzu Kubernetes Grid Installer (11).....	93
3-53	Tanzu Kubernetes Grid Installer (12).....	94
3-54	Tanzu Kubernetes Grid Installer (13).....	95
3-55	Tanzu Kubernetes Grid Installer (14)	96
3-56	Cluster Configuration Options (1)	97
3-57	Cluster Configuration Options (2)	98
3-58	Cluster API Configuration.....	99
3-59	Infrastructure Configuration.....	100
3-60	Management Cluster Deployment Workflow	101
3-61	Deployment Logs (1)	102
3-62	Deployment Logs (2)	102
3-63	Deployment Logs (3)	103
3-64	Deployment Logs (4)	104
3-65	Management Cluster VMs	105
3-66	Lab 4: Deploying a Management Cluster	106
3-67	Review of Learner Objectives.....	106
3-68	Lesson 5: Managing Management Clusters	107
3-69	Learner Objectives.....	107
3-70	Working with Multiple Management Clusters	108
3-71	Adding Existing Management Clusters to the Tanzu CLI.....	109
3-72	Review of Learner Objectives.....	110
3-73	Key Points.....	110

Module 4	Tanzu Kubernetes Clusters.....	111
4-2	Importance.....	111
4-3	Module Lessons	111
4-4	Lesson 1: Building Custom Cluster API Machine Images.....	112
4-5	Learner Objectives.....	112
4-6	Deploying Clusters Using Custom Machine Images.....	113
4-7	Custom Machine Image Customizations.....	114
4-8	Building Custom Machine Images: Requirements.....	115
4-9	Building Custom Machine Images: Steps.....	116
4-10	Using Custom Machine Images.....	117
4-11	Review of Learner Objectives.....	118
4-12	Lesson 2: Deploying Tanzu Kubernetes Clusters.....	119
4-13	Learner Objectives.....	119
4-14	Tanzu CLI Cluster Plug-In	120
4-15	Tanzu CLI Cluster Create Command	121
4-16	Creating Tanzu Kubernetes Clusters	122
4-17	Cluster Configuration Files	123
4-18	Source of Cluster Configuration Values.....	124
4-19	Deploying Clusters with a Highly Available Control Plane	125
4-20	Previewing the YAML File for Tanzu Kubernetes Clusters.....	126
4-21	Overriding Default Configuration Parameters.....	127
4-22	Deploying Clusters that Run a Specific Kubernetes Version.....	128
4-23	Lab 5: Deploying a Tanzu Kubernetes Cluster.....	129
4-24	Review of Learner Objectives.....	129
4-25	Lesson 3: Managing Tanzu Kubernetes Clusters	130
4-26	Learner Objectives.....	130
4-27	Granting Authenticated Access to a Cluster	131
4-28	Granting Access to Cluster Resources.....	132
4-29	Scaling Clusters.....	133
4-30	Scaling Management Clusters.....	134
4-31	Cluster Autoscaler	135
4-32	Machine Health Checks.....	136
4-33	Configuring Machine Health Checks.....	137
4-34	Lab 6: Managing a Tanzu Kubernetes Cluster.....	138
4-35	Lab 7: Providing Access to Developers.....	138
4-36	Review of Learner Objectives.....	138

4-37	Lesson 4: Tanzu Kubernetes Cluster Architecture	139
4-38	Learner Objectives.....	139
4-39	Tanzu Kubernetes Cluster VMs.....	140
4-40	Upstream Kubernetes Components (1)	141
4-41	Upstream Kubernetes Components (2)	142
4-42	Kubernetes API High-Availability	143
4-43	Authentication Core Add-Ons.....	144
4-44	Networking Core Add-Ons.....	145
4-45	vSphere Core Add-Ons	146
4-46	Metrics Core Add-Ons.....	147
4-47	Review of Learner Objectives.....	148
4-48	Key Points.....	148
	Module 5 Configuring and Managing Tanzu Kubernetes Grid Instances....	149
5-2	Importance.....	149
5-3	Module Lessons	149
5-4	Lesson 1: Tanzu Kubernetes Grid Extensions.....	150
5-5	Learner Objectives.....	150
5-6	About the Tanzu Kubernetes Grid Extensions Bundle	150
5-7	Extensions Included in the Bundle	151
5-8	Container Images	152
5-9	Deploying Extensions with kapp-controller.....	153
5-10	Configuring Extensions with Kubernetes Secrets	154
5-11	About cert-manager	155
5-12	Deleting Extensions.....	156
5-13	Lab 8: Unzipping the Tanzu Kubernetes Grid Extensions Bundle	157
5-14	Lab 9: Deploying cert-manager	157
5-15	Review of Learner Objectives.....	157
5-16	Lesson 2: Image Registry	158
5-17	Learner Objectives.....	158
5-18	About Harbor.....	159
5-19	Harbor Components.....	160
5-20	Vulnerability Scanning.....	161
5-21	Harbor Deployment Options.....	162
5-22	Harbor Authentication.....	163
5-23	Review of Learner Objectives.....	164
5-24	Lesson 3: Logging.....	165

5-25	Learner Objectives	165
5-26	About Fluent Bit	166
5-27	How Fluent Bit Works.....	167
5-28	Metadata Added By Fluent Bit.....	168
5-29	Fluent Bit Syslog Configuration.....	169
5-30	Lab 10: Deploying Fluent Bit.....	170
5-31	Review of Learner Objectives.....	170
5-32	Lesson 4: Ingress.....	171
5-33	Learner Objectives.....	171
5-34	About Ingress	172
5-35	About Contour	173
5-36	About HTTPProxy Resources	174
5-37	How Contour Works	175
5-38	Contour Configuration Options.....	176
5-39	Lab 11: Deploying Contour	177
5-40	Review of Learner Objectives.....	177
5-41	Lesson 5: Service Discovery.....	178
5-42	Learner Objectives.....	178
5-43	About Service Discovery	179
5-44	About External DNS	180
5-45	DNS Servers Supported by External DNS	181
5-46	How External DNS Works.....	182
5-47	External DNS Configuration for BIND Servers	183
5-48	Lab 12: Deploying External DNS	184
5-49	Review of Learner Objectives.....	184
5-50	Lesson 6: Cluster Monitoring.....	185
5-51	Learner Objectives.....	185
5-52	Monitoring in Tanzu Kubernetes Grid.....	186
5-53	Grafana and Prometheus Architecture.....	187
5-54	Prometheus Components	188
5-55	Prometheus Configuration Options.....	189
5-56	About Grafana.....	190
5-57	Grafana Configuration Options.....	191
5-58	Lab 13: Deploying Prometheus and Grafana	192
5-59	Lab 14: Deploying a Workload	192
5-60	Review of Learner Objectives.....	192

5-61	Key Points.....	193
Module 6	Troubleshooting Tanzu Kubernetes Grid.....	195
6-2	Importance.....	195
6-3	Module Lessons	195
6-4	Lesson 1: Tanzu Kubernetes Grid Logs.....	196
6-5	Learner Objectives.....	196
6-6	Monitoring Tanzu Kubernetes Cluster Deployments in Cluster API Logs.....	197
6-7	Viewing Cluster API Resources	198
6-8	About Kubernetes Audit Logging.....	199
6-9	About System Audit Logging.....	200
6-10	Review of Learner Objectives.....	201
6-11	Lesson 2: Crash Diagnostics.....	202
6-12	Learner Objectives.....	202
6-13	About Crash Diagnostics	203
6-14	About Diagnostic Scripts.....	204
6-15	About the Default Diagnostics Script	205
6-16	Passing Arguments	206
6-17	Default Diagnostic Script Arguments	207
6-18	Running Crash Diagnostics	208
6-19	Lab 15: Configuring and Running Crash Diagnostics.....	209
6-20	Review of Learner Objectives.....	209
6-21	Lesson 3: Troubleshooting Commands	210
6-22	Learner Objectives.....	210
6-23	Connecting to Cluster Nodes with SSH.....	211
6-24	Failure of the Management Cluster Create Command.....	212
6-25	Recovering Management Cluster Credentials.....	213
6-26	Lab 16: Performing Basic Troubleshooting.....	214
6-27	Lab 17: (Optional) Building Custom Images	214
6-28	Review of Learner Objectives.....	214
6-29	Key Points.....	215

Module 1

Course Introduction

1-2 Course Introduction

1-3 Importance

Understanding Tanzu Kubernetes Grid is essential for organizations that build modern applications platforms based on Kubernetes.

1-4 Learner Objectives

- Describe Tanzu Kubernetes Grid
- Differentiate between the Kubernetes life cycle management options in the VMware Tanzu portfolio
- Explain how to prepare a vSphere environment to install Tanzu Kubernetes Grid
- Describe how to initialize a Tanzu Kubernetes Grid instance
- Detail how to create Tanzu Kubernetes clusters
- Explain how to deploy the Tanzu Kubernetes Grid extensions on a Tanzu Kubernetes cluster
- Describe how to troubleshoot a Tanzu Kubernetes Grid instance

1-5 Course Outline

1. Course Introduction
2. Introducing VMware Tanzu Kubernetes Grid
3. Management Clusters
4. Tanzu Kubernetes Clusters
5. Configuring and Managing Tanzu Kubernetes Grid Instances
6. Troubleshooting Tanzu Kubernetes Grid

1-6 Typographical Conventions

The following typographical conventions are used in this course.

Conventions	Use and Examples
Monospace	Identifies command names, command options, parameters, code fragments, error messages, filenames, folder names, directory names, and path names: <ul style="list-style-type: none">• Run the <code>esxtop</code> command.• ... found in the <code>/var/log/messages</code> file.
Monospace	Identifies user inputs:
Bold	<ul style="list-style-type: none">• Enter ipconfig /release.
Boldface	Identifies user interface controls: <ul style="list-style-type: none">• Click the Configuration tab.
<i>Italic</i>	Identifies book titles: <ul style="list-style-type: none">• <i>vSphere Virtual Machine Administration</i>
< >	Indicates placeholder variables: <ul style="list-style-type: none">• <ESXi_host_name>• ... the <code>Settings/<Your_Name>.txt</code> file

1-7 References

Title	Location
Cluster API	https://cluster-api.sigs.k8s.io
Kubernetes Cluster API Provider vSphere	https://github.com/kubernetes-sigs/cluster-api-provider-vsphere
Fluent Bit	https://docs.fluentbit.io/manual/
Pinniped	https://pinniped.dev/
Contour	https://projectcontour.io/docs/

1-8 VMware Online Resources

Documentation for VMware Tanzu Kubernetes Grid: <https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html>

VMware Communities: <http://communities.vmware.com>

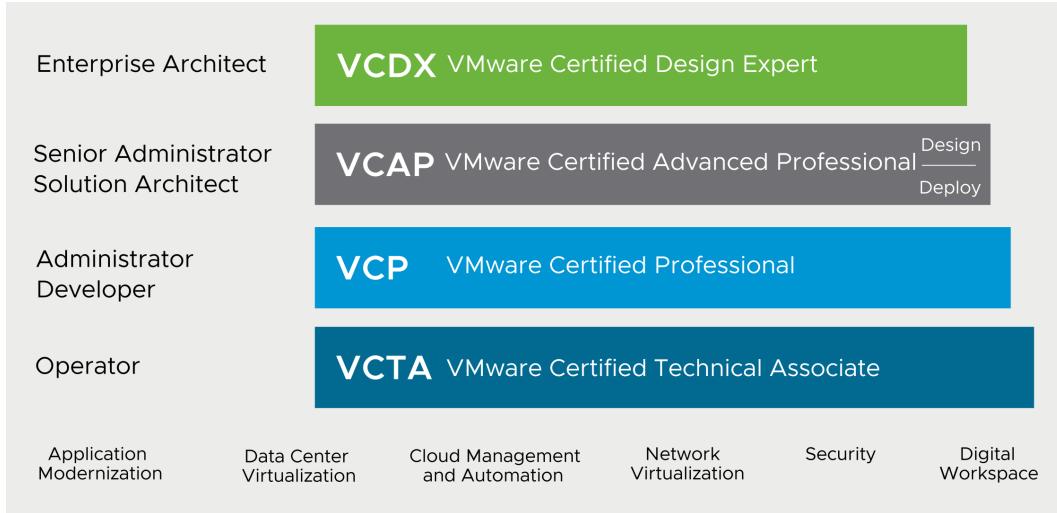
- Start a discussion.
- Access the VMware knowledge base.
- Access documentation, technical papers, and compatibility guides.
- Access communities.
- Access user groups.

VMware Support: <http://www.vmware.com/support>

VMware Hands-on Labs: <http://hol.vmware.com>

VMware Education: <http://www.vmware.com/education>

- Access course catalog and worldwide course schedule.


1-9 VMware Education Overview

Your instructor will introduce other Education Services offerings available to you:

- VMware Learning Paths:
 - Help you find the course that you need based on the product, your role, and your level of experience
 - Can be accessed at <https://vmware.com/education>
- VMware Learning Zone, which is the official source of digital training, includes the following options:
 - On-Demand Courses: Self-paced learning that combines lecture modules with hands-on practice labs
 - VMware Lab Connect: Self-paced, technical lab environment that lets you practice skills learned during instructor-led training
 - Certification Exam Prep: Comprehensive video-based reviews of exam topics and objectives to help you take your certification exam
- For more information, see <https://vmwarelearningzone.vmware.com>

1-10 VMware Certification Overview

VMware certifications validate your expertise and recognize your technical knowledge and skills with VMware technology.

VMware certification sets the standards for IT professionals who work with VMware technology. Certifications are grouped into technology tracks. Each track offers one or more levels of certification (up to five levels).

For the complete list of certifications and details about how to attain these certifications, see <https://vmware.com/certification>.

1-11 VMware Badge Overview

VMware badges are digital emblems of skills and achievements.

Digital badges have the following features:

- Easy to share in social media (LinkedIn, Twitter, Facebook, blogs, and so on)
- Tethered to VMware to validate and verify achievement
- Contain metadata with skill tags and accomplishments
- Based on Mozilla's Open Badges standard

For the complete list of digital badges, see <http://www.pearsonvue.com/vmware/badging>.

Module 2

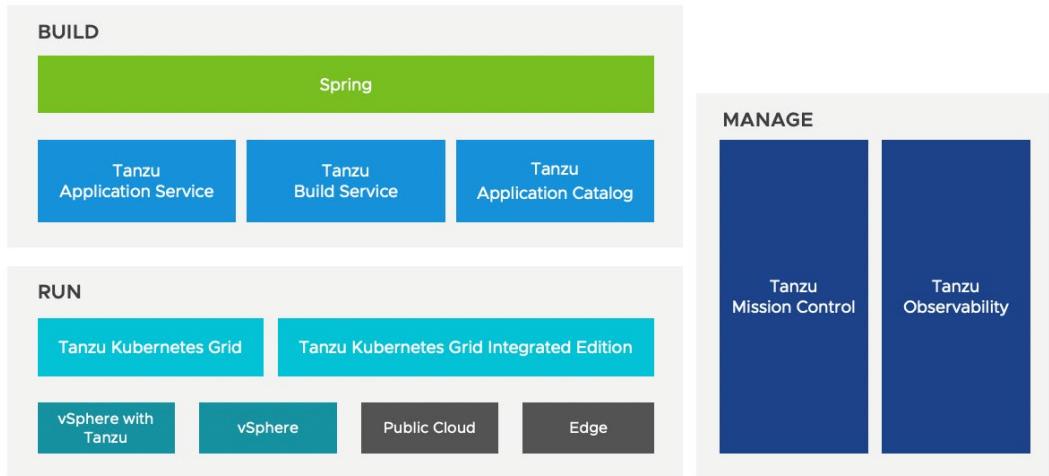
Introducing VMware Tanzu Kubernetes Grid

2-2 Importance

Kubernetes is a key technology in the VMware Tanzu portfolio and Tanzu Kubernetes Grid is the common implementation of Kubernetes across supported cloud platforms.

2-3 Module Lessons

1. Tanzu Kubernetes Grid in the VMware Tanzu Portfolio
2. Tanzu Kubernetes Grid Concepts
3. Tanzu CLI and Carvel Tools
4. Cluster API


2-4 Lesson 1: Tanzu Kubernetes Grid in the VMware Tanzu Portfolio

2-5 Learner Objectives

- Describe the VMware Tanzu products responsible for Kubernetes life cycle management

2-6 VMware Tanzu Portfolio

The goal of the VMware Tanzu portfolio is to provide a modern applications platform.

Edge refers to environments located in remote locations outside of a typical data center environment. These environments have limited resources, for example, a vSphere cluster consisting of two to three ESXi hosts.

2-7 Kubernetes Life Cycle Management

The following products from the VMware Tanzu portfolio provide Kubernetes life cycle management (LCM):

- Run:
 - VMware Tanzu Kubernetes Grid
 - VMware vSphere with Tanzu
 - VMware Tanzu Kubernetes Grid Integrated Edition
- Manage:
 - VMware Tanzu Mission Control

2-8 Tanzu Kubernetes Grid

Tanzu Kubernetes Grid:

- Is a multicloud Kubernetes distribution that runs on:
 - vSphere, VMware Cloud on AWS, Azure VMware Solution
 - Amazon Web Services (AWS)
 - Microsoft Azure
- Automates the life cycle management of multiple Tanzu Kubernetes clusters using Cluster API
- Is an open source-aligned Kubernetes distribution
- Includes Kubernetes binaries that are tested, signed, and supported by VMware
- Includes signed and supported versions of open-source applications to provide the networking, authentication, ingress, logging, and monitoring services that a production Kubernetes environment requires

2-9 vSphere with Tanzu

vSphere with Tanzu:

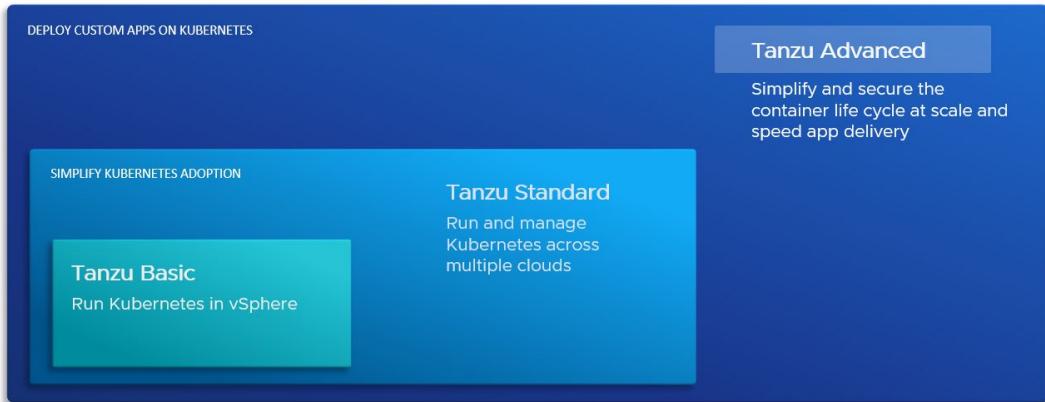
- Provides a Kubernetes experience that is tightly integrated within vSphere 7
- Contains multiple services which provide access to infrastructure through a Kubernetes API
- Contains the Tanzu Kubernetes Grid Service:
 - Runs on supervisor clusters in vSphere with Tanzu
 - Creates Tanzu Kubernetes clusters that are optimized for vSphere

2-10 Tanzu Kubernetes Grid Integrated Edition

Tanzu Kubernetes Grid Integrated Edition:

- Is a multicloud Kubernetes distribution that you can run on:
 - vSphere
 - Google Cloud Platform
 - AWS
 - Microsoft Azure
- Was previously known as VMware Enterprise PKS
- Automates the life cycle management of multiple Kubernetes clusters using BOSH
- Includes Kubernetes binaries that are tested, signed, and supported by VMware
- Provides advanced networking with VMware NSX-T Data Center
- Provides integrations to vRealize Log Insight, vRealize Operations, and Tanzu Observability
- Supports Microsoft Windows workloads

2-11 VMware Tanzu Mission Control


VMware Tanzu Mission Control:

- Provides a centralized management platform for consistently operating and securing multiple Kubernetes clusters and modern applications across multiple teams and clouds
- Is available through VMware Cloud services
- Provides a hosted Tanzu Kubernetes Grid implementation as a managed service

2-12 VMware Tanzu Editions

VMware Tanzu editions are groupings of the VMware Tanzu products that are designed for organizations at different stages of Kubernetes adoption.

Tanzu Kubernetes Grid is included in each VMware Tanzu edition.

VMware Tanzu editions:

- VMware Tanzu Basic:
 - Deploy Kubernetes using the Tanzu Kubernetes Grid Service in vSphere with Tanzu or Tanzu Kubernetes Grid.
- VMware Tanzu Standard:
 - Deploy Kubernetes across multiple public clouds using Tanzu Kubernetes Grid.
 - Manage Kubernetes using VMware Tanzu Mission Control.
- VMware Tanzu Advanced:
 - Developers use Spring Framework to reduce application development time.
 - Tanzu Build Service and Tanzu Application Catalog are used to build applications and maintain a secure and approved catalog of container images.

For more information about each VMware Tanzu edition, see *VMware Tanzu Overview* at <https://tanzu.vmware.com/tanzu>.

2-13 Review of Learner Objectives

- Describe the VMware Tanzu products responsible for Kubernetes life cycle management

2-14 **Lesson 2: Tanzu Kubernetes Grid Concepts**

2-15 Learner Objectives

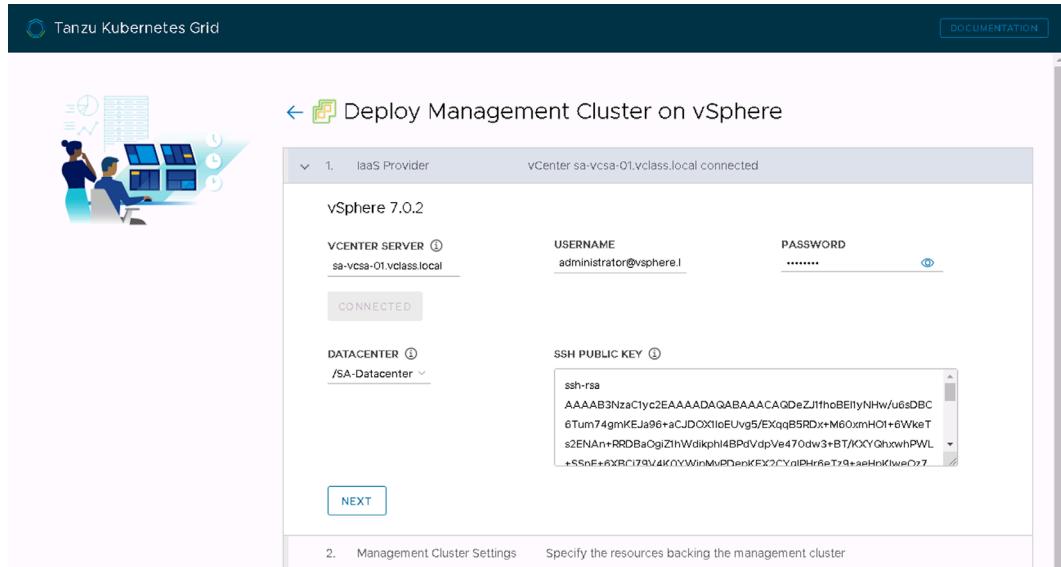
- Describe the Tanzu Kubernetes Grid concepts
- Describe the components of a Tanzu Kubernetes Grid instance

2-16 Bootstrap Machines

A bootstrap machine is typically a VM on which you download and run the Tanzu CLI.

This machine is used to initialize a Tanzu Kubernetes Grid instance by bootstrapping a management cluster on the cloud infrastructure of choice.

After bootstrapping the management cluster, the machine is used to manage the Tanzu Kubernetes Grid instance.



2-17 Tanzu CLI and Installer Interface

The Tanzu CLI is used to initialize a Tanzu Kubernetes Grid instance by creating management clusters.

After the management cluster is created, the Tanzu CLI communicates with it to create, scale, upgrade, and delete Tanzu Kubernetes clusters.

The installer interface is launched from the Tanzu CLI and is a graphical wizard which guides you through the configuration of a management cluster.

2-18 Tanzu Kubernetes Cluster Plans

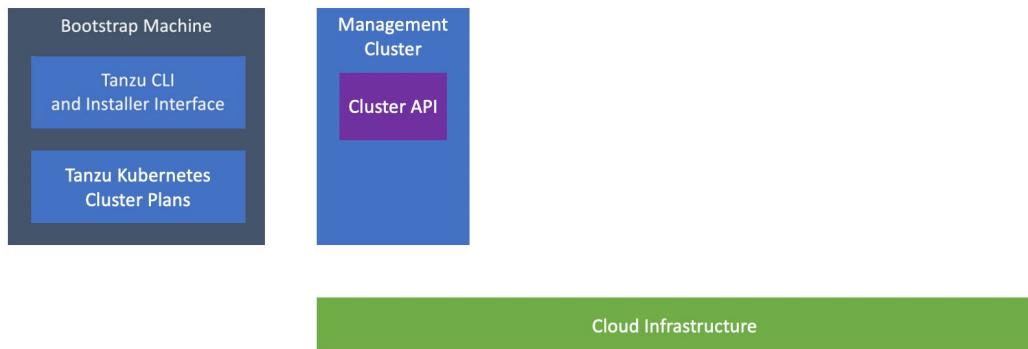
A cluster plan is the blueprint that describes the configuration with which to deploy a Tanzu Kubernetes cluster.

A cluster plan provides a set of configurable values that describe settings, for example, the amount of control plane machines, worker machines, virtual CPUs, memory, and other parameters.

The following cluster plans exist by default:

- dev
- prod

Existing cluster plans can be customized and new cluster plans can be created.


2-19 Management Clusters

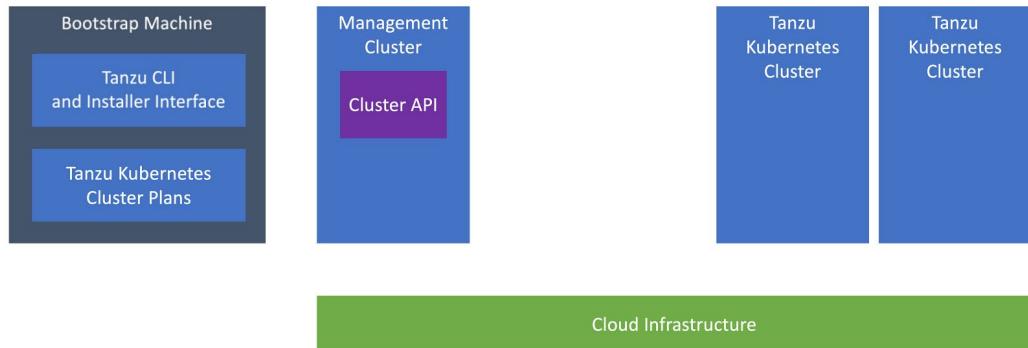
The management cluster is the first element that you deploy when you create a Tanzu Kubernetes Grid instance.

This cluster is a Tanzu Kubernetes cluster dedicated to running Cluster API which provides life cycle management for Tanzu Kubernetes workload clusters.

The cluster is composed of one or more control plane nodes and one or more worker nodes.

In vSphere with Tanzu, the supervisor cluster performs the role of the management cluster.

2-20 Tanzu Kubernetes Clusters

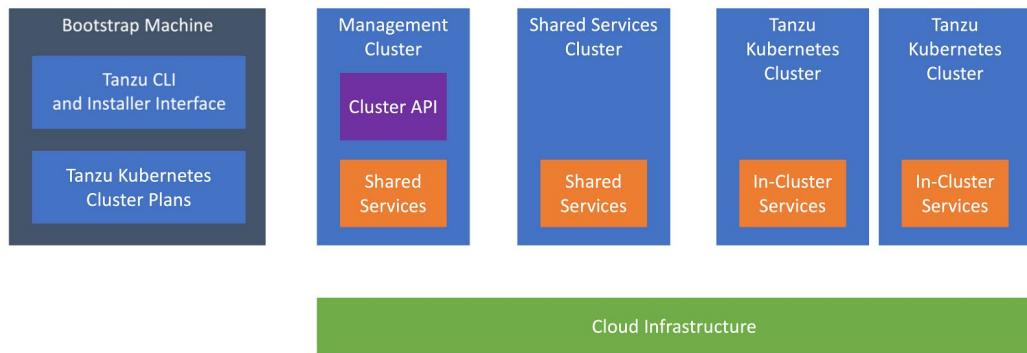

Tanzu Kubernetes clusters are Kubernetes clusters that you deploy from the management cluster by using the Tanzu CLI.

These clusters are composed of one or more control plane nodes and one or more worker nodes.

The terms Tanzu Kubernetes cluster and workload cluster are used interchangeably.

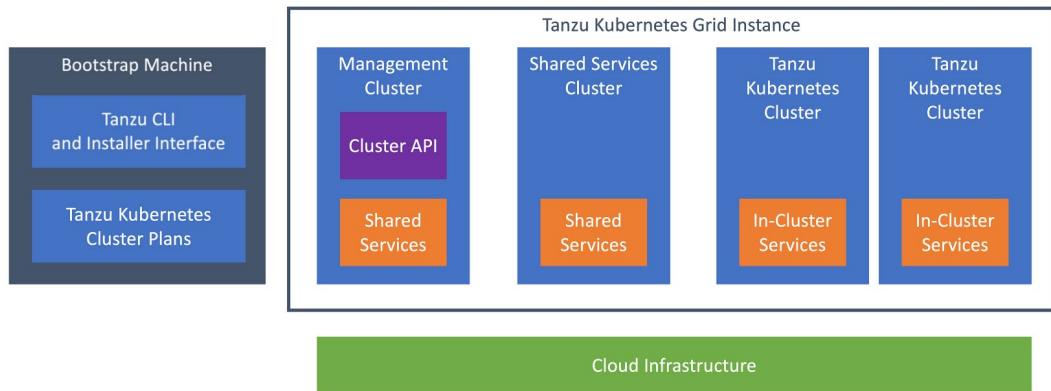
Tanzu Kubernetes clusters are created using a cluster plan.

You can manage the entire life cycle of Tanzu Kubernetes clusters by using the Tanzu CLI.


2-21 Shared and In-Cluster Services

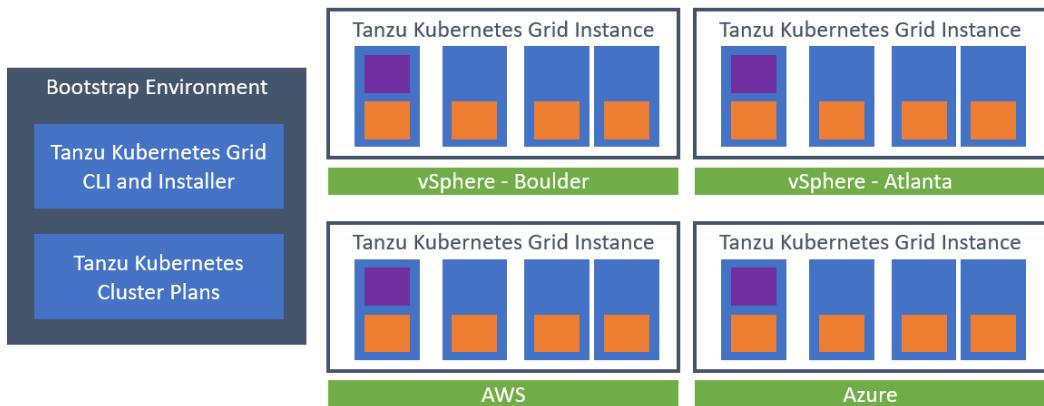
Shared and in-cluster services are services that run in a Tanzu Kubernetes Grid instance, providing authentication, ingress, logging, and service discovery.

Shared services run on the management cluster or a dedicated shared-services cluster and are used by multiple Tanzu Kubernetes clusters.


The Tanzu Kubernetes Grid extensions bundle is downloaded from the VMware website and provides the YAML configurations for supported services.

In-cluster services are deployed to specific Tanzu Kubernetes clusters.

2-22 Tanzu Kubernetes Grid Instances


A Tanzu Kubernetes Grid instance is a full deployment of Tanzu Kubernetes Grid, including the management cluster, the deployed Tanzu Kubernetes clusters, and the shared and in-cluster services that you configure.

2-23 Bootstrapping Many Instances

A single bootstrap machine can bootstrap many instances of Tanzu Kubernetes Grid for:

- Environments, such as production, staging, and test
- IaaS providers, such as vSphere and AWS
- Failure domains, for example, Datacenter-1, AWS us-east-2, or AWS us-west-2

2-24 Registering with VMware Tanzu Mission Control

Registering Tanzu Kubernetes Grid management clusters and workload clusters with VMware Tanzu Mission Control provides a central control plane for:

- Applying consistent Kubernetes policies across clusters
- Self-service provisioning and life cycle management of clusters
- Data protection of Kubernetes cluster workloads

2-25 Review of Learner Objectives

- Describe the Tanzu Kubernetes Grid concepts
- Describe the components of a Tanzu Kubernetes Grid instance

2-26 **Lesson 3: Tanzu CLI and Carvel Tools**

2-27 Learner Objectives

- Describe the Tanzu CLI
- List the requirements for a bootstrap machine
- Describe the Carvel Tool Set

2-28 About the Tanzu CLI

The Tanzu CLI is:

- Available for Windows, MacOS, and Linux
- Used to interact with different products in the VMware Tanzu portfolio
- Used with Tanzu Kubernetes Grid to:
 - Initialize a Tanzu Kubernetes Grid instance
 - Create, scale, upgrade, and delete Tanzu Kubernetes clusters

2-29 Tanzu CLI Plug-Ins

The Tanzu CLI provides additional functionality through the use of plug-ins.

Plug-Ins	Purpose
management-cluster	Initializes a Tanzu Kubernetes Grid instance and manages management clusters.
cluster	Manages Tanzu Kubernetes workload clusters.
kubernetes-release	Kubernetes release operations.
login	Sets the management cluster context.
pinniped-auth	Manages the authentication flow when logging in to a Tanzu Kubernetes Grid instance using OIDC or LDAP.

2-30 Installing Tanzu CLI Plug-Ins

Ways to install Tanzu CLI plug-ins:

- From the Internet using `tanzu plugin install <PLUGIN-NAME>`
- From a local directory using `tanzu plugin install <PLUGIN-NAME> --local <DIR>`
- All available plug-ins using `tanzu plugin install all [--local <DIR>]`

2-31 Tanzu CLI Command Syntax

The Tanzu CLI uses the following syntax:

- `tanzu <RESOURCE> [<SUB-RESOURCE>] <VERB> --<OPTIONS>`

Tanzu CLI command examples:

- `tanzu management-cluster get`
- `tanzu cluster create --file tkc-01.yaml`
- `tanzu cluster list`
- `tanzu cluster get tkc-01`
- `tanzu cluster kubeconfig get --admin`
- `tanzu kubernetes-release get`

2-32 CLI Configuration Files

The Tanzu CLI creates the following configuration files.

File	Description
~/.kube-tkg/config	Stores the Kubernetes contexts for the management clusters that the Tanzu CLI manages. This file is comparable to the ~/.kube/config file used by kubectl.
~/.tanzu/config.yaml	Stores a list of management clusters that the Tanzu CLI is managing.
~/.tanzu/tkg/providers	Stores the YAML files that are templated and merged when a cluster configuration is generated.
~/.tanzu/tkg/clusterconfigs	Management cluster configuration files created by the installer UI are saved here.
~/.tanzu/tkg/bom	Stores the Bill of Materials (BOM) files which list the container image versions provided by the installed Tanzu Kubernetes Grid version.
~/.tanzu/pinniped/sessions.yaml	Used by the pinniped-auth plug-in to store authenticated session details when accessing clusters using OIDC or LDAP.

2-33 Bootstrap Machine Requirements

The bootstrap machine on which you initialize a Tanzu Kubernetes Grid instance using `tanzu management-cluster create` must meet the following requirements:

- `kubectl` is installed.
- Docker is installed, if you are installing Tanzu Kubernetes Grid on Linux.
- Docker Desktop is installed, if you are installing Tanzu Kubernetes Grid on MacOS or Windows.
- A minimum of 6 GB of memory is available for the containers used during the bootstrapping process.
- IP network connectivity exists to the vCenter Server instance and to the network to which the management cluster is deployed.

2-34 About the Tanzu Kubernetes Grid Installer Interface

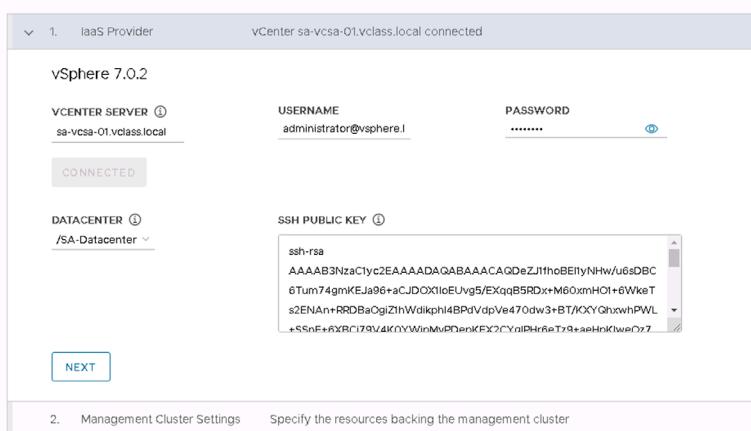
The Tanzu Kubernetes Grid installer interface is a graphical wizard that guides you through the configuration of a management cluster.

Welcome to the VMware Tanzu Kubernetes Grid Installer

VMware Tanzu Kubernetes Grid delivers the services that IT teams need to effectively support development teams that develop and configure Kubernetes-based applications in a complex world. It balances the needs of development teams to access resources and services, with the needs of centralized IT organizations to maintain and control the development environments.

To begin using Tanzu Kubernetes Grid, you first deploy a management cluster to your chosen infrastructure. The management cluster provides the entry point for Tanzu Kubernetes Grid integration with your platform, and allows you to deploy multiple workload clusters.

Product documentation can be found [here](#).


Deploy the management cluster

VMware vSphere Deploy your management cluster on VMware vSphere DEPLOY	Amazon EC2 Deploy your management cluster on Amazon Elastic Compute Cloud DEPLOY	Microsoft Azure Deploy your management cluster on Microsoft Azure DEPLOY
---	---	---

← Deploy Management Cluster on vSphere

1. IaaS Provider vCenter sa-vcsa-01.vclass.local connected

vSphere 7.0.2

VCENTER SERVER sa-vcsa-01.vclass.local

CONNECTED

DATACENTER /SA-Datacenter

SSH PUBLIC KEY

```
ssh-rsa
AAAAAB3NzaC1yZcEAAAQABAAQDeZJlthoBEIyNlw/u6sDBC
6Tun74gmKEJa96+aCJD0X1loEUvg5/EXqqB5RDx+M60xmHOt+6WkeT
s2ENAn+RRDBaOgjZlhWdkph4BpdVdpVe470dw3+BT/kXYQhxwhPWL
+SSnF+gYRc17qV4K0YyWnMvDhEnKFZ2CYnIPlhrRaT9+seInkiIwaOz7
```

NEXT

2. Management Cluster Settings Specify the resources backing the management cluster

2-35 Carvel Tools

Carvel tools are a collection of command-line tools that help in the building, configuration, and deployment of Kubernetes and Kubernetes-based workloads.

Tool Name	Description
ytt	Templates and overlays Kubernetes configuration using YAML structures.
kapp	Installs, upgrades, and deletes multiple Kubernetes resources as a single application.
kapp-controller	Performs the same functionality as kapp but as a Kubernetes controller within a Kubernetes cluster.
kbld	Automates the building and pushing of container images.
imgpkg	Packages and distributes Kubernetes configuration and container images into a single container image, referred to as a bundle.
vendir	Syncs a directory structure from various data sources to ensure that a platform operations or development team are working on the same files.

Tanzu Kubernetes Grid uses each of the Carvel tools internally to perform different tasks. The tools do not require installation but can be used for managing and troubleshooting operations.

Tanzu Kubernetes Grid extensions are deployed using kapp-controller and are inspected using the kapp CLI.

When preparing for an Internet-restricted installation, you can use imgpkg to query the image registry where the Tanzu Kubernetes Grid container images are hosted and to generate a list of Docker pull, tag, and push commands.

For more information about Carvel tools, see the Carvel website at <https://carvel.dev/>.

2-36 Lab 1: Setting Up a Bootstrap Machine

Verify that Docker is running and install the command-line tools:

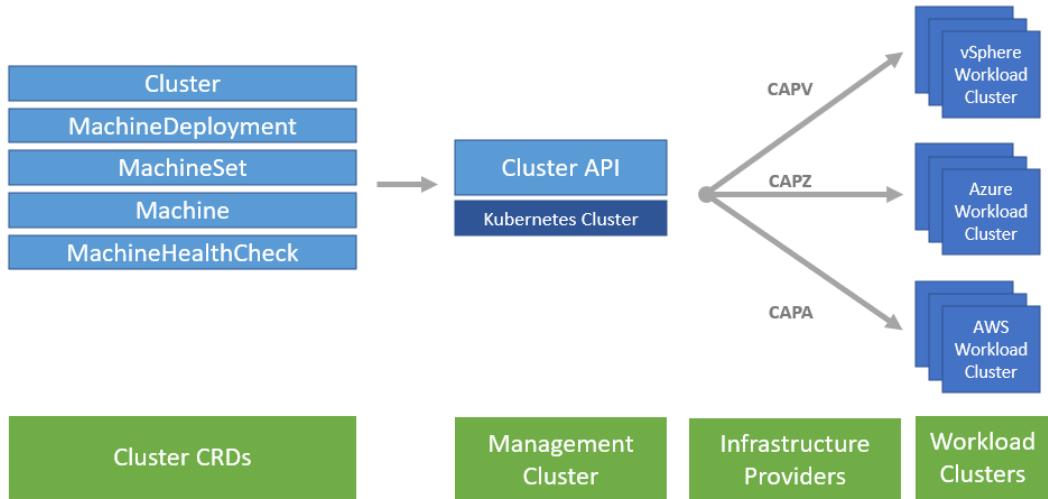
1. Verify that Docker Is Running
2. Install the Kubernetes CLI
3. Enable Kubernetes CLI Autocompletion
4. Install the Tanzu CLI
5. Install the Tanzu CLI Plug-Ins
6. Enable Tanzu CLI Autocompletion
7. Install the Carvel Tools

2-37 Review of Learner Objectives

- Describe the Tanzu CLI
- List the requirements for a bootstrap machine
- Describe the Carvel Tool Set

2-38 Lesson 4: Cluster API

2-39 Learner Objectives


- Describe Cluster API
- List the infrastructure providers
- Detail the Cluster API controllers
- List the Cluster API Custom Resource Definitions

2-40 Introducing Cluster API

Cluster API is a Kubernetes project to provide declarative Kubernetes-style APIs to cluster provisioning, configuration, and management.

Cluster API controllers running on a Kubernetes cluster receive Cluster API definitions that specify the desired state of the new cluster.

They also request from the cloud provider to create the new cluster.

2-41 Cluster API CRDs

Cluster API provides the following Custom Resource Definitions (CRDs) that are used to describe a Kubernetes cluster.

CRD	Description
Cluster	Describes a cluster.
KubeadmControlPlane	Describes a control plane (etcd, kube-apiserver).
MachineDeployment	Manages rolling out changes to a machine spec using MachineSets. Similar to a Kubernetes deployment resource.
MachineSet	Ensures that the required machine objects with the correct machine spec exist.
Machine	Describes a VM using a machine spec.
MachineHealthCheck	Defines the conditions when a machine should be considered unhealthy. Only supported for worker nodes.

2-42 Machine Health Checks

Machine health checks allow Cluster API to monitor the health of cluster nodes:

- A timeout is specified for each of the conditions that can be checked.
- If any of these conditions are met for the duration of the timeout, the Machine is remediated.
- The action of remediating a Machine triggers a new Machine to be created to replace the failed one.

```
apiVersion: cluster.x-k8s.io/v1alpha3
kind: MachineHealthCheck
metadata:
  name: capi-quickstart-node-unhealthy-5m
spec:
  clusterName: capi-quickstart
  maxUnhealthy: 40%
  nodeStartupTimeout: 10m
  selector:
    matchLabels:
      nodepool: nodepool-0
  unhealthyConditions:
  - type: Ready
    status: Unknown
    timeout: 300s
  - type: Ready
    status: "False"
    timeout: 300s
```

2-43 Cluster API Components

The logic in Cluster API is divided per component:

- Bootstrap providers perform the steps to configure and start the Kubernetes processes that make up a cluster.
- Infrastructure providers perform the steps to create cloud resources, such as VMs.

Cluster API

Bootstrap Providers

Infrastructure Providers

2-44 Bootstrap Providers

Cluster API bootstrap provider is a component of Cluster API that is responsible for turning a Machine into a Kubernetes node.

Cluster API bootstrap provider kubeadm is a bootstrap provider implementation that uses kubeadm to perform Machine configuration.

2-45 Infrastructure Providers

Cluster API infrastructure providers exist for various cloud providers.

Cluster API Infrastructure Provider	Cloud Provider	Supported by Tanzu Kubernetes Grid 1.3
CAPV	vSphere	Yes
CAPA	Amazon AWS	Yes
CAPZ	Microsoft Azure	Yes
CAPG	Google Cloud	No
CAPD	Docker	No
CAPO	OpenStack	No

2-46 Cluster API Controllers

The following controllers watch the Kubernetes API for Cluster API (CAPI) resources and perform the required steps to provision clusters.

Controller	Description
capi-controller-manager	Provides the overall CAPI functionality.
capi-kubeadm-control-plane-controller-manager	Provides the functionality to configure the control plane nodes to run <code>etcd</code> , <code>kube-apiserver</code> , and other control plane components.
capi-kubeadm-bootstrap-controller-manager	Provides the functionality to configure the worker nodes and join the worker nodes to the cluster.

2-47 About the Cluster API Provider for vSphere

The Cluster API provider for vSphere (CAPV) provides the following controller and CRDs.

Controller or CRD	Description
capv-controller-manager	The controller watches for CAPI and CAPV resources and acts upon them by communicating with vSphere to provision and monitor resources.
VSphereCluster	The CRDs describe how CAPV creates the vSphere specific resources for CAPI.
VSphereMachine	
VSphereMachineTemplate	Most generic CAPI resources have a corresponding CAPV resource, for example, each CAPI Cluster resource has a corresponding VSphereCluster resource.
VSphereVM	

2-48 Review of Learner Objectives

- Describe Cluster API
- List the infrastructure providers
- Detail the Cluster API controllers
- List the Cluster API Custom Resource Definitions

2-49 Key Points

- The VMware Tanzu portfolio is the VMware solution for the development and deployment of modern applications.
- Tanzu Kubernetes Grid is a common distribution of Kubernetes across multiple VMware products.
- The Tanzu CLI is used to deploy and manage Tanzu Kubernetes Grid instances.

Module 3

Management Clusters

3-2 Importance

Tanzu Kubernetes Grid management clusters provide the Kubernetes life cycle management functionality of Tanzu Kubernetes Grid on supported platforms.

3-3 Module Lessons

1. Preparing the vSphere Environment
2. NSX Advanced Load Balancer
3. Cluster Authentication
4. Creating Management Clusters
5. Managing Management Clusters

3-4 Lesson 1: Preparing the vSphere Environment

3-5 Learner Objectives

- Describe the vSphere requirements for deploying a management cluster
- List the differences between deploying on vSphere 6.7 Update 3 and vSphere 7

3-6 vSphere Requirements

Tanzu Kubernetes Grid has the following vSphere requirements:

- vSphere 6.7 Update 3, vSphere 7, VMware Cloud on AWS, or Azure VMware Solution
- vSphere cluster with a minimum of 2 ESXi hosts and vSphere DRS enabled
- A DHCP server to provide IP addresses to Tanzu Kubernetes Grid management and workload clusters
- Traffic to vCenter Server allowed from the network on which clusters run
- A dedicated vCenter Single Sign-On account with the required permissions for Tanzu Kubernetes Grid

3-7 vSphere Port Requirements

The following ports are required for components to communicate in a Tanzu Kubernetes Grid instance.

Source Networks	Destination IP	Protocol:Port	Description
Workload cluster	Management cluster VIP	TCP:6443	Allows workload clusters to register with the management cluster.
Management cluster	Workload cluster VIP	TCP:6443,5556	Allows the management cluster to configure the workload cluster.
Management and workload cluster	Container registry	TCP:443	Allows components to retrieve container images.
Management and workload cluster	vCenter Server	TCP:443	Allows components to create VMs and storage volumes.
Management and workload cluster	DNS servers	UDP:53	Allows communication to DNS servers.
Management and workload cluster	NTP servers	UDP:123	Allows communication to NTP servers.

3-8 Dedicated vSphere SSO User

When deploying Tanzu Kubernetes Grid using a dedicated vSphere SSO user, you assign the Tanzu Kubernetes Grid user a role that allows access to the following objects:

- Data centers or data center folders
- Datastores or datastore folders
- Hosts, clusters, or resource pools
- Networks to which clusters are assigned
- VM and template folders

3-9 Tanzu Kubernetes Grid User Permissions

The user used to deploy Tanzu Kubernetes Grid must have a role with the following permissions.

vSphere Object	Required Permission
Datastore	Allocate space, datastore consumer
Global	Cloud Admin (vSphere with Tanzu only)
Network	Assign network
Resource	Assign VM to resource pool
Sessions	Message, validate session
vApp	Import
VM	Configuration > Add new disk, add existing disk Configuration > Advanced configuration Configuration > Change CPU count, memory, settings Configuration > Configure Raw device Interaction > Power on, off Inventory > Create from existing, remove Provisioning > Deploy template

3-10 SSH Key Pairs

An optional SSH public key is added to all VMs that are created by Tanzu Kubernetes Grid.

The SSH key is used to remotely connect to a VM using SSH to troubleshoot or perform other administrative tasks.

If an SSH key is not provided, connecting to a control plane or worker node using SSH is not possible.

3-11 OVA Templates

Tanzu Kubernetes Grid provides base OS image templates in OVA format for you to import to vSphere:

- Ubuntu v20.04 Kubernetes v1.xx.yy OVA
- Photon v3 Kubernetes v1.xx.yy OVA

Ubuntu is the default OS.

Tanzu Kubernetes Grid creates the management cluster and Tanzu Kubernetes cluster node VMs from the templates.

After importing the OVA files, you must convert them to VM templates.

The base OS image template includes the version of Kubernetes that Tanzu Kubernetes Grid uses to create clusters.

3-12 Deploying in Internet-Restricted Environments

Deploying in an Internet-restricted environment is supported by loading all container images into a private Docker registry:

- 1 Within your firewall, install and configure a private Docker registry.

`harbor.vclass.local`

- 2 Run the `docker pull` command for all required images from `projects.registry.vmware.com/tkg`.
- 3 Run the `docker tag` and `docker push` commands to tag and push the images to the private Docker registry `harbor.vclass.local/tkg`.
- 4 Set the environment variable.

`TKG_CUSTOM_IMAGE_REPOSITORY="harbor.vclass.local/tkg"`

- 5 Proceed with the normal installation steps.

Steps 2 and 3 can be automated using the `gen-publish-images.sh` script, available from the Tanzu Kubernetes Grid documentation at <https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.3/vmware-tanzu-kubernetes-grid-13/GUID-mgmt-clusters-airgapped-environments.html>.

3-13 Lab 2: Preparing for an Internet-Restricted Installation

Prepare for an Internet-restricted installation by loading Tanzu Kubernetes Grid container images in an internal Harbor registry:

1. Create a Library in Harbor
2. Push Tanzu Kubernetes Grid Container Images to Harbor

3-14 Lab 3: Configuring vSphere

Create the vSphere resources required by Tanzu Kubernetes Grid:

1. Log in to the vSphere Client
2. Create Resource Pools
3. Create a VM Folder
4. Import the Base OS Template OVA Files
5. Convert the VMs to Templates

3-15 Review of Learner Objectives

- Describe the vSphere requirements for deploying a management cluster
- List the differences between deploying on vSphere 6.7 Update 3 and vSphere 7

3-16 **Lesson 2: NSX Advanced Load Balancer**

3-17 Learner Objectives

- Describe the NSX Advanced Load Balancer components
- Explain how Tanzu Kubernetes Grid integrates with NSX Advanced Load Balancer

3-18 Load Balancing Kubernetes Services

Tanzu Kubernetes Grid supports optional integration with NSX Advanced Load Balancer.

NSX Advanced Load Balancer does not require any licenses to be used for Tanzu Kubernetes Grid.

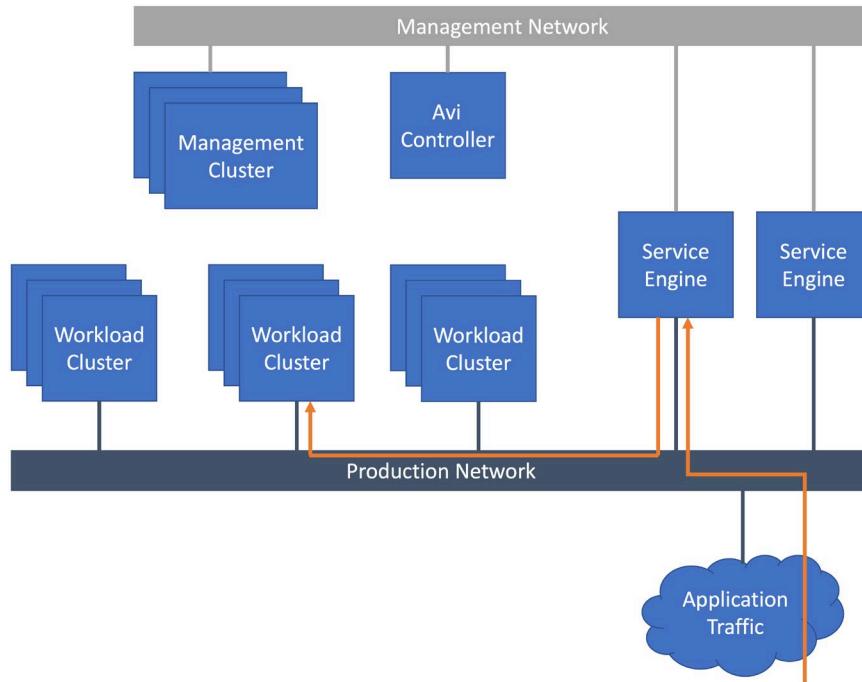
The integration allows NSX Advanced Load Balancer to provide layer 4 load balancing services when a load balancer service type is created on a Tanzu Kubernetes workload cluster.

NSX Advanced Load Balancer does not perform load balancing for the Kubernetes API on control plane nodes. That functionality is provided by kube-vip.

3-19 NSX Advanced Load Balancer Components

NSX Advanced Load Balancer has the following components.

Component	Description
Controller	The controller is the single point of management and control. For high availability, it is typically deployed as a three-node cluster. As its name implies, the controller implements the control plane.
Service Engine	Service engines (SEs) manage all data plane operations by receiving and executing instructions from the controller. SEs perform load balancing by using virtual services. They collect real-time application telemetry from application traffic flows.
Admin Console	The admin console is a modern web-based UI that provides role-based access to control, manage, and monitor applications. The admin console runs as a web service on the controller.

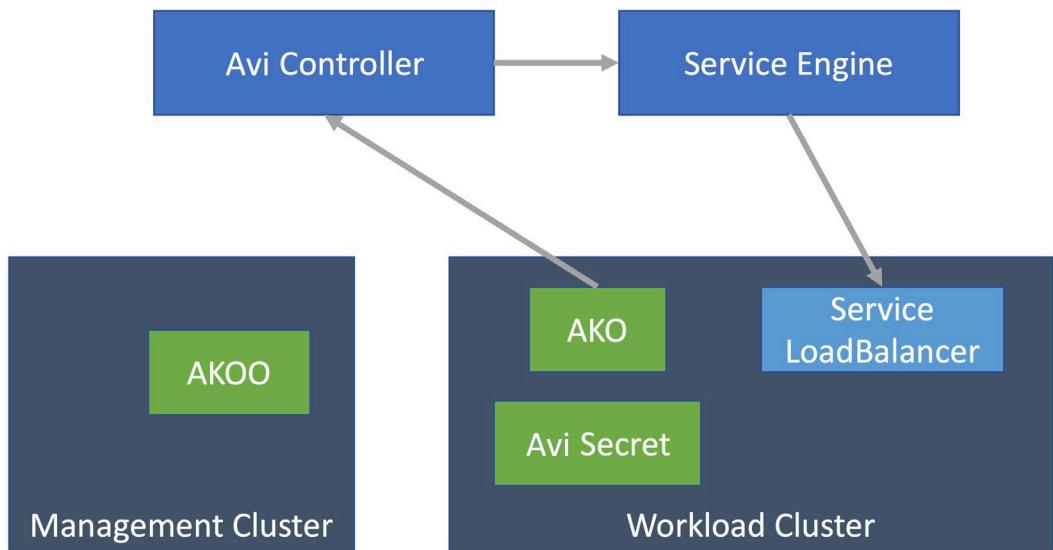

A best practice in a demo or evaluation environment is to use only one controller node. However, a production environment requires three controller nodes in a cluster.

Service engines might be configured with as little as 1 vCPU core and 1 GB RAM, or up to 36 vCPU cores and 128 GB RAM. These numbers are abstract because network and application traffic can vary significantly.

3-20 NSX Advanced Load Balancer Architecture

The example shows an NSX Advanced Load Balancer network topology that is integrated with Tanzu Kubernetes Grid.

When applications running on a workload cluster are exposed using a load balancer service type, traffic flowing inbound to the applications is routed to the SEs and, from there, routed to a NodePort IP address on the workload cluster.

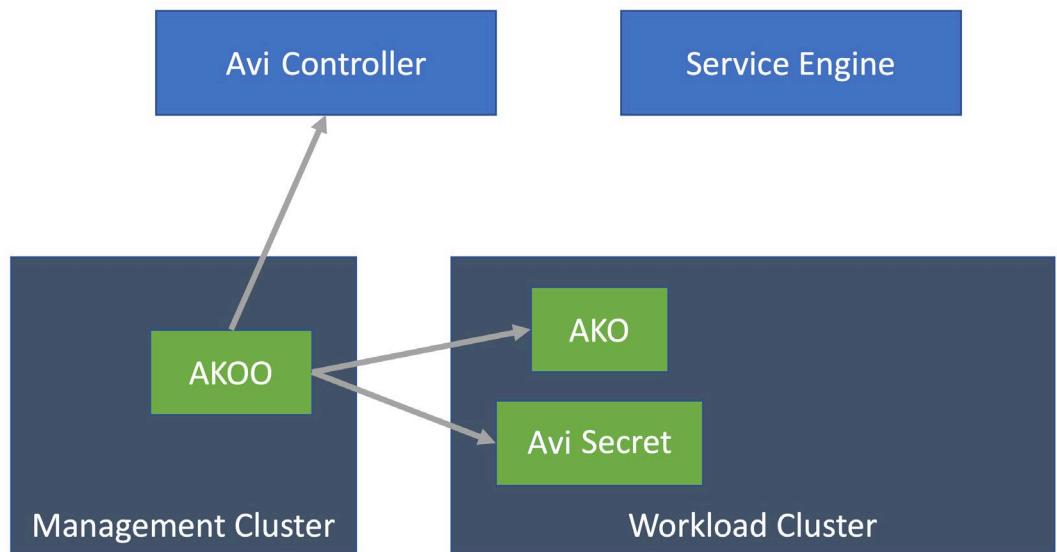


3-21 AKO Operator Functionality

The AKO Operator (AKOO) runs on a management cluster and is responsible for deploying the AKO on workload clusters.

When a new workload cluster is deployed, the AKOO performs the following actions:

- Creates a user dedicated to the workload cluster in the NSX Advanced Load Balancer controller.
- Creates a Kubernetes secret in the workload cluster, containing the new user credentials.
- Deploys the AKO controller to the workload cluster.



3-22 Avi Kubernetes Operator Functionality

The Avi Kubernetes Operator (AKO) runs on a workload cluster.

When a service of type load balancer is created on the workload cluster:

- The AKO operator sends a request to the NSX Advanced Load Balancer controller to create a virtual service.
- The NSX Advanced Load Balancer controller sends a request to the SE to configure a virtual service.
- The SE load balances traffic to pods running in the cluster.

3-23 Review of Learner Objectives

- Describe the NSX Advanced Load Balancer components
- Explain how Tanzu Kubernetes Grid integrates with NSX Advanced Load Balancer

3-24 Lesson 3: Cluster Authentication

3-25 Learner Objectives

- Describe how Kubernetes manages authentication
- Explain what Pinniped is
- Explain what Dex is
- Describe the Pinniped authentication workflow

3-26 External Authentication

Users are not directly managed or authenticated by Kubernetes.

An external identity service must be used to generate trusted tokens or certificates that a user can use to communicate with the Kubernetes API server.

Kubernetes supports OIDC tokens as a way to identify users who access the cluster.

3-27 User Authentication Using Pinniped

User authentication in Tanzu Kubernetes Grid is provided by Pinniped.

Pinniped allows you to integrate external OIDC or LDAP identity providers (IDP) into Tanzu Kubernetes clusters, so that you can control user access to those clusters.

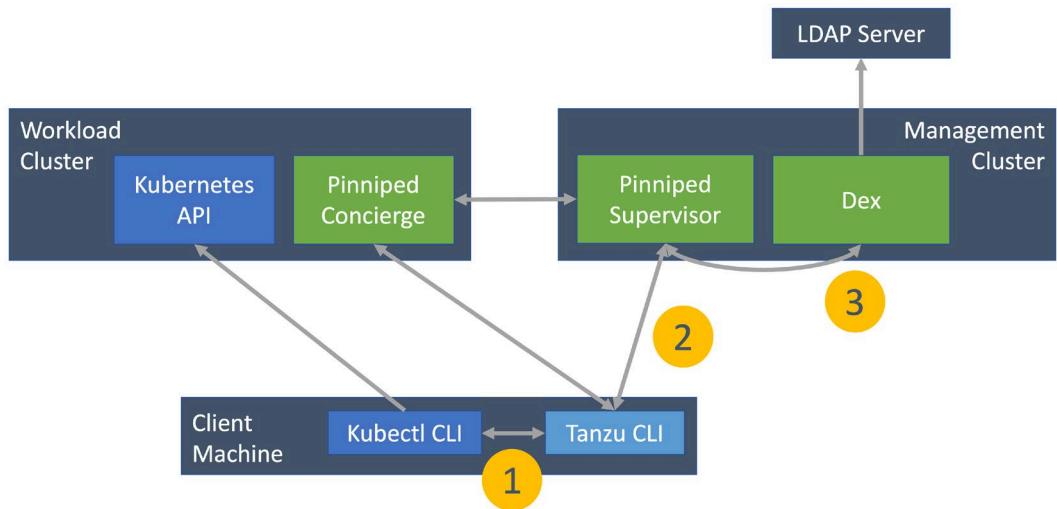
3-28 About Dex

Dex is an identity service that supports LDAP authentication.

Pinniped uses Dex if LDAP authentication is required.

3-29 Kubeconfig Files Configured with Pinniped Authentication

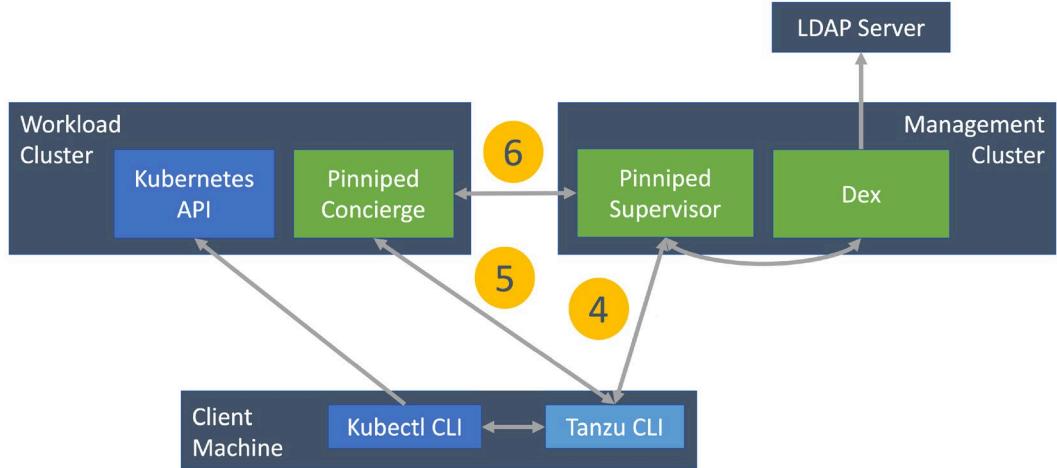
When Pinniped authentication is enabled, the `tanzu cluster kubeconfig get` command returns a kubeconfig file that is configured to run the Tanzu pinniped-auth plug-in.


The pinniped-auth plug-in initiates the Pinniped authentication workflow which redirects the user to the Pinniped supervisor endpoint on the management cluster.

```
users:
- name: tanzu-cli-tkc-01
  user:
    exec:
      apiVersion: client.authentication.k8s.io/v1beta1
      args:
        - pinniped-auth
        - login
        - --enable-concierge
        - --concierge-namespace=pinniped-concierge
        - --concierge-authenticator-name=tkg-jwt-authenticator
        - --concierge-authenticator-type=jwt
        - --concierge-endpoint=https://172.20.11.101:6443
        - --concierge-ca-bundle-data=L50tLS1CRUdJTi8DRVJUSUZjQ0FURS0tL
E1EY3l0akl4TURZME1gb1hVE14TRjjeUSESXhNVEuWtUZvd0ZURVRNQkVHQTFVR0pBe
mFrblWmbvYyNWRhWv0n3kyaj3qqdEJnNFBFSHpicEJGYUFxZ0psNGs1aOUKVWvN1Nb
U92SnptaDltcFA2TTLxV0s0TFBTTmsxNlpINTJUKzVncFI0Ry81ClVHbzAyWXYiM0lG5
F55WNNsV0NrTVdLQ2ZSeU5LdQDybjJsWFRUnZGaVg1awp0eUNvEsdBc9s0XRiYmUya
GdnRUJBSUJqb3BoYTNTaExZRGSwZnVz a0f1S1gKrnZ4Y1Y1butzVZ2ZIRGiybXN0MhJJS
EpZNjllWk12Ylh2MvhjVEdEY21yeW5yc10cEtaoXhxMXc3jV3Q09GSU5mbDRocE9Vh
HZXYKZzdJXZDba0TviewdwyYOpwkzh0T29FWdJLWttaL3BPRDdDckkyNGI0zzi3U3FTN
        - --issuer=https://172.20.10.100:31234
        - --scopes=offline_access,openid,pinniped:request-audience
        - --ca-bundle-data=L50tLS1CRUdJTi8DRVJUSUZjQ0FURS0tL50tCk13SUR
4RLRBVEJnTlZCQU1REhSc1p5MxhdVzV1YvhCfpEQWVgdzB5TVRB8MwpNall5TURJMU1
J4kFO0mdrc1whrauc5dzBCQVFFRKfBT0NBUTHbTULjQkNns0MKQVFQxLUL1JETEdUSW
jTWZtEV0Mk5151EyZTZ150w0TjZERXQ5UTgvSz2kCnZaMnpDbfBrNE1bHnsbTQSvzh
FMkhSSCtIn5tCnRZmRtekg1UGHbit5SgpwQnt0Vo153jxc2ZB0vhZd0kvUnc5YTh
WSFE40kFm0EV0CQU1DQ0dRd0hRWUQKVLiwbEJCKWxdGQVlJ53dZQkJRVUhBd0VHQ0NzR0F
BUUVBcVMrM315R2gxZwxjCkZ40GtoSFbVTLjaYzNhYUlyYTDN0Nk90dzMwYTRNN3hJam4
2YkZ2NzdrUnAvRQpXZzhqWFJBs2MyUdhYQjZMUnzvRS9PekNbGJTNGFMMFJzNUR6d2x
2S2NtcUQKVStYbeZudWF6TFRkWjNnbGtNKzVlyUptM0FrTnRTeitNVVJMGJIMUtssWl
        - --request-audience=tkc-01
      command: tanzu
      env: []
```

3-30 Pinniped Authentication Workflow (1)

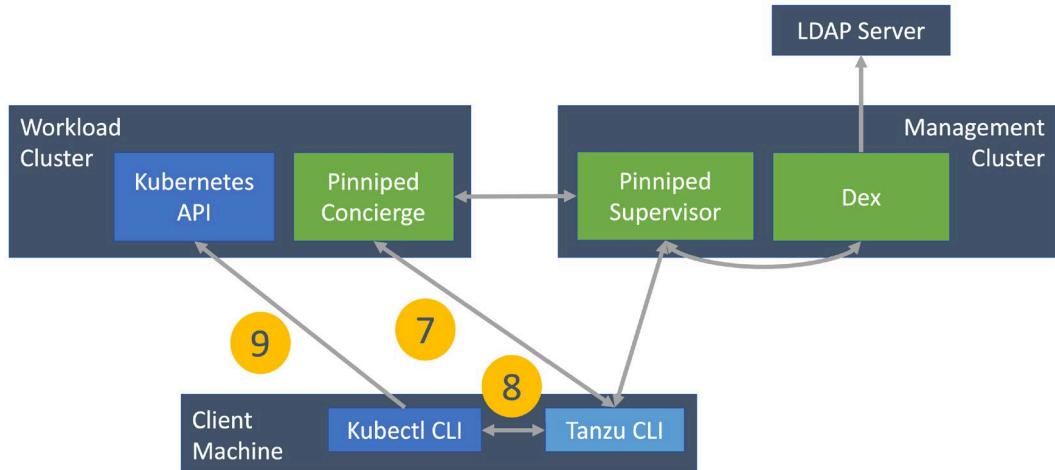
The following workflow is initiated when a `kubectl` command is run and Pinniped authentication is enabled:


1. `kubectl` calls the Tanzu CLI.
2. The Tanzu CLI opens a web browser to Pinniped Supervisor, which redirects to the Dex login page.
3. The user provides their LDAP credentials and Dex authenticates with the LDAP server and redirects to Pinniped.

3-31 Pinniped Authentication Workflow (2)

The following workflow is initiated when a `kubectl` command is run and Pinniped authentication is enabled:

4. Pinniped generates an ID token and passes it to the Tanzu CLI.
5. The Tanzu CLI sends the ID token to Pinniped Concierge on the workload cluster.
6. Pinniped Concierge swaps the ID token for a client certificate.



3-32 Pinniped Authentication Workflow (3)

The following workflow is initiated when a `kubectl` command is run and Pinniped authentication is enabled:

7. The client certificate is passed to the Tanzu CLI.
8. The client certificate is passed to `kubectl`.
9. `kubectl` sends the client certificate with its request.

The client certificate is trusted by the cluster and the user is authenticated.

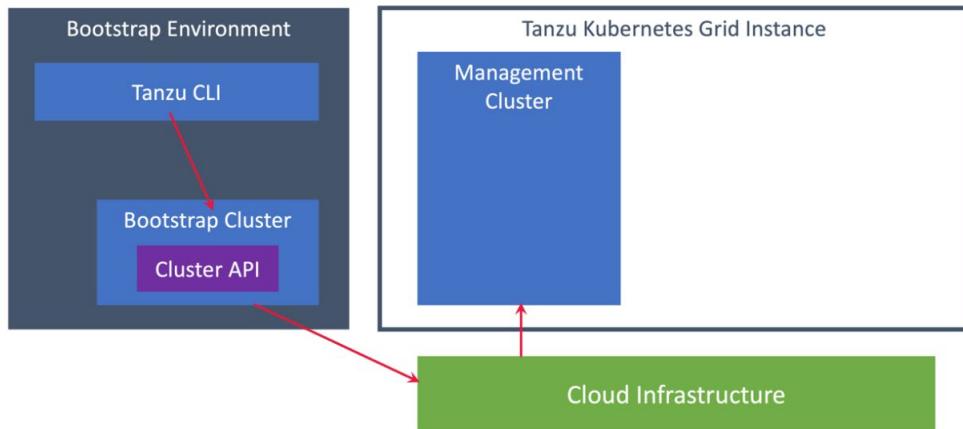
3-33 Pinniped Session Cache

On a successful login, the Tanzu CLI stores the client certificate to
~/.tanzu/pinniped/session.yaml.

Deleting the file results in the user having to re-authenticate using the Pinniped authentication workflow.

3-34 Review of Learner Objectives

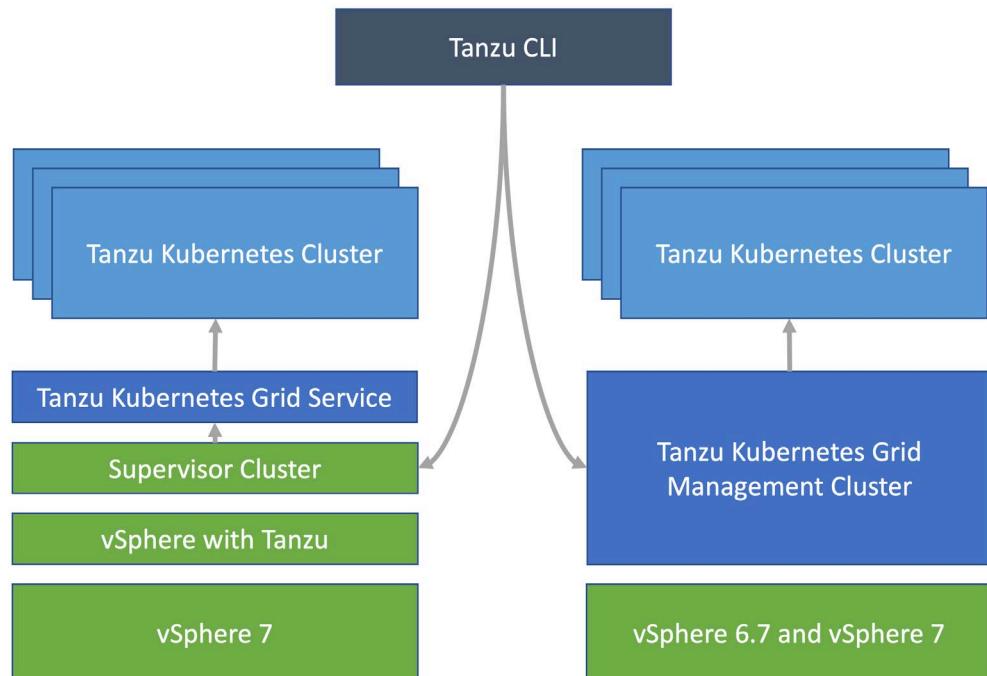
- Describe how Kubernetes manages authentication
- Explain what Pinniped is
- Explain what Dex is
- Describe the Pinniped authentication workflow


3-35 **Lesson 4: Creating Management Clusters**

3-36 Learner Objectives

- List the steps to install a Tanzu Kubernetes Grid management cluster
- Describe what happens when a management cluster is created

3-37 Initializing Tanzu Kubernetes Grid Instances


The Tanzu CLI creates a temporary bootstrap cluster which is used to create the management cluster.

3-38 Deploying Management Clusters: vSphere 7

Two options exist when deploying management clusters on vSphere 7:

- vSphere with Tanzu enabled:
 - Deploying a management cluster is not supported.
 - The supervisor cluster performs the role of the management cluster.
 - The Tanzu CLI connects to the supervisor cluster.
- vSphere with Tanzu disabled:
 - Deploy using the same process as with vSphere 6.7.

3-39 Deploying Management Clusters: Installer UI or CLI

Two methods exist to deploy management clusters:

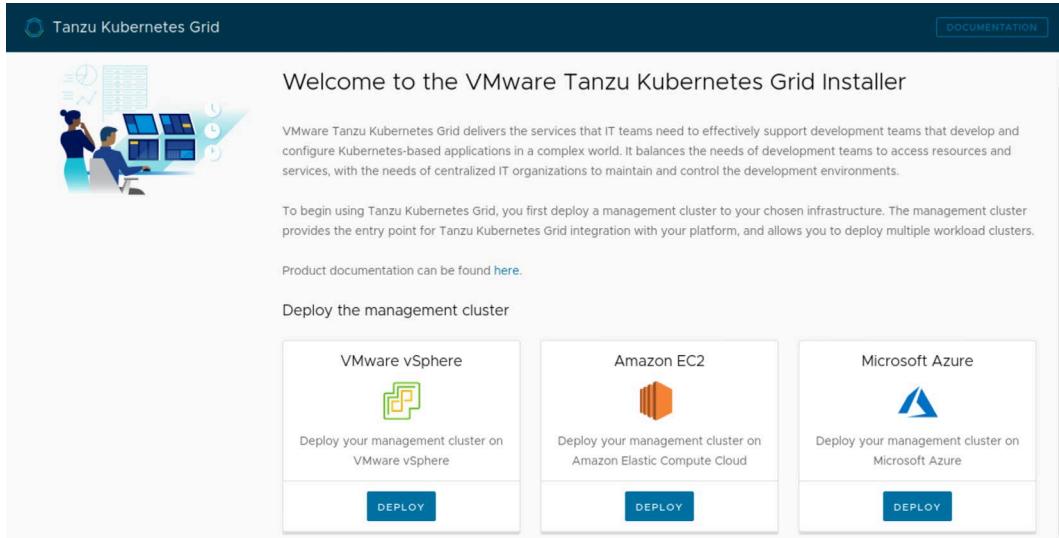
- Run the Tanzu Kubernetes Grid installer, a wizard that guides you through the deployment process:
 - This is the recommended method, especially for platform operators who are new to Tanzu Kubernetes Grid.
 - The configuration generated by the installer UI is saved to a YAML configuration file.
- Create and edit YAML configuration files to use with CLI commands:
 - This method is useful when using YAML configuration files generated by the installer UI and adding more advanced configuration options.

3-40 Tanzu CLI Management Cluster Plug-In

The following flags are available when running the `tanzu management-cluster` command.

Flag	Description
<code>create</code>	Creates a Tanzu Kubernetes Grid management cluster.
<code>upgrade</code>	Upgrades a management cluster.
<code>delete</code>	Deletes a management cluster
<code>kubeconfig</code>	Gets the kubeconfig file of a management cluster.
<code>register</code>	Registers a management cluster with VMware Tanzu Mission Control.
<code>credentials</code>	Updates the vSphere credentials for a management cluster.
<code>ceip-participation</code>	Enables or disables CEIP participation.

3-41 Tanzu CLI Management Cluster Create Command


The following flags are available when running the `tanzu management-cluster create` command.

Flag	Description
<code>-u, --ui</code>	Launches the management cluster installer UI.
<code>-f, --file</code>	Configuration file from which to create a management cluster.
<code>-t --timeout</code>	Time duration to wait for the management cluster deployment to complete.
<code>-e, --use-existing-bootstrap-cluster</code>	To use an existing bootstrap cluster.
<code>--browser</code>	To specify the browser in which to open the UI.
<code>-b, --bind</code>	To bind the UI to a specified IP address and port

3-42 Tanzu Kubernetes Grid Installer (1)

Perform the following steps to install a Tanzu Kubernetes Grid management cluster:

1. Access the installer UI by running `tanzu management-cluster create --ui`.

The screenshot shows the 'Welcome to the VMware Tanzu Kubernetes Grid Installer' screen. It features a header with the Tanzu Kubernetes Grid logo and a 'DOCUMENTATION' link. Below the header is a decorative illustration of two people working on a computer. The main text area describes Tanzu Kubernetes Grid as a service for IT teams to support development teams. It mentions that the management cluster provides an entry point for integration with platforms and allows deploying multiple workload clusters. A link to 'Product documentation' is provided. The 'Deploy the management cluster' section contains three cards: 'VMware vSphere' with a green square icon, 'Amazon EC2' with an orange cube icon, and 'Microsoft Azure' with a blue triangle icon. Each card has a 'Deploy' button at the bottom.

Welcome to the VMware Tanzu Kubernetes Grid Installer

VMware Tanzu Kubernetes Grid delivers the services that IT teams need to effectively support development teams that develop and configure Kubernetes-based applications in a complex world. It balances the needs of development teams to access resources and services, with the needs of centralized IT organizations to maintain and control the development environments.

To begin using Tanzu Kubernetes Grid, you first deploy a management cluster to your chosen infrastructure. The management cluster provides the entry point for Tanzu Kubernetes Grid integration with your platform, and allows you to deploy multiple workload clusters.

Product documentation can be found [here](#).

Deploy the management cluster

VMware vSphere

Deploy your management cluster on VMware vSphere

DEPLOY

Amazon EC2

Deploy your management cluster on Amazon Elastic Compute Cloud

DEPLOY

Microsoft Azure

Deploy your management cluster on Microsoft Azure

DEPLOY

3-43 Tanzu Kubernetes Grid Installer (2)

2. Provide vCenter Server credentials and SSH public key.

The screenshot shows the 'vSphere 7.0.2' configuration screen. At the top, it says 'IaaS Provider' and 'vCenter sa-vcsa-01.vclass.local connected'. The 'VCENTER SERVER' field contains 'sa-vcsa-01.vclass.local'. The 'USERNAME' field contains 'administrator@vsphere.local'. The 'PASSWORD' field is masked with '*****'. The 'CONNECTED' button is grayed out. The 'DATACENTER' dropdown is set to '/SA-Datacenter'. The 'SSH PUBLIC KEY' field contains an SSH RSA key:

```
ssh-rsa
AAAAAB3NzaC1yc2EAAAQABAAABgQC5DJYBoGsaaeUv25RKqnTZ
Qk44Dp4DMPzF1zJOqoJNr3vbxmlUw0qt007qNQFfXuFBbgqytpM9AMa
grGn7xe+Bs5b3L15c2HJ+N1jn5tkeCLPco+de0abtwTjnLCZsS0dFBYKrlOm
wi7uGnu0V0xdvukCXE7DndQXww5iGwMD05vZn2RLn9QkRAa3tRDmM
```

A 'NEXT' button is at the bottom left.

3-44 Tanzu Kubernetes Grid Installer (3)

3. Select the management cluster size and instance types.

2. Management Cluster Settings Development cluster selected: 1 node control plane

Management Cluster Settings

 Development

Single control plane node. Recommended for a development environment.

INSTANCE TYPE ⓘ

 Production

Three control plane nodes. Recommended for a production environment.

INSTANCE TYPE ⓘ

MANAGEMENT CLUSTER NAME ⓘ

CONTROL PLANE ENDPOINT ⓘ

MACHINE HEALTH CHECKS ⓘ Enable

WORKER NODE INSTANCE TYPE ⓘ

NEXT

3-45 Tanzu Kubernetes Grid Installer (4)

4. (Optional) Configure NSX Advanced Load Balancer.

3. VMware NSX Advanced Load Balancer Controller: sa-nsxlb-01.vclass.local

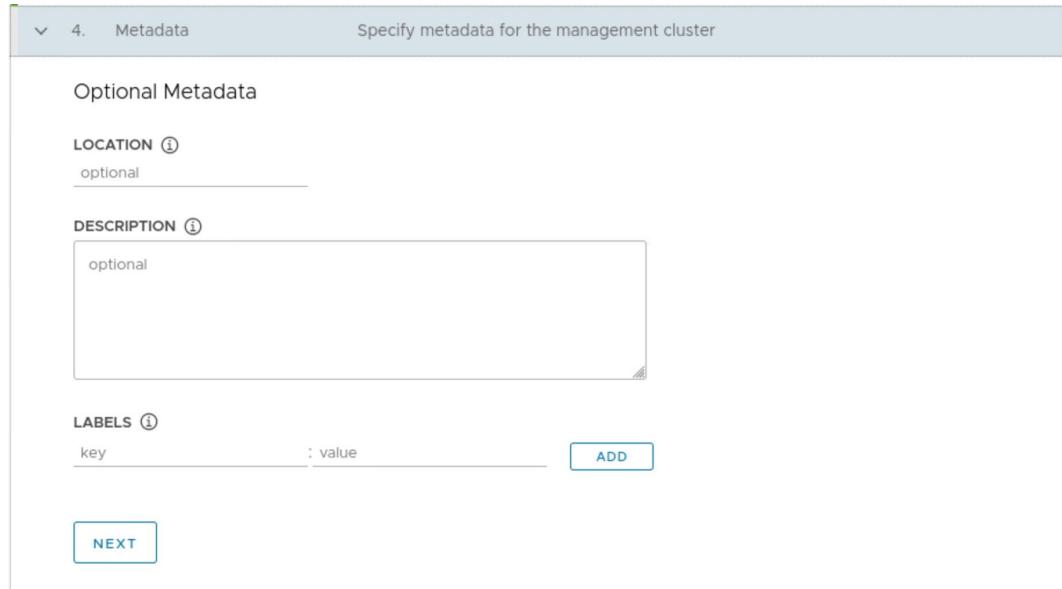
Optional VMware NSX Advanced Load Balancer

CONTROLLER HOST ⓘ	USERNAME	PASSWORD
sa-nsxlb-01.vclass.local	admin	*****
CONTROLLER CERTIFICATE AUTHORITY ⓘ		
<pre>/zIJFrN TARoPc4yuE7NGMuq+hTow3vfZ4sTnMKvCc2638l+Wkeaa/0325Kf88OW QKm0LOOEK 8nQAF5k= -----END CERTIFICATE-----</pre>		
CLOUD NAME ⓘ	SERVICE ENGINE GROUP NAME ⓘ	
Default-Cloud	Default-Group	
VIP NETWORK NAME ⓘ	VIP NETWORK CIDR ⓘ	
pg-SA-Production	172.20.11.0/24	
CLUSTER LABELS ⓘ		
By default, all clusters will have NSX Advanced Load Balancer enabled. Here you may optionally specify cluster labels to identify a subset of clusters that should have NSX Advanced Load Balancer enabled.		
key	: value	

3-46 Tanzu Kubernetes Grid Installer (5)

5. Specify metadata and labels to be applied to the cluster.

4. Metadata Specify metadata for the management cluster


Optional Metadata

LOCATION ⓘ
optional

DESCRIPTION ⓘ
optional

LABELS ⓘ
key : value **ADD**

NEXT

3-47 Tanzu Kubernetes Grid Installer (6)

6. Specify VM folder, datastore, and compute resources.

5. Resources

Resource Pool: /SA-Datacenter/host/SA-Cluster-01/Resources/rp-tkg-management, VM Folder: /SA-Datacenter/vm/tkg-vms, Datastore: /SA-Datacenter/datastore/SA-Shared-01

Specify the Resources C

VM FOLDER ⓘ
/SA-Datacenter/vm/tkg-vms

DATASTORE ⓘ
enter/datastore/SA-Shared-01

CLUSTERS, HOSTS, AND RESOURCE POOLS ⓘ

✓ SA-Cluster-01

✓ rp-tkg-management

rp-tkg-production

NEXT

3-48 Tanzu Kubernetes Grid Installer (7)

7. Specify vSphere network, Kubernetes service, and pod CIDR ranges.

6. Kubernetes Network Network: pg-SA-Management

Kubernetes Network Settings [C](#)

CNI Provider: Antrea

NETWORK NAME i pg-SA-Management	CLUSTER SERVICE CIDR i 100.64.0.0/13	CLUSTER POD CIDR i 100.96.0.0/11
--	---	---

Proxy Settings

Enable Proxy Settings

[NEXT](#)

3-49 Tanzu Kubernetes Grid Installer (8)

8. Configure identity management.

7. Identity Management LDAP configured: dc.vclass.local:636

Optionaly Specify Identity Management with OIDC or LDAPS

Enable Identity Management Settings

OIDC LDAPS

LDAPS Identity Management Source

LDAPS Endpoint <small> ⓘ</small> dc.vclass.local : 636	BIND DN <small> ⓘ</small> cn=admin,dc=vclass,dc=local	BIND PASSWORD <small> ⓘ</small> *****
---	--	--

User Search Attributes

BASE DN <small> ⓘ</small> dc=vclass,dc=local	FILTER <small> ⓘ</small> (objectClass=person)	USERNAME <small> ⓘ</small> cn
---	--	----------------------------------

Group Search Attributes

BASE DN <small> ⓘ</small> dc=vclass,dc=local	FILTER <small> ⓘ</small> (objectClass=groupOfNames)	NAME ATTRIBUTE <small> ⓘ</small> cn
USER ATTRIBUTE <small> ⓘ</small> uid	GROUP ATTRIBUTE <small> ⓘ</small> memberUid	

ROOT CA ⓘ

```
EFR3PmXeh
dt8x2QUuzVyp2LYVtfFErNKnI7Id7yAoAGIzenTEs8C4S0xXkQKMi4mls1N
81ZjH
ZbrCKKldDtdrc7hRuBQTW9AU4d5bK8=
-----END CERTIFICATE-----
```

NEXT

3-50 Tanzu Kubernetes Grid Installer (9)

9. Specify the Kubernetes OS template that was previously uploaded to vCenter Server.

The screenshot shows a step in the Tanzu Kubernetes Grid Installer. The title bar says "8. OS Image". Below it, the sub-step title is "OS Image with Kubernetes v1.20.5+vmware.1-tkg.1". A "OS IMAGE" field contains the URL "/SA-Datacenter/vm/ubuntu-2004-kube-v1.20.5+vmware.1". A "NEXT" button is at the bottom.

8. OS Image	OS Image: /SA-Datacenter/vm/ubuntu-2004-kube-v1.20.5+vmware.1
OS Image with Kubernetes v1.20.5+vmware.1-tkg.1	
OS IMAGE	/SA-Datacenter/vm/ubuntu
NEXT	

3-51 Tanzu Kubernetes Grid Installer (10)

10. Register the management cluster with Tanzu Mission Control.

9. Register TMC

Optional Register with Tanzu Mission Control

Register with Tanzu Mission Control

Provide the optional URL to enable Tanzu Mission Control registration. After supplying the URL, you will be able to review the configuration YAML.


REGISTRATION URL ⓘ

GET YAML

NEXT

3-52 Tanzu Kubernetes Grid Installer (11)

11. Register the management cluster with Tanzu Mission Control.

VMware's Customer Experience Improvement Program ("CEIP") provides VMware with information that enables VMware to improve its products and services and fix problems. By choosing to participate in CEIP, you agree that VMware may collect technical information about your use of VMware products and services on a regular basis. This information does not personally identify you.

For more details about the Program, please see <http://www.vmware.com/trustvmware/ceip.html>

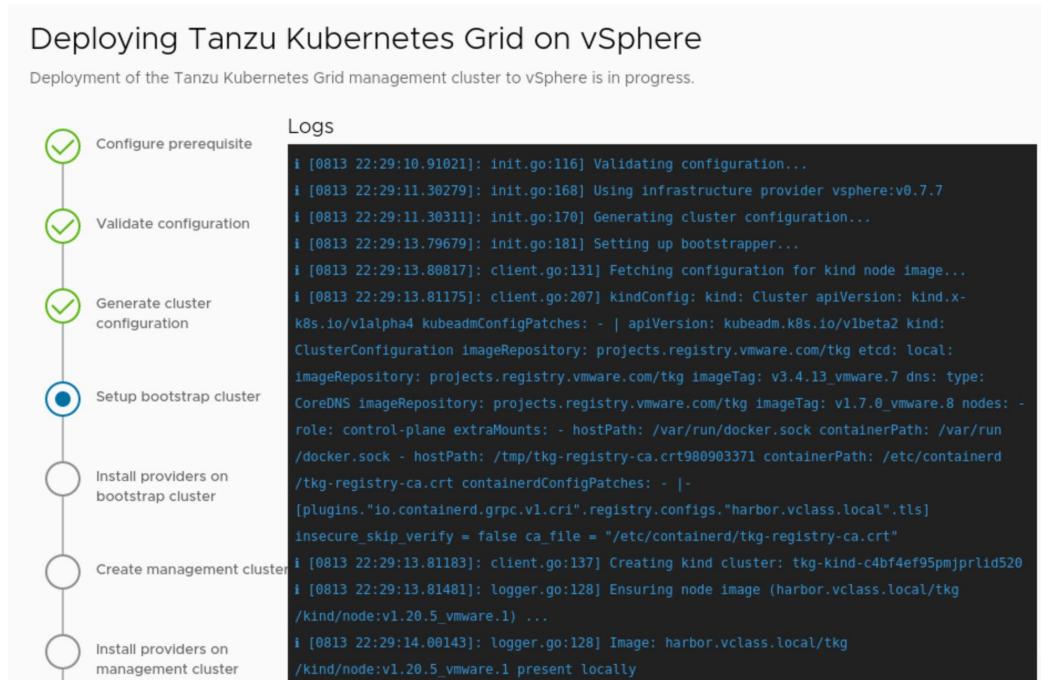
Participate in the Customer Experience Improvement Program

NEXT

For Customer Experience Improvement Program participants, the technical information collected consists of all or any of the following data:

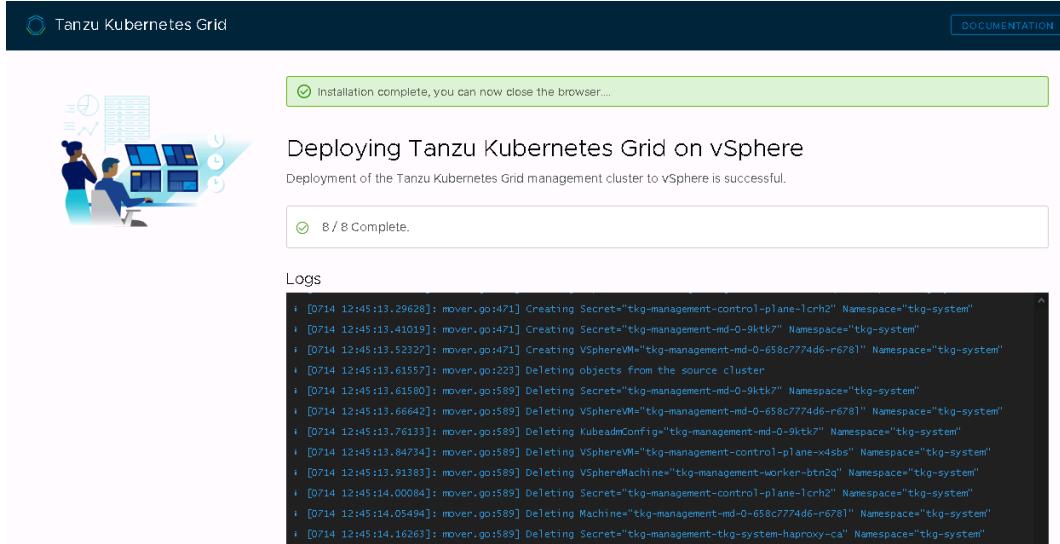
- Configuration data: Technical data about how a customer's organization has configured VMware products and related environment information.
Examples include version information, configuration settings, and technical data relating to the devices accessing those products or third-party applications or systems used in connection with the VMware product.
- Feature usage data: Data about how a customer organization uses the VMware product.
Examples include details about which features the customer organization uses and metrics of UI activity.
- Performance data: Data about the performance of VMware products.
Examples include metrics of the performance and scale of VMware products, UI response times, and details about customer API calls.

For more information, see *Customer Experience Improvement Program* at <https://www.vmware.com/solutions/trustvmware/ceip.html>.


3-53 Tanzu Kubernetes Grid Installer (12)

12. Review the configuration and click **DEPLOY MANAGEMENT CLUSTER**.

Tanzu Kubernetes Grid - Confirm Settings


3-54 Tanzu Kubernetes Grid Installer (13)

The installer saves the configuration to disk and begins the installation.

3-55 Tanzu Kubernetes Grid Installer (14)

When the installation is complete, you can close the browser.

The screenshot shows the Tanzu Kubernetes Grid Installer interface. At the top, there is a navigation bar with the Tanzu Kubernetes Grid logo and a 'DOCUMENTATION' link. Below the navigation bar, there is a green success message box containing the text: 'Installation complete, you can now close the browser....'. To the left of the message box is a decorative icon of two people working on a computer. The main content area has a title 'Deploying Tanzu Kubernetes Grid on vSphere' and a sub-section 'Deployment of the Tanzu Kubernetes Grid management cluster to vSphere is successful.' Below this, there is a progress bar showing '8 / 8 Complete.' and a 'Logs' section. The 'Logs' section contains a list of log entries in a monospaced font, detailing the deployment process. The log entries include actions like creating secrets, deleting objects, and deleting VSphereVMs and machines.

```
[07/14 12:45:13.29628]: mover.go:471] Creating Secret="tkg-management-control-plane-lcrh2" Namespace="tkg-system"
[07/14 12:45:13.41019]: mover.go:471] Creating Secret="tkg-management-md-0-9ktk" Namespace="tkg-system"
[07/14 12:45:13.52327]: mover.go:471] Creating VSphereVM="tkg-management-md-0-658c7774d6-r6781" Namespace="tkg-system"
[07/14 12:45:13.61557]: mover.go:223] Deleting objects from the source cluster
[07/14 12:45:13.61580]: mover.go:589] Deleting Secret="tkg-management-md-0-9ktk" Namespace="tkg-system"
[07/14 12:45:13.66642]: mover.go:589] Deleting VSphereVM="tkg-management-md-0-658c7774d6-r6781" Namespace="tkg-system"
[07/14 12:45:13.76133]: mover.go:589] Deleting KubeadmConfig="tkg-management-md-0-9ktk" Namespace="tkg-system"
[07/14 12:45:13.84734]: mover.go:589] Deleting VSphereVM="tkg-management-control-plane-4sbs" Namespace="tkg-system"
[07/14 12:45:13.91383]: mover.go:589] Deleting VSphereMachine="tkg-management-worker-btn2q" Namespace="tkg-system"
[07/14 12:45:14.00084]: mover.go:589] Deleting Secret="tkg-management-control-plane-lcrh2" Namespace="tkg-system"
[07/14 12:45:14.05494]: mover.go:589] Deleting Machine="tkg-management-md-0-658c7774d6-r761" Namespace="tkg-system"
[07/14 12:45:14.16263]: mover.go:589] Deleting Secret="tkg-management-tkg-system-haproxy-ca" Namespace="tkg-system"
```

3-56 Cluster Configuration Options (1)

The management cluster configuration file generated by the installer UI is saved to the `.tanzu/tkg/clusterconfigs` directory.

In the file are configuration parameters that were entered in the wizard and used in the deployment.

vSphere configuration:

```
VSPHERE_SERVER: sa-vcsa-01.vclass.local
VSPHERE_USERNAME: administrator@vsphere.local
VSPHERE_PASSWORD: <encoded:Vk13YXJ1MSE=>
VSPHERE_DATASTORE: /SA-Datacenter/datastore/SA-Shared-01
VSPHERE_FOLDER: /SA-Datacenter/vm/tkg-vms
VSPHERE_DATACENTER: /SA-Datacenter
VSPHERE_NETWORK: pg-SA-Management
VSPHERE_RESOURCE_POOL: /SA-Datacenter/host/SA-Cluster-01/Resources/rp-tkg-management
```

3-57 Cluster Configuration Options (2)

Kubernetes network CIDRs:

SERVICE_CIDR: 100.64.0.0/13

CLUSTER_CIDR: 100.96.0.0/11

VM characteristics:

VSPHERE_WORKER_MEM_MIB: "8192"

VSPHERE_WORKER_NUM_CPUS: "2"

VSPHERE_WORKER_DISK_GIB: "40"

VSPHERE_CONTROL_PLANE_NUM_CPUS: "2"

VSPHERE_CONTROL_PLANE_MEM_MIB: "8192"

VSPHERE_CONTROL_PLANE_DISK_GIB: "40"

3-58 Cluster API Configuration

The following Cluster API components from folder `.tanzu/tkg/providers/` are deployed on the management cluster:

- `cluster-api/v0.3.14/core-components.yaml`
- `control-plane-kubeadm/v0.3.14/control-plane-components.yaml`
- `bootstrap-kubeadm/v0.3.14/bootstrap-components.yaml`

3-59 Infrastructure Configuration

The Cluster API for vSphere controllers and CRDs listed in the following YML file are deployed on the management cluster when running on vSphere 6.7 Update 3:

```
.tanzu/tkg/providers/infrastructure-  
vsphere/v0.7.7/infrastructure-components.yaml
```

For vSphere 7, no configuration is required because the supervisor cluster is preconfigured with the Cluster API for vSphere controllers and CRDs.

For other IaaS providers, the following directories contain the deployment YML files:

- Amazon Web Services: .tanzu/tkg/providers/infrastructure-aws
- Microsoft Azure: .tanzu/tkg/providers/infrastructure-azure

3-60 Management Cluster Deployment Workflow

The `tanzu management-cluster create` command performs the following steps:

- 1 It validates the provided configuration.
- 2 Using `kind`, it creates a local bootstrap cluster on the bootstrap machine.
- 3 It deploys the Cluster API pods to the bootstrap cluster.
- 4 It deploys the requested management cluster configuration, using Cluster API CRDs, to the bootstrap cluster.
- 5 The Cluster API provider for vSphere on the bootstrap cluster communicates with vSphere to clone and configure the cluster VMs in vSphere.
- 6 When the cluster is available, the Cluster API pods and configuration are moved to the vSphere management cluster.
- 7 The local bootstrap cluster is deleted.

When using Amazon Web Services or Microsoft Azure, the matching Cluster API provider (CAPZ or CAPA) communicates with the IaaS providers to create and configure the cluster VMs.

3-61 Deployment Logs (1)

The following logs are an example of a successful deployment of a management cluster:

Validating the pre-requisites...

Setting up management cluster...

Validating configuration...

Using infrastructure provider vsphere:v0.6.4

Generating cluster configuration...

3-62 Deployment Logs (2)

The following logs are an example of a successful deployment of a management cluster:

Setting up bootstrapper...

Installing providers on bootstrapper...

Installing cert-manager

Waiting for cert-manager to be available...

Installing Provider="cluster-api" Version="v0.3.5"
TargetNamespace="capi-system"

Installing Provider="bootstrap-kubeadm" Version="v0.3.5"
TargetNamespace="capi-kubeadm-bootstrap-system"

Installing Provider="control-plane-kubeadm" Version="v0.3.5"
TargetNamespace="capi-kubeadm-control-plane-system"

Installing Provider="infrastructure-vsphere" Version="v0.6.4"
TargetNamespace="capv-system"

3-63 Deployment Logs (3)

The following logs are an example of a successful deployment of a management cluster:

Start creating management cluster...

Saving management cluster kuebconfig into
/home/vmware/.kube/config

Installing providers on management cluster...

Installing cert-manager

Waiting for cert-manager to be available...

Installing Provider="cluster-api" Version="v0.3.5"
TargetNamespace="capi-system"

Installing Provider="bootstrap-kubeadm" Version="v0.3.5"
TargetNamespace="capi-kubeadm-bootstrap-system"

Installing Provider="control-plane-kubeadm" Version="v0.3.5"
TargetNamespace="capi-kubeadm-control-plane-system"

Installing Provider="infrastructure-vsphere" Version="v0.6.4"
TargetNamespace="capv-system"

3-64 Deployment Logs (4)

The following logs are an example of a successful deployment of a management cluster:

Waiting for the management cluster to get ready for move...

Moving all Cluster API objects from bootstrap cluster to management cluster...

Performing move...

Discovering Cluster API objects

Moving Cluster API objects Clusters=1

Creating objects in the target cluster

Deleting objects from the source cluster

Context set for management cluster sa-compute-01-mgmt as 'sa-compute-01-mgmt-admin@sa-compute-01-mgmt'.

Management cluster created!

3-65 Management Cluster VMs

The following management cluster VMs are created by Tanzu Kubernetes Grid.

Name	Description
<CLUSTER_NAME>-control-plane-xxxxx	Control plane VMs.
<CLUSTER_NAME>-md-0-xxxxxxxxxx-xxxx	Worker node VMs. <i>md</i> is an abbreviation for MachineDeployment, which is a Cluster API custom resource.

3-66 Lab 4: Deploying a Management Cluster

Create a Tanzu Kubernetes Grid management cluster by using the Tanzu Kubernetes Grid installer:

1. Create a Management Cluster
2. Rename the Management Cluster Configuration File
3. Examine the Management Cluster

3-67 Review of Learner Objectives

- List the steps to install a Tanzu Kubernetes Grid management cluster
- Describe what happens when a management cluster is created

3-68 **Lesson 5: Managing Management Clusters**

3-69 Learner Objectives

- Describe the commands available for working with management clusters

3-70 Working with Multiple Management Clusters

You can list, view, and switch contexts between multiple management clusters by using the following commands.

Command	Description
<code>tanzu login</code>	Displays the list of management clusters that you deployed and enables changes to the <code>.kube-tkg/config</code> context of the Tanzu Kubernetes Grid CLI to a different management cluster.
<code>tanzu management-cluster get</code>	Displays the details of a specific management cluster.

3-71 Adding Existing Management Clusters to the Tanzu CLI

To add a management cluster that was created in another environment:

1. Run the `tanzu login` command.
2. Select **new server**.
3. Select **Server endpoint** and provide the login URL of a vSphere with Tanzu supervisor cluster.
4. Select **Local kubeconfig** and provide the kubeconfig file of another management cluster.

You can also add to a management cluster by using the following command.

```
tanzu login --kubeconfig <KUBE-CONFIG-PATH> --context
<CONTEXT-NAME> --name <MGMT-CLUSTER-NAME>
```

3-72 Review of Learner Objectives

- Describe the commands available for working with management clusters

3-73 Key Points

- OVA templates with the required Kubernetes version are deployed to vSphere.
- The Tanzu Kubernetes Grid installer provides a UI to enter the initial configuration.
- The bootstrap cluster is created locally and is used to create the management cluster on vSphere.

Module 4

Tanzu Kubernetes Clusters

4-2 Importance

Tanzu Kubernetes clusters are where application workloads run. Provisioning and configuring Tanzu Kubernetes clusters is the key functionality that Tanzu Kubernetes Grid provides.

4-3 Module Lessons

1. Building Custom Cluster API Machine Images
2. Deploying Tanzu Kubernetes Clusters
3. Managing Tanzu Kubernetes Clusters
4. Tanzu Kubernetes Cluster Architecture

4-4 Lesson 1: Building Custom Cluster API Machine Images

4-5 Learner Objectives

- Describe the steps to build a custom image
- Describe the available customizations

4-6 Deploying Clusters Using Custom Machine Images

You can build custom machine images to use as a VM template for the Tanzu Kubernetes workload cluster nodes.

Each custom machine image packages a base OS version and a Kubernetes version, as well as any additional customizations, into an image that runs on vSphere, Amazon Web Services (AWS), or Microsoft Azure infrastructure.

The base OS can be an OS that VMware supports but does not distribute, such as Red Hat Enterprise Linux (RHEL) v7.

4-7 Custom Machine Image Customizations

Several variables can be used to customize the image build.

Variable	Description
disable_public_repos	If set to "true", disable all existing package repositories defined in the OS before installing any packages.
extra_debs	Names of additional deb packages to install.
extra_repos	Files to add to the image, containing repository definitions.
extra_rpms	Names of additional RPM packages to install.
containerd_additional_settings	Contains additional configuration for containerd.
additional_executables	If set to "true", load additional executables from a url.
ansible_user_vars	String that the user can pass to use in the ansible roles.

For more information, see *The Image Builder Book* on the Kubernetes website at <https://image-builder.sigs.k8s.io/capi/capi.html#customization>.

4-8 Building Custom Machine Images: Requirements

To create a custom machine image, you must meet the following requirements:

- An account on your target infrastructure, such as vSphere, AWS, or Microsoft Azure.
- Docker is installed on a macOS or Linux workstation.
- For AWS, the aws CLI is installed.
- For Microsoft Azure, the az CLI is installed.
- For vSphere, a copy of the OVFTool Linux installer.

4-9 Building Custom Machine Images: Steps

To create a custom machine image, the following steps are required:

- 1 Determine and download the Image Builder configuration version that you want to build from.

Each version corresponds to the Kubernetes version that Image Builder uses. For example, `TKG-Image-Builder-for-Kubernetes-v1.20.5-master.zip` builds a Kubernetes v1.20.5 image.

- 2 For vSphere, load OVF Tool in the Image Builder Container Image.
- 3 Prepare the configuration.
- 4 Run Image Builder.

4-10 Using Custom Machine Images

After you create a custom image, you enable the Tanzu CLI to use the image by creating a custom Tanzu Kubernetes release based on the image:

- 1 Open the Bill of Materials (BOM) file corresponding to the Kubernetes version of your custom image.
- 2 Edit or add configuration.
- 3 Save the BOM file.
- 4 Base64-encode the file contents.
- 5 Create a ConfigMap YAML file in the tkr-system namespace.
- 6 Save the ConfigMap file, set the kubectl context to a management cluster that you want to add Tanzu Kubernetes release to, and apply the file to the cluster.

Example:

```
kubectl apply -f my-custom-tkr-bom-v1.20.5---vmware.2-  
tkg.1.yaml
```

- 7 Verify that the custom Tanzu Kubernetes release was added by running `tanzu kubernetes-release get` or `kubectl get tkr`, and look for the CUSTOM-TKR value set, listed above, in the output.

4-11 Review of Learner Objectives

- Describe the steps to build a custom image
- Describe the available customizations

4-12 Lesson 2: Deploying Tanzu Kubernetes Clusters

4-13 Learner Objectives

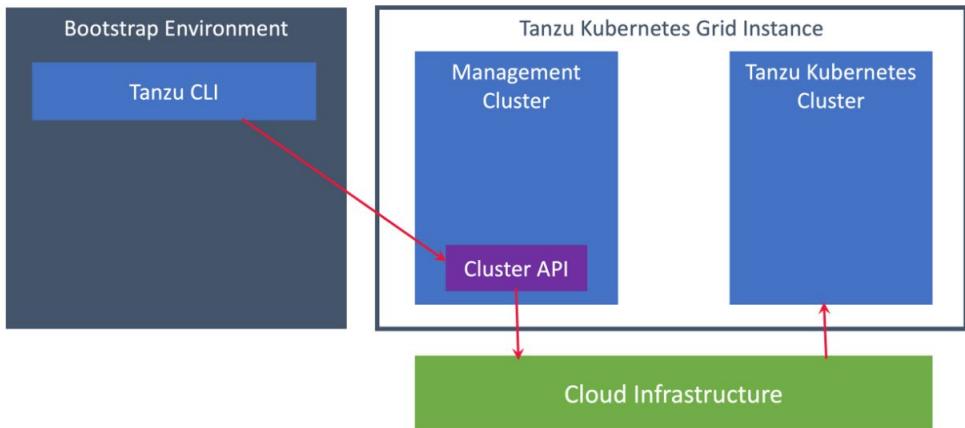
- Describe the options for deploying Tanzu Kubernetes clusters
- Describe how Tanzu Kubernetes clusters are created

4-14 Tanzu CLI Cluster Plug-In

The Tanzu CLI core executable must be installed, followed by the CLI plug-ins related to Tanzu Kubernetes cluster management and feature operations.

After the plug-ins are installed, the following commands are available when running the `tanzu cluster` command.

Command	Description
create	Creates a Tanzu Kubernetes Grid cluster.
credentials	Updates the vSphere credentials for a cluster.
delete	Deletes a cluster.
get	Get details from a cluster.
kubeconfig	Gets the kubeconfig file of a cluster.
list	Lists clusters.
machinehealthcheck	Configures machine health checks.
scale	Scales a cluster.
upgrade	Upgrades a cluster.


4-15 Tanzu CLI Cluster Create Command

The following flags are available when running `tanzu cluster create`.

Flag	Description
<code>-d, --dry-run</code>	Displays only the deployment YAML, instead of creating the cluster.
<code>-f, --file</code>	Specifies a configuration file from which to create a cluster.
<code>--tkr</code>	Creates a cluster using a specific Tanzu Kubernetes release version.
<code>--log-file</code>	Provides a path to a file for saving the cluster create operation logs.

4-16 Creating Tanzu Kubernetes Clusters

When you run `tanzu cluster create -f tkc-01.yaml`, the Tanzu CLI communicates with the management cluster to create Tanzu Kubernetes clusters.

The `tanzu cluster create` command performs the following steps:

- 1 It validates the provided configuration by querying vSphere for the defined resources.
- 2 It deploys the requested cluster configuration to the management cluster by using Cluster API CRDs.
- 3 The Cluster API provider for vSphere on the management cluster communicates with vSphere to clone and configure the cluster VMs in vSphere.

4-17 Cluster Configuration Files

Cluster configuration files contain the configuration parameters that get passed to the Tanzu CLI and combined with the cluster plan template files.

Example configuration parameters:

```
VSPHERE_WORKER_MEM_MIB: "8192"  
VSPHERE_WORKER_NUM_CPUS: "2"  
VSPHERE_WORKER_DISK_GIB: "40"  
VSPHERE_CONTROL_PLANE_NUM_CPUS: "2"  
VSPHERE_CONTROL_PLANE_MEM_MIB: "8192"  
VSPHERE_CONTROL_PLANE_DISK_GIB: "40"  
SERVICE_CIDR: 100.64.0.0/13  
CLUSTER_CIDR: 100.96.0.0/11
```

For a complete list of configuration parameters, see Tanzu CLI Configuration File Variable Reference at <https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.3/vmware-tanzu-kubernetes-grid-13/GUID-tanzu-config-reference.html>.

4-18 Source of Cluster Configuration Values

When the Tanzu CLI creates a cluster, it combines configuration values from the following locations:

- Cluster plan YAML configuration files in `~/.tanzu/tkg/providers`
- `~/.tanzu/tkg/cluster-config.yaml` or other file passed to the CLI `-f` option
- Environment variables
- Command-line input

4-19 Deploying Clusters with a Highly Available Control Plane

The `CLUSTER_PLAN` parameter specifies the number of control plane nodes:

- Setting `CLUSTER_PLAN` to `dev` deploys a single control plane node.
- Setting `CLUSTER_PLAN` to `prod` deploys a highly available cluster with three control plane nodes.

The following VMs are created by Cluster API if the `prod` plan is selected:

- Three control plane VMs, with names similar to `tkc-01-control-plane-nj4z6`
- Three worker node VMs, with names similar to `tkc-01-md-0-6ff9f5cffb-jhcrh`

4-20 Previewing the YAML File for Tanzu Kubernetes Clusters

You can use the `--dry-run` flag to preview the YAML file that Tanzu Kubernetes Grid will create when it deploys a Tanzu Kubernetes cluster.

Example command:

```
tanzu cluster create -f tkc-01.yaml --dry-run
```

This flag is useful if you need to inspect the generated YAML configuration to ensure the correct values were entered.

4-21 Overriding Default Configuration Parameters

The Tanzu CLI `management-cluster` and `cluster` commands read the configuration parameters from the specified file by using `-f` or `--file`.

The parameters can be overridden by setting environment variables before running the CLI:

- `export VSPHERE_NETWORK="pg-SA-Production"`
- `export VSPHERE_RESOURCE_POOL="/SA-Datacenter/host/SA-Cluster-01/Resources/rp-tkg-production"`

The environment variables take precedence over the configuration file parameters.

4-22 Deploying Clusters that Run a Specific Kubernetes Version

Each release of Tanzu Kubernetes Grid:

- Provides a default Kubernetes version
- Supports a defined set of Kubernetes versions

Example command to deploy a cluster using a specific Kubernetes version:

- `tanzu cluster create -f tkc-01.yaml --tkr v1.19.9---vmware.2-tkg.1`

4-23 Lab 5: Deploying a Tanzu Kubernetes Cluster

Deploy a Tanzu Kubernetes cluster that will be given to a development team:

1. Create a Tanzu Kubernetes Cluster Configuration File
2. Create a Tanzu Kubernetes Cluster

4-24 Review of Learner Objectives

- Describe the options for deploying Tanzu Kubernetes clusters
- Describe how Tanzu Kubernetes clusters are created

4-25 **Lesson 3: Managing Tanzu Kubernetes Clusters**

4-26 Learner Objectives

- Describe the commands available for working with Tanzu Kubernetes clusters

4-27 Granting Authenticated Access to a Cluster

Running the `tanzu cluster kubeconfig get <CLUSTER-NAME>` command generates a kubeconfig file that can be shared with users who require access to a cluster.

The kubeconfig file is configured with instructions that run the Tanzu CLI and trigger the Pinniped authentication workflow.

Though this process authenticates a user to the cluster, the user still requires permissions to be granted on the cluster to interact with Kubernetes API resources.

```
users:
- name: tanzu-cli-tkc-01
  user:
    exec:
      apiVersion: client.authentication.k8s.io/v1beta1
      args:
        - pinniped-auth
        - login
        - --enable-concierge
        - --concierge-namespace=pinniped-concierge
        - --concierge-authenticator-name=tkg-jwt-authenticator
        - --concierge-authenticator-type=jwt
        - --concierge-endpoint=https://172.20.11.101:6443
        - --concierge-ca-bundle-data=LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0t
E1EY3l0akl4TURZME1Gb1hEVE14TURjeUE5ESXhNVEUwTUZvd0ZURVRNQkVHQTFRQp8e
mFrBWJmbmYyNWRhwVo3N3kya33qdEJUNFBFSHpicEJGYUFxZ0psNGs1aGUKWVsN1Nb
U92snppta0ltcFA2TTLx0s0TFBTmxNlpINTJUKzVncFI0ry81ClvHbzAwvX1yM0lGS
FJ5WNNsV0NrTVdLQ2ZSeU5LdDVYbjJsWFRUnZGaVg1awpqeUnNVEdSbC9s0XRiYwUya
GdnRUJBSUJqb3BoYTNTaExzRGSwZnVza0R1SlgKrnZ4Y1Y1butzVZ2ZIRGiybXN0MHJJS
EpZNjllWkl2Ylh2MWhjVEDy21yeW5ycK10cEta0XhxMXc3VjV3Q09GSU5nbDRocE9VK
HZKYKzzduJXZDba0TVieWdyYDpkzh0T29FNDJLWmtaL3PRDdcckyNGI0Zz13U3FTN
        - --is-issuer=https://172.20.100:31234
        - --scopes=offline_access,openid,pinniped:request-audience
        - --ca-bundle-data=LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tC1JSU
4RLRBVE3nTlZCQ1UREhSc1pSMXdhVzV1YvhcbFpE0WVQdzB5TRBMwPnall5TURJMU1
JakFQ9mdrcwhraUc5dzBCQVFFRKFBTNBUTHBTUJQkNns0MKQVFFQxLUL1JETEdUSh
jTWzTev0MK5151EyZTz150w0tjZERXQ5UTgvSzZkCnZaMnpDbFbrNE1bHnsTQ5Vzh
FMkhSSCtInNW5TcHhRZmrTekg1UChBbit55gpwQmtt0vo1S3JxczZ80VhZd0kvUnc5YTh
wSFE4qkFm0EVQCU1Q0ldRd0hRWUQKVLIwbeJCMxdGQVlJ3s3DzQkJRVUhBd0VHQ0NzR0F
BUUVBcVmMrM315R2gxZkxjCkZ40GtoSFbVTLJaYzNhYUlyTDNONk90dzMwYTRNN3hJam4
2YkZ2NzdrUAvRQpXZzhqWFJBS2MyUdhYQjZMuNzvRS9PekNnbGJTNGFMMFJzNUR6d2x
252NtcUQVStYbEZudWF6TFRkWjNnbGtNKzVLYUptM0FrTnRTeitNvvvJMGJIMUTsSW
        - --request-audience=tkc-01
    command: tanzu
    env: []
```

4-28 Granting Access to Cluster Resources

An authenticated user needs permissions to perform actions on the cluster.

RoleBindings or ClusterRoleBindings are required to grant access to specific cluster resources.

In this example, ClusterRoleBinding grants users in the `tkg-developers` group full `cluster-admin` permissions.

Typically, permissions would be more strict and detailed.

```
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: developers-ldap-group
subjects:
  - kind: Group
    name: tkg-developers
    apiGroup: ""
roleRef:
  kind: ClusterRole
  name: cluster-admin
  apiGroup: rbac.authorization.k8s.io
```

4-29 Scaling Clusters

To scale clusters, use the `scale` command and include the required `controlplane-machine-count` and `worker-machine-count` values.

```
tanzu cluster scale tkc-01 --controlplane-machine-count 3 --worker-machine-count 3
```

The Tanzu CLI modifies the Cluster API spec of the cluster, which triggers the Cluster API controllers to create new control plane or worker nodes.

Control plane and worker nodes can be scaled up and down.

Control plane nodes can only be scaled to an odd number of nodes. This is to prevent quorum issues during etcd leader elections.

4-30 Scaling Management Clusters

Because the management clusters run in the `tkg-system` namespace, the `--namespace` option must be specified when scaling a management cluster.

```
tanzu cluster scale <mgmt-cluster-name> --controlplane-  
machine-count 3 --worker-machine-count 3 --namespace tkg-  
system
```

Scaling management clusters is not typically needed because the management workloads do not consume much resources.

4-31 Cluster Autoscaler

To enable Cluster Autoscaler for the workload cluster, you set the `AUTOSCALER_` options in the configuration file that you use to deploy the cluster.

<code>ENABLE_AUTOSCALER</code>	Set to <code>true</code> or <code>false</code> to enable or disable autoscaling.
<code>AUTOSCALER_MAX_NODES_TOTAL</code>	Limits the count of all nodes, both the worker node and control plane.
<code>AUTOSCALER_SCALE_DOWN_DELAY_AFTER_ADD</code>	Amount of time that Cluster Autoscaler waits after a scale-up operation to resume scale-down scans.
<code>AUTOSCALER_SCALE_DOWN_DELAY_AFTER_DELETE</code>	Amount of time that Cluster Autoscaler waits after deleting to resume scale-down scans.
<code>AUTOSCALER_MIN_SIZE_0</code> , <code>AUTOSCALER_MAX_SIZE_0</code>	Cluster Autoscaler does not attempt to scale the nodes beyond or under this limit.

- For clusters with a single machine deployment such as dev clusters on vSphere, Amazon EC2, or Azure and prod clusters on vSphere or Azure, set:
`AUTOSCALER_MIN_SIZE_0` and `AUTOSCALER_MAX_SIZE_0`
- For clusters with multiple machine deployments such as prod clusters on Amazon EC2, set:
`AUTOSCALER_MIN_SIZE_0` and `AUTOSCALER_MAX_SIZE_0`
`AUTOSCALER_MIN_SIZE_1` and `AUTOSCALER_MAX_SIZE_1`
`AUTOSCALER_MIN_SIZE_2` and `AUTOSCALER_MAX_SIZE_2`

4-32 Machine Health Checks

MachineHealthCheck is a controller that provides node health monitoring and node auto-repair for Tanzu Kubernetes clusters.

The controller monitors for the following node conditions:

- Ready
- MemoryPressure
- DiskPressure
- PIDPressure
- NetworkUnavailable

If a node's status reports the condition for the specified amount of time, the node is considered unhealthy and is recreated by Cluster API.

4-33 Configuring Machine Health Checks

All created clusters must have **ENABLE_MHC** set to **true** or **false** to enable or disable **MachineHealthCheck**. This setting can be modified later by using the tanzu CLI.

You use the `tanzu cluster machinehealthcheck set` command to configure or modify machine health checks.

Example: `tanzu cluster machinehealthcheck set tkc-01 --unhealthy-conditions "Ready:False:5m,Ready:Unknown:5m"`

If the node's Ready status reports as False or Unknown for five minutes, the node is considered unhealthy and is recreated.

4-34 Lab 6: Managing a Tanzu Kubernetes Cluster

Examine the default workloads running on the Tanzu Kubernetes cluster and scale the cluster to add an additional worker node:

1. Examine the Tanzu Kubernetes Cluster
2. Scale the Tanzu Kubernetes Cluster

4-35 Lab 7: Providing Access to Developers

Provide developer access to the Tanzu Kubernetes cluster:

1. Generate a kubeconfig File for the Cluster
2. Create Role Binding to Grant Developer Access

4-36 Review of Learner Objectives

- Describe the commands available for working with Tanzu Kubernetes clusters

4-37 Lesson 4: Tanzu Kubernetes Cluster Architecture

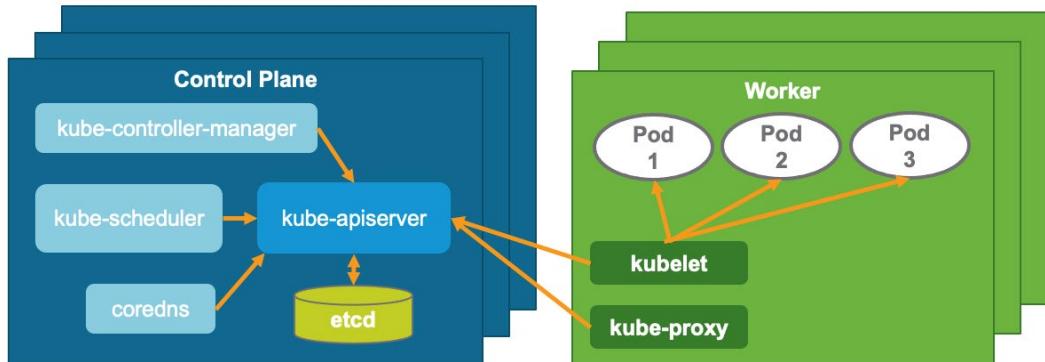
4-38 Learner Objectives

- Describe the VMs that make up a Tanzu Kubernetes cluster
- Describe the pods that run on a Tanzu Kubernetes cluster
- Describe the Tanzu Kubernetes Grid core add-ons that are installed on a cluster

4-39 Tanzu Kubernetes Cluster VMs

Depending on the plan used, the following VMs are created:

- One or more control plane VMs, with names similar to `tkc-01-control-plane-nj4z6`
- One or more worker node VMs, with names similar to `tkc-01-md-0-6ff9f5cffb-jhcrh`


4-40 Upstream Kubernetes Components (1)

The following components are standard upstream Kubernetes components.

Component	Description
etcd	Consistent and highly available key value store used as Kubernetes' backing store for all cluster data.
kube-apiserver	A component of the Kubernetes control plane that exposes the Kubernetes API.
kube-controller-manager	A daemon that watches the state of the cluster through the kube-apiserver and makes changes to move the current state toward the desired state.
kube-scheduler	Watches for newly created pods with no assigned node and selects a node for them to run on.
kubelet	Watches for requests to run pods. Starts the pods on the worker node.
kube-proxy	Maintains network rules which allow network communication to your pods from network sessions inside or outside of your cluster.
coredns	An extensible DNS server that serves as the Kubernetes cluster DNS.

4-41 Upstream Kubernetes Components (2)

The following components are standard upstream Kubernetes components.

4-42 Kubernetes API High-Availability

`kube-vip` provides a high-availability load balancing solution for the Kubernetes control plane.

Component	Description
<code>kube-vip</code>	<p>The <code>kube-vip</code> pod runs on each control plane node. One node is elected as the leader and advertises the virtual IP address using Address Resolution Protocol (ARP).</p> <p>If the node fails or becomes unhealthy, leader election happens again and another control plane node advertises the virtual IP address using ARP.</p>

4-43 Authentication Core Add-Ons

Pinniped is used for cluster authentication.

Component	Description
pinniped-supervisor	The Pinniped supervisor runs on the management cluster. It is an OIDC server which allows users to authenticate with an external identity provider (IDP) and then issues an ID token which a user passes to the workload cluster.
pinniped-concierge	The Pinniped concierge runs on management and workload clusters. It exchanges the ID tokens for certificates which are used to authenticate Kubernetes API requests to the cluster.
dex	Dex runs on the management cluster. It is used by Pinniped to perform LDAP authentication.

4-44 Networking Core Add-Ons

Tanzu Kubernetes Grid supports either Antrea or Calico as the container network interface (CNI) for in-cluster networking.

Component	Description
antrea-controller	The Antrea controller watches NetworkPolicy, Pod, and Namespace resources from the Kubernetes API, computes NetworkPolicies, and distributes the computed policies to all antrea-agent pods.
antrea-agent	The Antrea agent manages the Open vSwitch (OVS) bridge and Pod interfaces, and implements Pod networking with OVS on every Kubernetes node.
calico-kube-controllers	Calico controllers watch the Kubernetes API for Namespace, Pod, NetworkPolicy and other resources. When changes are detected, the state is passed to Calico-node Pods.
calico-node	The Calico-node Pod is deployed on every Node and provides the overlay networking and routing between pods on different nodes. It watches the calico-kube-controllers for state changes and updates Pod networking, as needed.

4-45 vSphere Core Add-Ons

The following vSphere components are deployed on Tanzu Kubernetes Grid clusters running on vSphere.

Component	Description
vsphere-cloud-controller-manager	The vSphere cloud provider interface (CPI) implements Kubernetes functionality specific to vSphere. The vSphere CPI connects to vCenter Server and maps information about infrastructure, such as VMs, disks, and so on, back to the Kubernetes API.
vsphere-csi-controller	The vSphere CSI controller watches Kubernetes events related to PVC or PV objects, such as creation or deletion. It invokes the cloud-native storage (CNS) component on vCenter Server for volume operations such as as create, delete, update, attach, and detach. PVC or PV object metadata is synced with the vSphere CNS database.
vsphere-csi-node	The vSphere CSI node pod interacts with the local kubelet on the worker node. It performs operations related to pod volume access, such as format, mount, and unmount.

4-46 Metrics Core Add-Ons

Tanzu Kubernetes Grid deploys a metrics server to management and workload clusters.

Component	Description
metrics-server	Metrics Server collects resource metrics from kubelets and exposes them in the Kubernetes API for use by Horizontal Pod Autoscaler and Vertical Pod Autoscaler.

4-47 Review of Learner Objectives

- Describe the VMs that make up a Tanzu Kubernetes cluster
- Describe the pods that run on a Tanzu Kubernetes cluster
- Describe the Tanzu Kubernetes Grid core add-ons that are installed on a cluster

4-48 Key Points

- Cluster API provides the main functionality of Tanzu Kubernetes Grid.
- The Tanzu Kubernetes Grid CLI provides options for creating Tanzu Kubernetes clusters of various sizes.
- Tanzu Kubernetes clusters run upstream versions of Kubernetes.

Module 5

Configuring and Managing Tanzu Kubernetes Grid Instances

5-2 Importance

A standard Kubernetes installation lacks some of the functionality that is required for a production-ready cluster. Tanzu Kubernetes Grid extensions provide the required logging, ingress, service discovery, and monitoring functionality to make a Tanzu Kubernetes cluster production-ready.

5-3 Module Lessons

1. Tanzu Kubernetes Grid Extensions
2. Image Registry
3. Logging
4. Ingress
5. Service Discovery
6. Cluster Monitoring

5-4 Lesson 1: Tanzu Kubernetes Grid Extensions

5-5 Learner Objectives

- Describe the Tanzu Kubernetes Grid extensions

5-6 About the Tanzu Kubernetes Grid Extensions Bundle

Tanzu Kubernetes Grid extensions bundle includes binaries for tools that help you to provide in-cluster and shared services to your Tanzu Kubernetes Grid instance.

VMware builds all the provided binaries and container images.

5-7 Extensions Included in the Bundle

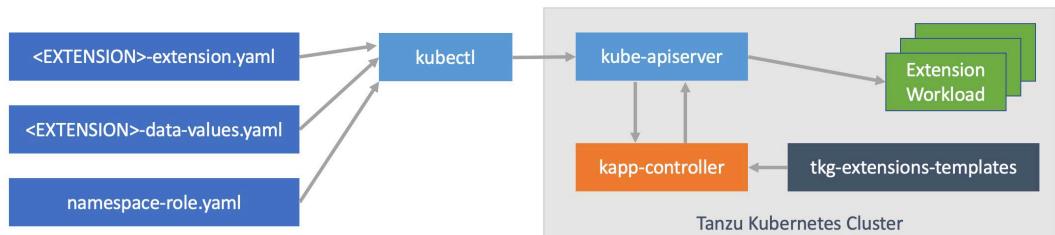
The Tanzu Kubernetes Grid extensions bundle includes the following extensions.

Function	Extension
Container Registry	Harbor
Logging	Fluent Bit
Ingress	Contour
Service Discovery	External DNS
Monitoring	Prometheus
	Grafana

5-8 Container Images

VMware builds all the container images used by Tanzu Kubernetes Grid and the Tanzu Kubernetes Grid extensions.

All container images are hosted on projects.registry.vmware.com, an instance of the Harbor image registry that is managed by VMware.


For Internet-restricted environments, container images can be copied to an accessible image registry. The extension manifest files must be updated with the new image registry path.

5-9 Deploying Extensions with kapp-controller

When extensions are deployed:

- The namespace, configuration, and extension YAML files for the specific extension are applied.
- kapp-controller combines the configuration with the YTT templates from the tkg-extensions-templates and generates the Deployment, ConfigMaps, Secrets, and any other resource definitions required for the extension.
- The extension workload is started by using standard Kubernetes processes.

The kapp CLI is used to inspect the state of workloads that are deployed by kapp-controller.

5-10 Configuring Extensions with Kubernetes Secrets

Extensions are configured by creating a Kubernetes Secret containing extension-specific configuration data.

The configuration file for each extension has the name <extension>-data-values.yaml and is used to create a Secret with the name <extension>-data-values.

When kapp-controller deploys an extension, it reads the Secret and deploys the extension with the specified configuration.

Changes to the Secret resource cause kapp-controller to reconcile the changes in the deployed resources.

5-11 About cert-manager

cert-manager is a native Kubernetes certificate management controller that:

- Adds certificates and certificate issuers as resource types in Kubernetes clusters
- Simplifies the process of obtaining, renewing and using certificates
- Can generate certificates internally or connect to external services, such as Let's Encrypt, to request certificates

While not considered a Tanzu Kubernetes Grid extension, cert-manager is provided in the extensions bundle because Contour, Grafana, Prometheus, and Harbor depend on it to provide certificates.

5-12 Deleting Extensions

For troubleshooting or if no longer required, extensions can be uninstalled by running the following commands:

- `kubectl delete -f <EXTENSION>-extension.yaml`
- `kubectl delete -f namespace-role.yaml`

For more information about deleting Tanzu Kubernetes Grid extensions, see *Delete Tanzu Kubernetes Grid Extensions* at <https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.3/vmware-tanzu-kubernetes-grid-13/GUID-extensions-delete-extensions.html>.

5-13 Lab 8: Unzipping the Tanzu Kubernetes Grid Extensions Bundle

Unzip the Tanzu Kubernetes Grid extensions files in preparation for deploying the extensions:

1. Unzip the Tanzu Kubernetes Grid Extensions
2. Change the Image Registry Location

5-14 Lab 9: Deploying cert-manager

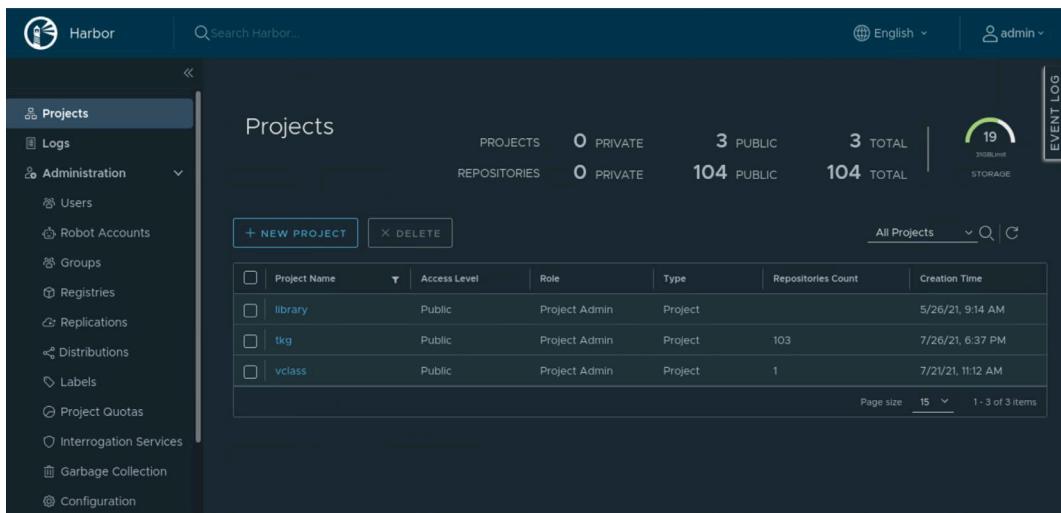
Deploy the cert-manager component:

1. Deploy cert-manager

5-15 Review of Learner Objectives

- Describe the Tanzu Kubernetes Grid extensions

5-16 **Lesson 2: Image Registry**


5-17 Learner Objectives

- Describe the Harbor Image Registry

5-18 About Harbor

Harbor is a container image registry that supports:

- Role-based access control (RBAC)
- Identity integration with LDAP or OIDC
- Scanning images for vulnerabilities
- Signed images
- Image replication between registries

The screenshot shows the Harbor UI with the 'Projects' tab selected in the sidebar. The main dashboard displays project statistics: 0 PRIVATE PROJECTS, 3 PUBLIC PROJECTS, 104 PUBLIC REPOSITORIES, and 104 TOTAL REPOSITORIES. A storage usage bar shows 19 GB used out of 300GB. The 'PROJECTS' section lists three public projects: 'library', 'tkg', and 'vclass', each with its access level, role, type, repository count, and creation time. The 'tkg' project is a 'Project Admin' role with 103 repositories and was created on 5/26/21, 6:37 PM. The 'vclass' project is also a 'Project Admin' role with 1 repository and was created on 7/21/21, 11:12 AM. The 'library' project is a 'Project Admin' role with 103 repositories and was created on 5/26/21, 9:14 AM. The sidebar also includes 'Logs', 'Administration' (with sub-options like 'Users', 'Robot Accounts', 'Groups', 'Registries', 'Replications', 'Distributions', 'Labels', 'Project Quotas', 'Interrogation Services', 'Garbage Collection', and 'Configuration'), and an 'EVENT LOG' section.

Project Name	Access Level	Role	Type	Repositories Count	Creation Time
library	Public	Project Admin	Project	103	5/26/21, 9:14 AM
tkg	Public	Project Admin	Project	103	5/26/21, 6:37 PM
vclass	Public	Project Admin	Project	1	7/21/21, 11:12 AM

5-19 Harbor Components

Component	Description
Core	Acts as a front-end API for various functionality.
Portal	The Harbor UI.
Registry	Provides the Docker registry functionality.
Database	A PostgreSQL database for storing configuration and metadata.
Redis	Used by various Harbor services for caching to improve performance.
Jobservice	Running background jobs such as image replication.
Trivy	Vulnerability scanner for container images stored in Harbor.
Clair	Vulnerability scanner for container images stored in Harbor.
Notary	Provides image signing functionality.

5-20 Vulnerability Scanning

Trivy provides the following vulnerability scanning functionality in Harbor:

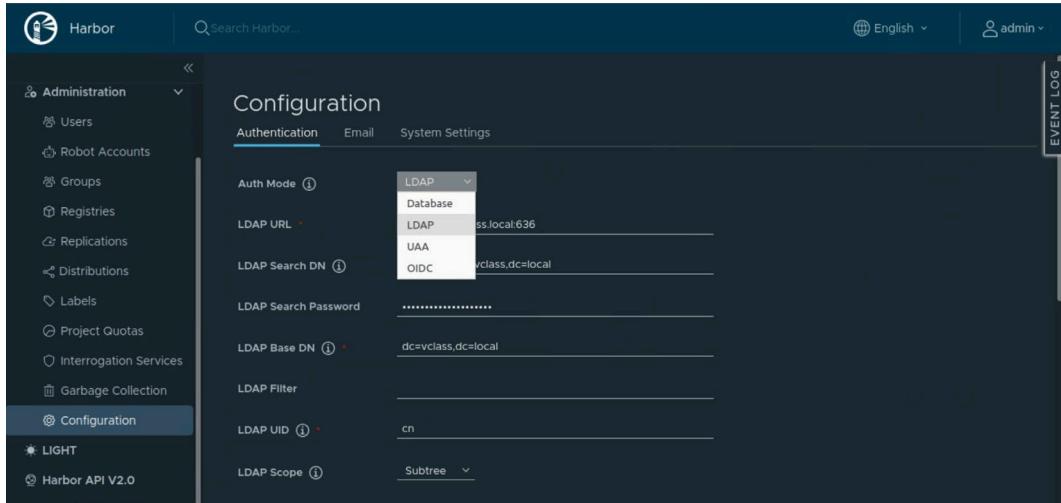
- Scans container images stored in Harbor
- Scans OS packages in container images, such as Photon OS, Ubuntu, Debian, Red Hat, and others
- Scans language-specific packages in container images, such as Java, Python, Go, and others

Trivy does not scan running containers.

For more information about the scans performed by Trivy and the vulnerability databases used by Trivy, see [aquasecurity/trivy](https://github.com/aquasecurity/trivy) on the GitHub website at <https://github.com/aquasecurity/trivy>.

5-21 Harbor Deployment Options

Harbor is deployed on a shared-services cluster so that all workload clusters deployed in the Tanzu Kubernetes Grid instance can access it.


Common Harbor configuration options are listed.

Key	Value
hostname	The Harbor host name.
tls.crt	Provide custom TLS certificates.
tls.key	
ca.crt	
harborAdminPassword	Sets the password for the admin user.
persistence.persistentVolumeClaim.registry.size	The size of the persistent volume used to store container images.

If Contour and External DNS are configured, the Harbor host name will be registered with DNS and externally accessible.

5-22 Harbor Authentication

Select **Configuration > Authentication** to configure LDAP and OIDC authentication.

The screenshot shows the Harbor Configuration page with the 'Authentication' tab selected. The 'Auth Mode' dropdown is set to 'LDAP'. The 'LDAP URL' field contains 'ldaps://192.168.1.63:636'. The 'LDAP Search DN' field contains 'cn=harbor,dc=local'. The 'LDAP Search Password' field is filled with a redacted password. The 'LDAP Base DN' field contains 'dc=harbor,dc=local'. The 'LDAP Filter' field is empty. The 'LDAP UID' field contains 'cn'. The 'LDAP Scope' dropdown is set to 'Subtree'. The left sidebar shows the 'Configuration' section is currently selected.

5-23 Review of Learner Objectives

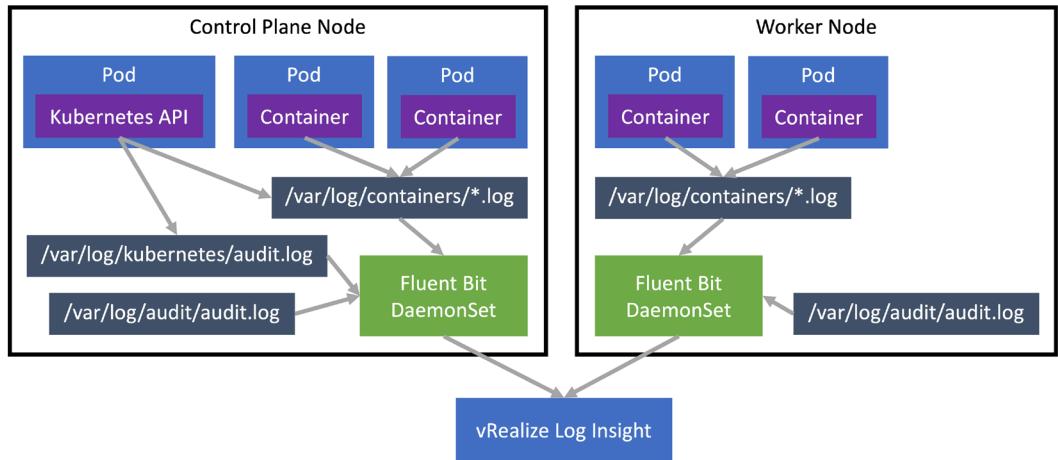
- Describe the Harbor Image Registry

5-24 **Lesson 3: Logging**

5-25 Learner Objectives

- Describe Fluent Bit
- Detail the logs that Fluent Bit collects
- Describe basic Fluent Bit configuration

5-26 About Fluent Bit


Fluent Bit is a lightweight logging framework that:

- Processes Kubernetes containers logs
- Enriches logs with Kubernetes metadata
- Outputs logs to services such as:
 - vRealize Log Insight
 - Syslog
 - Elasticsearch
 - Splunk
 - HTTP endpoint

5-27 How Fluent Bit Works

Fluent Bit is deployed as a DaemonSet and collects the following logs.

Logs	Description
/var/log/containers/*.log	Container logs from all nodes.
/var/log/kubernetes/audit.log	Kubernetes API server audit logs on control plane nodes.
/var/log/audit/audit.log	OS audit logs on all nodes.

5-28 Metadata Added By Fluent Bit

Fluent Bit adds the following metadata to logs:

- Pod ID
- Pod name
- Container ID
- Container name
- Labels
- Annotations
- Cluster name
- Instance name

5-29 Fluent Bit Syslog Configuration

The following parameters are required when configuring output to Syslog.

Parameter	Description
host	The syslog host name.
port	The Syslog port.
mode	Sends logs using TCP or UDP.
format	Typically set to rfc5424.
instance_name	The instance name is arbitrary but using the management cluster name is practical.
cluster_name	The cluster name is arbitrary but should be the workload cluster name.

5-30 Lab 10: Deploying Fluent Bit

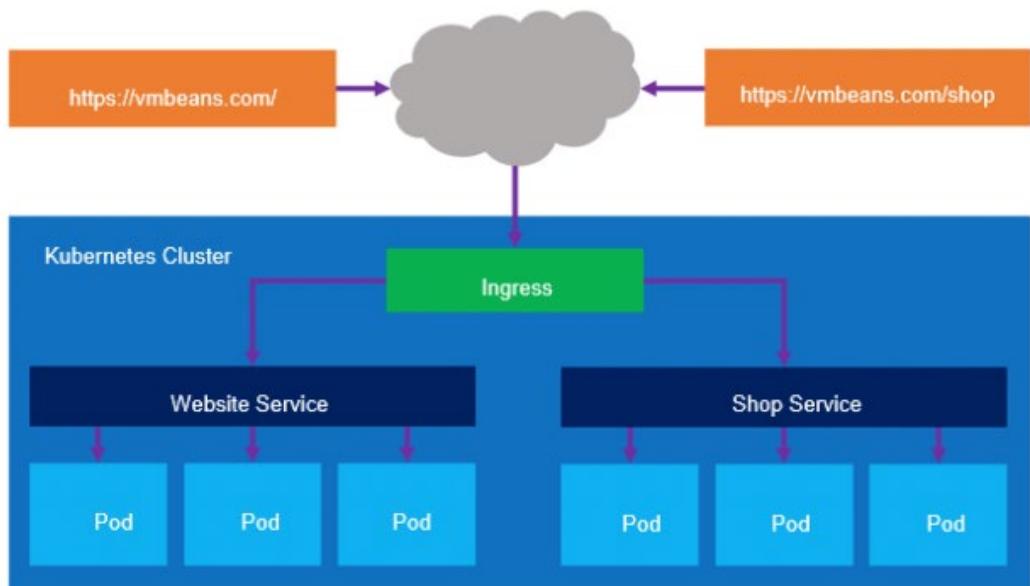
Configure and deploy Fluent Bit to forward cluster logs to vRealize Log Insight:

1. Configure Fluent Bit
2. Deploy Fluent Bit
3. Access vRealize Log Insight to View Logs

5-31 Review of Learner Objectives

- Describe Fluent Bit
- Detail the logs that Fluent Bit collects
- Describe basic Fluent Bit configuration

5-32 Lesson 4: Ingress


5-33 Learner Objectives

- Describe the Contour ingress controller
- Explain how to install Contour on a Tanzu Kubernetes cluster

5-34 About Ingress

Ingress in Kubernetes:

- Is a method for routing external traffic to pods
- Operates on layer 7 traffic
- Routes requests based on HTTP headers
- Can be implemented by various ingress controllers:
 - Contour
 - NSX-T
 - NSX Advanced Load Balancer
 - NGINX
 - Amazon ALB

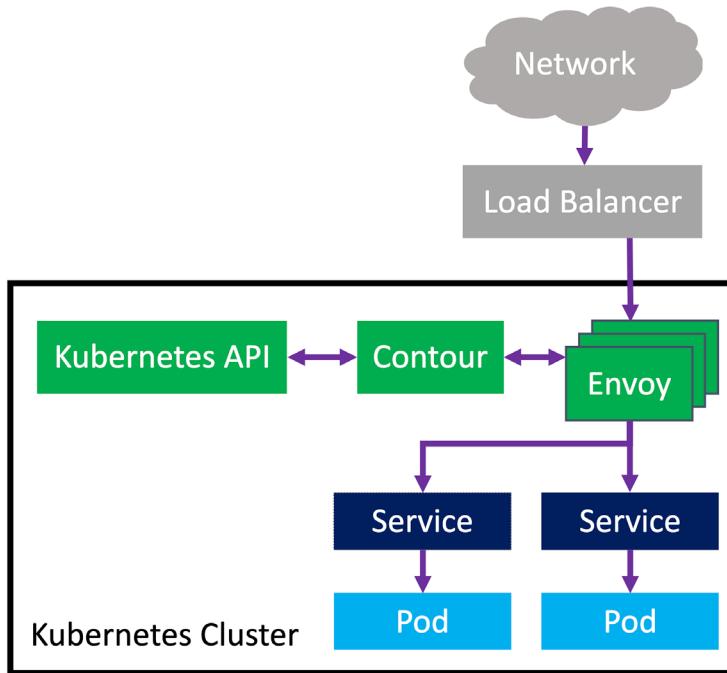
5-35 About Contour

Contour:

- Is an open-source Kubernetes ingress controller
- Is used as the ingress controller for Tanzu Kubernetes Grid
- Supports Ingress and HTTPProxy resources
- Consists of Contour controller deployment and Envoy proxy DaemonSet
- Uses Envoy to perform traffic routing
- Supports dynamic configuration updates

5-36 About HTTPProxy Resources

HTTPProxy resources:


- Match requests based on the configured virtualhost FQDN field
- Route requests based on one or more routes that match the URL path
- Route requests to the defined service and port
- Support conditional routing based on URL prefixes and HTTP headers
- Support inclusion of one HTTPProxy resource within another to create tree-like routing structures

```
apiVersion: projectcontour.io/v1
kind: HTTPProxy
metadata:
  name: vmbeans-httpproxy
  namespace: default
spec:
  virtualhost:
    fqdn: vmbeans.com
  routes:
    - conditions:
        - prefix: /
      services:
        - name: website-service
          port: 80
    - conditions:
        - prefix: /shop
      services:
        - name: shop-service
          port: 80
```

5-37 How Contour Works

A Contour deployment dynamically configures an Envoy proxy DaemonSet by using the following steps:

1. Contour watches the Kubernetes API for ingress or HTTPProxy resources.
2. Contour generates a cache of ingress and HTTPProxy resources.
3. Envoy periodically polls Contour for configuration changes.
4. Envoy dynamically updates its routing configuration.
5. Requests are received from a load balancer or directly from the external network and routed to the correct pods.

5-38 Contour Configuration Options

The following manifests are provided in the `extensions/ingress/contour/vsphere` directory when deploying Contour on vSphere.

Contour Configuration	Description
<code>contour-data-values-lb.yaml.example</code>	Deploys Contour and a load balancer service that routes traffic to Envoy.
<code>contour-data-values.yaml.example</code>	Deploys Contour only and manages routing traffic to Envoy separately.

The default Contour configuration is suitable for most deployments.

More advanced options, such as `requestTimeout`, `connectionIdleTimeout` and `minimumProtocolVersion` (TLS), can be adjusted if required.

See the Tanzu Kubernetes Grid documentation for a full list of configuration options.

5-39 Lab 11: Deploying Contour

Configure and deploy Contour to enable HTTP routing to application workloads:

1. Configure Contour
2. Deploy Contour

5-40 Review of Learner Objectives

- Describe the Contour ingress controller
- Explain how to install Contour on a Tanzu Kubernetes cluster

5-41 Lesson 5: Service Discovery

5-42 Learner Objectives

- Describe Service Discovery
- Describe External DNS
- Detail the configuration options for BIND servers

5-43 About Service Discovery

Kubernetes provides a declarative API for deploying applications, services, ingress, and load balancer resources.

Services, ingress, and load balancer resources provide methods to route external IP network traffic into a cluster and to an application. However, IP addresses can change as workloads are created and destroyed.

Service discovery solves this problem by allowing applications to be registered in a service registry.

The service registry can be queried by applications or end users that need to access a specific application.

5-44 About External DNS

External DNS is a service discovery solution that:

- Uses DNS as a service registry
- Uses FQDNs defined in ingress, HTTPproxy, and load balancer resources
- Creates DNS entries for applications in the configured DNS server
- Allows users and applications outside a cluster to use DNS to access workloads inside a cluster

Internal DNS within a cluster still functions normally.

5-45 DNS Servers Supported by External DNS

External DNS supports the following DNS servers:

- RFC2136 (BIND) server
- Microsoft DNS using RFC2136 (Insecure) or RFC3645 (Secure)
- AWS (Route53)
- Microsoft Azure

For a full list of supported DNS servers, see *kubernetes-sigs/external-dns* on the GitHub website at <https://github.com>.

5-46 How External DNS Works

External DNS works by:

- Watching for host names in Kubernetes API resources:
 - Ingress and HTTPProxy resources are watched for the host field on each of the defined rules.
 - Load balancer resources are watched for the `external-dns.alpha.kubernetes.io/hostname` annotation.
- Creating a DNS entry in the configured DNS server that points to the ingress or load balancer IP address
- Deleting the DNS entry when the ingress, HTTPproxy, or load balancer resources are deleted

5-47 External DNS Configuration for BIND Servers

The example configuration file is `external-dns-data-values-rfc2136.yaml.example`, and it watches load balancer resources for External DNS annotations.

To have External DNS watch for Contour ingress and HTTPProxy resources, use the `external-dns-data-values-rfc2136-with-contour.yaml.example` file.

The following parameters are configured when using a BIND server.

Key	Description
<code>--rfc2136-host</code>	The IP address and port for the DNS server.
<code>--rfc2136-port</code>	
<code>--rfc2136-zone</code>	Which DNS zone to update.
<code>--rfc2136-tsig-secret</code>	Authentication details for performing DNS updates.
<code>--rfc2136-tsig-keyname</code>	
<code>--source</code>	Which resources are watched, for example, Service, Ingress, HTTPproxy.
<code>--domain-filter</code>	Only creates DNS entries for specific domains or subdomains.

5-48 Lab 12: Deploying External DNS

Configure and deploy External DNS to enable dynamic DNS updates for ingress and load balancer resources:

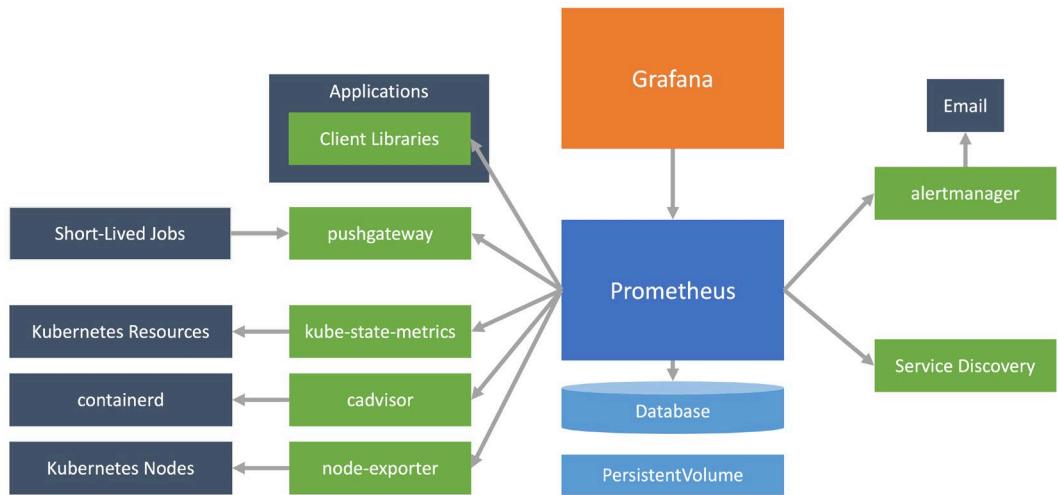
1. Retrieve the Secret Key for DNS Updates
2. Configure External DNS
3. Deploy External DNS

5-49 Review of Learner Objectives

- Describe Service Discovery
- Describe External DNS
- Detail the configuration options for BIND servers

5-50 **Lesson 6: Cluster Monitoring**

5-51 Learner Objectives


- Describe Prometheus
- Describe Grafana

5-52 Monitoring in Tanzu Kubernetes Grid

Tanzu Kubernetes Grid provides cluster monitoring services using the following open-source projects:

- Grafana: Visualization and analytics software. It enables you to query, visualize, alert on, and explore your metrics wherever they are stored.
- Prometheus: A systems monitoring and alerting toolkit. It collects metrics from clusters and applications at specified intervals and triggers alerts if certain conditions arise.

5-53 Grafana and Prometheus Architecture

5-54 Prometheus Components

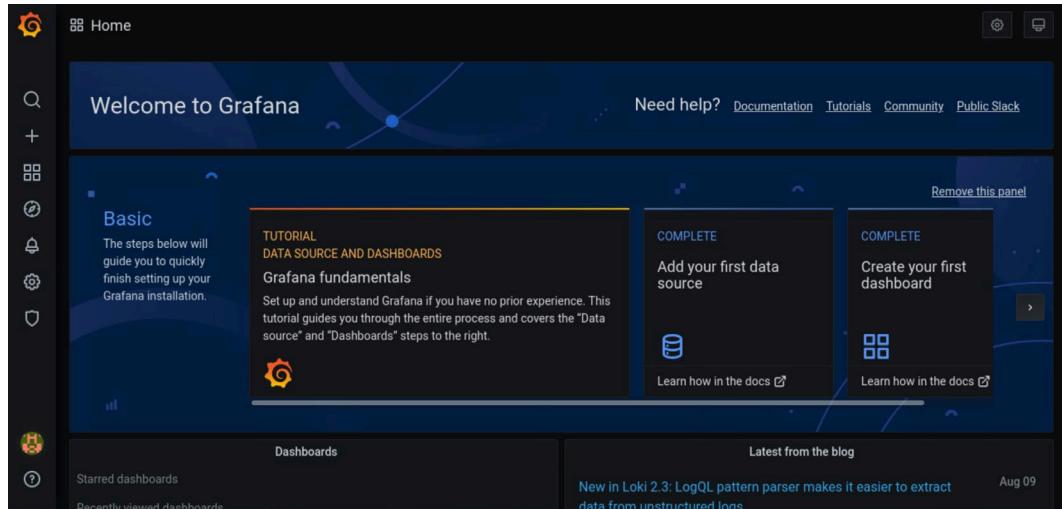
Prometheus consists of the following components.

Name	Description
server	Performs the job of scraping and storing metrics in the Prometheus database.
alertmanager	Provides alerting to external services, such as email.
cAdvisor	Provides container-level metrics.
Node Exporter	Provides OS-level metrics for control plane and worker nodes.
kube-state-metrics	Provides metrics for Kubernetes API resources, for example, pod status, pod resource limits, and many more.
Client Libraries	Applications can be instrumented with the Prometheus client libraries, providing Prometheus the ability to capture application-level metrics.
Pushgateway	Provides an endpoint for one-time jobs, such as batch jobs, to send metrics.

5-55 Prometheus Configuration Options

The default Prometheus configuration values provide a working Prometheus deployment.

Some example options that can be modified in the `prometheus-data-values.yaml` file are listed.


Option	Description
<code>monitoring.prometheus_server.config.alerting_rules_yaml</code>	Configures alerting.
<code>monitoring.alertmanager.config.email_receiver</code>	Emails server configuration for alerting.
<code>monitoring.ingress.enabled</code>	Enables ingress access to the Prometheus dashboard.

For more information about configuration options, see <https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.3/vmware-tanzu-kubernetes-grid-13/GUID-extensions-prometheus.html>.

5-56 About Grafana

Grafana is an open-source monitoring and observability platform that:

- Can connect to and pull data from many data sources
- Provides dynamic dashboards, graphs and visualization functionality for Prometheus

5-57 Grafana Configuration Options

The following values must be configured in the `grafana-data-values.yaml` file before deploying Grafana.

Options	Description
<code>monitoring.grafana.secret.admin_password</code>	The password for the admin account.
<code>monitoring.grafana.ingress.virtual_host_fqdn</code>	The host name to use for ingress.

For more information about configuration options, see "Deploy Grafana on Tanzu Kubernetes Clusters" at <https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.3/vmware-tanzu-kubernetes-grid-13/GUID-extensions-grafana.html>.

5-58 Lab 13: Deploying Prometheus and Grafana

Configure and deploy Prometheus and Grafana to collect and visualize cluster metrics:

1. Deploy Prometheus
2. Configure Grafana
3. Deploy Grafana
4. Access the Grafana Web Interface

5-59 Lab 14: Deploying a Workload

Deploy a workload as a developer and inspect the workload with various tools:

1. Access the Cluster as a Developer
2. Deploy a Workload
3. Inspect the NSX Advanced Load Balancer UI
4. Inspect the Logs in vRealize Log Insight

5-60 Review of Learner Objectives

- Describe Prometheus
- Describe Grafana

5-61 Key Points

- The Tanzu Kubernetes Grid extensions provide functionality that is required for a production cluster.
- Harbor provides an image registry.
- Fluent Bit provides logging functionality.
- Contour provides ingress functionality.
- External DNS provides service discovery functionality.
- Prometheus and Grafana provide monitoring functionality.

Module 6

Troubleshooting Tanzu Kubernetes Grid

6-2 Importance

Understanding how to identify and correct issues is vital to the efficient operation of Tanzu Kubernetes Grid.

6-3 Module Lessons

1. Tanzu Kubernetes Grid Logs
2. Crash Diagnostics
3. Troubleshooting Commands

6-4 Lesson 1: Tanzu Kubernetes Grid Logs

6-5 Learner Objectives

- Describe the various Tanzu Kubernetes Grid logs
- Identify the location of Tanzu Kubernetes Grid logs

6-6 Monitoring Tanzu Kubernetes Cluster Deployments in Cluster API Logs

If a cluster deployment is failing, viewing the logs for the Cluster API pods can indicate what is failing.

During a management cluster deployment, these logs are accessible on the bootstrap cluster.

During a workload cluster deployment, these logs are accessible on the management cluster.

Namespace	Pod
capi-kubeadm-bootstrap-system	capi-kubeadm-bootstrap-controller-manager
capi-kubeadm-control-plane-system	capi-kubeadm-control-plane-controller-manager
capi-system	capi-controller-manager
capv-system	capv-controller-manager

6-7 Viewing Cluster API Resources

Each cluster that is deployed by Tanzu Kubernetes Grid has corresponding Cluster API resources which can be viewed using the `kubectl describe` command.

```
kubectl describe

clusters
kubeadmconfigs
kubeadmcontrolplanes
machinedeployments
machinesets
machines
vsphereclusters
haproxyloadbalancers
vspheremachines
vspherevms

kubectl get clusters
NAME          PHASE
tkg-workload-02  Provisioned

kubectl describe cluster tkg-workload-02
Name:           tkg-workload-02
Namespace:      default
API Version:   cluster.x-k8s.io/v1alpha3
Kind:          Cluster
Spec:
Cluster Network:
  Pods:
    Cidr Blocks:
      100.96.0.0/11
  Services:
    Cidr Blocks:
      100.64.0.0/13
Control Plane Endpoint:
  Host:  172.20.11.123
  Port:  6443
Control Plane Ref:
  API Version:  controlplane.cluster.x-k8s.io/v1alpha3
  Kind:        KubeadmControlPlane
  Name:        tkg-workload-02-control-plane
  Namespace:   default
Infrastructure Ref:
  API Version:  infrastructure.cluster.x-k8s.io/v1alpha3
  Kind:        VSphereCluster
  Name:        tkg-workload-02
  Namespace:   default
Status:
Control Plane Initialized:  true
Control Plane Ready:        true
Infrastructure Ready:       true
Phase:          Provisioned
Events:          <none>
```

6-8 About Kubernetes Audit Logging

Kubernetes audit logging:

- Is enabled by setting `ENABLE_AUDIT_LOGGING=true` when deploying a cluster
- Logs metadata about all requests made to the Kubernetes API server
- Logs audit events to the `/var/log/kubernetes/audit.log` file on each control plane node
- Is included in the logs sent to the logging server by Fluent Bit

6-9 About System Audit Logging

System audit logging:

- Is enabled by default on Tanzu Kubernetes clusters
- Uses the Linux auditd system to track audit events
- Logs audit events to the /var/log/audit/audit.log file on each node
- Is included in the logs sent to the logging server by Fluent Bit

6-10 Review of Learner Objectives

- Describe the various Tanzu Kubernetes Grid logs
- Identify the location of Tanzu Kubernetes Grid logs

6-11 **Lesson 2: Crash Diagnostics**

6-12 Learner Objectives

- Describe the purpose of Crash Diagnostics

6-13 About Crash Diagnostics

Crash Diagnostics or Crashd:

- Is a command-line tool to help platform operators investigate and troubleshoot unhealthy or unresponsive Kubernetes clusters
- Is available for Linux and MacOS
- Runs scripts that collect Kubernetes API output, node logs, and node command-line output through SSH

6-14 About Diagnostic Scripts

The diagnostic scripts that Crashd uses are written in the Starlark, which is a dialect of the Python programming language.

Crashd exposes commonly used operations as Starlark functions which are used to build diagnostics scripts.

For example:

- Run kubectl and collect the specified resources:

```
kube_capture(what="objects", kinds=["deployments",  
"services"], namespaces=["default"])
```

- Run a command through SSH on the specific nodes:

```
capture(cmd="df -h /", resources=nodes)
```

For examples of Crashd diagnostics scripts, see *vmware-tanzu/crash-diagnostics* on the GitHub website at <https://github.com>.

6-15 About the Default Diagnostics Script

Crashd provides a default diagnostics script, covering common use cases, which:

- Accepts arguments to specify what to collect
- Collects bootstrap, management, and workload cluster information
- Outputs an archive file containing all requested information

6-16 Passing Arguments

Ways to pass arguments to the diagnostics script:

- By entering the parameters in a configuration file and passing the file name:

```
--args-file <ARGS_FILENAME>
```

- By entering the parameters as a comma-separated list of key-value pairs:

```
--args key1=value1,key2=value2
```

Arguments passed using `--args` take precedence over arguments passed using `--args-file`.

6-17 Default Diagnostic Script Arguments

The default diagnostics script accepts the following arguments.

Argument	Description
target	Where to collect the logs from, either bootstrap, mgmt, or workload.
infra	What infrastructure the cluster is running on, either vsphere, aws, or azure.
workdir	Where to store collected logs.
ssh_user	The username to use for SSH.
ssh_pk_file	The private key to use for SSH.
mgmt_cluster_ns	The namespace in the management cluster where the management cluster's own Cluster API resources are created.
mgmt_cluster_config	The kubeconfig file for the management cluster.
workload_clusters	A list of comma-separated workload cluster names.
workload_cluster_ns	The namespace in the management cluster where the workload clusters Cluster API resources are created.

6-18 Running Crash Diagnostics

You use the Crash Diagnostics CLI `run` command to run a diagnostics script.

Examples:

- Pass the arguments from the `args` file and run `diagnostics.crsh`.

```
crashd run --args-file args diagnostics.crsh
```

- Same as the previous command, but override the `target` and `workload_cluster` parameters.

```
crashd run --args-file args --args
target=workload,workload_cluster=tkc-01 diagnostics.crsh
```

6-19 Lab 15: Configuring and Running Crash Diagnostics

Install and configure Crash Diagnostics and run a log collection on the Tanzu Kubernetes cluster:

1. Install the Crash Diagnostics CLI
2. Configure the Crash Diagnostics Arguments File
3. Run the Crash Diagnostics CLI

6-20 Review of Learner Objectives

- Describe the purpose of Crash Diagnostics

6-21 **Lesson 3: Troubleshooting Commands**

6-22 Learner Objectives

- Describe how to use SSH to connect to a Tanzu Kubernetes VM
- Detail the steps to troubleshoot a failed cluster deployment

6-23 Connecting to Cluster Nodes with SSH

You can use SSH to connect to individual nodes of management clusters or Tanzu Kubernetes clusters.

To do so, the SSH key pair that you created when you deployed the management cluster must be available on the machine on which you run the SSH command.

The SSH key that you entered in the installer is associated with the capv user account:

- `ssh capv@VM_IP_ADDRESS`
- `sudo -i`

Because the SSH key is present on the system on which you are running the SSH command, no password is required.

Run the `sudo -i` command to change to root and launch a Bash shell.

6-24 Failure of the Management Cluster Create Command

When a cluster fails to create and the Waiting for cert-manager to be available error message displays, perform the following steps:

1. Verify whether the cluster nodes are all in the ready state.

```
kubectl get nodes
```

2. Verify if any pods are failing.

```
kubectl get pods -A
```

3. For any pods that are failing, verify the events and logs.

```
kubectl describe pod -n <POD_NAMESPACE> <POD_NAME>
```

```
kubectl logs -n <POD_NAMESPACE> <POD_NAME>
```

4. Resolve any issues with configuration or connectivity.

5. Delete the management cluster.

```
tanzu management-cluster delete
```

6. Run the create command again to ensure a clean deployment.

```
tanzu management-cluster create
```

6-25 Recovering Management Cluster Credentials

If you lose the credentials for a management cluster, you can recover them.

To recover the credentials from the management cluster control plane node:

1. Run `tanzu management-cluster create` to recreate the `.kube-tkg/config` file.
2. Obtain the IP address of the management cluster control plane node from vSphere.
3. Use SSH to log in to the management cluster control plane node.

```
ssh capv@node_IP_adress
```

4. Access the `admin.conf` file for the management cluster.

```
sudo cat /etc/kubernetes/admin.conf
```

5. Copy the cluster name, the cluster user name, the cluster context, and the client certificate data into the `.kube-tkg/config` file.

You can lose the credentials for a management cluster, for example, by inadvertently deleting the `.kube-tkg/config` file on the system on which you run `tanzu` commands.

6-26 Lab 16: Performing Basic Troubleshooting

Perform basic troubleshooting:

1. Connect to a Node by Using SSH

6-27 Lab 17: (Optional) Building Custom Images

Build a custom image using Image Builder:

1. Unzip the Tanzu Kubernetes Grid Image Builder Files
2. Load the OVF Tool into the Image Builder Container Image
3. Prepare the Image Builder Configuration
4. Run Image Builder

6-28 Review of Learner Objectives

- Describe how to use SSH to connect to a Tanzu Kubernetes VM
- Detail the steps to troubleshoot a failed cluster deployment

6-29 Key Points

- Crash Diagnostics is used to collect logs from a Tanzu Kubernetes cluster.
- kubectl is used to query Cluster API logs and resources to view the status of deployed clusters.

